JP7003759B2 - 熱処理装置、熱処理装置の管理方法及び記憶媒体 - Google Patents

熱処理装置、熱処理装置の管理方法及び記憶媒体 Download PDF

Info

Publication number
JP7003759B2
JP7003759B2 JP2018049783A JP2018049783A JP7003759B2 JP 7003759 B2 JP7003759 B2 JP 7003759B2 JP 2018049783 A JP2018049783 A JP 2018049783A JP 2018049783 A JP2018049783 A JP 2018049783A JP 7003759 B2 JP7003759 B2 JP 7003759B2
Authority
JP
Japan
Prior art keywords
heat treatment
physical quantity
substrate
mounting plate
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018049783A
Other languages
English (en)
Other versions
JP2019009416A (ja
Inventor
準之輔 牧
晋一朗 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to TW111130910A priority Critical patent/TWI837773B/zh
Priority to KR1020180072865A priority patent/KR102467605B1/ko
Priority to TW107121623A priority patent/TWI779053B/zh
Priority to US16/018,417 priority patent/US11201068B2/en
Priority to CN201810680660.7A priority patent/CN109148330B/zh
Publication of JP2019009416A publication Critical patent/JP2019009416A/ja
Priority to JP2021207355A priority patent/JP7238955B2/ja
Application granted granted Critical
Publication of JP7003759B2 publication Critical patent/JP7003759B2/ja
Priority to KR1020220149191A priority patent/KR102567712B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加熱部により加熱される載置板上に基板を載置して当該基板を加熱処理する装置において、載置板の温度などの複数の物理量の検出結果に基づいて異常モードを推定し、対応処理を行う技術分野に関する。
半導体装置の製造工程において、例えばレジストパターンを形成する一連の処理中に、半導体ウエハ(以下「ウエハ」という)を加熱する熱処理が含まれる。熱処理としては、レジストをウエハに塗布した後に溶剤を揮発させる処理、露光によりレジスト膜中に発生した酸を拡散する処理、現像後のレジスト膜を加熱する処理などが挙げられる。またレジストパターンの形成に限らず、例えばウエハ上にシリコン酸化膜の前駆体を含む塗布液を塗布した後、前駆体の架橋反応を起こすためにウエハを加熱する処理なども挙げられる。
このような熱処理装置としては、処理容器内に配置された載置台を兼用し、その下面あるいは内部にヒータが設けられた熱板に、ギャップピンなどと呼ばれている複数の突起部を介して僅かに載置面よりも浮かせた状態でウエハを載置する装置が使用されている。ところで熱処理装置を運転しているときに例えば異物が載置台上に付着し、ウエハが異物に乗り上げることがある。また載置台(熱板)が割れた状態になることもある。このような異常が発生すると、ウエハに対して適切な熱処理ができなくなる。
特許文献1には、ベークプレートの表面温度の検出値と設定温度との差分を積分し、積分値を監視することで異常を検出する技術が記載されている。この場合、ウエハが正確にベークプレートに載置されていると表面温度が一時的に低下して積分値が大きくなるが、ウエハが傾いてベークプレートに載置されていると積分値が小さくなる。
また特許文献2には、熱板に設けた複数の温度検出値の温度検出値を質量とみなし、温度の重心を求めることにより、熱板上のパーティクルによるウエハの乗り上げ、ウエハの反りなどによるウエハの中心の異常な浮きを検出する手法が記載されている。
熱処理装置の運転時に発生する異常の態様としては、ウエハの乗り上げや反りの大きいウエハの搬入など以外にも、既述のように載置台の割れや、載置台に設けられたバキュームチャックのオン、オフを行うバキュームバルブの不具合などの場合もある。特許文献1、2の技術では、検出の対象としている異常の態様以外の他の異常が発生したときにも、異常の発生として判断されるが、異常の態様の区別がつかないため、適切な対応を取れない場合があるという課題がある。
特開2009-123816号 特開2016-66779号
本発明はこのような事情の下になされたものであり、その目的は熱処理装置の運転時に発生する異常に対して適切な対応をとることができる技術を提供することにある。
本発明は、処理容器内に配置されると共にその表面に基板と当該表面との接触を避けるための複数の突起部が設けられ、加熱部により加熱される載置板を備え、前記載置板上に基板を載置して当該基板を加熱処理する熱処理装置において、
運転条件として設定される複数種の物理量を夫々検出する複数種の物理量検出部と、
前記複数種の物理量検出部により夫々検出された複数種の物理量検出値の各種の物理量検出値ごとに得られた時系列の検出値群が入力層に入力され、ニューラルネットワークにより、複数の異常モードの各々について発生している発生確率を求める状態推定部と、
前記状態推定部により推定された異常モードの発生確率に応じて、取るべき対応処理を複数の対応処理の中から選択する選択部と、を備え、
前記複数種の物理量検出値のうちの一種の物理量検出値は、載置板の温度を検出する物理量検出部である温度検出部により検出された温度検出値であることを特徴とする。
他の発明は、処理容器内に配置されると共にその表面に基板と当該表面との接触を避けるための複数の突起部が設けられ、加熱部により加熱される載置板を備え、前記載置板上に基板を載置して当該基板を加熱処理する熱処理装置を管理する方法において、
少なくとも前記基板を載置板上に載置した後の時間帯において、運転条件として設定される複数種の物理量を夫々検出する工程と、
