JP6982594B2 - 発泡成形用マスターバッチ及び発泡成形体 - Google Patents

発泡成形用マスターバッチ及び発泡成形体 Download PDF

Info

Publication number
JP6982594B2
JP6982594B2 JP2019084047A JP2019084047A JP6982594B2 JP 6982594 B2 JP6982594 B2 JP 6982594B2 JP 2019084047 A JP2019084047 A JP 2019084047A JP 2019084047 A JP2019084047 A JP 2019084047A JP 6982594 B2 JP6982594 B2 JP 6982594B2
Authority
JP
Japan
Prior art keywords
weight
masterbatch
heat
resin
expandable microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019084047A
Other languages
English (en)
Other versions
JP2019163469A (ja
JP2019163469A5 (ja
Inventor
裕作 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66100617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6982594(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2019163469A publication Critical patent/JP2019163469A/ja
Publication of JP2019163469A5 publication Critical patent/JP2019163469A5/ja
Priority to JP2021187238A priority Critical patent/JP2022010375A/ja
Application granted granted Critical
Publication of JP6982594B2 publication Critical patent/JP6982594B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • B01J13/185In situ polymerisation with all reactants being present in the same phase in an organic phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/18Homopolymers or copolymers of nitriles
    • C08J2433/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、強い剪断力が加えられる成形や、低い成形温度が求められる成形にも好適に使用可能であり、発泡倍率が高く、かつ、外観品質が良好な発泡成形体を製造することが可能な発泡成形用マスターバッチに関する。また、該発泡成形用マスターバッチを用いた発泡成形体に関する。
プラスチック発泡体は、発泡体の素材と形成された気泡の状態に応じて遮熱性、断熱性、遮音性、吸音性、防振性、軽量化等を発現させることができることから、様々な用途で用いられている。このようなプラスチック発泡体を製造する方法としては、化学発泡剤を含有するマスターバッチを加熱することで発泡させ、成形する方法が挙げられる。しかし、化学発泡剤を含有するマスターバッチは、加熱しても発泡しないことがあり、射出発泡成形機内で発泡剤が急激に分解するおそれがある等の問題があり、取り扱いが難しかった。また、樹脂の種類によっては充分な発泡倍率を得ることができず、成形体として所望の硬度を得ることが困難な場合があった。
一方、特許文献1には、化学発泡剤を含有するエチレン−α−オレフィン共重合体のマスターバッチペレットを用いることにより、樹脂の種類を問わず、硬度や発泡倍率が高く、均一な気泡が形成された射出発泡成形体が得られることが記載されている。
しかしながら、化学発泡剤は、加熱分解すると分解ガスと同時に発泡残さを生じ、成形体に残った残さが成形体の接着性能に影響を与えることがあった。また、化学発泡剤を使用すると、全てが独立気泡とはならず、どうしても連続気泡となる部分が生じてしまい、気密性が高い発泡成形体を得ることが難しいといった問題点があった。
特許文献2には、ポリオレフィン樹脂又はスチレン樹脂をベースレジンとし、発泡剤として、化学発泡剤に代えて熱膨張性マイクロカプセルを用いた発泡樹脂マスターバッチが記載されている。
しかしながら、特許文献2に記載された熱膨張性マイクロカプセルを用いた場合、得られる発泡体の発泡倍率は低く、得られる発泡体の独立気泡を一定の大きさをすることが困難であった。
これに対して、特許文献3には、熱膨張性マイクロカプセルを含有するマスターバッチと、化学発泡剤を含有するマスターバッチとをブレンドした樹脂組成物を用いて発泡、成形することで、発泡複合板を製造する方法が記載されている。
しかしながら、このような方法を用いた場合でも、多少の発泡倍率向上は認められるが、依然として成形品の発泡倍率は低いものとなっており、所望の軽量性、断熱性等の性能を得ることができなかった。また、外観品質の良いものを得ることは困難であった。
更に、特許文献4には、熱膨張性マイクロカプセル及びベースレジンを含有する合成樹脂組成物、及び、その製造方法が開示されている。このような合成樹脂組成物では、メルトフローレートが所定の範囲内のベースレジンを用いることにより、熱膨張性マイクロカプセルの殻を破壊することなく、熱膨張性マイクロカプセルとベースレジンとの混和性、親和性に優れるとしている。
特開2000−178372号公報 特開平11−343362号公報 特開2005−212377号公報 特開2002−264173号公報
本発明は、強い剪断力が加えられる成形や、低い成形温度が求められる成形にも好適に使用可能であり、発泡倍率が高く、かつ、外観品質が良好な発泡成形体を製造することが可能な発泡成形用マスターバッチを提供することを目的とする。また、該発泡成形用マスターバッチを用いた発泡成形体を提供することを目的とする。
本発明は、ベースレジン、熱膨張性マイクロカプセルを含有する発泡成形用マスターバッチであって、真比重が0.80g/cm以上、ムーニー粘度ML1+4(100℃)が20〜90であり、前記ベースレジンは、EPDM樹脂を含有し、前記ベースレジン100重量部に対して、前記熱膨張性マイクロカプセルを40〜300重量部含有する発泡成形用マスターバッチである。
以下に本発明を詳述する。
