JP7001721B2 - 希土類コバルト永久磁石及びその製造方法、並びにデバイス - Google Patents

希土類コバルト永久磁石及びその製造方法、並びにデバイス Download PDF

Info

Publication number
JP7001721B2
JP7001721B2 JP2020018900A JP2020018900A JP7001721B2 JP 7001721 B2 JP7001721 B2 JP 7001721B2 JP 2020018900 A JP2020018900 A JP 2020018900A JP 2020018900 A JP2020018900 A JP 2020018900A JP 7001721 B2 JP7001721 B2 JP 7001721B2
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
cobalt permanent
earth cobalt
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020018900A
Other languages
English (en)
Other versions
JP2021125593A (ja
Inventor
浩明 町田
照彦 藤原
裕和 幕田
千恵子 藤本
悠 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2020018900A priority Critical patent/JP7001721B2/ja
Priority to US17/160,025 priority patent/US20210249165A1/en
Priority to CN202110156864.2A priority patent/CN113223797A/zh
Publication of JP2021125593A publication Critical patent/JP2021125593A/ja
Application granted granted Critical
Publication of JP7001721B2 publication Critical patent/JP7001721B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • B22F2301/155Rare Earth - Co or -Ni intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

特許法第30条第2項適用 (1)令和1年10月28日 The 64th Annual Conference on Magnetism and Magnetic MaterialsのMMM Abstract Book予稿集にて公開 (2)令和1年11月7日 The 64th Annual Conference on Magnetism and Magnetic Materialsにて公開 (3)令和1年12月26日 AIP Advances,Volume 9,Issue 12,125042(2019)にて公開
本発明は希土類コバルト永久磁石及びその製造方法、並びにデバイスに関する。
高性能な永久磁石として、Sm-Co系磁石等の希土類コバルト永久磁石が知られている。当該希土類コバルト永久磁石は、磁気特性向上など、種々の観点から、例えばFe、Cu、Zr等を含有するものが知られている。
例えば、特許文献1には、Smと、Cuと、Feと、ZrとCoを含む特定の組成をもち、SmCO17相を含むセル相と、SmCo相を含むセル壁を有する金属組織を有する希土類コバルト永久磁石が開示されている。
また特許文献2には、Smと、Cuと、Feと、ZrとCoを含む特定の組成をもち、複数の結晶粒と、粒界部とを含む金属組織を有し、粒界部におけるCu及びZrの含有量が結晶粒におけるCu及びZrの含有量よりも高い希土類コバルト永久磁石が開示されている。
特開2015-188072号公報 国際公開第2017/061126号
希土類コバルト永久磁石は、磁力の温度変化率が小さく、錆びにくいなどの特性を有し、各種デバイスにおいて広く用いられている。このようなデバイスの更なる高性能化の観点から、より優れた磁気特性を有する希土類コバルト永久磁石が求められている。
本発明は、優れた磁気特性を有する希土類コバルト永久磁石及びその製造方法、並びに当該希土類コバルト永久磁石を有するデバイスを提供することを目的とする。
本発明にかかる希土類コバルト永久磁石は、質量百分率で、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなり、
複数の結晶粒と、粒界部を有し、
前記結晶粒を構成するセル構造が100~600nmのサイズである。
前記希土類コバルト永久磁石の一実施態様は、前記結晶粒の配向度が、磁化容易軸に対して60°以内である。
前記希土類コバルト永久磁石の一実施態様は、残留磁束密度Brと固有保磁力Hcjの温度係数をそれぞれαとβとしたときに、20~200℃においてα<0.045%/℃、β<0.35%/℃である。
前記希土類コバルト永久磁石の一実施態様は、密度が8.25g/cm以上、最大エネルギー積(BH)mが260kJ/m以上、固有保磁力Hcjが1600kA/m以上、残留磁束密度Brの90%を示すときの逆磁界の大きさをHkとしたときに、Hk/Hcjが65%以上である。
本発明に係る希土類コバルト永久磁石の製造方法は、質量百分率で、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなる合金を準備する工程(I)と、
前記合金を粉体とする粉砕工程(II)と、
前記粉体を成形体とする加圧成形工程(III)と、
前記成形体を、加熱することで焼結体とする焼結工程(IV)と、
