JP7007667B2 - パルス電磁波発生装置および計測装置 - Google Patents

パルス電磁波発生装置および計測装置 Download PDF

Info

Publication number
JP7007667B2
JP7007667B2 JP2018044783A JP2018044783A JP7007667B2 JP 7007667 B2 JP7007667 B2 JP 7007667B2 JP 2018044783 A JP2018044783 A JP 2018044783A JP 2018044783 A JP2018044783 A JP 2018044783A JP 7007667 B2 JP7007667 B2 JP 7007667B2
Authority
JP
Japan
Prior art keywords
pulse
laser
electromagnetic wave
pulsed
wave generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044783A
Other languages
English (en)
Other versions
JP2019160977A (ja
Inventor
敏行 池應
康弘 東
芳夫 和田
拓海 佐藤
泰亜 南出
耕二 縄田
佑馬 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Ricoh Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Ricoh Co Ltd
Priority to JP2018044783A priority Critical patent/JP7007667B2/ja
Priority to US16/292,381 priority patent/US10714888B2/en
Publication of JP2019160977A publication Critical patent/JP2019160977A/ja
Application granted granted Critical
Publication of JP7007667B2 publication Critical patent/JP7007667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08031Single-mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/06Materials and properties dopant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Description

本発明は、パルス電磁波発生装置および計測装置に関する。
近年、大気中の二酸化炭素や水蒸気濃度を計測する環境計測や、テロや危険物質の横行を未然に防止するためのガスセンシングなど、高速かつ高感度な分子計測(定量評価)装置の需要が高まっている。その中の一つに、気体に対して特長的な吸収スペクトル(指紋スペクトル)を持つテラヘルツ波を利用したガスセンシングが注目されている。
差分吸収ライダ(LiDAR)は、測定対象の吸収波長に周波数を合わせたON波長と、ON波長から周波数をずらしたOFF波長とを用いて、分子計測・濃度計測を行う分光方法である。差分吸収ライダ(LiDAR)は、大気中の二酸化炭素濃度の計測などに利用されている。
テラヘルツ波帯は、様々な物質の指紋スペクトルが多く存在する周波数領域であり、テラヘルツ波を用いた分子計測は、医療・セキュリティなど様々な分野から注目されている。テラヘルツ波光源のひとつとして、非線形光学効果を利用した光注入型テラヘルツ波パラメトリック発生方式(is-TPG)がある。is-TPGによって発生するテラヘルツ波の周波数は、非線形光学結晶に入射するポンプ光とシード光の周波数差によって決定される。このis-TPGでは、ポンプ光として高ピークパワーが必要であることから固体レーザーが使用される。すなわち、ポンプ光の発振波長は固体レーザーのレーザー媒質によっておおよそ決定される。