本発明者は鋭意検討した結果、ベースレジンとしてEPDM樹脂、発泡成分として熱膨張性マイクロカプセルを用い、熱膨張性マイクロカプセル及びベースレジンの含有量、ムーニー粘度を所定の範囲内とした場合、強い剪断力が加えられる成形や、低い成形温度が求められる成形にも好適に使用可能となることを見出した。また、発泡倍率が高く、かつ、外観品質が良好な発泡成形体が得られることを見出し、本発明を完成させるに至った。
本発明の発泡成形用マスターバッチは、ベースレジンを含有する。
本発明では、上記ベースレジンとして、EPDM樹脂(エチレン−プロピレン−ジエンゴム)を用いる。これにより、外観品質が良好な発泡成形体を製造することができる。
上記EPDM樹脂は、ムーニー粘度ML1+4(100℃)の好ましい下限が5、好ましい上限が70である。
上記ムーニー粘度を5以上とすることで、発泡成形用マスターバッチのハンドリング性を向上させることができ、70以下とすることで、発泡成形用マスターバッチの加工性を改善することができる。
上記ムーニー粘度のより好ましい下限は10、より好ましい上限は60である。
なお、ムーニー粘度とは、JIS K6300に規定された方法によって測定され、粘度を表す指標として用いられる。ML1+4において、MはムーニーのM、Lはローター形状のL、(1+4)は予熱時間の1分とローターの回転時間の4分を意味している。また、「(100℃)」は100℃で測定されたことを意味する。
上記EPDM樹脂は、エチレン含有量(EPDM樹脂全体に対するエチレン成分の重量%)の好ましい下限が50重量%、好ましい上限が72重量%である。
エチレン含有量が上記範囲内であるEPDM樹脂を使用することで、成形性や熱膨張性マイクロカプセルの分散性を向上させることができる。上記エチレン含有量のより好ましい下限は55重量%、より好ましい上限は65重量%である。
なお、上記EPDM樹脂のプロピレン含有量(EPDM樹脂全体に対するプロピレン成分の重量%)は、20〜50重量%であることが好ましい。
上記EPDM樹脂は、ジエン含有量(EPDM樹脂全体に対するジエン成分の重量%)の好ましい下限が2.3重量%、好ましい上限が9.5重量%である。
ジエン含有量が上記範囲内であるEPDM樹脂を使用することで、耐候性を向上させることができる。上記ジエン含有量のより好ましい下限は4重量%、より好ましい上限は5.5重量%である。
上記EPDM樹脂を構成するジエン成分としては、例えば、5−エチリデン−2−ノルボルネン(ENB)、5−メチレン−2−ノルボルネン、5−n−プロピリデン−2−ノルボルネン、5−イソブチリデン−2−ノルボルネン、5−n−ブチリデン−2−ノルボルネン等のノルボルネンが挙げられる。また、ジシクロペンタジエン(DCPD)、1,4−ヘキサジエン(HD)、ビシクロ[2.2.1]ヘプタジエン等の非共役ジエンが挙げられる。これらの中でも、5−エチリデン−2−ノルボルネンが特に好ましい。
なお、上記EPDM樹脂におけるエチレン成分と、ジエン成分との比率(エチレン成分:ジエン成分)は、80:20〜98:2であることが好ましく、84:16〜96:4であることがより好ましい。
上記EPDM樹脂の重量平均分子量は、好ましい下限が1万、好ましい上限が100万である。また、上記EPDM樹脂は、油展されたものであってもよく、非油展のものであってもよい。
上記ベースレジンは、EPDM樹脂が100重量%であってもよく、EPDM樹脂以外に、他の樹脂成分を1種又は2種以上適宜混合することも可能である。
なお、上記他の樹脂成分を使用する場合、上記EPDM樹脂の比率は、80重量%以上であることが好ましく、90重量%以上であることがより好ましい。
上記他の樹脂成分としては、ゴム成分が挙げられ、上記ゴム成分としては、エチレンプロピレンゴム(EPR)、天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル−ブタジエンゴム(NBR)、ブチルゴム(IIR)等が挙げられる。また、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)、ウレタンゴム(U)、シリコーンゴム(Si)等を用いることができ、上記ゴム成分から選択される1種または2種以上を混合使用することができる。
また、上記他の樹脂成分として、一般的な熱可塑性樹脂を使用してもよい。
上記熱可塑性樹脂としては、例えば、ポリ塩化ビニル、ポリプロピレン、ポリプロピレンオキシド、低密度ポリエチレン、高密度ポリエチレン、ポリスチレン等の一般的な熱可塑性樹脂、ポリブチレンテレフタレート、ナイロン、ポリカーボネート、ポリエチレンテレフタレート等のエンジニアリングプラスチックが挙げられる。なお、これらのなかでは、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン及びポリスチレンからなる群より選択される少なくとも1種が好ましい。
本発明の発泡成形用マスターバッチにおける上記ベースレジンの含有量の好ましい下限は30重量%、好ましい上限は70重量%である。上記ベースレジンの含有量が30重量%未満であると、マスターバッチ作製時に発泡し、マスターバッチ化できないことがあり、上記ベースレジンの含有量が70重量%を超えると、所望の発泡倍率が得られないことがある。
本発明の発泡成形用マスターバッチは、熱膨張性マイクロカプセルを含有する。
本発明の発泡成形用マスターバッチにおける上記熱膨張性マイクロカプセルの含有量の下限は、ベースレジン100重量部に対して40重量部、上限は300重量部である。上記熱膨張性マイクロカプセルの含有量を40重量部以上とすることで、所望の発泡倍率を得ることができる。上記熱膨張性マイクロカプセルの含有量を300重量部以下とすることで、マスターバッチ作製時の発泡を防止して、結果として発泡成形品の発泡倍率を向上させることができる。上記熱膨張性マイクロカプセルの含有量の好ましい下限は65重量部、好ましい上限は150重量部である。
上記熱膨張性マイクロカプセルを構成するシェルは、アクリロニトリル、メタクリロニトリル及び塩化ビニリデンから選択される少なくとも1種からなる重合性モノマーを含有するモノマー混合物を重合させてなる重合体からなることが好ましい。
上記重合性モノマーを添加することで、シェルのガスバリア性を向上させることができる。
上記モノマー混合物中の上記重合性モノマーの含有量の好ましい下限は40重量%、好ましい上限は98重量%である。上記モノマー混合物中の重合性モノマーの含有量が40重量%未満であると、シェルのガスバリア性が低くなるため発泡倍率が低下することがある。上記モノマー混合物中の重合性モノマーの含有量が98重量%を超えると、耐熱性が上がってこないことがある。上記モノマー混合物中の重合性モノマーの含有量のより好ましい下限は50重量%、より好ましい上限は97重量%である。
上記モノマー混合物は、分子内に二重結合を2つ以上有する架橋性モノマーを含有することが好ましい。上記架橋性モノマーは、架橋剤としての役割を有する。上記架橋性モノマーを含有することにより、シェルの強度を強化することができ、熱膨張時にセル壁が破泡し難くなる。
