JP6982059B2 - 処理装置をモニタするための方法及びシステム - Google Patents

処理装置をモニタするための方法及びシステム Download PDF

Info

Publication number
JP6982059B2
JP6982059B2 JP2019506489A JP2019506489A JP6982059B2 JP 6982059 B2 JP6982059 B2 JP 6982059B2 JP 2019506489 A JP2019506489 A JP 2019506489A JP 2019506489 A JP2019506489 A JP 2019506489A JP 6982059 B2 JP6982059 B2 JP 6982059B2
Authority
JP
Japan
Prior art keywords
etching
substrate
tool
variables
lithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019506489A
Other languages
English (en)
Other versions
JP2019530207A (ja
Inventor
テル,ウィン,テジッボ
マズロー,マルク,ジョン
スタールズ,フランク
ヒンネン,パウル,クリスティアーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2019530207A publication Critical patent/JP2019530207A/ja
Application granted granted Critical
Publication of JP6982059B2 publication Critical patent/JP6982059B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • G03F7/2043Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means with the production of a chemical active agent from a fluid, e.g. an etching agent; with meterial deposition from the fluid phase, e.g. contamination resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Drying Of Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

関連出願の相互参照
[0001] この出願は、2016年9月2日に出願された欧州特許第16187040.7号の優先権を主張し、同特許は、その全体が参照により本明細書に組み込まれる。
[0002] 本説明は、基板の処理に関連する1つ又は複数の基板製造変数をモニタ及び/又は調整するための方法及びシステムに関する。
[0003] リソグラフィ装置は、所望のパターンを基板(通常、基板のターゲット部分)に焼き付ける機械である。リソグラフィ装置は、例えば、集積回路(IC)又は機能を果たすように設計された他のデバイスの製造において使用することができる。その例では、パターニングデバイス(代替として、マスク又はレチクルと呼ばれる)は、機能を果たすように設計されたデバイスの個々の層上に形成予定の回路パターンを生成するために使用することができる。このパターンは、基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、一部の、1つ又はいくつかのダイ)上に転写することができる。パターンの転写は、典型的には、イメージングを介して、基板上に提供される放射感応性材料(レジスト)の層上に行われる。一般に、単一の基板は、連続してパターン形成された隣接するターゲット部分のネットワークを含む。公知のリソグラフィ装置は、いわゆる、ターゲット部分上に一度にパターン全体を露光することによって各ターゲット部分が照射を受けるステッパと、いわゆる、所定の方向(「スキャン」方向)における放射ビームを通じてパターンをスキャンし、同時に、この方向に平行又は逆平行に基板をスキャンすることによって各ターゲット部分が照射を受けるスキャナとを含む。また、基板にパターンをインプリントすることによってパターニングデバイスから基板にパターンを転写することも可能である。
[0004] デバイス(半導体デバイスなど)を製造することは、典型的には、様々なフィーチャ(デバイスの複数の層である場合が多い)を形成するために多くの製作プロセスを使用して基板(例えば、半導体ウェーハ)を処理することを伴う。そのような層及びフィーチャは、典型的には、例えば、堆積、リソグラフィ、エッチング、化学機械研磨及びイオン注入を使用して製造及び処理される。複数のデバイスは、基板上の多数のダイ上に製作し、次いで、個々のデバイスに分離することができる。このデバイス製造プロセスは、パターニングプロセスと見なすことができる。パターニングプロセスは、基板にパターンを提供するためのリソグラフィ装置を使用した光及び/又はナノインプリントリソグラフィなどのパターニングステップを伴い、典型的には、任意選択ではあるが、現像装置によるレジスト現像、ベーキングツールを使用した基板のベーキング、エッチング装置によるパターンを使用したエッチングなどの1つ又は複数の関連パターン処理ステップを伴う。さらに、パターニングプロセスには、1つ又は複数の計測プロセスも伴う。
[0005] 計測プロセスは、プロセスをモニタ及び/又は制御するために、パターニングプロセスの間の様々なステップにおいて使用される。例えば、計測プロセスは、パターニングプロセスの間に基板上に形成されたフィーチャの相対的な場所(例えば、登録、オーバーレイ、アライメントなど)又は寸法(例えば、ライン幅、クリティカルディメンション(CD)、厚さなど)など、基板の1つ又は複数の特性を測定するために使用され、その結果、例えば、1つ又は複数の特性からパターニングプロセスの性能を決定することができる。1つ又は複数の特性が許容できない(例えば、特性の既定の範囲外の)ものである場合は、例えば、1つ又は複数の特性の測定値に基づいて、パターニングプロセスの1つ又は複数の変数を変更することができ、その結果、パターニングプロセスによって製造されるさらなる基板は許容可能な特性を有する。
[0006] リソグラフィ及び他のパターニングプロセス技術の進歩と共に、機能要素の寸法が低減し続けている一方で、1つのデバイス当たりの機能要素(トランジスタなど)の量は、数十年間にわたって着実に増加してきている。その間にも、オーバーレイ、クリティカルディメンション(CD)などの精度の要件はますます厳しくなってきている。オーバーレイエラー、CDエラーなどのエラーは、パターニングプロセスにおいていや応なく生じる。例えば、イメージングエラーは、光学収差、パターニングデバイス加熱、パターニングデバイスエラー及び/又は基板加熱から生じ得、例えば、オーバーレイエラー、CDエラーなどの観点から特徴付けることができる。それに加えて又はその代替として、エラーは、パターニングプロセスの他の部分(エッチング、現像、ベーキングなど)において導入され得、この場合も同様に、例えば、オーバーレイエラー、CDエラーなどの観点から特徴付けることができる。エラーは、デバイスの機能故障又は機能デバイスの1つ若しくは複数の電気問題を含むデバイスの機能の観点から直接問題を引き起こし得る。