特許文献1には、is-TPGを用いたテラヘルツ分光において、波長可変機能を有するシード光源の波長を掃引することで、テラヘルツ波帯の周波数スペクトルを取得する技術が開示されている。
しかしながら、特許文献1に記載の技術によれば、テラヘルツ波の周波数を切り替える速度は固体レーザーの繰り返し周波数によって制限されてしまい、その繰り返し周波数は100Hzオーダーである。このため、従来のテラヘルツ光源を用いて、気流のある環境下にあるガスなど、環境状況によって濃度変化が生じやすい物質を測定する場合、テラヘルツ波の周波数を切り換えて測定する間に、すなわち固体レーザーを発振させるまでの間に、測定対象の状態が変化し、測定精度が劣化することが課題として挙げられる。
本発明は、上記に鑑みてなされたものであって、短い時間間隔で異なる周波数のパルス電磁波を出射するパルス電磁波発生装置および計測装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、励起光源と、前記励起光源からの励起光が入射するレーザー共振器と、パルス発生部と、前記パルス発生部から発生するパルス光群を入射し、前記パルス光群の各パルスを波長変換したパルス電磁波を発生する波長変換部と、を有するパルス電磁波発生装置であって、前記励起光源の1回の励起行程において、周波数(ω)および発振タイミング(t)の異なる少なくとも2つ以上のパルス光を含むパルス光群を発生し、前記パルス光群における各パルス光の発振周波数差(Δω)は、前記レーザー共振器の縦モード間隔の整数倍である、ことを特徴とする。
本発明によれば、環境状況によって濃度変化が生じやすい物質を測定する場合、測定対象の状態が変化し、測定精度が劣化することを防止することができる、という効果を奏する。
図1は、実施の形態にかかる計測装置の構成を示す図である。 図2は、マイクロチップレーザーの構成を示す図である。 図3は、パルス光の例を示す図である。 図4は、マイクロチップレーザーの発振スペクトルの一例を示す図である。 図5は、ホールバーニング効果とレーザーの発振波長の関係を示す図である。 図6は、パルス電磁波発生装置の概略を示す図である。 図7は、周波数軸および時間軸でのテラヘルツ波について示した図である。 図8は、マイクロチップレーザーからの光パルスおよびテラヘルツ波パルスの測定結果を示す図である。 図9は、2パルス発振状態での水蒸気の吸収スペクトルの測定結果を示す図である。 図10は、計測装置を示す図である。 図11は、周波数軸および時間軸でのテラヘルツ波について示した図である。 図12は、SBDでのテラヘルツ波の検出信号を示す図である。 図13は、差分吸収計測におけるテラヘルツ波の周波数の設定を示す図である。 図14は、テラヘルツ波パルス強度の時間変化を示す図である。 図15は、図14の第1パルス-第2パルスの強度の差分を示す図である。
以下に添付図面を参照して、パルス電磁波発生装置および計測装置の実施の形態を詳細に説明する。
図1は、実施の形態にかかる計測装置1の構成を示す図である。図1に示すように、計測装置1は、パルス電磁波発生装置2と、検出器3と、を備えている。パルス電磁波発生装置2は、パルス光発生装置4と、波長変換部5と、を備えている。検出器3は、パルス電磁波発生装置2から発生するテラヘルツ波(THz波)パルスを検出する。
図1に示すように、パルス光発生装置4は、高ピークパワーの短パルスレーザー光を発振するマイクロチップレーザー6を備える。
図1に示すように、波長変換部5は、シード光源である単一波長の連続波を発振する半導体レーザーであるシードレーザー(CW-Laser)11を備えている。また、波長変換部5は、ノンコリニア位相整合のパラメトリック発生を可能とする非線形光学結晶のニオブ酸リチウム結晶(MgO:LiNbO結晶)を用いて単色性のテラヘルツ波を発生する光注入型テラヘルツ波パラメトリック発生方式(is-TPG)の波長変換素子12を備えている。