上記架橋性モノマーとしては、ラジカル重合性二重結合を2つ以上有するモノマーが挙げられる。具体的には例えば、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等が挙げられる。また、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、重量平均分子量が200〜600であるポリエチレングリコールのジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等が挙げられる。更に、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアリルホルマールトリ(メタ)アクリレート等が挙げられる。加えて、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジメチロール−トリシクロデカンジ(メタ)アクリレート等が挙げられる。
上記モノマー混合物中における、上記架橋性モノマーの含有量の好ましい下限は0.0重量%、好ましい上限は3.0重量%である。上記架橋性モノマーの含有量を3.0重量%以下とすることで、熱膨張性マイクロカプセルの発泡倍率を向上させることが可能となる。上記架橋性モノマーの含有量のより好ましい下限は0.0重量%、より好ましい上限は2.0重量%である。
上記アクリロニトリル、メタクリロニトリル及び塩化ビニリデンから選択される少なくとも1種からなる重合性モノマー、架橋性モノマー以外のモノマーとしては、不飽和モノカルボン酸、不飽和ジカルボン酸やその無水物、不飽和ジカルボン酸のモノエステルやその誘導体や(メタ)アクリル酸エステル、酢酸ビニルやその誘導体等が挙げられる。
上記不飽和モノカルボン酸としては、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等が挙げられる。上記不飽和ジカルボン酸としては、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等が挙げられる。上記不飽和ジカルボン酸のモノエステルとしては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
上記モノマー混合物を含有するモノマー組成物中には、上記モノマーを重合させるため、重合開始剤を含有させる。上記重合開始剤としては、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、アゾ化合物等が好適に用いられる。
上記過酸化ジアルキルとしては、メチルエチルパーオキサイド、ジ−t−ブチルパーオキサイド、イソブチルパーオキサイド、ジクミルパーオキサイド等が挙げられる。
上記過酸化ジアシルとしては、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等が挙げられる。
上記パーオキシエステルとしては、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート等が挙げられる。
上記パーオキシジカーボネートとしては、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−n−プロピル−オキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ(2−エチルエチルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート等が挙げられる。
上記アゾ化合物としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)等が挙げられる。
上記シェルを構成する重合体の重量平均分子量の好ましい下限は10万、好ましい上限は200万である。重量平均分子量が10万未満であると、シェルの強度が低下することがあり、重量平均分子量が200万を超えると、シェルの強度が高くなりすぎ、発泡倍率が低下することがある。
上記シェルは、更に必要に応じて、安定剤、紫外線吸収剤、酸化防止剤、帯電防止剤、難燃剤、シランカップリング剤、色剤等を含有していてもよい。
上記熱膨張性マイクロカプセルは、上記シェルにコア剤として揮発性膨張剤が内包されている。
上記揮発性膨張剤は、シェルを構成するポリマーの軟化点以下の温度でガス状になる物質であり、低沸点有機溶剤が好適である。
上記揮発性膨張剤としては、例えば、低分子量炭化水素、クロロフルオロカーボン、テトラアルキルシラン等が挙げられる。
上記低分子量炭化水素としては、エタン、エチレン、プロパン、プロペン、n−ブタン、イソブタン、ブテン、イソブテン、n−ペンタン、イソペンタン、ネオペンタン、n−へキサン、ヘプタン、イソオクタン、石油エーテル等が挙げられる。
上記クロロフルオロカーボンとしては、CCl3F、CCl2F2、CClF3、CClF2−CClF2等が挙げられる。
上記テトラアルキルシランとしては、テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル−n−プロピルシラン等が挙げられる。
なかでも、イソブタン、n−ブタン、n−ペンタン、イソペンタン、n−へキサン、イソオクタン、石油エーテル、及び、これらの混合物が好ましい。これらの揮発性膨張剤は単独で用いてもよく、2種以上を併用してもよい。
また、揮発性膨張剤として、加熱により熱分解してガス状となる熱分解型化合物を用いてもよい。
上記熱膨張性マイクロカプセルでは、上述した揮発性膨張剤のなかでも、炭素数が5以下の低沸点炭化水素を用いることが好ましい。このような炭化水素を用いることにより、発泡倍率が高く、速やかに発泡を開始する熱膨張性マイクロカプセルとすることができる。
また、揮発性膨張剤として、加熱により熱分解してガス状になる熱分解型化合物を用いることとしてもよい。
本発明の発泡成形用マスターバッチにおいて、コア剤として用いる揮発性膨張剤の含有量の好ましい下限は10重量%、好ましい上限は25重量%である。
上記シェルの厚みはコア剤の含有量によって変化するが、コア剤の含有量を減らして、シェルが厚くなり過ぎると発泡性能が低下し、コア剤の含有量を多くすると、シェルの強度が低下する。上記コア剤の含有量を10〜25重量%とした場合、熱膨張性マイクロカプセルのへたり防止と発泡性能向上とを両立させることが可能となる。
上記熱膨張性マイクロカプセルは、最大発泡温度(Tmax)の好ましい下限が100℃、好ましい上限が180℃である。最大発泡温度が100℃未満であると、耐熱性が低くなることから、高温領域や成形加工時において、熱膨張性マイクロカプセルが破裂、収縮する。また、マスターバッチ製造時に剪断により発泡してしまい、未発泡のマスターバッチを安定して製造することができない。最大発泡温度のより好ましい下限は120℃である。
なお、本明細書において、最大発泡温度は、熱膨張性マイクロカプセルを常温から加熱しながらその径を測定したときに、熱膨張性マイクロカプセルの径が最大となったとき(最大変位量)における温度を意味する。