[0007] リソグラフィベースライナシステムは、リソグラフィ装置の性能を経時的にモニタするために使用することができる。リソグラフィ装置の性能が許容可能な規格を逸脱する際は、再較正、修理、シャットダウンなどの行動を取ることができる。さらに、リソグラフィベースライナシステムは、例えば、リソグラフィ装置の1つ又は複数の設定(変数)を修正することによって、リソグラフィ装置の時宜を得た制御を可能にすることができる。従って、リソグラフィベースライナシステムは、例えば、大量生産(HVM)における安定した性能を可能にすることができる。
[0008] リソグラフィベースライナシステムは、一定のベースラインにリソグラフィ装置を維持することを効果的に目標とし得る。これを行うため、実施形態では、リソグラフィベースライナシステムは、計測装置(回折に基づく光学式の測定ツールなど)を使用してモニタウェーハ上で取られた測定値を得る。実施形態では、モニタウェーハは、計測装置に適したマークを含む一定のパターニングデバイスパターンを使用して露光することができる。測定値から、リソグラフィベースライナシステムは、リソグラフィ装置がそのベースラインからどれほど逸れたかを判断する。次いで、実施形態では、リソグラフィベースライナシステムは、例えば、基板レベルオーバーレイ及び/又はフォーカス補正セットを計算する。次いで、リソグラフィ装置は、これらの補正セットを使用して、後続の生産ウェーハの露光のための具体的な補正を行う。
[0009] 非リソグラフィ処理装置(例えば、エッチングツール、堆積ツールなど)にも同様のベースライナが望ましい。従って、1つ又は複数の非リソグラフィ処理装置の性能をよりうまくモニタ及び/又は制御することができる方法及び/又は装置を提供することが望ましい。
[0010] 実施形態では、1つ又は複数の処理装置によってパターニングプロセスに従って基板が処理された後に、ハードウェアコンピュータシステムによって、リソグラフィ装置による特性への寄与及び1つ又は複数のリソグラフィ前処理装置による特性への寄与を基板の特性の値から除去することによって、1つ又は複数の処理装置が基板の特性に与える寄与を決定することを含む方法が提供される。
[0011] 実施形態では、ハードウェアコンピュータシステムによって、パターニングプロセスで使用される1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第1の群の基板に特有の寄与と、1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第2の群の基板に特有ではない寄与とを組み合わせることによって、パターニングプロセスによって処理される基板に与えられる特性を推定することであって、第1の群及び/又は第2の群からの少なくとも1つのプロセス変数が、リソグラフィ装置の上流にある処理装置に関連する、推定することを含む方法が提供される。
[0012] 実施形態では、ハードウェアコンピュータシステムによって、1つ又は複数の処理装置による特性への1つ又は複数の寄与を特性の1つ又は複数の値と組み合わせることによって、1つ又は複数の処理装置によって処理される基板に与えられる特性を推定することであって、1つ又は複数の処理装置の少なくとも1つが、リソグラフィ装置の上流にある、推定することを含む方法が提供される。
[0013] 実施形態では、1つ又は複数の第1の処理装置による基板の特性への1つ又は複数の寄与を決定することと、ハードウェアコンピュータシステムによって、1つ又は複数の寄与に少なくとも部分的に基づいて、1つ又は複数の第1の処理装置の下流にある1つ又は複数の第2の処理装置を調整するために修正情報を作成することとを含む方法が提供される。
[0014] 実施形態では、本明細書で説明される方法をプロセッサシステムに実行させるための機械可読命令を含む非一時的なコンピュータプログラム製品が提供される。
[0015] 実施形態では、ハードウェアプロセッサシステムと、機械可読命令を格納するように構成された非一時的なコンピュータ可読記憶媒体とを含むシステムであって、機械可読命令が、実行されると、本明細書で説明される方法をハードウェアプロセッサシステムに実行させる、システムが提供される。
[0016] ここでは、添付の図面を参照して、単なる例示として、実施形態について説明する。
[0017] リソグラフィ装置の実施形態を概略的に描写する。 [0018] リソグラフィセル又はクラスタの実施形態を概略的に描写する。 [0019] 例示的な検査装置を概略的に描写する。 [0020] 検査装置の照明スポットと計測ターゲットとの間の関係を示す。 [0021] 測定データに基づいて対象の1つ又は複数の変数を導出するプロセスを概略的に描写する。 [0022] 処理装置ベースライナシステムの実施形態を概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0023] 基板上にパターンを形成し、エッチング可能な層にパターンをエッチングするプロセスを概略的に描写する。 [0024] 計測装置を使用してエッチング済みの基板を測定する図を概略的に描写する。 [0025] 最終的なエッチング済みの基板のフィンガープリントを概略的に描写する。 [0026] 堆積ツールによる最終的なエッチング済みの基板のフィンガープリントへの寄与を概略的に描写する。 [0027] リソグラフィ装置による最終的なエッチング済みの基板のフィンガープリントへの寄与を概略的に描写する。 [0028] エッチングツールによる最終的なエッチング済みの基板のフィンガープリントへの寄与を概略的に描写する。 [0029] 本開示の実施形態による、1つ又は複数の基板製造変数を調整するための方法の例示的なフローを描写する。 [0030] 本開示の実施形態による、非リソグラフィ処理装置による基板の特性への寄与を得るための方法の例示的なフローを描写する。 [0031] 本開示の実施形態による、基板上の欠陥又は他のエラーを予測するための方法の例示的なフローを描写する。 [0032] 本開示の実施形態による、基板上の欠陥又は他のエラーを予測するための方法の例示的なフローを描写する。 [0033] 本開示の実施形態による、エッチングツールによるエッチング済みの基板のクリティカルディメンション均一性への寄与を得る例を概略的に描写する。 [0034] 本開示の実施形態による、基板上の欠陥又は他のエラーを予測する例を概略的に描写する。 [0035] リソグラフィ装置による基板の特性への組み合わされた寄与をモデル化する例を概略的に描写する。 [0036] この開示の実施形態を実装することができるコンピュータシステムを概略的に描写する。
[0037] 実施形態を詳細に説明する前に、実施形態を実装することができる環境の例を提示することが有益である。
[0038] 図1は、リソグラフィ装置LAを概略的に描写する。装置は、
− 放射ビームB(例えば、UV放射又はDUV放射)を調節するように構成された照明システム(イルミネータ)ILと、
− パターニングデバイス(例えば、マスク)MAを支持するように構築され、ある特定のパラメータに従ってパターニングデバイスを正確に位置決めするように構成された第1のポジショナPMに接続されたサポート構造(例えば、マスクテーブル)MTと、
− 基板(例えば、レジストコートウェーハ)Wを保持するように構築され、ある特定のパラメータに従って基板を正確に位置決めするように構成された第2のポジショナPWに接続された基板テーブル(例えば、ウェーハテーブル)WTと、