マイクロチップレーザー6は、励起光源であるファイバー結合型高出力VCSEL(面発光型半導体レーザー)7と、レーザー共振器8と、を備えている。レーザー共振器8は、VCSEL7からの励起光を受けて高ピークパワーの短パルスレーザーを発生するNd:YAG/Cr:YAGコンポジット結晶10を有する。Cr:YAGは、パルス発生部(Qスイッチ素子)である。Nd:YAG/Cr:YAGコンポジット結晶10は、励起光入射面にAR808nm/HR1064nmのコーティング、出射面にR=30~70%@1064nmのコーティングを施されている。また、レーザー共振器8は、共振器ミラー9を有する。
ここで、図2はマイクロチップレーザー6の構成を示す図、図3はパルス光の例を示す図である。図2に示すように、マイクロチップレーザー6は、VCSEL7からの励起光を光ファイバーで伝送して、Nd:YAG/Cr:YAGコンポジット結晶10に入射する。
図3に示すように、VCSEL7の発光時間は0.5~1msで、発光の繰り返し周波数は1~100Hzである。マイクロチップレーザー6からは、VCSEL7の発光期間中に10kHz程度の間隔で高ピークパワーのパルスを発振する。最終的に発振するパルス数は、パルスの発信時間間隔と、VCSEL7の発振時間および出力強度によって決定される。
なお、励起光源は、レーザー媒質であるNd:YAGの吸収波長を発光する光源であれば、VCSEL7に限らず端面発光型レーザーなどであっても良い。また、本実施形態では光ファイバー13で励起光を伝送し、レーザー媒質に集光させていたが、VCSEL7から直接レーザー媒質へ集光させても良い。
図4は、マイクロチップレーザー6の発振スペクトルの一例を示す図である。図4に示す例は、マイクロチップレーザー6において、1パルスのみの発振波長(実線)と、2パルス目が発振した直後の1パルス目と2パルス目の発振波長を合わせて測定した結果(破線)を示したものである。
図4に示すように、1パルスのみ発振している時は、波長のピークは1つであったが、2パルスを同時に計測した時は、ピーク波長が2つになっていることが確認される。その一方のピーク波長が、1パルスのみ発振させた際のピーク波長と一致していることから、2パルス目が別のピーク波長で発振していることが分かる。
加えて、1パルス目のピーク波長は1064.38nmに対して、2パルス目のピーク波長は1064.34nmであり、その波長差は0.04nmである。一方、このときのマイクロチップレーザー6に用いられた共振器長は7mmであり、屈折率(n=1.82)を考慮した時のレーザー共振器8の縦モード間隔は△λ=0.04nmと求められるため、1パルス目と2パルス目の波長差と一致する。すなわち、マイクロチップレーザー6から複数パルス発振させた場合、パルスごと発振波長はマイクロチップレーザー6のレーザー共振器8の縦モード間隔の分だけ変化して発振することが確認された。
次に、発振波長の変化について説明する。
ここで、図5はホールバーニング効果とレーザーの発振波長の関係を示す図である。図5に示すように、レーザー媒質は不均一に広がる利得を持つ。一方、レーザーの発振波長は、レーザー共振器8の共振器長とレーザー共振器8の屈折率から決定される縦モード間隔δf=c/2nLの整数倍と、レーザー媒質の利得で決定される。レーザー媒質の利得中で発振しやすい波長は、縦モード間隔δfで決定されている。レーザー媒質が励起され、利得が十分に高くなり、反転分布を形成すると、縦モードの中で最も利得の高い波長で発振する。このレーザー発振をした時、レーザー媒質の利得は発振波長で利得が下がるホールバーニングが起きる。