前記焼結体を降温速度0.01~3℃/分で、徐冷する工程(V)と、
徐冷後の焼結体を1120~1170℃で、31~120時間加熱する溶体化処理工程(VI)と、を備える。
前記希土類コバルト永久磁石の製造方法の一実施態様は、前記焼結工程(IV)が、1180~1220℃で、20~240分行われる。
また本発明は、前記希土類コバルト永久磁石を有するデバイスを提供する。
本発明により、優れた磁気特性を有する希土類コバルト永久磁石及びその製造方法、並びに当該希土類コバルト永久磁石を有するデバイスが提供される。
本永久磁石の構造を説明するための模式図である。 実施例2の希土類コバルト永久磁石のセル構造を示すTEM像である。 比較例1の希土類コバルト永久磁石のセル構造を示すTEM像である。 本製造方法の一実施形態を示すフローチャートである。 実施例2と比較例1の希土類コバルト永久磁石の配向度測定結果を示す図である。
以下、本発明に係る希土類コバルト永久磁石及びその製造方法、並びにデバイスについて順に説明する。
なお、数値範囲を示す「~」は特に断りがない限り、その下限値及び上限値を含むものとする。
また、希土類コバルト永久磁石の磁化容易軸をc軸ということがある。
<希土類コバルト永久磁石>
本発明に係る希土類コバルト永久磁石(以下、本永久磁石ともいう)は、質量百分率で、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなり、
複数の結晶粒と、粒界部を有し、
前記結晶粒を構成するセル構造が100~600nmのサイズである。
前記希土類元素Rは、Sc、Y及びランタノイドの総称であり、本永久磁石において、前記Rは少なくともSmを含んでいる。希土類元素を上記割合で含有することにより、磁気異方性が高く、且つ、高い保磁力を有する永久磁石が得られる。希土類元素RはSmのみからなるものであってもよく、Smと他の希土類元素との組み合わせであってもよい。当該他の希土類元素Rとしては、磁気特性の点から、Nd,Pr及びCeより選択される1種以上が好ましい。磁気特性の観点から、希土類元素Rは、希土類元素全体に対してSmが70質量%以上であることが好ましく、更に80質量%以上であることがより好ましい。
Cuは4.0~5.0質量%含有する。Cuを4.0質量%以上含有することにより高い保磁力を有する永久磁石となる。また、Cuの含有量が5.0質量%以下であることにより磁化の低下が抑制される。
Feは22~27質量%含有する。Feの含有量を当該範囲内とすることで、後述する製造方法により、セルサイズが100~600nmのセル構造が形成されやすい。また、Feを22%以上含有することにより飽和磁化が向上し、Feの含有量が27%以下であることにより高い保磁力を有する永久磁石となる。
またZrは1.7~2.5%含有する。Zrを上記範囲内で含有することにより、磁石が保持できる最大の静磁エネルギーである最大エネルギー積(BH)mの高い永久磁石が得られる。
また、本永久磁石は、残部(すなわち、38.5~49.3%)がCo及び不可避不純物からなる。
Coを含有することにより、永久磁石の熱安定性が向上する。一方、Coの含有量が過剰となると相対的にFeの含有割合が下がって磁化が低下する恐れがある。これらの点からCoの含有割合は、38.5~49.3%が好ましい。
本永久磁石は、本発明の効果を損なわない範囲で、不可避不純物を含有してもよい。不可避不純物は、原料や製造工程から不可避的に混入する元素であって、具体的には、例えば、C)、N(窒素)、P(りん)、S(硫黄)、Al(アルミニウム)、Ti(チタン)、Cr(クロム)、Mn(マンガン)、Ni(ニッケル)、Hf(ハフニウム)、Sn(スズ)、W(タングステン)などが挙げられるが、これらに限定されない。
不可避不純物の含有割合は、希土類コバルト永久磁石全量に対し、合計で5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。
次に図1を参照して、本永久磁石の構造を説明する。図1は本永久磁石の断面の一部を示す模式的な断面図である。図1の例に示されるように本永久磁石10は複数の結晶粒1(図中、実線で囲われた領域)を有し、結晶粒1間には粒界部2(図中、実線)を有している。各結晶粒1には、ThZn17型構造の結晶相(以下、2-17相ともいう)を含むセル相3(図中、点線のみ又は点線と実線で囲われた領域)と、当該セル相を囲むRCo型構造の結晶相(以下1-5相ともいう)を含むセル壁4(図中、点線)を有する。本発明においてセル構造とは、1つのセル相3とこれを囲むセル壁4との組み合わせをいい、結晶粒を構成する最小単位である。セルサイズとは、セル壁4の長さ(長辺の長さ)を示す。
本永久磁石は、上述のようにThZn17型構造の結晶相を主相とするセル相を有している。ThZn17型構造はR-3m型の空間群を有する結晶構造であり、本永久磁石では、Th部位を希土類元素及びZrが占め、Zn部位にCo、Cu、Fe、及びZrが占めている。また、上述のようにRCo型構造の結晶相を含むセル壁を有している。当該RCo型構造の結晶相は、R部位を希土類元素及びZrが占め、Co部位にCo、Cu、Feが占めている。
本発明の永久磁石は、磁壁移動時に2-17相と1-5相2相間で磁壁がピンニングされることにより、保磁力が発現すると推定されている。
また、2相分離時にFeとCuそれぞれ2-17相と1-5相に濃縮することによって角形性が向上し、(BH)mが大きくなることから、磁気特性と組成比が大きく関与することが特徴である。さらに、2-17相と1-5相の組成比が永久磁石全体にわたって一定であるほど良好な磁気特性を得ることができ、さらに、細かく加工した場合には歩留まりを向上することができる。
本永久磁石10は当該セルサイズが100~600nmであるため、優れた磁気特性を有している。