この工程にて検出された複数種の物理量検出値の各種の物理量検出値ごとに得られた時系列の検出値群が入力層に入力され、ニューラルネットワークにより、複数の異常モードの各々について発生している発生確率を求める工程と、
前記異常モードの発生確率に応じて、取るべき対応処理を複数の対応処理の中から選択する工程と、を含み、
前記複数種の物理量検出値のうちの一種の物理量検出値は、載置板の温度を検出する物理量検出部である温度検出部により検出された温度検出値であることを特徴とする。
更に他の発明は、処理容器内に配置されると共にその表面に基板と当該表面との接触を避けるための複数の突起部が設けられ、加熱部により加熱される載置板を備え、前記載置板上に基板を載置して当該基板を加熱処理する熱処理装置に使用されるコンピュータプログラムを記憶した記憶媒体であって、
前記コンピュータプログラムは、本発明である熱処理装置の管理方法を実行するようにステップ群が組まれたことを特徴とする。
本発明は、加熱部により加熱される載置板上に基板を載置して当該基板を加熱処理するにあたって、運転条件として設定される載置板の温度を含む複数種の物理量を検出し、各種の物理量検出値ごとに得られた時系列の検出値群をニューラルネットワークに入力している。そしてニューラルネットワークにより複数の異常モードの各々について、発生している発生確率を求め、各異常モードの発生確率に応じて、取るべき対応処理を複数の対応処理の中から選択するようにしている。従って、熱処理装置の運転時に発生する異常の態様(異常モード)に対して異常モードの区分けを行うことができ、即ちどの異常モードの発生確率が高いかを推定することができ、熱処理装置の運転時に発生する異常に対して適切な対応をとることができる。
本発明の実施形態に係る熱処理装置に用いられる装置本体を示す縦断側面図である。 上記の装置本体の要部の略解図と物理量の検出部と状態監視部とを含む構成図である。 熱処理装置に用いられるヒータの電力を制御するための回路の一部を示すブロック回路図である。 上記の状態監視部の構成を示すブロック図である。 ニューラルネットワークにより、複数の異常モードの各々について発生している発生確率を求める状態推定部を示す説明図である。 ニューラルネットワークの一例の詳細を示す説明図である。 ニューラルネットワークに入力する入力値の一例を模式的に示すグラフである。 異常モードの発生確率と対応処理との関係を示す説明図である。 本発明の実施形態の作用を示すフロー図である。
図1は、本発明の実施形態に係る熱処理装置の装置本体(熱処理モジュール)を示す図である。1は外装体を構成する筐体であり、11は基板であるウエハの搬送口である。搬送口11から見て奥側には基板を熱処理する熱処理部2が設けられると共に、熱処理部2の手前側には、搬送口11を介して外部の主搬送機構から受け取ったウエハを熱処理部2まで搬送するための冷却板を兼用するウエハ移載機構12が待機している。
熱処理部2は、処理容器の一部を構成する蓋部21と、蓋部21と共に処理容器を構成する基台部22とを備えている。基台部22は、ウエハWが配置される上部側の雰囲気と下部側の機構部分の配置領域とを区画する区画板13に設けられ、上面が開口する扁平な筒状体として構成されている。処理容器は、蓋部21を昇降させる開閉機構21aにより開閉可能に構成されている。
処理容器内には、ウエハWの載置板を兼用する熱板3が設けられている。熱板3に関する構成については後述する。蓋部21には、外周部からパージガスを供給するガス供給用の通路23と、中央部から排気を行うための排気口24とが設けられている。ガス供給用の通路23には、ガス供給路25を介して後述のパージガス供給部に接続されている。排気口24には、工場排気部に一端側が接続された排気路26の他端側が接続されている。図1において、14は、ウエハ移載機構12と熱板3との間でウエハWの受け渡しを行うための昇降ピンである。昇降ピン14は、基台部22及び熱板3を貫通して昇降機構15により昇降可能に構成されており、例えば3本設けられている。また16は、外部の主搬送機構とウエハ移載機構12との間で、ウエハWの受け渡しを行うための昇降ピンであり、基台部22及びウエハ移載機構12のアーム部分を貫通して昇降機構17により昇降可能に構成されている。
図2は、熱板3に関連する部位及び用力系に関連する部位を略解的に示す構成図である。熱板3の例えば下面には、抵抗発熱体からなるヒータ31が設けられている。熱板3は各々独立して温度制御される複数の加熱ゾーンに分割されている。この例では便宜上熱板3の中心をその中心とする、熱板3の中央部の加熱ゾーンに相当する円形領域とこの円形領域の外側に同心の環状に内外の二重に設けられた2つの加熱ゾーンとの3つの加熱ゾーンが設けられているものとする。即ちこの例では、熱板3の径方向に3つに分割された加熱ゾーンが存在する。従ってヒータ31は、これら3つの加熱ゾーンに対応して3つの環状のヒータ31a~31cからなる。加熱ゾーンについては、熱板3の径方向に複数分割し、かつその分割領域を周方向に分割するなどのレイアウトを採用してもよい。
各ヒータ31a~31cには夫々電力制御回路が接続されており、図2では、便宜上ヒータ31bに対応する電力制御回路32を示している。また熱板3には、熱板3の温度を検出する温度検出部である温度センサー35が設けられている。より具体的には、既述の3つの加熱ゾーンの温度を夫々検出するための温度検出部である温度センサー35a~35cが設けられている。温度センサー35a~35cは例えば熱板3の表面に貼り付けられているが、図2では、熱板3の内部に表示している。電力制御回路32は、電力指令値を出力する電力指令値の出力部33と、電力指令値に基づいてヒータ31bに電力を供給する電力供給部34と、を備えている。
出力部33は、図3に示すように温度目標値と温度センサー35bにより検出された温度検出値との偏差分を取り出す加算部331と、前記偏差分に対して例えばPID演算を行い、電力指令値を出力する調節部332とを備えている。調節部332は例えばPID演算機能を備えた増幅器により構成される。
電力供給部34は、例えば交流電源部、スイッチング素子などを含み、電力指令値に対応するデューティー比により交流電圧の位相を制御するように構成されている。
図2に戻って、熱板3の表面には、ウエハWの下面が熱板3の表面(載置面)に接触しないようにするために、例えば高さが0.3~0.5mm程度の複数の突起部であるギャップピン30が設けられている。