− パターニングデバイスMAによって放射ビームBに与えられたパターンを基板Wのターゲット部分C(例えば、1つ又は複数のダイを含む)上に投影するように構成された投影システム(例えば、屈折投影レンズシステム)PSであって、基準フレーム(RF)上で支持される投影システムと
を含む。
[0039] 照明システムは、放射の誘導、整形又は制御を行うための、屈折、反射、磁気、電磁、静電若しくは他のタイプの光学コンポーネント又はそれらの任意の組合せなどの様々なタイプの光学コンポーネントを含み得る。
[0040] サポート構造は、パターニングデバイスの配向、リソグラフィ装置の設計及び他の条件(例えば、パターニングデバイスが真空環境で保持されているか否かなど)に応じるように、パターニングデバイスを支持する。サポート構造は、機械、真空、静電又は他のクランプ技術を使用して、パターニングデバイスを保持することができる。サポート構造は、フレームでもテーブルでもよく、例えば、必要に応じて固定することも移動することもできる。サポート構造は、例えば投影システムに対して、パターニングデバイスが所望の位置にあることを保証することができる。本明細書での「レチクル」又は「マスク」という用語の使用は何れも、「パターニングデバイス」というより一般的な用語と同義であると見なすことができる。
[0041] 本明細書で使用される「パターニングデバイス」という用語は、基板のターゲット部分にパターンを与えるために使用することができるいかなるデバイスも指すものとして広義に解釈すべきである。実施形態では、パターニングデバイスは、基板のターゲット部分にパターンを作成するために、放射ビームにその断面におけるパターンを与えるために使用することができるいかなるデバイスでもある。放射ビームに与えられるパターンは、例えば、パターンが位相シフトフィーチャ又はいわゆるアシストフィーチャを含む場合など、基板のターゲット部分の所望のパターンと正確に一致するとは限らないことに留意すべきである。一般に、放射ビームに与えられるパターンは、集積回路など、ターゲット部分に作成されているデバイスの特定の機能層に対応する。
[0042] パターニングデバイスは、透過性又は反射性であり得る。パターニングデバイスの例は、マスク、プログラマブルミラーアレイ及びプログラマブルLCDパネルを含む。マスクは、リソグラフィではよく知られており、バイナリ、レベンソン型(alternating)位相シフト及びハーフトーン型(attenuated)位相シフトなどのマスクタイプ並びに様々なハイブリッドマスクタイプを含む。プログラマブルミラーアレイの例は、小型ミラーのマトリックス配列を採用し、小型ミラーの各々は、入射放射ビームを異なる方向に反射させるために、個別に傾けることができる。傾斜ミラーは、放射ビームにパターンを与え、放射ビームは、ミラーマトリックスによって反射される。
[0043] 本明細書で使用される「投影システム」という用語は、使用されている露光放射又は他の因子(液浸液の使用若しくは真空の使用など)に適切な、屈折、反射、反射屈折、磁気、電磁及び静電光学系又はそれらの任意の組合せを含む、いかなるタイプの投影システムも包含するものとして広義に解釈すべきである。本明細書での「投影レンズ」という用語の使用は何れも、「投影システム」というより一般的な用語と同義であると見なすことができる。
[0044] 投影システムPSは、不均一であり得る光学伝達関数を有し、基板Wに与えられるパターンに影響を及ぼし得る。非偏光放射の場合、そのような影響は、2つのスカラマップによってかなりうまく説明することができ、2つのスカラマップは、その瞳面における位置の関数として、投影システムPSを出る放射の透過(アポダイゼーション)及び相対位相(収差)を説明する。透過マップ及び相対位相マップと呼ぶことができるこれらのスカラマップは、基底関数の完全集合の線形結合として表現することができる。特に便利な集合は、単位円上で定義される直交多項式の集合を形成するゼルニケ多項式である。各スカラマップの決定は、そのような展開における係数を決定することを伴い得る。ゼルニケ多項式は単位円上で直交するため、測定されたスカラマップと各ゼルニケ多項式との内積を順に計算し、この内積をそのゼルニケ多項式のノルムの二乗で除することによって、ゼルニケ係数を決定することができる。
[0045] 透過マップ及び相対位相マップは、フィールド及びシステムに依存する。すなわち、一般に、各投影システムPSは、各フィールドポイントに対して(すなわち、その像面における各空間場所に対して)異なるゼルニケ展開を有することになる。その瞳面における投影システムPSの相対位相は、例えば、投影システムPSの対物面(すなわち、パターニングデバイスMAの平面)における点状放射源から投影システムPSを通じて放射を投影し、シヤリング干渉計を使用して波面(すなわち、同じ位相を有するポイントの軌跡)を測定することによって決定することができる。シヤリング干渉計は、共通路干渉計であり、従って、有利には、波面を測定するために、二次参照ビームは不要である。シヤリング干渉計は、投影システムの像面(すなわち、基板テーブルWT)における回折格子(例えば、二次元格子)と、投影システムPSの瞳面と共役な平面における干渉パターンを検出するように構成された検出器とを含み得る。干渉パターンは、シヤリング方向の瞳面における座標についての放射の位相の導関数に関連する。検出器は、例えば、電荷結合素子(CCD)など、センシング要素のアレイを含み得る。
[0046] リソグラフィ装置の投影システムPSは、目に見える干渉縞を生み出すことはないため、波面の決定の精度は、例えば、回折格子を移動するなど、位相ステッピング技法を使用して向上させることができる。ステッピングは、回折格子の平面において、測定のスキャン方向に垂直な方向に実行することができる。ステッピング範囲は、一格子周期であり得、少なくとも3つの(均等に分布した)位相ステップを使用することができる。従って、例えば、3回のスキャン測定をy方向において実行することができ、各スキャン測定は、x方向の異なる位置に対して実行される。この回折格子のステッピングは、位相変化を強度変化に効果的に変換し、位相情報の決定を可能にする。格子のステッピングは、検出器を較正するために、回折格子に垂直な方向(z方向)において行うことができる。
[0047] 投影システムPSのその瞳面における透過(アポダイゼーション)は、例えば、投影システムPSの対物面(すなわち、パターニングデバイスMAの平面)における点状放射源から投影システムPSを通じて放射を投影し、検出器を使用して、投影システムPSの瞳面と共役な平面における放射の強度を測定することによって決定することができる。収差を決定するために波面の測定に使用したものと同じ検出器を使用することができる。