本永久磁石は、後述する製造方法に示す、焼結、徐冷・溶体化、急冷といった熱処理により組織の均一化を図り、さらに、時効を行うことにより、2-17相と1-5相へ2相分離している。セルサイズや組成分析にはTEM(Transmission Electron Microscopy)やEDX(Energy dispersive X-ray spectrometry)が用いられる。TEMは薄く加工した試料に電子線を照射し、透過した電子を結像して観察する手法である。EDXは試料に電子線を照射した際に放出される特性X線のエネルギーや強度を検出し、元素を同定する手法である。
図2は、後述する実施例2の希土類コバルト永久磁石のTEM像である。また図3は、後述する比較例1の希土類コバルト永久磁石のTEM像である。図2及び図3は結晶粒1の一部を示している。図2に示されるように、セル相3とこれを囲むセル壁4が確認される。また図2と図3の比較により示されるように、本永久磁石は、後述する製造方法によりセルサイズが100~600nmと比較的大きいものが形成され優れた磁気特性を有している。
また、本発明者らは、良好な磁気特性を得るための一つの指標として配向度に着目した。配向度は磁化の大きさに直接的に関係し、磁気特性を議論する上では必須の要素である。配向度は磁化容易方向に対して磁性体の磁化がどれだけ向いているかを示した物理量である。特に結晶粒の配向度が磁化容易軸に対して60°以内の場合に、残留磁束密度Brや角形比Hk/Hcjが高くなりやすい。中でも結晶粒の配向度が磁化容易軸に対して55°以内が好ましく、50°以内がより好ましい。後述する本製造方法によれば、結晶粒の配向度が磁化容易軸に対して60°以内となる永久磁石が得られやすいことが明らかとなった。
前記配向度を調べる手段としてはEBSD(Electron BackScatter Diffraction Pattern)法が挙げられる。EBSD法は、例えば、本永久磁石の断面に対して、入射角60~70°程度で電子線を照射すると、当該断面から約50nm以下の領域の各結晶面で回折電子線が得られる。この回折電子線から生じた後方散乱電子回折を解析することで結晶粒の方位解析の情報が得られるものである。
図5は、実施例2(左)と比較例1(右)の希土類コバルト永久磁石の配向度測定結果を示す図である。図5においては、回折電子線が円の中心部に集中しているほど配向度が高いと評価できる。図5に示される通り、実施例2の回折電子線は円の中心部に集中しており、結晶粒の配向度が磁化容易軸に対して60°以内に抑えられている。一方比較例1では回折電子線が円周部にまで拡散しており、配向度が低いものである。本永久磁石はこのように結晶粒の配向度が高く、残留磁束密度Brや角形比Hk/Hcjが高い永久磁石となる。
また、本発明者らは、残留磁束密度Brと固有保磁力Hcjの温度係数に着目した。温度係数とは、1℃の温度変化に対する、Br又はHcjの変化量を示す係数である。残留磁束密度Brと固有保磁力Hcjの温度係数をαとβとしたときに、20~200℃においてα<0.045%/℃、好ましくは、α<0.040%、β<0.35%/℃、好ましくはβ<0.30%/℃であることで、当該温度範囲における永久磁石の磁気特性変化が抑えられ、温度安定性に優れた永久磁石となる。後述する本製造方法によれば、上記温度係数を満たす本永久磁石が得られやすい。
<希土類コバルト永久磁石の製造方法>
本発明に係る希土類コバルト永久磁石の製造方法(以下、本製造方法ともいう)は、
質量百分率で、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなる合金を準備する工程(I)と、
前記合金を粉体とする粉砕工程(II)と、
前記粉体を成形体とする加圧成形工程(III)と、
前記成形体を、加熱することで焼結体とする焼結工程(IV)と、
前記焼結体を降温速度0.01~3℃/分で、徐冷する工程(V)と、
徐冷後の焼結体を1120~1170℃で、31~120時間加熱する溶体化処理工程(VI)と、を備える。
上記本製造方法によれば、複数の結晶粒と、粒界部を有し、前記結晶粒を構成するセル構造が100~600nmのサイズである、希土類コバルト永久磁石を製造することができる。以下、本実施の形態にかかる希土類コバルト永久磁石の製造方法の各工程について図4に示すフローチャートを用いて説明する。
まず、質量百分率において、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなる合金を準備する(ステップS1:工程(I))。当該合金の準備方法は特に限定されず、所望の組成を有する合金の市販品を入手することにより準備してもよく、各元素を所望の組成となるように配合することにより合金を準備してもよい。
以下、各元素を配合する具体例について説明するが、本発明はこの方法に限定されるものではない。
まず原料として、所望の希土類元素、Fe、Cu、Coの各金属元素と、母合金を準備する。ここで、母合金として共晶温度の低い組成のものを選択することが、得られる合金の組成の均一化を図りやすい点から好ましい。本製造方法においては、母合金として、FeZr又はCuZrを選択して用いることが好ましい。FeZrとしては、一例としてFe20%Zn80%前後のものが好適である。また、CuZrとしては、一例としてCu50%Zr50%前後のものが好適である。
これらの原料を所望の組成となるように配合し、Al等の坩堝にいれ、1×10-2torr以下の真空中または不活性ガス雰囲気において高周波溶解炉により溶解することで、均一化した合金が得られる。更に、本発明においては当該溶解した合金を金型により鋳造して合金インゴットとする工程を含んでいてもよい。また、別法として、溶解した合金を銅ロールに滴下することにより1mm厚程度のフレーク状の合金を製造してもよい(ストリップキャスト法)。