更に熱板3には、表面に開口する複数の吸引孔36が設けられており、各吸引孔36には吸引路37が接続されている。各吸引路37は上流側で合流して吸引機構38に接続されている。各吸引路37にはバルブ(吸引バルブ)V1が接続され、各吸引路37が合流している合流路には、吸引圧を検出する圧力計である吸引圧検出部39が設けられている。吸引孔36は、ウエハWに反りがある場合に、ウエハWの下面を吸引することによりウエハWを平坦化するためのものであり、例えば熱板3の中心部に設けられ、更にウエハWの外周部に近い位置において周方向に複数設けられる。なお、図2においてギャップピン30及び吸引孔37のレイアウトは便宜上のものであり、実機の一例として示したものではない。またウエハWは、図示の便宜上ギャップピン30から離した状態で示している。
蓋部21側の用力系について説明すると、既述のガス供給用の通路23の入口は例えば蓋部21の中心に対して対称に2カ所に設けられ、各入口に接続されたガス供給路25は、上流側で合流して例えば窒素ガスであるパージガスのガス供給源28に接続されている。図2中、V2、V3はバルブである。
熱処理装置を運転するためには、処理の手順、処理に必要なパラメータの設定値を規定したプロセスレシピが用いられ、プロセスレシピは制御部のメモリに記憶されている。上述の熱板3の温度(詳しくは各加熱領域の目標温度)、吸引路37の吸引圧(詳しくは合流部位の吸引圧の目標値)は、前記パラメータに相当し、物理量である。従って、これら物理量は装置の運転条件として設定されるものであり、温度センサー35a~35c、吸引圧検出部39は、複数種の物理量を夫々検出する複数種の物理量検出部に相当する。
この実施形態においては、電力指令値をニューラルネットワーク5の入力値の一つとして取り扱っていることから、電力指令値は物理量検出値の一つであり、調節部332は、物理量検出部に相当する。電力指令値は、装置の運転条件として設定される物理量である温度の検出値に応じて変わってくことから、即ちヒータ31の発熱量に応じて変わってくることから、物理量検出値として取り扱うことができ、従って調節部332は、物理量検出部であると言える。
なお、電力検出部を設けてヒータ3の供給電力を検出し、その電力検出値を電力指令値に代えてあるいは電力検出値と共にニューラルネットワーク5の入力値の一つとして用いてもよい。また電力検出部は物理量検出部に相当し、電力検出値は物理量検出値に相当する。
本実施形態の熱処理装置は、図2に示すように状態監視部4を備えている。状態監視部4には、温度センサー35a~35c、吸引圧検出部39、及び各ヒータ31a~31cに対応する出力部33からの電力指令値が入力される。なお、温度センサー及びヒータの符号に関しては、記載に応じて夫々「35」、「31」のように総括的な符号を使う場合がある。
状態監視部4は、図4に示すように状態推定部41と対応処理選択部42とを備えている。状態推定部41は、各検出値(電力指令値を含む)が入力されるニューラルネットワークからなり、予め決めておいた複数の事象モードの各々について発生確率を求める。複数の事象モードとは、複数の異常モード及び正常モードを含めた用語として用いている。複数の異常モードとは、熱処理装置の異常のモード及びウエハWの載置状態の異常、ウエハの反りが所定の程度よりも大きい状態を指している。図4では、理解の容易のために、正常、ウエハの乗り上げ、ウエハの反り、熱板3の損傷である熱板割れ、吸引バルブV1のソレノイド(電磁弁の作動用のソレノイド)故障についての発生確率を付記してある。なお発生確率の数値は便宜上の値である。43は、ニューラルネットワークにおける演算に用いるパラメータを記憶している記憶部である。これらパラメータの値は、教示有り(正解ラベル付き)学習を重ねていくことにより決定される。
対応処理選択部42は、状態推定部41により推定された情報(各事象モードの発生確率)に基づいて、予め決めておいた複数の対応処理の中から、取るべき対応処理を選択する機能を備えている。図4には、選択対象である対応処理を対応処理選択部42に付随して枠内に記載してあり、この例では、対応処理として、処理継続(レベル1)、処理継続+警告(レベル2)、処理継続+警告+ウエハマーキング(レベル3)、処理停止(レベル4)の4個のレベル(4段階)を決めている。対応処理及びレベルの段階に関しては後述する。
警告としては、例えば異常モードの発生確率をオペレータが確認して処理を継続するか否かの判断を検討することを熱処理装置の操作画面に表示したり、あるいは警告音を発生したり、例えば警告灯を点灯するなどといった警告を挙げることができる。
ウエハマーキングの処理は、例えばウエハが含まれるロットの処理の履歴データにマーキングをすることが挙げられる。半導体製造工場内では、ロットごとに搬送容器内に収容されて各処理ステーションに搬入されるが、工場内のコンピュータは、各ロットのウエハについて処理の履歴を記録しており、その記録データの中に所定のマーキングを入力しておくことで、当該ウエハの検査結果の解析に役立つ。またウエハマーキングとしては、ウエハの所定の部位に直接インクによりマーキングをする処理であってもよい。即ち、ウエハマーキングの処理とは、後から異常モード発生の懸念がある状態で処理されたウエハであることを知らせるために、データ上あるいはウエハに直接マーキングを行う処理である。
図5は、ニューラルネットワーク5と事象モードとを対応付けて示す説明図である。51~53は夫々ニューラルネットワーク5の入力層、隠れ層(中間層)及び出力層である。入力層51のノードの数は、入力データの数に応じて決定される。入力データは、物理量の検出値の時系列データ、この例では温度センサー35a~35cの検出値、吸引圧検出部39の検出値、及び各ヒータ31a~31cに対応する出力部33からの電力指令値(調節部332の出力信号であるMV(Manipulated Variable))の各時系列データである。時系列データは、予め決められた時間帯において所定時間の間隔でサンプリングして得られる物理量の検出値群である。予め決められた時間帯は、少なくともウエハWを熱板3上に載置した後の時間帯である。予め決められた時間帯は、例えばウエハWが熱板3上に置かれることにより熱板3の温度が一旦下がり、その後上昇して安定になる時点をt1とすると、例えばウエハWが熱板3上に搬入される直前例えば数秒前から時点t1までの時間帯である。サンプリング間隔は、例えば0.1秒~0.3秒程度に設定されるが、ニューラルネットワーク5について制作者の意図している結果が得られる時間間隔であれば、任意に設定できる。
予め設定した時間帯を例えば40秒、サンプリング間隔を例えば0.2秒とすると、この例ではヒータ3が3チャンネル設けられていることから、時系列データの合計数は、温度検出値+電力指令値+吸引圧検出値=3×200+3×200+200=1400となり、入力層のノード数は1400となる。この場合、図5に示す入力層について上段側からノード1、ノード2…とすると、温度センサー35aの時系列データをノード1~200に割り当て、温度センサー35bの時系列データをノード201~400に割り当て、温度センサー35cの時系列データをノード401~600に割り当て、ヒータ31aの電力指令値35aの時系列データをノード601~800に割り当て、といった具合に各種の物理量検出値の時系列データを順番にノードに割り当てていく。