[0048] 投影システムPSは、多数の光学(例えば、レンズ)素子を含み得、収差(フィールド全体を通じる瞳面にわたる位相変化)の補正のために光学素子のうちの1つ又は複数を調整するように構成された調整機構AMをさらに含み得る。この補正のための調整を達成するため、調整機構は、1つ又は複数の異なる方法で投影システムPS内の1つ又は複数の光学(例えば、レンズ)素子を操作するように動作することができる。投影システムは、座標系を有し得、その光軸は、z方向に伸びている。調整機構は、1つ若しくは複数の光学素子の移動、1つ若しくは複数の光学素子の傾斜及び/又は1つ若しくは複数の光学素子の変形のいかなる組合せも行うように動作することができる。光学素子の移動は、いかなる方向(x、y、z又はそれらの組合せ)でもよい。光学素子の傾斜は、典型的には、光軸に垂直に面外に向けて働くものであり、軸の周りでx及び/又はy方向に回転させることによるものであるが、非回転対称非球面光学素子に対しては、z軸の周りの回転を使用することができる。光学素子の変形は、低周波数形状(例えば、非点収差)及び/又は高周波数形状(例えば、自由非球面)を含み得る。光学素子の変形は、例えば、1つ若しくは複数のアクチュエータを使用して光学素子の1つ若しくは複数の側面に力をかけることによって及び/又は1つ若しくは複数の加熱要素を使用して光学素子の1つ若しくは複数の選択領域を加熱することによって、実行することができる。一般に、アポダイゼーション(瞳面にわたる透過変化)の補正のために投影システムPSを調整することは可能ではない場合がある。投影システムPSの透過マップは、リソグラフィ装置LA用のパターニングデバイス(例えば、マスク)MAを設計する際に使用することができる。計算機リソグラフィ技法を使用することにより、パターニングデバイスMAは、アポダイゼーションを少なくとも部分的に補正するように設計することができる。
[0049] 本明細書で描写されるように、装置は、透過型の(例えば、透過性マスクを採用する)ものであり得る。或いは、装置は、反射型の(例えば、上記で言及されるタイプのプログラマブルミラーアレイを採用するか又は反射性マスクを採用する)ものであり得る。
[0050] リソグラフィ装置は、2つ(デュアルステージ)又はそれ以上のテーブル(例えば、2つ以上の基板テーブルWTa、WTb、2つ以上のパターニングデバイステーブル、例えば、測定及び/又は洗浄を容易にすることを専門とする基板がない状態の投影システムの下側にある基板テーブルWTa及びテーブルWTbなど)を有するタイプのものであり得る。そのような「マルチステージ」機械では、追加のテーブルを並列に使用することも、1つ又は複数のテーブルにおいて予備ステップを実行しながら、1つ又は複数の他のテーブルを露光に使用することもできる。例えば、アライメントセンサASを使用するアライメント測定及び/又はレベルセンサLSを使用するレベル(高さ、傾きなど)測定を行うことができる。
[0051] また、リソグラフィ装置は、投影システムと基板との間の空間を充填するために、比較的高い屈折率を有する液体(例えば、水)によって基板の少なくとも一部分をカバーできるタイプのものでもあり得る。また、液浸液は、リソグラフィ装置の他の空間(例えば、パターニングデバイスと投影システムとの間)に塗布することもできる。液浸技法は、投影システムの開口数を増加するため、当技術分野ではよく知られている。「液浸」という用語は、本明細書で使用される場合は、基板などの構造を液体に浸さなければならないことを意味するわけではなく、むしろ、露光の間に液体が投影システムと基板との間に位置することのみを意味する。
[0052] 図1を参照すると、イルミネータILは、放射源SOから放射ビームを受信する。放射源及びリソグラフィ装置は、例えば、放射源がエキシマレーザである際は、別個のエンティティであり得る。そのような事例では、放射源は、リソグラフィ装置の一部を形成するとは考えられず、放射ビームは、例えば、適切な誘導ミラー及び/又はビームエキスパンダを含むビームデリバリシステムBDを用いて、放射源SOからイルミネータILに送られる。他の事例では、放射源は、例えば、放射源が水銀ランプである際は、リソグラフィ装置の不可欠な一部であり得る。放射源SO及びイルミネータILは、必要に応じてビームデリバリシステムBDと共に、放射システムと呼ぶことができる。
[0053] イルミネータILは、放射ビームの角度強度分布を調整するように構成されたアジャスタADを含み得る。一般に、イルミネータの瞳面における強度分布の少なくとも外側及び/又は内側半径範囲(一般的にσ-outer及びσ-innerとそれぞれ呼ばれる)を調整することができる。それに加えて、イルミネータILは、インテグレータIN及びコンデンサCOなどの様々な他のコンポーネントを含み得る。イルミネータは、その断面において所望の均一性及び強度分布を有するように放射ビームを調節するために使用することができる。
[0054] 放射ビームBは、サポート構造(例えば、マスクテーブル)MT上で保持されるパターニングデバイス(例えば、マスク)MAに入射し、パターニングデバイスによってパターン形成される。パターニングデバイスMAを通り抜けると、放射ビームBは、投影システムPSを通過し、投影システムPSは、基板Wのターゲット部分Cにビームを集束する。第2のポジショナPW及び位置センサIF(例えば、干渉デバイス、リニアエンコーダ、2Dエンコーダ又は静電容量センサ)を用いると、基板テーブルWTは、例えば、異なるターゲット部分Cを放射ビームBの経路に位置決めするために、正確に移動することができる。同様に、第1のポジショナPM及び別の位置センサ(図1では明示的に描写されていない)は、例えば、マスクライブラリの機械検索後又はスキャンの間に、放射ビームBの経路に対してパターニングデバイスMAを正確に位置決めするために使用することができる。一般に、サポート構造MTの移動は、第1のポジショナPMの一部を形成するロングストロークモジュール(粗動位置決め)及びショートストロークモジュール(微動位置決め)を用いて実現することができる。同様に、基板テーブルWTの移動は、第2のポジショナPWの一部を形成するロングストロークモジュール及びショートストロークモジュールを使用して実現することができる。ステッパの事例では(スキャナとは対照的に)、サポート構造MTは、ショートストロークアクチュエータのみに接続することも、固定することもできる。パターニングデバイスMA及び基板Wは、パターニングデバイスアライメントマークM1、M2及び基板アライメントマークP1、P2を使用して位置合わせすることができる。基板アライメントマークは、示されるように、専用ターゲット部分を占めるが、ターゲット部分間の空間に位置することができる(これらは、スクライブラインアライメントマークとして知られている)。同様に、2つ以上のダイがパターニングデバイスMA上に提供される状況では、パターニングデバイスアライメントマークは、ダイ間に位置し得る。
[0055] 描写される装置は、以下のモードの少なくとも1つで使用することができる。
1.ステップモードでは、サポート構造MT及び基板テーブルWTが本質的には静止状態で維持される間に、放射ビームに与えられたパターン全体が一度にターゲット部分C上に投影される(すなわち、単一静的露光)。次いで、基板テーブルWTは、異なるターゲット部分Cに露光できるように、X及び/又はY方向にシフトされる。ステップモードでは、露光フィールドの最大サイズは、単一静的露光でイメージングされるターゲット部分Cのサイズを制限する。
2.スキャンモードでは、サポート構造MT及び基板テーブルWTが同時にスキャンされる間に、放射ビームに与えられたパターンがターゲット部分C上に投影される(すなわち、単一動的露光)。サポート構造MTに対する基板テーブルWTの速度及び方向は、投影システムPSの拡大(縮小)及び像反転特性によって決定することができる。スキャンモードでは、露光フィールドの最大サイズは、単一動的露光でのターゲット部分の幅(非スキャン方向における)を制限し、スキャン動作の長さは、ターゲット部分の高さ(スキャン方向における)を決定する。
3.別のモードでは、サポート構造MTがプログラマブルパターニングデバイスを保持して本質的には静止状態で維持され、基板テーブルWTが移動されるか又はスキャンされる間に、放射ビームに与えられたパターンがターゲット部分C上に投影される。このモードでは、一般に、パルス放射源が採用され、基板テーブルWTの各移動後又はスキャンの間の連続放射パルス間に、プログラマブルパターニングデバイスが必要に応じて更新される。この動作モードは、上記で言及されるタイプのプログラマブルミラーアレイなどのプログラマブルパターニングデバイスを利用するマスクレスリソグラフィに容易に適用することができる。