次のレーザー発振までの時間が十分に長い場合は、発振波長の利得が回復し、同じ波長のレーザー光を発振する。しかし、次のレーザー発振までの時間が十分に短い場合、利得は回復することなく反転分布を形成するため、レーザー光はレーザー共振器8の共振器長中の縦モードの中で、次に利得の高い波長で発振する。すなわち、レーザー光を非常に短い時間間隔で発振させた場合、ホールバーニング効果により、発振波長が変化し、その変化量はレーザー共振器8の縦モード間隔に依存する。このホールバーニング効果は、本実施の形態で扱ったNd:YAGに限らず、すべてのレーザー媒質の起こりうる現状であるため、レーザー媒質刃Nd:YAGに限定しない。
従来のis-TPG方式テラヘルツ波光源では、1回のテラヘルツ波の発生サイクルにおいて、すなわち励起光源によるマイクロチップレーザーの1回の励起行程において、固体レーザーから単一波長のレーザー光を発振させる。そのため、発生するテラヘルツ波の波長を変化させたい場合、シード光源に波長可変機能を持たせる必要があるのに加え、発生するテラヘルツ波の周波数を切り換えられる時間間隔は固体レーザーの繰り返し周波数に依存する。
本実施の形態では、レーザー共振器8の構造や励起光の励起条件を変え、1回の励起行程で少なくとも2つ以上の高ピークパワー・短パルスレーザー光を異なる発振時間で発振するマイクロチップレーザー6をポンプ光源(励起光源)として用いる。マイクロチップレーザー6から1回の励起行程で複数のパルスを異なる発振時間で発振させる場合、ホールバーニング効果により、発振パルスごと発振波長が異なり、発振波長の変化量はマイクロチップレーザー6のレーザー共振器8の縦モード間隔によって制御される。
ここで、図6はパルス電磁波発生装置2の概略を示す図、図7は周波数軸および時間軸でのテラヘルツ波について示した図である。図6に示すように、パルス電磁波発生装置2は、is-TPG方式テラヘルツ波光源を用いたものである。
図7に示すように、マイクロチップレーザー6から発振する第1のパルスとシードレーザー11の周波数差Δfとして、位相整合角でMgO:LiNbO結晶である波長変換素子12に入射すると、中心周波数がΔfのテラヘルツ波が発生される。そして、マイクロチップレーザー6から発生した第2パルスは、第1パルスに比べてレーザー共振器8の縦モード間隔δfの分だけ周波数がずれることから、中心周波数Δf+δfのテラヘルツ波が発生する。
上記のように発振時間および発振波長の異なるパルスを1回の励起行程で発振するマイクロチップレーザー6をポンプ光源(励起光源)として用いることで、シード光に波長可変機能を必要とせず、1回の励起行程において周波数の異なる複数のテラヘルツ波パルスを時間的に分離して発生させることが可能になる。加えて、マイクロチップレーザー6から発振されるパルスの時間間隔は、励起条件等によるが、数k~数十kHzオーダーであり、固体レーザーの繰り返し周波数よりも一桁以上高速である。すなわち、従来のis-TPG式テラヘルツ波光源と異なり、1回の励起行程で、少なくとも2つ以上の周波数情報が獲得でき、獲得のための時間間隔が短い。加えて、シード光に波長可変機能を必要としないことから、システム構成が簡略化される。
なお、本実施の形態では、MgO:LiNbO結晶を用いたis-TPG方式テラヘルツ波光源を述べたが、MgO:LiNbO結晶に限定せず、KTPやSiO、GaAS、GaPなどの無機系の非線形光学結晶でも、DASTやBNAの有機系の非線形光学結晶であっても良い。
ここで、図8はマイクロチップレーザー6からの光パルスおよびテラヘルツ波パルスの測定結果を示す図である。図8は、下から順に、1パルス、2パルス、3パルスを1回の励起行程で発振させた時の時間波形である。各波形を比較すると、マイクロチップレーザー6を2パルス以上発振させた時、テラヘルツ波パルスもマイクロチップレーザー6と同じ時間間隔で発振していることが確認できる。
ここで、図9は2パルス発振状態での水蒸気の吸収スペクトルの測定結果を示す図である。図9は、マイクロチップレーザー6を図4に示した条件で2パルス発振させた状態で、シードレーザー11に波長可変レーザーを用いて、水蒸気の吸収スペクトルを測定した結果である。分光の際、発振する第1のテラヘルツ波パルスと第2のテラヘルツ波パルスそれぞれの強度を独立に検出した。