出力層53のノードの数は事象モードの数に対応する。図5には事象モードを例示してあり、この場合にはノードの数は5個になる。出力層53の各ノードからは、ノードに割り当てられた事象モードの発生確率が得られる。事象モードの中で、「ウエハ乗り上げ」とは、ギャップピン30よりも高さの高い異物が熱板3上に載ってしまい、この上にウエハWが乗り上げる状態である。異物としては、ウエハWの欠片、脱落したパーツ、樹脂製のパーツの欠片などである。「熱板割れ」は熱板3の損傷の一態様であり、熱板3が割れて損傷している状態である。「VACソレノイド故障」は、吸引路37を開閉するバルブV1の駆動部のソレノイドの故障であり、バルブV1が閉じたままになる。「ウエハ反り」とは、ウエハの周縁が上向きに反った状態、下向きに反った状態、鞍状に捻じれた状態のいずれかに相当し、変形の程度が想定している程度を越えている状態である。
隠れ層52のノードの数については、ニューラルネットワーク5に対して学習を行わせている段階で、例えば初めは少なくしたところ製作者の意図している結果が得られず、ノード数を増やして再学習を行わせ、意図している結果が得られたときに、そのノード数に決定される。
図6はニューラルネットワーク5の一例を模式的に示し、かつ実行される処理について詳細に示した図である。この例では、説明の便宜上入力層51のノードの数を10個、隠れ層52のノードの数を8個、出力層のノードを5個としている。x1~x10は、物理量の検出値の時系列データであり、図7にそのイメージを示している。図7は温度センサー35にて検出された温度検出値の時系列データであり、x1~x10は温度検出値のサンプリング値である。
図6に戻ると、x1~x10は前処理部50により前処理され、x1´~x10´は前処理された後の値を示している。前処理は例えば下記の(1)式のようにデータを正規化する処理であってもよいし、(2)式のように標準化する処理であってもよい。
´=(xi-x[min])/(x[max]-x[min]) … (1)
但し、x[max]、x[min]は夫々x1~x10の最大値、最小値である。
´=(x-x[ave])/σ … (2)
但し、x[ave]は、x1~x10の平均値、σは標準偏差である。
(1)及び(2)式の分母は時系列データの分布を表す指標であり、従って前処理は、時系列データの分布における各データの位置を示す指標、例えば0と1との間で表される指標を求める処理であるといえる。
入力層51のi段目のノードから隠れ層52のj段目のノードへの結合荷重は、wij (1)として表している。隠れ層52のj段目のノードにおける重み付き総和は、a (1)として取り扱っているが、図6では、重み付き総和の式は、隠れ層52の最上段のノード52-1を代表として示している。隠れ層52のj段目のノードにおける出力は、Zとして取り扱っているが、図6ではその出力は隠れ層52の最上段のノード52-1を代表として示している。
隠れ層52のj段目のノードから出力層53のk段目のノードへの総合荷重は、wij (2)として表している。出力層53のk段目のノードにおける重み付き総和は、a (2)として取り扱っているが、図6では、重み付き総和の式は、出力層53の最上段のノード53-1を代表として示している。出力層53のk段目のノードにおける出力は、yとして取り扱っているが、図6ではその出力は出力層53の最上段のノード53-1を代表として示している。
出力層53の5個のノード53には、事象モードが割り当てられ、ykは各事象モードの発生確率である。
入力層51及び隠れ層52の各ノードの上において、「1」を丸で囲んだ部位は、バイアスb1(1)、b1(2)を出力する部位である。
実際のニューラルネットワーク5においては、既述のように入力層51のノードの数は各物理量の検出値の時系列データの合計値に相当し、出力層53のノードの数は、事象モードの数に相当する。また隠れ層52のノードの数は、学習の段階で適切な数に設定される。
図8は、ニューラルネットワーク5により得られた事象モードの発生確率のうち正常モードを除いた各異常モードの発生確率に基づいて、既述の4個の対応処理がどのようにして選択されるかについて一例を示したテーブル、即ち発生確率と対応処理とを関連付けたテーブルである。例えばウエハ反りの発生確率が10%未満であれば処理を継続し、ウエハ乗り上げの発生確率が20%ならば処理を継続するが、警告を行う。また熱板割れの発生確率が20%であれば、処理を継続しかつ警告をし、その上でウエハマーキングを行い、ウエハ乗り上げの発生確率が60%であれば、処理を停止する。
図8に記載している対応処理のレベルは、既述のように左側からレベル1、レベル2、レベル3、レベル4の順序で並んでおり、右に行くほど対応処理のレベルが高くなっている。これら4個のレベル1~4(4個の対応処理)は、レベルの数値の大きいものほど、各異常モードの発生確率が高い。また互に異なる異常モードの間で、同じレベルでありながら発生確率が異なっているのは、発生確率が小さく設定されている異常モードほど(例えば「処理停止」のレベルでは、「ウエハ反り」よりも「熱板割れ」の発生確率が小さい)、ウエハの処理に対して推定される異常の影響が大きいと言うことができる。
複数の異常モードの各々の発生確率に対応して複数の対応処理を選択できる条件が成立した場合には、当該複数の対応処理のうち最も高いレベル(数値の大きいレベル)の対応処理を選択する。
具体的な一例を挙げると、例えばウエハ反りの発生確率が40%、ウエハ乗り上げの発生確率が25%、VACソレノイド故障の発生確率が8%、熱板割れの発生確率が35%であったとする。この場合、ウエハ反りの発生確率から選択される対応処理は処理継続+警告(レベル2)であり、ウエハ乗り上げの発生確率から選択される対応処理も同じく処理継続+警告(レベル2)であり、VACソレノイド故障の発生確率から選択される対応処理は処理継続(レベル1)であり、熱板割れの発生確率から選択さえる対応処理は、処理停止(レベル4)である。このように複数の対応処理を選択できる条件が成立した場合には、レベルが高い対応処理である処理停止(レベル4)が選択される。
図8に示したテーブル及びこのテーブルを用いて対応処理を選択するソフトウェアは対応処理選択部42を構成する。
図8に示した、各対応処理の発生確率の範囲は、一例を示しただけであり、運用を重ねることにより、あるいは装置の使用者の管理手法などにより適宜決定される。
対応処理については、既述の例に限られるものではなく、例えば吸引圧検出部39などの物理量検出部そのものの動作の確認、ヒータ31に電力を供給する回路の点検などの処理であってもよい。