[0056] また、上記で説明される使用モード又は完全に異なる使用モードの組合せ及び/又は変形形態も採用することができる。
[0057] 図2に示されるように、リソグラフィ装置LAは、リソグラフィセルLC(リソセル又はクラスタと呼ばれる場合もある)の一部を形成することができ、基板の露光前及び露光後プロセスを実行するための装置も含む。従来の方式では、これらのリソグラフィセルLCは、1つ若しくは複数のレジスト層を堆積させるための1つ若しくは複数のスピンコータSC、露光済みのレジストを現像するための1つ若しくは複数のデベロッパDE、1つ若しくは複数の冷却プレートCH及び/又は1つ若しくは複数のベークプレートBKを含む。基板ハンドラ又はロボットROは、入力/出力ポートI/O1から1つ又は複数の基板を捕らえ、それらの基板を異なる処理装置間に移動させ、それらの基板をリソグラフィ装置のローディングベイLBに搬送する。これらの装置(集合的にトラックと呼ばれる場合が多い)は、トラック制御ユニットTCUの制御下にあり、トラック制御ユニットTCUは、それ自体が、監視制御システムSCSによって制御され、監視制御システムSCSは、リソグラフィ制御ユニットLACUを介してリソグラフィ装置の制御も行う。従って、異なる装置は、スループット及び処理効率を最大化するように動作することができる。
[0058] リソグラフィ装置によって露光される基板に正しく且つ着実に露光するため、後続の層間のオーバーレイエラー、ラインの厚さ、クリティカルディメンション(CD)、フォーカスオフセット、材料プロパティなどの1つ又は複数のプロパティを測定するために露光済みの基板を検査することが望ましい。それに従って、リソセルLCが位置する製造施設は、典型的には、リソセルで処理されている基板Wのいくつか又はすべてを受け取る計測システムMETも含む。計測システムMETは、リソセルLCの一部であり得、例えば、リソグラフィ装置LAの一部であり得る。
[0059] 計測結果は、監視制御システムSCSに直接又は間接的に提供することができる。エラーが検出された場合は、後続の基板の露光に対して(特に、バッチの1つ又は複数の他の基板が未だ露光されていないほど十分に早く及び素早く検査を行うことができる場合)及び/又は露光済みの基板の後続の露光に対して調整を行うことができる。また、既に露光済みの基板は、歩留まりを改善するために剥がして再加工するか又は処分することができ、それにより、不良状態であると分かっている基板のさらなる処理の実行を回避することができる。基板のいくつかのターゲット部分のみが不良状態である事例では、それらの良い状態のターゲット部分にのみ、さらなる露光を実行することができる。
[0060] 計測システムMET内では、検査装置は、基板の1つ又は複数のプロパティを決定するため、特に、異なる基板の1つ又は複数のプロパティがどのように変化するか或いは同じ基板の異なる層が層ごとにどのように変化するかを決定するために使用される。検査装置は、リソグラフィ装置LA又はリソセルLCに組み込んでも、スタンドアロンデバイスでもよい。迅速な測定を可能にするため、検査装置が露光の直後に露光済みのレジスト層の1つ又は複数のプロパティを測定することが望ましい。しかし、レジストの潜像は、低いコントラストを有し(放射露光が行われたレジストの部分と放射露光が行われていないレジストの部分との間の屈折率における違いはごくわずかである)、すべての検査装置が潜像の有益な測定を行うための十分な感度を有するわけではない。従って、測定値は、露光後ベークステップ(PEB)の後に取ることができ、露光後ベークステップ(PEB)は、通例では露光済みの基板に対して実行される第1のステップであり、レジストの露光部分とレジストの非露光部分との間のコントラストを増大する。この段階では、レジストの像は、半潜像的なものと呼ぶことができる。また、現像済みのレジスト像の測定を行うことも(この時点では、レジストの露光部分又は非露光部分が除去されている)、エッチングなどのパターン転写ステップの後に測定を行うことも可能である。後者は、不良状態である基板の再加工の可能性を制限する可能性が高いが、依然として、有益な情報を提供することができる。
[0061] 計測を可能にするため、1つ又は複数のターゲットを基板に提供することができる。実施形態では、ターゲットは、特別に設計され、周期構造を含み得る。実施形態では、ターゲットは、デバイスパターンの一部(例えば、デバイスパターンの周期構造)である。使用されるターゲットは、比較的大きな(例えば、40μm×40μm)周期構造レイアウト(例えば、1つ又は複数の格子を含む)を含み得る。その事例では、測定ビームは、周期構造レイアウトより小さなスポットサイズを有する場合が多い(すなわち、レイアウトは、十分に満たされてはおらず、その結果、周期構造のうちの1つ又は複数は、スポットによって完全にはカバーされていない)。これにより、無限と見なすことができるため、ターゲットの数学的再構成が簡略化される。しかし、例えば、スクライブラインにというよりむしろ、製品フィーチャ間にターゲットを位置決めすることができるため、ターゲットのサイズは低減されている(例えば、20μm×20μm若しくはそれ以下に又は10μm×10μm若しくはそれ以下に)。この状況では、周期構造レイアウトは、測定スポットより小さくすることができる(すなわち、周期構造レイアウトは、過剰に満たされている)。典型的には、そのようなターゲットは、暗視野スキャトロメトリを使用して測定され、暗視野スキャトロメトリでは、0次回折(鏡面反射に相当する)は阻止され、高次のみが処理される。暗視野計測の例は、それらの全体が参照により本明細書に組み込まれる国際公開第2009/078708号及び国際公開第2009/106279号で見つけることができる。技法のさらなる開発については、それらの全体が参照により本明細書に組み込まれる米国特許出願公開第2011−0027704号、米国特許出願公開第2011−0043791号及び米国特許出願公開第2012−0242970号で説明されている。回折次数の暗視野検出を使用した回折に基づくオーバーレイは、より小さなターゲットのオーバーレイ測定を可能にする。これらのターゲットは、照明スポットより小さいものであり得、基板上の製品構造によって取り囲むことができる。実施形態では、1つの像において複数のターゲットを測定することができる。
[0062] 実施形態では、基板上のターゲットは、1つ又は複数の1D周期格子を含み得、1つ又は複数の1D周期格子は、現像後にバーがソリッドレジストラインで形成されるように、プリントされる。実施形態では、ターゲットは、1つ又は複数の2D周期格子を含み得、1つ又は複数の2D周期格子は、現像後に1つ又は複数の格子がレジストのソリッドレジストピラー又はビアで形成されるように、プリントされる。バー、ピラー又はビアは、基板内に又は基板上に(例えば、基板上の1つ又は複数の層内に)選択的にエッチングすることができる。