上記熱膨張性マイクロカプセルの体積平均粒子径の好ましい下限は5μm、好ましい上限は100μmである。体積平均粒子径が5μm未満であると、得られる成形体の気泡が小さすぎるため、成形体の軽量化が不充分となることがあり、体積平均粒子径が100μmを超えると、得られる成形体の気泡が大きくなりすぎるため、強度等の面で問題となることがある。体積平均粒子径のより好ましい下限は10μm、より好ましい上限は40μm、更に好ましい下限は12μm、より好ましい上限は25μmである。
上記熱膨張性マイクロカプセルの嵩比重の下限は0.40g/cmである。上記嵩比重が0.40g/cm未満であると、特に押出成形を用いてマスターバッチを製造する場合に、熱膨張性マイクロカプセルに剪断がかかりやすくなるため、熱膨張性マイクロカプセルが発泡気味となる。その結果、マスターバッチの真比重が低下する等によって、安定したマスターバッチが作れず、その後に射出成形等を用いて発泡成形を行う場合に、発泡倍率にバラツキが生じやすくなる。上記嵩比重の好ましい下限は0.42g/cmである。
上記嵩比重とは、容器等に最密充填した熱膨張性マイクロカプセル集合体の体積を基準とする比重をいう。上記嵩比重は、JIS K 6721に準拠し、測定することができる。
上記熱膨張性マイクロカプセルを製造する方法としては、例えば、水性媒体を調製する工程、上記重合性モノマー40〜98重量%と、架橋性モノマー0〜3重量%と、酢酸ビニル等のモノマーと、重合開始剤とを含有するモノマー組成物と、揮発性膨張剤とを含有する油性混合液を水性媒体中に分散させる工程を行う。その後、上記モノマーを重合させる工程を行う方法等が挙げられる。
上記熱膨張性マイクロカプセルを製造する場合、最初に水性媒体を調製する工程を行う。具体的には例えば、重合反応容器に、水と分散安定剤、必要に応じて補助安定剤を加えることにより、分散安定剤を含有する水性分散媒体を調製する。また、必要に応じて、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、重クロム酸カリウム等を添加してもよい。
上記分散安定剤としては、例えば、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、シュウ酸カルシウム、炭酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム等が挙げられる。
上記分散安定剤の添加量は特に限定されず、分散安定剤の種類、熱膨張性マイクロカプセルの粒子径等により適宜決定されるが、モノマー100重量部に対して、好ましい下限が0.1重量部、好ましい上限が20重量部である。
上記補助安定剤としては、例えば、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物、尿素とホルムアルデヒドとの縮合生成物等が挙げられる。また、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンイミン、テトラメチルアンモニウムヒドロキシド、ゼラチン、メチルセルロース、ポリビニルアルコール、ジオクチルスルホサクシネート、ソルビタンエステル、各種乳化剤等が挙げられる。
また、上記分散安定剤と補助安定剤との組み合わせとしては特に限定されず、例えば、コロイダルシリカと縮合生成物との組み合わせ、コロイダルシリカと水溶性窒素含有化合物との組み合わせ、水酸化マグネシウム又はリン酸カルシウムと乳化剤との組み合わせ等が挙げられる。これらの中では、コロイダルシリカと縮合生成物との組み合わせが好ましい。
更に、上記縮合生成物としては、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物が好ましく、特にジエタノールアミンとアジピン酸との縮合物やジエタノールアミンとイタコン酸との縮合生成物が好ましい。
上記水溶性窒素含有化合物としては、ポリビニルピロリドン、ポリエチレンイミン、ポリオキシエチレンアルキルアミン、ポリジアルキルアミノアルキル(メタ)アクリレート、ポリジアルキルアミノアルキル(メタ)アクリルアミド、ポリアクリルアミド、ポリカチオン性アクリルアミド、ポリアミンサルフォン、ポリアリルアミン等が挙げられる。
上記ポリジアルキルアミノアルキル(メタ)アクリレートとしては、ポリジメチルアミノエチルメタクリレート、ポリジメチルアミノエチルアクリレート等が挙げられる。
上記ポリジアルキルアミノアルキル(メタ)アクリルアミドとしては、ポリジメチルアミノプロピルアクリルアミドやポリジメチルアミノプロピルメタクリルアミド等が挙げられる。これらのなかでは、ポリビニルピロリドンが好適に用いられる。
上記コロイダルシリカの添加量は、熱膨張性マイクロカプセルの粒子径により適宜決定されるが、ビニル系モノマー100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。上記コロイダルシリカの添加量の更に好ましい下限は2重量部、更に好ましい上限は10重量部である。また、上記縮合生成物又は水溶性窒素含有化合物の添加量についても熱膨張性マイクロカプセルの粒子径により適宜決定されるが、モノマー100重量部に対して、好ましい下限が0.05重量部、好ましい上限が2重量部である。
上記分散安定剤及び補助安定剤に加えて、更に塩化ナトリウム、硫酸ナトリウム等の無機塩を添加してもよい。無機塩を添加することで、より均一な粒子形状を有する熱膨張性マイクロカプセルを得ることができる。上記無機塩の添加量は、通常、モノマー100重量部に対して0〜100重量部が好ましい。
上記分散安定剤を含有する水性分散媒体は、分散安定剤や補助安定剤を脱イオン水に配合して調製され、この際の水相のpHは、使用する分散安定剤や補助安定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカ等のシリカを使用する場合は、酸性媒体で重合がおこなわれ、水性媒体を酸性にするには、必要に応じて塩酸等の酸を加えて系のpHが3〜4に調製される。一方、水酸化マグネシウム又はリン酸カルシウムを使用する場合は、アルカリ性媒体の中で重合させる。
次いで、熱膨張性マイクロカプセルを製造する方法では、上記重合性モノマー40〜98重量%と、架橋性モノマー0〜3重量%と、酢酸ビニル等のモノマーと、重合開始剤とを含有するモノマー組成物と、揮発性膨張剤とを含有する油性混合液を水性媒体中に分散させる工程を行う。この工程では、モノマー及び揮発性膨張剤を別々に水性分散媒体に添加して、水性分散媒体中で油性混合液を調製してもよいが、通常は、予め両者を混合し油性混合液としてから、水性分散媒体に添加する。この際、油性混合液と水性分散媒体とを予め別々の容器で調製しておき、別の容器で攪拌しながら混合することにより油性混合液を水性分散媒体に分散させた後、重合反応容器に添加しても良い。
なお、上記モノマーを重合するために、重合開始剤が使用されるが、上記重合開始剤は、予め上記油性混合液に添加してもよく、水性分散媒体と油性混合液とを重合反応容器内で攪拌混合した後に添加してもよい。
上記油性混合液を水性分散媒体中に所定の粒子径で乳化分散させる方法としては、ホモミキサー(例えば、特殊機化工業社製)等により攪拌する方法や、ラインミキサーやエレメント式静止型分散器等の静止型分散装置を通過させる方法等が挙げられる。