状態推定部41、対応処理選択部42及びパラメータ記憶部43は、例えばコンピュータにより構成され、当該コンピュータは、物理量検出値の入力、ニューラルネットワーク5による各事象モードの発生確率の算出、対応処理の選択を行うように命令群が組まれたプログラム、及び例えば図8に示すテーブルを含むソフトウェアを備えている。
次に上述実施形態の作用について説明する。図9は、本実施形態の熱処理装置の動作の全体の流れを示すフロー図である。処理前のウエハWは、筐体1の搬送口から外部の主搬送機構により筐体内のウエハ移載機構12(詳しくはウエハ移載機構12を構成している冷却用のアーム上)に昇降ピン16の昇降動作を介して搬入される(ステップS1)。そしてウエハ移載機構12によりウエハWが熱板3の上方に搬送され、昇降ピン14の昇降動作を介して熱板3の上に載置される。詳しくはウエハWはギャップピン3により支持されて載置面からわずかに浮いた状態になる。
続いてウエハ移載機構12が待機位置まで退避した後、蓋部21が下降し、基台部22に密着して、ウエハWの置かれた空間が密閉空間になる。その後、蓋部21及び基台部22からなる処理容器内に、蓋部21の外周部付近からパージガスが供給されると共に蓋部21の中央部から排気される。
熱板3は、ウエハWが載置される前からプロセス温度例えば80~200℃の温度に加熱されており、ウエハWが載置されることにより熱板3の温度が一旦下がる。そしてヒータ31の発熱により熱板3からウエハWに伝熱されてウエハWの温度が上昇し、それに伴って熱板3の温度もプロセス温度に向かって上昇し、やがてプロセス温度に安定する。こうしてウエハWに対して熱処理が行われる(ステップS2)。ウエハWが熱板3上に載置された時点から所定時間例えば60秒経過した後、昇降ピン14によりウエハWが突き上げられ、更に蓋部21が上昇して蓋部21が開いた状態となる。続いてウエハ移載機構12がウエハWを受け取って待機位置まで移動し、既述の搬入動作と逆の動作によりウエハ移載機構12から外部の主搬送機構にウエハWが受け渡される。
このような一連のウエハWに対する処理において、熱板3にウエハWが載置される数秒前から既に詳述したように熱板3の温度検出値、電力指令値、吸引圧検出値が所定時間でサンプリングされる(ステップS3)。得られた時系列データはニューラルネットワーク5に入力され、図5に示した各事象モードの発生確率が求められ(ステップS4)、これら発生確率に基づいて既述のように図8に示す対応処理が選択される(ステップS5)。
ここでニューラルネットワーク5を用いる利点について述べておく。反りのあるウエハWが熱板3に載置されたときに反りの存在により、反りのないウエハWが載置されたときと比較して、温度検出値、電力指令値、吸引圧検出値の各時系列データのプロファイルが異なる。即ち、入力層のノード群に入力される入力値の並びがウエハWの反りが発生しているときと発生していないときとでは、互に異なる。またウエハWの乗り上げが発生した時においても、温度検出値、電力指令値、吸引圧検出値の各時系列データのプロファイルが正常時と異なり、ウエハ反りの異常時とも異なる。熱板割れ、VACバルブ故障の場合も、温度検出値、電力指令値、吸引圧検出値の各時系列データのプロファイルが正常時と異なり、他の異常モードの場合とも異なる。
即ち、ウエハ反り、ウエハ乗り上げ、熱板割れ、VACバルブ故障が生じたときには、既述の時系列データの並び(入力層の入力値の並び)は、各異常モードに特有のものとなる。そして熱板割れ及び/またはVACバルブ故障が発生している状態の場合と、ウエハ反りあるいはウエハ乗り上げの状態に加わって、熱板割れ及び/またはVACバルブ故障が発生している状態の場合とでは、既述の時系列データの並びも異なってくる。
そこで、例えば上記の4つの異常モードの一つが発生した状態、及び4つの異常モードの2つ以上が発生した状態の各々について、実際の時系列データをニューラルネットワーク5に入力して、異常モードの発生確率の推定の精度が高くなるようにニューラルネットワーク5のパラメータを調整する。これによりいずれの異常モードが発生しているのかについて高い精度で推定することができる。例えば従来ではウエハ乗り上げが起こっているのか熱板3が損傷例えば割れているのかについて判断が困難であった場合でも、高い精度で異常モードの推定を行うことができる。そして各異常モードの推定は、発生確率に基づいて判断することができ、また異常モードごとに発生確率に応じて、適切な対応処理を割り当てておくことができる。
上述の実施形態によれば、熱処理装置の運転条件として設定される熱板3の温度等の複数種の物理量を検出し、各種の物理量検出値ごとに得られた時系列の検出値群をニューラルネットワーク5に入力している。そしてニューラルネットワーク5により複数の異常モードの各々について、発生確率を求め、各異常モードの発生確率に応じて、取るべき対応処理を複数の対応処理の中から選択するようにしている。従って、異常モードの区分けを行うことができ、熱処理装置の運転時に発生する異常に対して適切な対応をとることができる。
また複数の異常モードの各々の発生確率に対応して複数の対応処理を選択できる条件が成立した場合には、当該複数の対応処理のうち最も高いレベルの対応処理を選択するようにしているため、即ちいわば安全サイドの観点から対応処理を決定しているため、生産効率の低下を未然に抑えることができる。
上述の実施形態では、ニューラルネットワーク5の入力データは、温度センサー35a~35cの検出値、吸引圧検出部39の検出値、各ヒータ31a~31cに対応する電力指令値としているが、既述のように例えば電力指令値に代えて電力検出値をもちいてもよい。
また熱処理装置は、吸引孔36を備えていない構成、即ちバキュームチャックを備えていない構成であってもよく、この場合には、例えば温度検出値の時系列データと電力指令値(あるいは電力検出値)の時系列データとがニューラルネットワーク5の入力データとして使用される。
なお、上述の実施形態では熱板3が載置板を兼用しているが、本発明は、例えば石英からなる載置板の下方側に加熱ランプを配置し、加熱ランプから載置板を透過した赤外線によりウエハを加熱するタイプの熱処理装置であっても適用ができる。また熱処理の対象となる基板としては、ウエハに限らず液晶パネル用のガラス基板であってもよい。
本発明者は、本発明が有効であることを確認するために、事前に評価試験を行っている。この評価試験では、7チャンネルのヒータを備えた熱板を用い、各チャンネルごとに温度の時系列データごとに300個の検出値を用い、7チャンネルで合計2100個の検出値をニューラルネットワークの入力層に入力した。そしてウエハの載置状態が乗り上げ及び正常の各々のモード(事象モード)について教示有りの学習を行ってニューラルネットワークに使用されるパラメータの値を追い込み、このパラメータを用いてテストデータを用いて正解率を調べたところ、極めて高い正解率が得られた。教示有りの学習に用いた2100個からなる温度検出値の組は、1000個用意し、テストデータにおいても前記の組を1000個用意した。