[0063] 実施形態では、ターゲットのパターン(例えば、バー、ピラー又はビア)は、パターニングプロセスの1つ又は複数の処理特性(例えば、リソグラフィ投影装置(特に、投影システムPS)における光学収差、フォーカス変更、ドーズ変更など)に対する感度が高いものであり、そのような特性の存在は、プリントパターンの変化において現れる。それに従って、プリントターゲットの測定データは、パターンや1つ又は複数の特性を再構成するために使用することができる。1D格子の1つ又は複数のパラメータ(ライン幅及び/又は形状など)或いは2D格子の1つ又は複数のパラメータ(ピラー又はビア幅、長さ又は形状)は、プリントステップ及び/又は他の検査プロセスの知識から、プロセッサPUによって実行される再構成プロセスに入力することができる。
[0064] 図3は、例示的な検査装置(例えば、スキャトロメータ)を描写する。検査装置は、スタンドアロンデバイスでも、リソグラフィ装置LA(例えば、測定ステーションにおいて)又はリソグラフィセルLCに組み込んでもよい。
[0065] 検査装置は、放射を基板Wに投影する放射プロジェクタ(例えば、広帯域白色光プロジェクタ或いは可視光線及び/又は近赤外線の様々な波長のプロジェクタ)を含む。このデバイスでは、放射源2によって放出された放射は、レンズシステム12を使用してコリメートされ、干渉フィルタ13及び偏光子17を通じて透過し、部分反射面16に反射し、高い開口数(NA)(望ましくは、少なくとも0.9又は少なくとも0.95)を有する対物レンズ15を介して基板W上のスポットSに集束する。液浸検査装置(水などの比較的高い屈折率の流体を使用する)は、1を超える開口数でさえも有し得る。
[0066] 基板Wによって方向転換された放射は、次いで、方向転換された放射を検出させるために、部分反射面16を通過して検出器18(例えば、分光計検出器)に入る。検出器18が後方投影焦点面11に(すなわち、レンズシステム15の焦点距離に)位置することも、補助光学系(図示せず)を用いて面11を検出器18にリイメージングすることもできる。検出器は、基板ターゲット30の二次元角散乱スペクトルを測定することができるように、二次元検出器でもよい。検出器18は、例えば、CCD又はCMOSセンサのアレイでもよく、例えば、1フレーム当たり40ミリ秒の積分時間を使用することができる。
[0067] 例えば、入射放射の強度を測定するために、参照ビームを使用することができる。これを行うため、放射ビームが部分反射面16に入射する際、放射ビームの一部は、参照ビームとして、部分反射面16を通じて参照ミラー14に向けて透過する。次いで、参照ビームは、同じ検出器18の異なる部分に投影されるか又はその代替として異なる検出器(図示せず)に投影される。
[0068] 1つ又は複数の干渉フィルタ13は、大体405〜790nm又はそれよりも低い200〜300nmなどの範囲の対象の波長を選択するために利用可能である。干渉フィルタは、1組の異なるフィルタを含むというよりむしろ、調節可能なものであり得る。干渉フィルタの代わりに格子を使用することができる。ターゲットへの放射の入射角の範囲を制御するため、照明経路に開口絞り又は空間光変調器(図示せず)を提供することができる。
[0069] 検出器18は、単一の波長(若しくは狭い波長範囲)で、複数の波長で別々に又は波長範囲上で積分して、方向転換された放射の強度を測定することができる。その上、検出器は、TM及びTE偏光放射の強度並びに/或いはTM偏光放射とTE偏光放射との間の位相差を別々に測定することができる。実施形態では、鏡面反射放射のスペクトル(波長の関数としての強度)が測定される。
[0070] このデータから、検出された強度、スペクトルなどを生じさせる構造又はプロファイルは、例えば、厳密結合波分析及び非線形回帰によって、又は、シミュレーションされたスペクトル及び強度分布などのライブラリとの比較によって、プロセッサPUによって再構成することができる。一般に、再構成に対し、構造の一般形態が知られており、且つ、構造が作成されるプロセスの知識からいくつかの変数が想定されており、測定データから構造のわずかな変数を決定することを残すのみである。そのような検査装置は、法線入射検査装置又は斜入射検査装置として構成することができる。
[0071] リソグラフィ装置LAのように、1つ又は複数の基板テーブルは、測定動作の間に基板Wを保持するために提供することができる。基板テーブルの形態は、図1の基板テーブルWTと同様又は同一のものであり得る。検査装置がリソグラフィ装置と統合される例では、基板テーブルは、同じ基板テーブルでさえあり得る。粗動及び微動ポジショナは、測定光学系に対して基板を正確に位置決めするように構成された第2のポジショナPWに提供することができる。様々なセンサ及びアクチュエータは、例えば、対象のターゲットの位置を取得し、その位置を対物レンズ15の下方の位置に移動するために提供される。典型的には、ターゲットに対して、基板Wにわたって異なる場所で多くの測定が行われる。基板サポートは、異なるターゲットを取得するためにX及びY方向に移動させることができ、光学系の焦点に対するターゲットの所望の場所を得るためにZ方向に移動させることができる。例えば、実際には、光学系が実質的に静止状態であり(典型的には、X及びY方向に、ただし、Z方向もあり得る)、基板のみが移動する際に、対物レンズが基板に対して異なる場所に移動されているかのように動作を考慮及び説明することが好都合である。基板と光学系の相対位置が正しければ、原理上、現実世界において基板と光学系のどちらが移動しているか、両方が移動しているのか、或いは、それらを組み合わせて、光学系の一部が移動し(例えば、Z及び/又は傾斜方向)、残りの光学系が静止状態であり、基板が移動している(例えば、X及びY方向に、ただし、任意選択により、Z及び/又は傾斜方向にも)のかは問題ではない。
[0072] 再構成によるパラメータの測定に加えて、この回折に基づく計測又は検査の特定の応用は、周期ターゲット内のフィーチャ非対称性の測定にある。例えば、角度分解スキャトロメトリは、製品及び/又はレジストパターンにおけるフィーチャの非対称性の測定において有益である。非対称性測定の特定の応用は、オーバーレイエラーの測定のためのものであり、ターゲット30は、互いに重なり合う1組の周期フィーチャを含む。図3の機器を使用した非対称性測定の概念は、例えば、その全体が本明細書に組み込まれる米国特許出願公開第2006−066855号で説明されている。簡単に言えば、ターゲットの回折スペクトルにおける回折次数の位置はターゲットの周期性によってのみ決定されるが、回折スペクトルにおける非対称性は、ターゲットを形成する個々のフィーチャにおける非対称性を示す。検出器18がイメージセンサであり得る図3の機器では、そのような回折次数における非対称性は、検出器18によって記録された瞳像の非対称性として直接現れる。この非対称性は、ユニットPUで処理しているデジタル画像によって測定し、オーバーレイの既知の値に対して較正することができる。例えば、非対称性は、回折スペクトルの正反対の部分を比較する(例えば、周期格子の回折スペクトルにおける−1と+1次を比較する)ことによって測定することができる。
[0073] 図4は、図3の装置における典型的なターゲット30及び照明スポットSの範囲の平面図を示す。周囲の構造の干渉のない回折スペクトルを得るため、ターゲット30は、実施形態では、照明スポットSの幅(例えば、直径)より大きい周期構造(例えば、格子)である。スポットSの幅は、ターゲットの幅及び長さより小さくともよい。ターゲットは、言い換えれば、照明で「十分に満たされていない」ものであり、回折信号は、本質的には、ターゲット自体の外側の製品フィーチャ及び同様のものからのいかなる信号の干渉も受けない。照明配置2、12、13、17は、対物15の後方焦点面にわたって均一な強度の照明を提供するように構成することができる。或いは、例えば、照明経路にアパーチャを含めることによって、軸内又は軸外方向に照明を制限することができる。