図9から分かるように、第1と第2それぞれのパルスで水蒸気の特徴的なスペクトルが検出されているが、第2のスペクトルは第1のスペクトルに比べて11GHz低周波数側にシフトしていることが分かる。なぜなら、1回の励起行程中において、シード光源の波長は一定に保っている一方、ポンプ光(励起光)の第1パルスと第2パルスは波長が変化している。図4から分かるように、第2のパルスは第1のパルスに比べて短波長(高周波数)である。そして、発生するテラヘルツ波パルスもまた、第2のテラヘルツ波パルスの周波数は第1のテラヘルツ波パルスよりも高周波であることから、第1のパルスを基準に分光した場合、見かけ上、第2のテラヘルツ波パルスの周波数が低周波側にシフトしたように見える。すなわち、図9より、発振するテラヘルツ波パルスもまた、マイクロチップレーザーの縦モード間隔の分だけ周波数が変化することが確認された。
ここで、図10は計測装置1を示す図、図11は周波数軸および時間軸でのテラヘルツ波について示した図、図12はSBDでのテラヘルツ波の検出信号を示す図である。図10に示す計測装置1は、図9までにおいて説明した、一回の励起行程において、発振波長および発振時間の異なるテラヘルツ波パルスを発生するis-TPGテラヘルツ波光源を用いて、水蒸気量の差分吸収計測を行う。
図10に示すように、is-TPGテラヘルツ波光源から出射されたテラヘルツ波パルスは、窒素パージされた空間を伝播し、検出器3であるショットキーバリアダイオード(SBD)で検出される。is-TPGテラヘルツ波光源からSBD間のテラヘルツ波の光路中に、大気を取り込めるガスセル20を設ける。ガスセル20が窒素パージされた状態から大気を入れ込んだときにテラヘルツ波の強度変化をSBD検出する。ポンプ光源(励起光源)からは1回の励起で2つのパルスを発振させると、SBDで検出したテラヘルツ波は、図12に示すように、時間的に異なるタイミングで検出できる。
ここで、図13は差分吸収計測におけるテラヘルツ波の周波数の設定を示す図である。差分吸収計測を行う際は、図13に示すように、第2パルスが測定したいガス(ここでは水蒸気)の吸収周波数になるように設定する。これにより、第1パルスは、ポンプ光源(励起光源)の縦モード間隔の分だけ周波数がずれるため、吸収ピークの裾にかかる形となる。上記設定の元、ポンプ光源を50Hzの周波数で発振させると、同じ50Hzの時間間隔で、吸収周波数およびその裾の周波数の2つの周波数の情報を計測することが可能になる。
図14は、テラヘルツ波パルス強度の時間変化を示す図である。図14は、上記条件の下、窒素パージしたガスセル20中に大気を吹き込んだときのそれぞれのパルスの検出強度の時間変化を計測した結果である。吸収帯の裾にかかっている第1パルスは大気を入れることでわずかに強度が変化している一方で、吸収周波数である第2パルスは、大気を入れたタイミングで水蒸気を吸収し、テラヘルツ波の検出強度が大きく下がり、再び窒素が増えると検出強度が増加している。これにより、各テラヘルツ波パルスをポンプ光源の繰り返し周波数で計測できていることが確認できる。
図15は、図14の第1パルス-第2パルスの強度の差分を示す図である。図15より、水蒸気が入ったタイミングで、テラヘルツ波の差分強度が大きく増加しており、ガスセル20中の早い気体の状態変化を検出できることを示す。また、水蒸気を入れる前の時間帯では、信号強度が揺らいでいる。これは、テラヘルツ波光源および検出器3の揺らぎを示し、この線幅が、定量計測のベースラインとなる。
上記のように、本実施の形態では、1回の励起行程で、少なくとも2つ以上の周波数情報が獲得でき、獲得のための時間間隔が短いことから、分子計測における測定精度が向上される。また、発生するテラヘルツ波の時間間隔は、ショットキーバリアダイオードなどのテラヘルツ波帯で使用される検出器3で検出、時間分解可能な値である。
1 計測装置
2 パルス電磁波発生装置
3 検出器
4 パルス光発生装置
5 波長変換部
7 励起光源
8 レーザー共振器
10 パルス発生部
11 レーザー光源
12 波長変換素子
特許第3747319号公報