1 筐体
12 ウエハ移載機構
2 熱処理部
21 蓋部
22 基台部
25 ガス供給路
26 排気路
27 排気圧検出部
29 流量検出部
3 熱板
30 突起部
31(31a~31c) ヒータ
32 電力制御回路
33 出力部
35(35a~35c) 温度センサー
36 吸引孔
37 吸引路
39 吸引圧検出部
4 状態監視部
41 状態推定部
42 対応処理選択部
5 ニューラルネットワーク
51 入力層
52 隠れ層
53 出力層

Claims (11)

  1. 処理容器内に配置されると共にその表面に基板と当該表面との接触を避けるための複数の突起部が設けられ、加熱部により加熱される載置板を備え、前記載置板上に基板を載置して当該基板を加熱処理する熱処理装置において、
    運転条件として設定される複数種の物理量を夫々検出する複数種の物理量検出部と、
    前記複数種の物理量検出部により夫々検出された複数種の物理量検出値の各種の物理量検出値ごとに得られた時系列の検出値群が入力層に入力され、ニューラルネットワークにより、複数の異常モードの各々について発生している発生確率を求める状態推定部と、
    前記状態推定部により推定された異常モードの発生確率に基づいて、取るべき対応処理を複数の対応処理の中から選択する選択部と、を備え、
    前記複数種の物理量検出値のうちの一種の物理量検出値は、載置板の温度を検出する物理量検出部である温度検出部により検出された温度検出値であることを特徴とする熱処理装置。
  2. 前記載置板に設けられ、前記加熱部を構成する抵抗発熱体と、
    前記抵抗発熱体に電力を供給する電力供給部と、
    前記温度検出値と温度目標値との偏差に基づいて前記電力供給部に供給する電力の指令値を出力する、前記物理量検出部に相当する調節部と、を備え、
    前記複数種の物理量検出値は、前記温度検出値に加えてさらに前記電力の指令値を含むことを特徴とする請求項1記載の熱処理装置。
  3. 前記載置板に設けられ、前記加熱部を構成する抵抗発熱体と、
    前記抵抗発熱体に電力を供給する電力供給部と、
    前記温度検出値と温度目標値との偏差に基づいて前記電力供給部に供給する電力の指令値を出力する調節部と、を備え、
    前記複数種の物理量検出値は、前記温度検出値に加えてさらに前記電力の検出値を含むことを特徴とする請求項1記載の熱処理装置。
  4. 前記異常モードは、基板が反っている状態を含むことを特徴とする請求項1ないし3のいずれか一項に記載の熱処理装置。
  5. 前記異常モードは、基板が異物に乗り上げていて正常に載置されていない状態を含むことを特徴とする請求項1ないし4のいずれか一項に記載の熱処理装置。
  6. 前記異常モードは、前記載置板が損傷している状態を含むことを特徴とする請求項1ないし5のいずれか一項に記載の熱処理装置。
  7. 前記基板を載置板側に引き付けるために載置板の表面に吸引口が開口する吸引路を備え、
    前記複数種の物理量検出値は、前記温度検出値に加えてさらに前記吸引路の吸引圧の検出値を含むことを特徴とする請求項1ないし6のいずれか一項に記載の熱処理装置。
  8. 前記選択部の選択の範囲である複数の対応処理の中には、熱処理を継続すること、熱処理を継続しかつ異常を警告すること、熱処理を継続しかつ異常を警告すると共に基板にマーキングを行うこと、及び熱処理を停止すること、が含まれることを特徴とする請求項1ないし7のいずれか一項に記載の熱処理装置。
  9. 前記選択部は、異常モードの発生確率の大きさごとに対応処理が決められていると共に前記複数の対応処理の各々に対して予めレベルが決められ、複数の異常モードの各々の発生確率に対応して複数の対応処理を選択できる条件が成立した場合には、当該複数の対応処理のうち最も高いレベルの対応処理を選択することを特徴とする請求項1ないし8のいずれか一項に記載の熱処理装置。
  10. 処理容器内に配置されると共にその表面に基板と当該表面との接触を避けるための複数の突起部が設けられ、加熱部により加熱される載置板を備え、前記載置板上に基板を載置して当該基板を加熱処理する熱処理装置を管理する方法において、
    少なくとも前記基板を載置板上に載置した後の時間帯において、運転条件として設定される複数種の物理量を夫々検出する工程と、
    この工程にて検出された複数種の物理量検出値の各種の物理量検出値ごとに得られた時系列の検出値群が入力層に入力され、ニューラルネットワークにより、複数の異常モードの各々について発生している発生確率を求める工程と、
    前記異常モードの発生確率に基づいて、取るべき対応処理を複数の対応処理の中から選択する工程と、を含み、
    前記複数種の物理量検出値のうちの一種の物理量検出値は、載置板の温度を検出する物理量検出部である温度検出部により検出された温度検出値であることを特徴とする熱処理装置の管理方法。
  11. 処理容器内に配置されると共にその表面に基板と当該表面との接触を避けるための複数の突起部が設けられ、加熱部により加熱される載置板を備え、前記載置板上に基板を載置して当該基板を加熱処理する熱処理装置に使用されるコンピュータプログラムを記憶した記憶媒体であって、
    前記コンピュータプログラムは、請求項10に記載の熱処理装置の管理方法を実行するようにステップ群が組まれたことを特徴とする記憶媒体。
JP2018049783A 2017-06-28 2018-03-16 熱処理装置、熱処理装置の管理方法及び記憶媒体 Active JP7003759B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
TW111130910A TWI837773B (zh) 2017-06-28 2018-06-25 熱處理裝置之狀態監視裝置、熱處理裝置之管理方法及記錄媒體
KR1020180072865A KR102467605B1 (ko) 2017-06-28 2018-06-25 열처리 장치, 열처리 장치의 관리 방법 및 기억 매체
TW107121623A TWI779053B (zh) 2017-06-28 2018-06-25 熱處理裝置、熱處理裝置之管理方法及記錄媒體
US16/018,417 US11201068B2 (en) 2017-06-28 2018-06-26 Heat treatment apparatus, method of managing heat treatment apparatus and storage medium
CN201810680660.7A CN109148330B (zh) 2017-06-28 2018-06-27 热处理装置、热处理装置的管理方法以及存储介质