なお、上記静止型分散装置には水系分散媒体と重合性混合物を別々に供給してもよいし、予め混合、攪拌した分散液を供給してもよい。
上記熱膨張性マイクロカプセルは、上述した工程を経て得られた分散液を、例えば、加熱することによりモノマーを重合させる工程を行うことにより、製造することができる。
本発明の発泡成形用マスターバッチは、化学発泡剤を含有していてもよい。上記化学発泡剤を含有させることで、例えば、炭酸水素ナトリウム等の化学発泡剤を用いる場合、分解される際に発生するCOにより発泡性能を向上させることができる。また、上記熱膨張性マイクロカプセルと化学発泡剤と併用することで、化学発泡剤を単独で使用した場合に発生しがちな連続気泡の生成を抑えることが可能となる。
上記化学発泡剤としては、常温で粉末状のものであれば特に限定されず、従来から化学発泡剤として汎用されているものを使用することができる。具体的には例えば、炭酸水素ナトリウム等の無機系化学発泡剤、アゾジカルボンアミド、N,N’−ジニトロソペンタメチレンテトラミン、P,P’−オキシビスベンゼンスルホニルヒドラジド、パラトルエンスルホニルヒドラジド等の有機系化学発泡剤が挙げられる。
本発明の発泡成形用マスターバッチは、滑剤及びプロセスオイル等の添加剤を含有していてもよい。上記滑剤を含有させることで、マスターバッチ製造時に熱膨張性マイクロカプセルにかかるシェアが抑制され、微発泡等が発生し難くなり、また、熱膨張性マイクロカプセルの分散性を向上させることができ、マスターバッチを製造しやすくなる。その結果、熱膨張性マイクロカプセルの濃度が高いマスターバッチを生産効率が良く安定して製造することができる。
上記滑剤としては、マスターバッチ製造時の温度で溶解するものであれば、特に限定されず、従来から滑剤として汎用されているものを使用することができる。具体的には例えば、粘度平均分子量3,000以下のポリエチレンワックス、グリセリンモノステアレート、ジグリセリンステアレートなどのグリセリン脂肪酸エステル、ステアリン酸等の脂肪酸、及び、複合滑剤と呼ばれるものが挙げられる。
上記プロセスオイルとしては、特に限定されず、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル及びこれらをブレンドした炭化水素系プロセスオイル等を使用することができる。なかでも、パラフィン系プロセスオイルが好ましい。
上記プロセスオイルの含有量はベースレジン100重量部に対して、40〜200重量部とすることが好ましい。
本発明の発泡成形用マスターバッチの形状は、粉末状、粒状、塊状、ストランド状、ペレット状、シート状等、種々の形状の何れであってもよい。
本発明の発泡成形用マスターバッチの真比重の下限は0.80g/cmである。上記真比重が0.80g/cm未満であると、マスターバッチ中にある熱膨張性マイクロカプセルが膨れていることを意味するので、成形後に得られる成形品の発泡倍率が低下する。
上記真比重の好ましい下限は0.90g/cm、好ましい上限は1.0g/cmである。
上記真比重とは、空孔を除いた素材のみの比重をいい、20℃におけるマスターバッチの単位体積の質量と、それと等体積の4℃における水の質量との比を表す。上記真比重は、JIS K 7112 A法(水中置換法)に準拠した方法により測定することができる。
本発明の発泡成形用マスターバッチのムーニー粘度ML1+4(100℃)は、下限が20、上限が90である。
上記ムーニー粘度を20以上とすることで、マスターバッチ同士の合着等を防止してハンドリング性を向上させることができ、90以下とすることで、マトリックス樹脂との混練性を向上させることができる。好ましい下限は40、好ましい上限は85である。
本発明の発泡成形用マスターバッチを製造する方法としては特に限定されず、例えば、所定のムーニー粘度を有するEPDM樹脂を含有するベースレジン、滑剤等の各種添加剤等の原材料を、加圧ニーダーにて50〜100℃で5分間程度予め混練する。次いで、予め混練したゴム組成物をロール機に供給し、ロール温度50〜100℃、ロール速度20rpm、ロール間距離1cmに成形条件を設定して、ゴム組成物を5分間混合し、厚さ1cmのシート状マスターバッチとする方法等が挙げられる。この時点で微発泡してしまえば、その後の発泡成形で所望の発泡倍率が得難く、バラツキも大きくなる。
また、ベースレジン、熱膨張性マイクロカプセル、滑剤等の原材料をバッチ式の混練機で混練した後、造粒機で造粒する方法や、押出機とペレタイザーによりペレット形状のマスターバッチを製造する方法を用いてもよい。
上記混練機としては、熱膨張性マイクロカプセルを破壊することなく混練できるものであれば特に限定されず、例えば、バンバリーミキサー等が挙げられる。
本発明の発泡成形用マスターバッチに、熱可塑性樹脂等のマトリックス樹脂を加えた樹脂組成物を射出成形等の成形方法を用いて成形し、成形時の加熱により、上記熱膨張性マイクロカプセルによって発泡させることにより、発泡成形体を製造することができる。このような発泡成形体もまた本発明の1つである。
このような方法で得られる本発明の発泡成形体は、高発泡倍率かつ高外観品質が得られ、独立気泡が均一に形成されており、軽量性、断熱性、耐衝撃性、剛性等に優れるものとなり、住宅用建材、自動車用部材、靴底等の用途に好適に用いることができる。
上記熱可塑性樹脂等のマトリックス樹脂としては、本発明の目的を阻害しない限り、特に限定されず、例えば、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、ポリプロピレンオキシド、ポリエチレン等の一般的な熱可塑性樹脂が用いられる。また、ポリブチレンテレフタレート、ナイロン、ポリカーボネート、ポリエチレンテレフタレート等のエンジニアリングプラスチックが挙げられる。また、エチレン系、塩化ビニル系、オレフィン系、ウレタン系、エステル系等の熱可塑性エラストマーを使用してもよく、これらの樹脂を併用して使用してもよい。
また、上記マトリックス樹脂としては、上記ベースレジンと同様の樹脂を使用することが好ましい。
上記熱可塑性樹脂100重量部に対する本発明の発泡成形用マスターバッチの添加量は0.5〜20重量部が好ましく、より好ましくは1〜10重量部である。
本発明の発泡成形体の成形方法としては、特に限定されず、例えば、混練成形、カレンダー成形、押出成形、射出成形等が挙げられる。射出成形の場合、工法は特に限定されず、金型に樹脂材料を一部入れて発泡させるショートショート法や金型に樹脂材料をフル充填した後に金型を発泡させたいところまで開くコアバック法等が挙げられる。
本発明の発泡成形体の成形方法で得られた成形品の用途としては、例えば、ドアトリム、インストルメントパネル(インパネ)等の自動車内装材や、バンパー等の自動車外装材等が挙げられる。また、木粉プラスチック等の建材用途、靴底、人工コルク等の用途が挙げられる。