Claims (5)

  1. 励起光源と、前記励起光源からの励起光が入射するレーザー共振器と、パルス発生部と、前記パルス発生部から発生するパルス光群を入射し、前記パルス光群の各パルスを波長変換したパルス電磁波を発生する波長変換部と、を有するパルス電磁波発生装置であって、
    前記励起光源の1回の励起行程において、周波数(ω)および発振タイミング(t)の異なる少なくとも2つ以上のパルス光を含むパルス光群を発生し、
    前記パルス光群における各パルス光の発振周波数差(Δω)は、前記レーザー共振器の縦モード間隔の整数倍である、
    ことを特徴とするパルス電磁波発生装置。
  2. 前記パルス発生部は、Qスイッチ素子である、
    ことを特徴とする請求項1に記載のパルス電磁波発生装置。
  3. 前記波長変換部は、
    前記パルス光発生装置とは異なる周波数のレーザー光を発振するレーザー光源と、
    前記パルス光群と前記レーザー光の周波数差の周波数のパルス電磁波を発生させる波長変換素子と、
    を備えることを特徴とする請求項1または2に記載のパルス電磁波発生装置。
  4. 前記波長変換素子は、酸化マグネシウム添加のニオブ酸リチウム(MgO:LiNbO)結晶である、
    ことを特徴とする請求項3に記載のパルス電磁波発生装置。
  5. 請求項1ないし4の何れか一項に記載のパルス電磁波発生装置と、
    前記パルス電磁波発生装置から発生した発振周波数および発振時間の異なるパルス電磁波を時間的に分離して検出できる検出器と、
    を備えることを特徴とする計測装置。
JP2018044783A 2018-03-12 2018-03-12 パルス電磁波発生装置および計測装置 Active JP7007667B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018044783A JP7007667B2 (ja) 2018-03-12 2018-03-12 パルス電磁波発生装置および計測装置
US16/292,381 US10714888B2 (en) 2018-03-12 2019-03-05 Pulsed electromagnetic-wave generator and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044783A JP7007667B2 (ja) 2018-03-12 2018-03-12 パルス電磁波発生装置および計測装置