JP2021207355A JP7238955B2 (ja) 2017-06-28 2021-12-21 熱処置装置の状態監視装置、熱処理装置の管理方法及び記憶媒体
KR1020220149191A KR102567712B1 (ko) 2017-06-28 2022-11-10 열처리 장치의 상태 감시 장치, 열처리 장치의 관리 방법 및 기억 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017126648 2017-06-28
JP2017126648 2017-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021207355A Division JP7238955B2 (ja) 2017-06-28 2021-12-21 熱処置装置の状態監視装置、熱処理装置の管理方法及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2019009416A JP2019009416A (ja) 2019-01-17
JP7003759B2 true JP7003759B2 (ja) 2022-01-21

Family

ID=65026938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049783A Active JP7003759B2 (ja) 2017-06-28 2018-03-16 熱処理装置、熱処理装置の管理方法及び記憶媒体

Country Status (2)

Country Link
JP (1) JP7003759B2 (ja)
TW (1) TWI779053B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628419B1 (ko) * 2021-07-08 2024-01-25 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257159A (ja) 2000-03-13 2001-09-21 Hitachi Ltd 位置合わせ方法および位置合わせ制御システム
JP2001274209A (ja) 2000-03-28 2001-10-05 Toshiba Corp 半導体検査装置、半導体欠陥解析装置、半導体設計データ修正装置、半導体検査方法、半導体欠陥解析方法、半導体設計データ修正方法およびコンピュータ読み取り可能な記録媒体
JP2003050631A (ja) 2001-08-07 2003-02-21 Mitsui Eng & Shipbuild Co Ltd 異常診断システムの学習データ生成方法、異常診断システムの構築プログラム、異常診断プログラム、異常診断システムの構築装置および異常診断システム
JP2004296592A (ja) 2003-03-26 2004-10-21 Dainippon Screen Mfg Co Ltd 欠陥分類装置、欠陥分類方法およびプログラム
US20050137764A1 (en) 2003-12-19 2005-06-23 Ignacio Alvarez-Troncoso Vehicle energy management system using prognostics
CN1783065A (zh) 2004-12-03 2006-06-07 台湾积体电路制造股份有限公司 事件良率关联分析系统及方法以及计算机可读取储存媒体
JP2007317732A (ja) 2006-05-23 2007-12-06 Tokyo Electron Ltd 熱処理板の温度制御方法、プログラム及び熱処理板の温度制御装置
JP2009123816A (ja) 2007-11-13 2009-06-04 Sokudo:Kk 熱処理装置および熱処理方法
JP2014236084A (ja) 2013-05-31 2014-12-15 株式会社Screenセミコンダクターソリューションズ 分析方法、分析装置および基板処理装置
JP2016066779A (ja) 2014-09-25 2016-04-28 東京エレクトロン株式会社 基板熱処理装置、基板熱処理方法、記録媒体及び熱処理状態検知装置
JP2016186962A (ja) 2015-03-27 2016-10-27 東京エレクトロン株式会社 熱処理装置、熱処理における異常検出方法及び読み取り可能なコンピュータ記憶媒体
JP2017022168A (ja) 2015-07-07 2017-01-26 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
JP2017027968A (ja) 2015-07-15 2017-02-02 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記録媒体
JP2017069421A (ja) 2015-09-30 2017-04-06 ファナック株式会社 機械学習装置およびコイル通電加熱装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104248A (ja) * 1992-09-18 1994-04-15 Tokyo Electron Ltd 熱処理装置
JP3280618B2 (ja) * 1998-03-24 2002-05-13 東京エレクトロン株式会社 熱処理装置
DE102012101717A1 (de) * 2012-03-01 2013-09-05 Aixtron Se Verfahren und Vorrichtung zur Regelung der Oberflächentemperatur eines Suszeptors einer Substratbeschichtungseinrichtung

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257159A (ja) 2000-03-13 2001-09-21 Hitachi Ltd 位置合わせ方法および位置合わせ制御システム
JP2001274209A (ja) 2000-03-28 2001-10-05 Toshiba Corp 半導体検査装置、半導体欠陥解析装置、半導体設計データ修正装置、半導体検査方法、半導体欠陥解析方法、半導体設計データ修正方法およびコンピュータ読み取り可能な記録媒体
JP2003050631A (ja) 2001-08-07 2003-02-21 Mitsui Eng & Shipbuild Co Ltd 異常診断システムの学習データ生成方法、異常診断システムの構築プログラム、異常診断プログラム、異常診断システムの構築装置および異常診断システム