前記鋳造により合金インゴットとした場合、後述する工程(II)の前に、当該合金インゴットの溶体化温度で1時間以上20時間以下熱処理する工程を有することが好ましい。当該工程により、組成をより均一化することができる。なお、合金インゴットの溶体化温度は、合金の組成等に応じて適宜調整すればよい。
次に、合金を粉砕して粉体とする(ステップS2:工程(II))。合金の粉砕方法は特に限定されず、従来公知の方法の中から適宜選択すればよい。一例として、まず、合金インゴット又はフレーク状の合金を、公知の粉砕機により100~500μm程度の大きさに粗粉砕し、次いで、ボールミルやジェットミルなどで微粉砕する方法などが好適に挙げられる。粉体の平均粒径は特に限定されないが、後述する焼結工程の焼結時間を短縮することを可能とし、また、均一な永久磁石を製造する点から、平均粒径が1μm以上10μm以下、好ましくは6μm程度の粉体とすることが好ましい。
次に、得られた粉体を、加圧成形して所望の形状の成形体とする(ステップS3:工程(III))。本製造方法においては、粉体の結晶方位を揃えて磁気特性を向上する点から、一定の磁場中で加圧成形することが好ましい。磁場の方向と、プレス方向との関係は特に限定されず、製品の形状等に応じて適宜選択すればよい。例えば、リング磁石や、薄板状の磁石を製造する場合には、プレス方向に対して、平行方向に磁場を印加する並行磁場プレスとすることができる。一方、磁気特性に優れる点からは、プレス方向に対して、直角に磁場を印加する直角磁場プレスとすることが好ましい。
磁場の大きさは特に限定されず、製品の用途等に応じて、例えば15kOe以下の磁場であってもよく、15kOe以上の磁場であってもよい。中でも磁気特性に優れる点からは、15kOe以上の磁場中で加圧成形することが好ましい。また、加圧成形の際の圧力は、製品の大きさ、形状等に応じて適宜調整すればよい。一例として、0.5~2.0ton/cmの圧力とすることができる。すなわち本発明の希土類コバルト永久磁石の製造方法においては、磁気特性の観点から、前記粉体を15kOe以上の磁場中で、磁場に垂直に0.5ton/cm以上2.0ton/cm以下の圧力で加圧成形することが特に好ましい。
次に、前記成形体を加熱することにより焼結体とする(ステップS4:工程(IV))。
本製造方法において、焼結条件は得られる焼結体の緻密化が充分に行われればよく、公知の条件とすることができる。焼結体の緻密化の点から、焼結温度は1180~1220℃が好ましい。1220℃以下とすることで、希土類元素、特にSmの蒸発が抑制されて、磁気特性に優れた永久磁石を製造することができる。焼結時間は、Smの蒸発を抑制しながら、緻密化を充分に行う点から、20~240分が好ましく、30~180分がより好ましい。また、また、酸化を抑制する観点から、上記焼結工程は10Pa以下の真空中または不活性ガス雰囲気下で行うことが好ましく、10Pa以下の真空中で行うことがより好ましい。
次に、得られた焼結体を、降温速度0.01~3℃/分で、徐冷する(ステップS5:工程(V))。降温速度3℃/分以下でゆっくりと徐冷することにより、結晶粒内にセル壁が100~600nmのセル構造が形成されやすい。また、降温速度の下限は0.01℃/分で十分であり、製造速度などの点から、降温速度は0.05℃/分以上が好ましい。降温は、後述する溶体化処理工程における溶体化温度まで行う。
次いで、徐冷後の焼結体を、1120~1170℃で、31~120時間加熱する溶体化処(ステップS6:工程(VI))を行う。セルサイズを100~600nmとし、生産性を向上する点から、通常前記工程(IV)から本工程(VI)までは一連の工程とすることが好ましい。
1120℃以上で加熱することにより、成形体中の組成が均一化されると共に、後述する時効処理工程時にThZn17型構造の結晶相を主相とするための前駆体である前記1-7相を形成することができる。一方、加熱温度を1170℃超過とすると1-7相がかえって形成されにくくなると共に、希土類元素の蒸発が進んでしまう恐れがある。焼結体の最適な溶体化温度は焼結体の組成に応じて変化するため、上記温度範囲内で適宜調整することが好ましい。
また1-7相を十分に形成させる点、セルサイズを100~600nmに調整する点から、溶体化時間を31時間以上とする。一方、Smの蒸発を抑制し、セルサイズを100~600nmに調整する点から、溶体化時間は120時間以下とする。溶体化時間を31時間未満とした場合や120時間を超えて行った場合には、セルサイズが小さくなりやすい。
以上の工程により、複数の結晶粒と、粒界部を有し、前記結晶粒を構成するセル構造が100~600nmのサイズである、希土類コバルト永久磁石が製造できる。本製造方法は、更に必要に応じて他の工程を有してもよい。他の工程としては、溶体化処理後の希土類コバルト永久磁石の時効処理工程(S7)を有することが好ましい。
時効処理することで2-17相のセル相と、1-5相のセル壁とが形成されやすい。時効温度は特に限定されないが、セル構造が100~600nmの結晶粒を有する希土類コバルト永久磁石を得やすい点から、700℃以上900℃以下の温度で2時間以上20時間以下保持し、その後、少なくとも400℃まで冷却するまでの間、冷却速度を2℃/min以下とする方法とすることが好ましい。700℃以上900℃以下の温度で2時間以上20時間以下保持することにより、セルサイズが維持されやすい中でも800℃以上850℃以下の温度範囲で時効処理することが好ましい。また、良好な磁気特性を得る点から、冷却速度を2℃/min以下とすることが好ましく、0.5℃/min以下とすることがより好ましい。冷却速度が速すぎると各元素の2-17相および1-5相への濃縮が行われず、良好な磁気特性を得ることができない。
前記工程(VI)と前記時効処理は一連の工程であることが好ましい。この場合、工程(VI)と時効処理との間の冷却方法は特に限定されないが、得られたセルサイズを維持する点から、60℃/min以上で急冷することが好ましい。特に溶体化温度から600℃までの時間を短くすることにより、セルサイズを維持することができる。急冷速度は60℃/min以上であればよく、70℃/min以上が好ましく、80℃/min以上がより好ましい。一方、急冷速度の上限は、成形体の形状にもよるが、一例として250℃/min以下が好ましい。