Publications (2)

Publication Number Publication Date
JP2019160977A JP2019160977A (ja) 2019-09-19
JP7007667B2 true JP7007667B2 (ja) 2022-02-10

Family

ID=67842163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044783A Active JP7007667B2 (ja) 2018-03-12 2018-03-12 パルス電磁波発生装置および計測装置

Country Status (2)

Country Link
US (1) US10714888B2 (ja)
JP (1) JP7007667B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365042B2 (ja) 2019-10-18 2023-10-19 フェムトディプロイメンツ株式会社 電磁波信号解析装置および電磁波信号解析用プログラム
US11899107B2 (en) 2019-10-25 2024-02-13 Ricoh Company, Ltd. Detection apparatus and method of detecting object comprising a circuitry to switch an illuminance level at each illuminance region with a plurality of illuminance levels
JP7476519B2 (ja) 2019-11-15 2024-05-01 株式会社リコー 光源装置、検出装置及び電子機器
JP2022025692A (ja) 2020-07-29 2022-02-10 株式会社リコー 照明モジュール、距離測定装置、移動体、および光源駆動回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133864A (ja) 1998-10-28 2000-05-12 Shimadzu Corp Ld励起固体レーザ装置
JP2003302666A (ja) 2002-04-09 2003-10-24 Inst Of Physical & Chemical Res テラヘルツ波発生装置とその同調方法
JP2011075583A (ja) 2009-09-03 2011-04-14 Institute Of Physical & Chemical Research 単色波長可変型テラヘルツ波発生/検出システム及び方法
US20110103801A1 (en) 2008-03-20 2011-05-05 Deutsche Telekom Ag Method for producing terahertz electromagnetic carrier waves
JP2014225542A (ja) 2013-05-16 2014-12-04 株式会社島津製作所 固体パルスレーザ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646465B2 (ja) * 1997-04-18 2005-05-11 ソニー株式会社 レーザ光発生装置
JPH11108836A (ja) 1997-10-07 1999-04-23 Nec Corp 微量気体検出装置および微量気体検出方法
JP4657956B2 (ja) 2006-03-14 2011-03-23 三菱電機株式会社 差分吸収ライダ装置
US7742510B2 (en) * 2006-04-27 2010-06-22 Spectralus Corporation Compact solid-state laser with nonlinear frequency conversion using periodically poled materials
US7724797B2 (en) * 2006-04-27 2010-05-25 Spectralus Corporation Solid-state laser arrays using nonlinear frequency conversion in periodically poled materials
US8953647B1 (en) * 2007-03-21 2015-02-10 Lockheed Martin Corporation High-power laser using thulium-doped fiber amplifier and frequency quadrupling for blue output
JP5704841B2 (ja) * 2010-06-10 2015-04-22 キヤノン株式会社 光源装置及びこれを用いた撮像装置
US20120188554A1 (en) * 2011-01-24 2012-07-26 Canon Kabushiki Kaisha Light source device and imaging apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133864A (ja) 1998-10-28 2000-05-12 Shimadzu Corp Ld励起固体レーザ装置
JP2003302666A (ja) 2002-04-09 2003-10-24 Inst Of Physical & Chemical Res テラヘルツ波発生装置とその同調方法
US20110103801A1 (en) 2008-03-20 2011-05-05 Deutsche Telekom Ag Method for producing terahertz electromagnetic carrier waves
JP2011075583A (ja) 2009-09-03 2011-04-14 Institute Of Physical & Chemical Research 単色波長可変型テラヘルツ波発生/検出システム及び方法
JP2014225542A (ja) 2013-05-16 2014-12-04 株式会社島津製作所 固体パルスレーザ装置

Also Published As

Publication number Publication date
US20190280454A1 (en) 2019-09-12
US10714888B2 (en) 2020-07-14
JP2019160977A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7007667B2 (ja) パルス電磁波発生装置および計測装置
Zhao et al. Microwave induced transparency in ruby
CA2574111C (en) Generation of radiation with stabilized frequency
US8964803B2 (en) Wavelength sweeping light source and imaging apparatus using the same
JP4793675B2 (ja) 距離測定装置
JP5096543B2 (ja) テラヘルツ波装置
JP6071203B2 (ja) 光源装置及びこれを用いた光干渉断層撮像装置、及び光発振方法
CA2781319C (en) Fiber laser oscillators and systems using an optimized phase varying function
JP5517818B2 (ja) 光源装置及びこれを用いた撮像装置
KR102471958B1 (ko) 광대역 출력을 가지는 튜닝가능한 라이트 소스
JP4617434B2 (ja) 距離測定装置
Siebe et al. A fully tunable dual-color CW Ti: Al/sub 2/O/sub 3/laser
Nakamura et al. Interferometric studies on a diode-pumped Nd: YVO4 laser with frequency-shifted feedback
Dingjan et al. A frequency-doubled laser system producing ns pulses for rubidium manipulation
KR101453472B1 (ko) 테라헤르츠파 장치
JP6016132B2 (ja) 自己参照干渉装置
US10476225B2 (en) Injected laser and method for generating longitudinal multimode laser pulses
Lai et al. Coherence of pulsed microwave signals carried by two-frequency solid-state lasers
US20210293696A1 (en) Photoacoustic gas sensor using a method for modulating the illumination wavelength
Ikeo et al. Dual-pulse passively Q-switched microchip laser for two-color tandem THz-wave pulse generation
JP2005243879A (ja) 高調波レーザビーム発生装置
US11868024B2 (en) Frequency-conversion of an optical frequency comb
Vasilyev et al. 5-Octave Laser Source Based on Cr: ZnS-GaSe Tandem
JP2003270040A (ja) 分光分析方法および分光分析システム
Takida et al. Terahertz Differential Absorption Spectroscopy Using Multi-Furcated Nd: YAG Microchip Laser for Gas Sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7007667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150