本発明によれば、強い剪断力が加えられる成形や、低い成形温度が求められる成形にも好適に使用可能であり、発泡倍率が高く、かつ、外観品質が良好な発泡成形体を得ることが可能な発泡成形用マスターバッチを提供できる。特に、本発明の発泡成形用マスターバッチを用いた場合、成形体の表面に気泡等が生じることなく、表面が滑らかな成形体を得ることができる。また、本発明の発泡成形用マスターバッチを用いることで、熱膨張性マイクロカプセルの分散性が良好となり、均一な気泡を有する発泡成形体を得ることができる。
更に、該発泡成形用マスターバッチを用いた発泡成形体を提供できる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(熱膨張性マイクロカプセルの作製)
重合反応容器に、水300重量部と、調整剤として塩化ナトリウム89重量部、水溶性重合禁止剤として亜硝酸ナトリウム0.07重量部、分散安定剤としてコロイダルシリカ(旭電化社製)8重量部及びポリビニルピロリドン(BASF社製)0.3重量部を投入し、水性分散媒体を調製した。次いで、表1に示す重合性モノマー、揮発性膨張剤、重合開始剤からなる油性混合液を水性分散媒体に添加、混合することにより、分散液を調製した。全分散液は15kgである。得られた分散液をホモジナイザーで攪拌混合し、窒素置換した加圧重合器(20L)内へ仕込み、加圧(0.2MPa)し、60℃で20時間反応させることにより、反応生成物を調製した。得られた反応生成物について、遠心分離機にて脱水と水洗を繰り返した後、乾燥して熱膨張性マイクロカプセル(No.1〜3)を得た。
(実施例1〜9、比較例1〜3)
(マスターバッチペレットの作製)
表2に示すベースレジン、熱膨張性マイクロカプセル、プロセスオイル(出光興産社製、ダイアナプロセスオイルPW−90、パラフィン系プロセスオイル)と、滑剤としてステアリン酸5重量部とを加圧ニーダーにて70℃で5分間混練した。その後、混練物をロール機にてロール温度60℃、ロール速度20rpm、ロール間距離1cmにて5分間混合し、厚さ1cmのシート状マスターバッチを得た。
また、EPDMとしては以下のものを用いた。
EPDM(1):ムーニー粘度[ML1+4(100℃)]8、エチレン含有量54重量%、ジエン成分:ENB、ジエン含有量7.6重量%、プロピレン含有量38.4重量%
EPDM(2):ムーニー粘度[ML1+4(100℃)]24、エチレン含有量51重量%、ジエン成分:ENB、ジエン含有量8.1重量%、プロピレン含有量40.9重量%
EPDM(3):ムーニー粘度[ML1+4(100℃)]40、エチレン含有量56重量%、ジエン成分:ENB、ジエン含有量4.7重量%、プロピレン含有量39.3重量%
EPDM(4):ムーニー粘度[ML1+4(100℃)]44、エチレン含有量50重量%、ジエン成分:DCPD、ジエン含有量5.0重量%、プロピレン含有量45.0重量%
(比較例4)
(マスターバッチペレットの作製)
表2に示すベースレジン100重量部と、滑剤として脂肪酸エステル10重量部とをバンバリーミキサーで混練し、約100℃になったところで、得られた熱膨張性マイクロカプセルを表2に示す配合量で添加し、更に30秒間混練して押し出すと同時にペレット化し、マスターバッチペレットを得た。なお、表2中のLDPEは低密度ポリエチレンを表す。
(比較例5)
表2に示すベースレジン、熱膨張性マイクロカプセル、プロセスオイル(出光興産社製、ダイアナプロセスオイルPW−90、パラフィン系プロセスオイル)と、滑剤としてステアリン酸5重量部とを加圧ニーダーにて120℃で5分間混練した。その後、混練物をロール機にてロール温度80℃、ロール速度20rpm、ロール間距離1cmにて5分間混合し、厚さ1cmのシート状マスターバッチを得た。
また、EPDMとしては以下のものを用いた。
EPDM(1):ムーニー粘度[ML1+4(100℃)]8、エチレン含有量54重量%、ジエン成分:ENB、ジエン含有量7.6重量%、プロピレン含有量38.4重量%
(発泡成形体の製造)
EPDM樹脂(エチレン含有量63重量%、ジエン含有量4.4重量%)100重量部、その他添加剤(酸化亜鉛、ステアリン酸、カーボンブラック、重質炭酸カルシウム、パラフィンオイル)335重量部、硫黄1重量部及び加硫促進剤4重量部を混合したEPDM組成物を予め調製した。得られたマスターバッチペレットと、予め調整したEPDM組成物100重量部とを混合し、得られた混合ペレットを押出成形機のホッパーに供給して溶融混練し、押出成形を行い、板状の成形体を得た。なお、押出条件は、金型温度:80℃とした。押出成型により得られた板状の成型体を熱風オーブン(エスペック社製)にて200℃にて5分間加熱し発泡成形体を得た。
(評価)
熱膨張性マイクロカプセル(No.1〜3)、及び、実施例1〜9及び比較例1〜5で得られた成形体について、下記性能を評価した。結果を表1及び表2に示した。なお、比較例2については、マスターバッチ化ができなかったため、以降の評価は行わなかった。
(1)熱膨張性マイクロカプセルの評価
(1−1)体積平均粒子径
粒度分布径測定器(LA−910、HORIBA社製)を用い、体積平均粒子径を測定した。
(1−2)発泡開始温度、最大発泡温度、最大変位量
熱機械分析装置(TMA)(TMA2940、TA instruments社製)を用い、発泡開始温度(Ts)、最大変位量(Dmax)及び最大発泡温度(Tmax)を測定した。具体的には、試料25μgを直径7mm、深さ1mmのアルミ製容器に入れ、上から0.1Nの力を加えた状態で、5℃/minの昇温速度で80℃から220℃まで加熱し、測定端子の垂直方向における変位を測定し、変位が上がり始める温度を発泡開始温度、その変位の最大値を最大変位量とし、最大変位量における温度を最大発泡温度とした。
Figure 0006982594
(2)マスターバッチの評価
(2−1)真比重の測定
比重計MD−200S(ミラージュ社製)を用いてマスターバッチペレットの真比重をJIS K 7112 A法(水中置換法)に準拠した方法により計測した。
(2−2)ムーニー粘度の測定
得られたマスターバッチペレットについて、100℃におけるムーニー粘度をJIS K 6300に準拠した方法で測定した。
(3)成形体の評価
(3−1)密度、発泡倍率
発泡前の密度、及び、得られた成形体(発泡後)の密度をJIS K 7112 A法(水中置換法)に準拠した方法により測定した。
また、発泡前後の成形体の密度から発泡倍率を算出した。
(3−2)表面性
3D形状測定機(キーエンス社製)により、成型体表面の表面粗さ(Rz)を計測した。判断基準として、その計測値であるRz値が50μm未満を○、50μm≦Rz値≦100μmを△、100μm超を×とした。
(3−3)分散性
得られた成形体の断面を電子顕微鏡で目視観察し、下記の判断基準で熱膨張性マイクロカプセルの分散性を評価した。
○:均一に気泡が分散している。
×:気泡の分布が均一でない。
Figure 0006982594
本発明によれば、強い剪断力が加えられる成形や、低い成形温度が求められる成形にも好適に使用可能であり、発泡倍率が高く、外観品質が良好な発泡成形体を得ることが可能な発泡成形用マスターバッチを提供できる。また、該発泡成形用マスターバッチを用いた発泡成形体を提供できる。