本製造方法によれば、所定の組成を有するインゴットから、前記結晶粒を構成するセル構造が100~600nmのサイズである希土類コバルト永久磁石を得ることができ、当該結晶粒の配向度は磁化容易軸に対して60°以内となりやすい。また、当該永久磁石は、残留磁束密度Brと固有保磁力Hcjの温度係数をそれぞれαとβとしたときに、20~200℃においてα<0.045%/℃、β<0.35%/℃となりやすく、密度が8.25g/cm以上、最大エネルギー積(BH)mが260kJ/m以上、固有保磁力Hcjが1600kA/m以上、残留磁束密度Brの90%を示すときの逆磁界の大きさをHkとしたときに、Hk/Hcjが65%以上である、優れた磁気特性を有する永久磁石となる。
<デバイス>
本発明は、更に前記本永久磁石を有するデバイスを提供する。このようなデバイスの具体例としては、例えば、時計、電動モータ、各種計器、通信機、コンピューター端末機、スピーカー、ビデオディスク、センサなどが挙げられる。また、本発明の希土類コバルト永久磁石は、高い環境温度にあっても磁力を劣化しにくいため、自動車のエンジンルームで使用される角度センサ、イグニッションコイル、HEV(Hybrid electric vehicle)などの駆動モータ等にも好適に用いることができる。
以下、実施例および比較例を挙げて本発明を具体的に説明する。なお、これらの記載により本発明を制限するものではない。
<実施例1~5>
表1の実施例1~5の組成になるように、Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
次に、得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で平均約6μmになるように微粉砕を行って粉体とした。この粉体を15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を10Pa以下の真空中において、脱ガスから焼結温度まで5℃/minで昇温し、焼結温度1210℃で100分間焼結した。焼結後、続けて、溶体化温度まで降温速度0.5℃/minで降温し、溶体化温度1140℃で35時間溶体化を行った。溶体化処理後、急冷し、850℃で12時間保持し、0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例1~5の希土類コバルト永久磁石を得た。
<比較例1~2>
インゴットの組成を表1の比較例1~2の組成となるようにした以外は、上記実施例1と同様にして、比較例1~2の希土類コバルト永久磁石を得た。
<実施例6~11>
表2の実施例6~11の組成になるように、Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
次に、得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で平均約6μmになるように微粉砕を行って粉体とした。この粉体を15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を10Pa以下の真空中において、脱ガスから焼結温度まで4℃/minで昇温し、表2に示す焼結温度及び焼結時間で焼結した。焼結後、続けて、溶体化温度まで表2に示す降温速度で降温し、表2に示す溶体化温度及び溶体化時間で溶体化を行った。溶体化処理後、急冷し、850℃で10時間保持し、0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例6~11の希土類コバルト永久磁石を得た。
<実施例12~16>
表3の実施例12~16の組成になるように、Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
次に、得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で平均約6μmになるように微粉砕を行って粉体とした。この粉体を15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を10Pa以下の真空中において、脱ガスから焼結温度まで3℃/minで昇温し、表3に示す焼結温度及び焼結時間で焼結した。焼結後、続けて、溶体化温度まで表3に示す降温速度で降温し、表3に示す溶体化温度及び溶体化時間で溶体化を行った。溶体化処理後、急冷し、850℃で10時間保持し、0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例12~16の希土類コバルト永久磁石を得た。
<実施例17~20>
表4の実施例17~20の組成になるように、Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
次に、得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で平均約6μmになるように微粉砕を行って粉体とした。この粉体を15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を10Pa以下の真空中において、脱ガスから焼結温度まで2℃/minで昇温し、表4に示す焼結温度及び焼結時間で焼結した。焼結後、続けて、溶体化温度まで表4に示す降温速度で降温し、表4に示す溶体化温度及び溶体化時間で溶体化を行った。溶体化処理後、急冷し、850℃で10時間保持し、0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例17~20の希土類コバルト永久磁石を得た。
<比較例3>