[0074] 実施形態では、ターゲットは、基板上に形成された複合計測ターゲットであり得る。実施形態では、複合ターゲットは、互いに近くに位置決めされた4つの周期構造(この事例では、格子)を含む。実施形態では、周期構造は、そのすべてが計測装置の照明ビームによって形成された測定スポット内に位置するほど十分に、互いに近くに位置決めされる。従って、その事例では、4つの周期構造はすべて、同時に照明を受け、同時に測定される。実施形態では、4つの周期構造のうちの2つは、第1の方向(例えば、X方向)に伸びるそれらの細長いフィーチャ(例えば、ライン)を有し、4つの周期構造のうちの別の2つは、第1の方向(例えば、Y方向)に伸びるそれらの細長いフィーチャ(例えば、ライン)を有する。オーバーレイ測定専用の例では、周期構造は、それ自体が、周期構造をオーバーレイすることによって形成された複合周期構造(例えば、複合格子)である。すなわち、周期構造は、基板上に形成されたデバイスの異なる層にパターン形成され、ある層の少なくとも1つの周期構造は、異なる層の少なくとも1つの周期構造にオーバーレイされる。そのようなターゲットは、20μm×20μm以内又は16μm×16μm以内の外寸を有し得る。さらに、すべての周期構造は、特定の対の層間のオーバーレイを測定するために使用される。
[0075] ターゲットの複数対の層の測定を容易に可能にするため、周期構造は、複合周期構造の異なる部分が形成される異なる層間のオーバーレイの測定を容易にするために異なる形でバイアスがかけられたオーバーレイオフセットを有し得る。従って、例えば、基板上のターゲットのすべての周期構造は、ある対の層を測定するために使用されることになり、基板上の別の同じターゲットのすべての周期構造は、別の対の層を測定するために使用されることになり、異なるバイアスは、複数対の層間の区別を容易にする。一例では、2つの周期構造は、+d、−dのそれぞれのバイアスを有するX方向の周期構造である。別の2つの周期構造は、+d、−dのそれぞれのオフセットを有するY方向の周期構造であり得る。4つの周期構造が示されているが、別の実施形態は、所望の精度を得るために、より大きなマトリックスを含み得る。例えば、3×3アレイの9つの複合周期構造は、−4d、−3d、−2d、−d、0、+d、+2d、+3d、+4dのバイアスを有し得る。これらの周期構造の別個の像は、センサによって捕捉された像において識別することができる。
[0076] 図5は、計測を使用して得られた測定データに基づいてターゲットパターン30’の対象の1つ又は複数の変数の値を決定する例示的なプロセスを概略的に描写する。検出器18によって検出された放射は、ターゲット30’の測定放射分布108を提供する。
[0077] 所定のターゲット30’の場合、放射分布208は、例えば、マクスウェル方程式の数値解法210を使用して、パラメータ化モデル206から演算及び/又はシミュレーションすることができる。パラメータ化モデル206は、ターゲットを構成し、ターゲットと関連付けられる様々な材料で作られている層の例を示す。パラメータ化モデル206は、考慮中のターゲットの部分のフィーチャ及び層に対する1つ又は複数の変数を含み得、変数は、変化させること及び導出することができる。図5に示されるように、1つ又は複数の変数は、1つ又は複数の層の厚さt、1つ又は複数のフィーチャの幅w(例えば、CD)、1つ又は複数のフィーチャの高さh並びに/或いは1つ又は複数のフィーチャの側壁角αを含み得る。示されてはいないが、1つ又は複数の変数は、これらに限定されないが、1つ又は複数の層の屈折率(例えば、実屈折率又は複素屈折率、屈折率テンソルなど)、1つ又は複数の層の消光係数、1つ又は複数の層の吸光、現像中のレジストロス、1つ又は複数のフィーチャのフーチング並びに/或いは1つ又は複数のフィーチャのラインエッジラフネスをさらに含み得る。変数の初期の値は、測定されているターゲットに対して予期されるものであり得る。次いで、212において、測定放射分布108と演算放射分布208との違いを決定するために、測定放射分布108が演算放射分布208と比較される。違いがある場合は、測定放射分布108と演算放射分布208との間で十分な整合性を有するようになるまで、パラメータ化モデル206の1つ又は複数の変数の値を変化させ、新しい演算放射分布208を計算し、測定放射分布108と比較することができる。その時点で、パラメータ化モデル206の変数の値は、実際のターゲット30’のジオメトリの良好な又は最良の整合性を提供する。実施形態では、測定放射分布108と演算放射分布208との違いが許容閾値内になると、十分な整合性を有する。
[0078] ターゲットの測定精度及び/又は感度は、例えば、放射ビームの波長、放射ビームの偏光及び/又は放射ビームの強度分布(すなわち、角度又は空間強度分布)など、ターゲットに提供される放射ビームの1つ又は複数の特性に関して変化させることができる。実施形態では、放射ビームの波長範囲は、範囲から選択された(例えば、約400nm〜900nmの範囲から選択された)1つ又は複数の波長に限定される。さらに、放射ビームの異なる偏光の選択を提供することができ、例えば、多数の異なるアパーチャを使用して様々な照明形状を提供することができる。
[0079] 少なくとも1つのパターニングステップ(例えば、光リソグラフィステップ)を含むパターニングプロセス(例えば、デバイス製造プロセス)をモニタするため、パターニング済みの基板が検査され、パターニング済みの基板の1つ又は複数のパラメータが測定される。1つ又は複数のパラメータは、例えば、パターニング済みの基板内又はパターニング済みの基板上に形成された連続層間のオーバーレイエラー、例えば、パターニング済みの基板内又はパターニング済みの基板上に形成されたフィーチャのクリティカルディメンション(CD)(例えば、クリティカルライン幅)、光リソグラフィステップのフォーカス又はフォーカスエラー、光リソグラフィステップのドーズ又はドーズエラー、光リソグラフィステップの光学収差などを含み得る。この測定は、製品基板自体のターゲットに対して及び/又は基板上に提供される専用計測ターゲットに対して実行することができる。
[0080] パターニングプロセスにおいて形成された構造の測定を行うための様々な技法が存在し、電子ビーム検査(例えば、走査電子顕微鏡)、画像ベースの測定若しくは検査ツール及び/又は様々な専門的なツールの使用を含む。上記で論じられるように、専門的な計測及び/又は検査ツールの高速の非侵襲形態は、放射ビームが基板の表面上のターゲットに誘導され、散乱(回折/反射)ビームのプロパティが測定される形態である。基板によってビームが散乱した後にビームのそれらのプロパティを評価することにより、基板の1つ又は複数のプロパティを決定することができる。これは、回折に基づく計測又は検査と呼ぶことができる。
[0081] パターニングプロセスを可能にするための重要な態様は、プロセス自体を発展させること、モニタリング及び制御に対してプロセス自体を設定すること、次いで、プロセス自体を実際にモニタ及び制御することを含む。パターニングデバイスパターン、レジストタイプ、リソグラフィ後プロセスステップなど(現像、エッチングなど)のパターニングプロセスの基本の構成を想定すると、パターニングプロセスにおいて基板にパターンを転写するように装置を設定すること、プロセスをモニタするために1つ又は複数の計測ターゲットを現像すること、計測ターゲットを測定するために計測プロセスを設定すること、次いで、測定値に基づいてプロセスのモニタリング及び/又は制御プロセスを実装することが望ましい。