Claims (6)

  1. ベースレジン、熱膨張性マイクロカプセルを含有する発泡成形用マスターバッチであって、
    真比重が0.80g/cm以上、ムーニー粘度ML1+4(100℃)が20〜90であり、
    前記ベースレジンは、EPDM樹脂を含有し、
    EPDM樹脂は、ジエン含有量が2.3〜9.5重量%であり、
    前記ベースレジン100重量部に対して、前記熱膨張性マイクロカプセルを40〜300重量部含有する
    ことを特徴とする発泡成形用マスターバッチ。
  2. EPDM樹脂は、エチレン含有量が50〜72重量%であることを特徴とする請求項1記載の発泡成形用マスターバッチ。
  3. EPDM樹脂におけるエチレン成分と、ジエン成分との比率(エチレン成分:ジエン成分)は、80:20〜98:2であることを特徴とする請求項1又は2記載の発泡成形用マスターバッチ。
  4. 熱膨張性マイクロカプセルは、重合体からなるシェルに、コア剤として揮発性膨張剤が内包されており、
    前記シェルは、アクリロニトリル、メタクリロニトリル及び塩化ビニリデンから選択される少なくとも1種からなる重合性モノマーを含有するモノマー混合物を重合させてなる重合体からなる
    ことを特徴とする請求項1、2又は3記載の発泡成形用マスターバッチ。
  5. 熱膨張性マイクロカプセルは、最大発泡温度が180℃以下であることを特徴とする請求項1、2、3又は4記載の発泡成形用マスターバッチ。
  6. 請求項1、2、3、4又は5記載の発泡成形用マスターバッチを用いてなることを特徴とする発泡成形体。
JP2019084047A 2017-10-13 2019-04-25 発泡成形用マスターバッチ及び発泡成形体 Active JP6982594B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021187238A JP2022010375A (ja) 2017-10-13 2021-11-17 発泡成形用マスターバッチ及び発泡成形体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017199417 2017-10-13
JP2017199417 2017-10-13
JP2018553500A JP6523576B1 (ja) 2017-10-13 2018-09-28 発泡成形用マスターバッチ及び発泡成形体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018553500A Division JP6523576B1 (ja) 2017-10-13 2018-09-28 発泡成形用マスターバッチ及び発泡成形体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021187238A Division JP2022010375A (ja) 2017-10-13 2021-11-17 発泡成形用マスターバッチ及び発泡成形体