実施例17において、溶体化温度を1110℃に変更した以外は、実施例17と同様にして、比較例3の希土類コバルト永久磁石を得た。
<実施例21~23>
表5の実施例21~23の組成になるように、Fe20%Zr80%の母合金及び各原料を調整し、高周波溶解炉により溶解し、鋳造して、合金インゴットを得た。
次に、得られた母合金を不活性ガス中で平均約100~500μmになるように粗粉砕し、次いでボールミルを用いて不活性ガス中で平均約6μmになるように微粉砕を行って粉体とした。この粉体を15kOeの磁場中で1ton/cmの圧力でプレスすることにより成形体を得た。
この成形体を10Pa以下の真空中において、脱ガスから焼結温度まで5℃/minで昇温し、表5に示す焼結温度及び焼結時間で焼結した。焼結後、続けて、溶体化温度まで表5に示す降温速度で降温し、表5に示す溶体化温度及び溶体化時間で溶体化を行った。溶体化処理後、急冷し、850℃で10時間保持し、0.5℃/minの冷却速度で350℃まで徐冷する条件で時効し、実施例21~23の希土類コバルト永久磁石を得た。
<比較例4~5>
実施例21において、焼結時間、溶体化時間、及び降温速度を表5のように変更した以外は、実施例21と同様にして、比較例4~5の希土類コバルト永久磁石を得た。
<実施例24~33>
実施例1において、インゴットの組成、焼結条件、溶体化条件及び降温速度をそれぞれ表6のように変更した以外は、実施例1と同様にして、実施例24~33の希土類コバルト永久磁石を得た。
<比較例6~14>
実施例1において、インゴットの組成、焼結条件、溶体化条件及び降温速度をそれぞれ表6のように変更した以外は、実施例1と同様にして、比較例6~14の希土類コバルト永久磁石を得た。
[希土類コバルト永久磁石の評価]
上記実施例及び比較例で得られた希土類コバルト永久磁石の磁気特性は成型体のまま測定した。磁気特性は、B-Hトレーサーを用いて測定した。得られた磁気特性、すなわち、最大エネルギー積(BH)m、保磁力(Hcj)、磁場(Hk)と保磁力(Hcj)との比(Hk/Hcj)で表される角形比を測定した。結果を表1~表6に示す。
また、上記実施例及び比較例の希土類コバルト永久磁石と同時に作製した同組成を有する試料を適宜加工して、透過型電子顕微鏡(TEM)観察、組成分析、配向度、温度係数、及び密度を測定した。結果を表1~6に示す。
Figure 0007001721000001
Figure 0007001721000002
Figure 0007001721000003
[結果のまとめ]
表1の例は、Feと希土類元素の組成を変更した以外は、製造条件を同一にしている。表1に示されるように、Feが22~27質量%の実施例1~5の永久磁石は、いずれも本製造方法により、セルサイズが100~600nm、結晶粒の配向度が磁化容易軸に対して60°以内、20~200℃において残留磁束密度の温度係数α<0.045%/℃、固有保磁力の温度係数β<0.35%/℃を満たす永久磁石が製造された。当該実施例1~5の永久磁石はいずれも、密度が8.25g/cm以上、(BH)mが260kJ/m以上、Hcjが1600kA/m以上、Hk/Hcjが65%以上を達成し、優れた磁気特性を有することが明らかとなった。
一方、Feが20質量%の比較例1、及び、Feが29質量%の比較例2では、同様の製造条件であっても、セルサイズが100nm未満となり、優れた磁気特性を有する永久磁石は得られなかった。
表2に示す実施例6~11は焼結温度を変更した例である。実施例6~11で得られた永久磁石は、いずれもセルサイズが100~600nmであり、優れた磁気特性を有することが示された。中でも、焼結温度を1180~1220℃の範囲内とした実施例6~10では、配向度が60°以内、20~200℃において残留磁束密度の温度係数α<0.045%/℃、固有保磁力の温度係数β<0.35%/℃を満たし、更に優れた磁気特性を有することが示された。
表3に示す実施例12~16は焼結時間を変更した例である。実施例12~16で得られた永久磁石は、いずれもセルサイズが100~600nmであり、優れた磁気特性を有することが示された。中でも、焼結時間を20~240分の範囲内とした実施例12~15では、配向度が60°以内、20~200℃において残留磁束密度の温度係数α<0.045%/℃、固有保磁力の温度係数β<0.35%/℃を満たし、更に優れた磁気特性を有することが示された。
表4の例は主に溶体化温度を変更した例である。溶体化温度を1110℃と低くした比較例3の永久磁石は、セルサイズが100nm以上のセル構造は形成されず、配向度が60°を越えていた。また、比較例3の永久磁石は磁気特性に劣るものであった。
表5の例は主に溶体化時間や降温速度を変更した例である。降温速度を上げた比較例4及び、溶体化時間を短くした比較例5では、セルサイズが100nm以上のセル構造は形成されず、配向度が60°を越えていた。また、比較例4及び5の永久磁石は磁気特性に劣るものであった。
表6は、更に溶体化時間と降温速度以外は同一の条件で製造した例である。表6に示されるように焼結後の降温速度を0.01~0.3℃/分とし、所定の溶体化温度で21~120時間溶体化を行う本製造方法により、セルサイズが100~600nm、配向度が60°以内、20~200℃において残留磁束密度の温度係数α<0.045%/℃、固有保磁力の温度係数β<0.35%/℃を満たす永久磁石が得られることが明らかとなった。このように製造された実施例24~33の永久磁石はいずれも、密度が8.25g/cm以上、(BH)mが260kJ/m以上、Hcjが1600kA/m以上、Hk/Hcjが65%以上を達成し、優れた磁気特性を有することが明らかとなった。
以上、本発明を上記実施の形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。
1 結晶粒
2 粒界部
3 セル相
4 セル壁
10 希土類コバルト永久磁石