JP2004296592A (ja) 2003-03-26 2004-10-21 Dainippon Screen Mfg Co Ltd 欠陥分類装置、欠陥分類方法およびプログラム
US20050137764A1 (en) 2003-12-19 2005-06-23 Ignacio Alvarez-Troncoso Vehicle energy management system using prognostics
CN1783065A (zh) 2004-12-03 2006-06-07 台湾积体电路制造股份有限公司 事件良率关联分析系统及方法以及计算机可读取储存媒体
JP2007317732A (ja) 2006-05-23 2007-12-06 Tokyo Electron Ltd 熱処理板の温度制御方法、プログラム及び熱処理板の温度制御装置
JP2009123816A (ja) 2007-11-13 2009-06-04 Sokudo:Kk 熱処理装置および熱処理方法
JP2014236084A (ja) 2013-05-31 2014-12-15 株式会社Screenセミコンダクターソリューションズ 分析方法、分析装置および基板処理装置
JP2016066779A (ja) 2014-09-25 2016-04-28 東京エレクトロン株式会社 基板熱処理装置、基板熱処理方法、記録媒体及び熱処理状態検知装置
JP2016186962A (ja) 2015-03-27 2016-10-27 東京エレクトロン株式会社 熱処理装置、熱処理における異常検出方法及び読み取り可能なコンピュータ記憶媒体
JP2017022168A (ja) 2015-07-07 2017-01-26 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
JP2017027968A (ja) 2015-07-15 2017-02-02 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記録媒体
JP2017069421A (ja) 2015-09-30 2017-04-06 ファナック株式会社 機械学習装置およびコイル通電加熱装置

Also Published As

Publication number Publication date
TWI779053B (zh) 2022-10-01
JP2019009416A (ja) 2019-01-17
TW201922049A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
JP7238955B2 (ja) 熱処置装置の状態監視装置、熱処理装置の管理方法及び記憶媒体
US8812266B2 (en) Abnormality determination system and abnormality determination method for processing apparatus
US7815366B2 (en) Method of detecting extraneous matter on heat processing plate, heat processing apparatus, program, and computer-readable recording medium with program recorded thereon
US7139638B2 (en) Substrate processing unit, method for detecting the position of a substrate and substrate processing apparatus
KR101314001B1 (ko) 온도 제어 방법, 온도 조절기 및 열처리 장치
JP3581303B2 (ja) 判別方法及び処理装置
US20050149886A1 (en) Methods for adaptive real time control of a thermal processing system
KR20070090959A (ko) 반도체 제조 장치, 당해 반도체 제조 장치에 있어서의 이상검출, 이상 원인의 특정 혹은 이상 예측을 행하는 방법,및 당해 방법을 실시하기 위한 컴퓨터 프로그램을 기록한기억 매체
US9558976B2 (en) Substrate processing apparatus, method of transferring substrate, method of manufacturing semiconductor device, and state detecting program
TWI643246B (zh) Heat treatment device, abnormality detection method in heat treatment, and readable computer memory medium
US20220270901A1 (en) Integrated hardware-software computer vision system for autonomous control and inspection of substrate processing systems
JP7003759B2 (ja) 熱処理装置、熱処理装置の管理方法及び記憶媒体
JP2006013445A (ja) 温度異常の検知方法及び半導体製造装置
US7128481B2 (en) Substrate processing apparatus for inspecting processing history data
TWI794585B (zh) 熱處理裝置及熱處理方法
JP6767257B2 (ja) 基板処理装置及び基板処理方法
TWI837773B (zh) 熱處理裝置之狀態監視裝置、熱處理裝置之管理方法及記錄媒體
JP2017002353A (ja) 基板処理装置及び半導体装置の製造方法
KR102602807B1 (ko) 히터 제어 장치 및 이를 구비하는 기판 처리 시스템
KR100760623B1 (ko) 기판의 티칭 상태를 감지하는 방법
TW200301849A (en) Substrate processing method and substrate processing apparatus
KR20170065734A (ko) 촬상 유닛을 포함하는 반도체 제조 장치
KR20070021748A (ko) 보트온도측정기를 설치한 확산장치
KR20060023219A (ko) 웨이퍼 브로큰 방지기능을 갖는 반도체 제조설비

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150