Publications (3)

Publication Number Publication Date
JP2019163469A JP2019163469A (ja) 2019-09-26
JP2019163469A5 JP2019163469A5 (ja) 2021-05-06
JP6982594B2 true JP6982594B2 (ja) 2021-12-17

Family

ID=66100617

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018553500A Active JP6523576B1 (ja) 2017-10-13 2018-09-28 発泡成形用マスターバッチ及び発泡成形体
JP2019084047A Active JP6982594B2 (ja) 2017-10-13 2019-04-25 発泡成形用マスターバッチ及び発泡成形体
JP2021187238A Pending JP2022010375A (ja) 2017-10-13 2021-11-17 発泡成形用マスターバッチ及び発泡成形体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018553500A Active JP6523576B1 (ja) 2017-10-13 2018-09-28 発泡成形用マスターバッチ及び発泡成形体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021187238A Pending JP2022010375A (ja) 2017-10-13 2021-11-17 発泡成形用マスターバッチ及び発泡成形体

Country Status (7)

Country Link
US (1) US11560459B2 (ja)
EP (1) EP3696219B1 (ja)
JP (3) JP6523576B1 (ja)
CN (1) CN110799581A (ja)
ES (1) ES2947766T3 (ja)
PT (1) PT3696219T (ja)
WO (1) WO2019073824A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004369A1 (ja) * 2020-06-30 2022-01-06 松本油脂製薬株式会社 発泡成形用マスターバッチ、及びその用途

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059326A (ja) 1991-07-05 1993-01-19 Tonen Chem Corp オレフイン系エラストマー組成物の架橋発泡体の製造方法
JPH05279524A (ja) 1992-03-31 1993-10-26 Sumitomo Chem Co Ltd 耐光性表皮材用エラストマー組成物および該組成物からなる工業部品用耐光性表皮材
JP4025423B2 (ja) 1998-06-02 2007-12-19 旭化成ケミカルズ株式会社 熱可塑性エラストマー発泡体
JP2000178372A (ja) 1998-12-18 2000-06-27 Kyowa Leather Cloth Co Ltd 発泡性ペレット、射出発泡成形体、および射出発泡成形体の製造方法
JP4506924B2 (ja) 2001-03-08 2010-07-21 株式会社富士通ゼネラル 合成樹脂成型物の製造方法
JP2004091746A (ja) 2002-09-04 2004-03-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物の製造方法
US6951688B2 (en) * 2002-10-11 2005-10-04 Canon Kabushiki Kaisha Charging member, and image-forming apparatus and process cartridge which make use of the same
JP2005350571A (ja) * 2004-06-10 2005-12-22 Sekisui Chem Co Ltd 熱可塑性樹脂発泡体シート及び熱可塑性樹脂発泡体シートの製造方法
JP4230375B2 (ja) 2004-01-30 2009-02-25 永大化工株式会社 複合板
EP1857519A4 (en) * 2005-02-07 2012-12-26 Kureha Corp THERMALLY FROTHABLE MICROSPHERE, PROCESS FOR MANUFACTURING THE SAME AND COMPOSITION
WO2010038615A1 (ja) 2008-09-30 2010-04-08 積水化学工業株式会社 発泡成形用マスターバッチ及び発泡成形体
JP5554511B2 (ja) * 2009-05-26 2014-07-23 鬼怒川ゴム工業株式会社 ゴム成形体およびゴム成形体の製造方法
JP5555603B2 (ja) * 2010-10-27 2014-07-23 日東電工株式会社 発泡性樹脂組成物、発泡性樹脂シート、発泡体およびその製造方法
JP2012213615A (ja) 2011-03-22 2012-11-08 Ube Industries Ltd 靴底用発泡体ゴム組成物及びアウトソール
JP2012233132A (ja) * 2011-05-09 2012-11-29 Nitto Denko Corp 熱発泡性樹脂組成物、熱発泡性樹脂シート、発泡体およびその製造方法
JP5886215B2 (ja) * 2012-01-31 2016-03-16 三ツ星ベルト株式会社 Vリブドベルト
CN104844944B (zh) * 2015-04-24 2017-06-20 范汝良 一种发泡微球预分散母胶粒及其制备方法和应用
US10731020B2 (en) * 2015-07-23 2020-08-04 Matsumoto Yushi-Seiyaku Co., Ltd. Rubber composition for vulcanization molding, process for manufacturing the same and application thereof

Also Published As

Publication number Publication date
JP2019163469A (ja) 2019-09-26
PT3696219T (pt) 2023-07-31
ES2947766T3 (es) 2023-08-18
JP2022010375A (ja) 2022-01-14
EP3696219A1 (en) 2020-08-19
CN110799581A (zh) 2020-02-14
US20200262996A1 (en) 2020-08-20
US11560459B2 (en) 2023-01-24
JPWO2019073824A1 (ja) 2019-11-14
EP3696219A4 (en) 2021-05-05
WO2019073824A1 (ja) 2019-04-18
JP6523576B1 (ja) 2019-06-05
EP3696219B1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
JP5485697B2 (ja) 発泡成形用マスターバッチ及び発泡成形体
JP7050730B2 (ja) 発泡成形用マスターバッチ及び発泡成形体
JP5485611B2 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP5576029B2 (ja) 発泡成形用マスターバッチ及び発泡成形体
JP5543686B2 (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP2009221429A (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP7417389B2 (ja) 発泡成形用マスターバッチ及び発泡成形体
JP2022066262A (ja) 発泡成形用マスターバッチ及び発泡成形体
JP2009161698A (ja) 熱膨張性マイクロカプセル及び発泡成形体
JP6982594B2 (ja) 発泡成形用マスターバッチ及び発泡成形体
JP5339669B2 (ja) 発泡成形体の製造方法及び発泡成形体
JP7121210B1 (ja) 発泡成形用マスターバッチ及び発泡成形体
CN114302910A (zh) 发泡体及发泡体的制造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211119

R151 Written notification of patent or utility model registration

Ref document number: 6982594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151