Claims (6)

  1. 質量百分率で、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなり、
    複数の結晶粒と、粒界部を有し、
    結晶粒のセル壁の長辺の長さが各々100~600nmのサイズであり、
    密度が8.25g/cm 以上、最大エネルギー積(BH)mが260kJ/m 以上、固有保磁力Hcjが1600kA/m以上、残留磁束密度Brの90%を示すときの逆磁界の大きさをHkとしたときに、Hk/Hcjが65%以上である、希土類コバルト永久磁石。
  2. 前記結晶粒の配向度が、磁化容易軸に対して60°以内である、請求項1に記載の希土類コバルト永久磁石。
  3. 残留磁束密度Brと固有保磁力Hcjの温度係数をそれぞれαとβとしたときに、20~200℃においてα<0.045%/℃、β<0.35%/℃である、請求項1又は2に記載の希土類コバルト永久磁石。
  4. 質量百分率で、Smを含む希土類元素R:23~27%、 Cu:4.0~5.0%、 Fe:22~27%、 Zr:1.7~2.5%、残部がCo及び不可避不純物からなる合金を準備する工程(I)と、
    前記合金を粉体とする粉砕工程(II)と、
    前記粉体を成形体とする加圧成形工程(III)と、
    前記成形体を、加熱することで焼結体とする焼結工程(IV)と、
    前記焼結体を降温速度0.01~3℃/分で、徐冷する工程(V)と、
    徐冷後の焼結体を1120~1170℃で、31~120時間加熱する溶体化処理工程(VI)と、を備える、
    希土類コバルト永久磁石の製造方法。
  5. 前記焼結工程(IV)が、1180~1220℃で、20~240分行われる、請求項に記載の希土類コバルト永久磁石の製造方法。
  6. 請求項1~のいずれか一項に記載の希土類コバルト永久磁石を有する、デバイス。
JP2020018900A 2020-02-06 2020-02-06 希土類コバルト永久磁石及びその製造方法、並びにデバイス Active JP7001721B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020018900A JP7001721B2 (ja) 2020-02-06 2020-02-06 希土類コバルト永久磁石及びその製造方法、並びにデバイス
US17/160,025 US20210249165A1 (en) 2020-02-06 2021-01-27 Rare-earth cobalt permanent magnet, manufacturing method therefor, and device
CN202110156864.2A CN113223797A (zh) 2020-02-06 2021-02-04 稀土钴永磁体、其制造方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018900A JP7001721B2 (ja) 2020-02-06 2020-02-06 希土類コバルト永久磁石及びその製造方法、並びにデバイス

Publications (2)

Publication Number Publication Date
JP2021125593A JP2021125593A (ja) 2021-08-30
JP7001721B2 true JP7001721B2 (ja) 2022-01-20

Family

ID=77084638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018900A Active JP7001721B2 (ja) 2020-02-06 2020-02-06 希土類コバルト永久磁石及びその製造方法、並びにデバイス

Country Status (3)

Country Link
US (1) US20210249165A1 (ja)
JP (1) JP7001721B2 (ja)
CN (1) CN113223797A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192069B1 (ja) * 2021-09-29 2022-12-19 株式会社トーキン 永久磁石及びデバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037041A1 (ja) 2013-09-13 2015-03-19 株式会社 東芝 永久磁石、モータ、および発電機
WO2015140829A1 (ja) 2014-03-18 2015-09-24 株式会社 東芝 永久磁石、モータ、および発電機
WO2017046827A1 (ja) 2015-09-15 2017-03-23 株式会社 東芝 永久磁石および回転電機
WO2017061126A1 (ja) 2015-10-08 2017-04-13 国立大学法人九州工業大学 希土類コバルト系永久磁石
WO2017158646A1 (ja) 2016-03-17 2017-09-21 株式会社 東芝 永久磁石、回転電機、および車両

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923803A (ja) * 1982-07-30 1984-02-07 Tohoku Metal Ind Ltd 希土類磁石の製造方法
JP7010884B2 (ja) * 2019-05-15 2022-01-26 国立大学法人九州工業大学 希土類コバルト永久磁石及びその製造方法、並びにデバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037041A1 (ja) 2013-09-13 2015-03-19 株式会社 東芝 永久磁石、モータ、および発電機
WO2015140829A1 (ja) 2014-03-18 2015-09-24 株式会社 東芝 永久磁石、モータ、および発電機
WO2017046827A1 (ja) 2015-09-15 2017-03-23 株式会社 東芝 永久磁石および回転電機
WO2017061126A1 (ja) 2015-10-08 2017-04-13 国立大学法人九州工業大学 希土類コバルト系永久磁石
WO2017158646A1 (ja) 2016-03-17 2017-09-21 株式会社 東芝 永久磁石、回転電機、および車両

Also Published As

Publication number Publication date
CN113223797A (zh) 2021-08-06
JP2021125593A (ja) 2021-08-30
US20210249165A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
KR102394072B1 (ko) R―Fe―B계 소결 자석 및 그의 제조 방법
US10497496B2 (en) Rare earth-cobalt permanent magnet
US9082538B2 (en) Sintered Nd—Fe—B permanent magnet with high coercivity for high temperature applications
KR20160117364A (ko) R―Fe―B계 소결 자석 및 그의 제조 방법
CN108352231B (zh) 稀土-钴永磁体
KR20160117365A (ko) R―Fe―B계 소결 자석 및 그의 제조 방법
JP6221233B2 (ja) R−t−b系焼結磁石およびその製造方法
JP7010884B2 (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
JP2014160760A (ja) R−t−b系焼結磁石の製造方法
JP2023047307A (ja) 希土類磁性体及びその製造方法
JP7001721B2 (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
JP6706571B2 (ja) イグニッションコイル用希土類コバルト系永久磁石及びその製造方法
JP2021125678A (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
JP6221246B2 (ja) R−t−b系焼結磁石およびその製造方法
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JPH08181009A (ja) 永久磁石とその製造方法
JP2018170483A (ja) R−t−b系希土類焼結磁石用合金およびr−t−b系希土類焼結磁石の製造方法
JP7117359B2 (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
JP6811120B2 (ja) 希土類コバルト永久磁石の製造方法
US20230019328A1 (en) Permanent magnet and method for manufacturing the same
JP2002285276A (ja) R−t−b−c系焼結磁石及びその製造方法
CN117095891A (zh) 稀土钴永磁体、其制造方法和装置
US20210241948A1 (en) Rare-earth cobalt permanent magnet, manufacturing method therefor, and device
JP7017757B2 (ja) 希土類永久磁石
TW202131358A (zh) 稀土類燒結磁石

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150