[0082] 設計レイアウトの1つ又は複数の部分を識別することができ、その部分は、クリティカルフィーチャ又はホットスポットと呼ばれる。実施形態では、1組のクリティカルフィーチャ又はホットスポットが抽出され、クリティカルフィーチャ又はホットスポットは、設計レイアウトにおける複雑なパターンを表す(例えば、約50〜1000のクリティカルフィーチャ又はホットスポットであるが、いかなる数のクリティカルフィーチャ又はホットスポットも使用することができる)。当業者によって理解されるように、これらのクリティカルフィーチャ又はホットスポットは、設計の小さな部分(すなわち、回路、セル、パターン又は設計クリップ)を表し、特に、クリティカルフィーチャ又はホットスポットは、特定の注意及び/又は検証が必要である小さな部分を表す。クリティカルフィーチャ又はホットスポットは、経験によって(ユーザによって提供されるクリティカルフィーチャ又はホットスポットを含む)、試行錯誤によって、又は、フルチップシミュレーションを実行することによって、識別することができる。実施形態では、ホットスポットは、パターニングプロセスに対するプロセスウィンドウ(例えば、露光済みのフィーチャが許容範囲内(例えば、±5%、±10)のクリティカルディメンション値を有するドーズ及びフォーカスプロセスウィンドウ)の境界を定義する。
[0083] 実施形態では、1つ又は複数のパターニング済みの基板(例えば、生産基板、モニタ基板など)から決定された特性に基づいて、リソグラフィ装置の上流又は下流にある処理装置(例えば、エッチングツール、堆積ツール又は化学機械平坦化ツールなど)の性能をモニタ及び/又は制御するモニタリング及び/又は制御システムが提供される。
[0084] より具体的には、例えば、実施形態では、エッチングツールの性能は、最終的なエッチング済みの基板を分析すること、ターゲット基板からその全体的な変動性を決定すること、及び、エッチングツールによるその全体的な変動性への寄与を決定することによって決定することができる。このことは、例えば、全体的な変動性にも寄与を与える1つ又は複数の他の処理装置に起因する変動性を取り除くことによって行うことができる。例えば、リソグラフィ装置及び堆積ツールによる全体的な変動性への寄与(例えば、ターゲット若しくは設計基板及び/又はパターン構成からの偏差)或いは最終的なエッチング済みの基板のパターン及び/又は最終的なエッチング済みの基板の特性は、エッチングツールによる全体的な変動性への寄与を決定するために、全体的な変動性から差し引くことができる。ここでの全体的な変動性は、例えば、パターン及び/又は最終的なエッチング済みの基板のフィンガープリント(例えば、特性の相違の空間分布)であると考えることができる。このことについては、以下でさらに詳細に説明する。
[0085] さらに、この例はエッチングツールの性能を指すが、1つ又は複数の他の非リソグラフィ装置も同様に評価することができる。最終的なエッチング済みの基板の測定からの結果は、考慮中の非リソグラフィ処理装置に起因する変動性への寄与を得るために、全体的な変動性にも寄与を与える1つ又は複数の他の処理装置に起因する変動性を取り除くために分析することができる。
[0086] 図6を参照すると、例示的な製造環境における例示的な処理装置ベースライナシステム600が概略的に示されている。製造環境は、堆積ツール610と、トラックの第1のコンポーネント620(トラックのレジストコーティングコンポーネントなど)と、リソグラフィ装置630(パターニングデバイス635を使用する)と、トラックの第2のコンポーネント625(トラックの現像コンポーネント及び/又はトラックのベークプレートコンポーネントなど)と、エッチングツール640と、1つ又は複数の計測装置650(以下で論じられるように、スタンドアロンでも、他の装置のうちの1つ又は複数に組み込んでもよい)とを含む。実施形態では、堆積ツール610及び第1のトラックコンポーネント620は、リソグラフィ前処理装置と呼ばれる。実施形態では、第2のトラックコンポーネント625及びエッチングツール640は、リソグラフィ後処理装置と呼ばれる。実施形態では、製造環境は、1つ又は複数の追加のリソグラフィ前処理装置並びに/或いは1つ又は複数の追加のリソグラフィ後処理装置(例えば、化学機械平坦化ツール、別の堆積ツールなど)を含み得る。堆積ツール610は、原子層堆積(ALD)、化学蒸着(CVD)及び/又は物理蒸着(PVD)ツールであり得る。第1のトラックコンポーネント620及び第2のトラックコンポーネント625は、同じトラックの一部である場合が多いが、異なるデバイス又はトラックに分離することができる。
[0087] 理解されるように、製造環境は、描写されるすべての装置を必要とするわけではない。さらに、装置のうちの1つ又は複数は、1つに組み合わせることができる。例えば、計測装置650は、リソグラフィ前処理装置(例えば、堆積ツール610及び/又は第1のトラックコンポーネント620など)のうちの1つ又は複数の一部、ソグラフィ装置630、並びに/或いは、リソグラフィ後処理装置(例えば、第2のトラックコンポーネント625、エッチングツール640など)のうちの1つ又は複数の一部でもよい。
[0088] 処理装置ベースライナシステム600は、ソフトウェアアプリケーション660を含む。実施形態では、ソフトウェアアプリケーション660は、計測装置650と共に提供しても、計測装置650に組み込んでもよい(例えば、計測装置650と関連付けられた図15のコンピュータシステム1500などのコンピュータにおいて)。それに加えて又はその代替として、ソフトウェアアプリケーション660は、処理装置ベースライナシステム600の別の部分に組み込んでも、スタンドアロンコンピュータシステム(例えば、図15のコンピュータシステム1500)、サーバ、プロセッサなどにおいてなど、スタンドアロンシステムにおいて提供してもよい。実施形態では、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625、エッチングツール640及び/又は計測装置650は、ソフトウェアアプリケーション660と連通し、その結果、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625、エッチングツール640及び/又は計測装置650の結果、設計、データなどを格納し、ソフトウェアアプリケーション660によって同じ時刻に又は異なる時刻に分析することができる。
[0089] 図7A〜7Gを参照すると、処理装置ベースライナシステム600と関係して基板710、720、730、740、750、760、770、780を形成するためのプロセスステップが描写されている。基板は、従来の基板(例えば、円板形状)と同じ形状を有し得、従来の基板と同等の横方向寸法(例えば、約200mm、約300mm又は約450mm)を有し得る。図7Aに概略的に示されるように、ステップ710では、基板は、基板層715を含み、その断面が概略的に示されている。実施形態では、ステップ710における基板は、生産基板である。それに従って、基板層715は、1つ又は複数の生産層を含み得、生産層の各々は、ベアシリコンに加えて、機能フィーチャを備えて生産される。実施形態では、ステップ710における基板は、モニタ基板である。それに従って、基板層715は、ベアシリコンの層であり得る。図6に概略的に示されるように、基板層715を有する1つ又は複数の基板は、ステップ710で処理される。
[0090] 図7Bでは、断面が概略的に示されており、ステップ720における基板は、基板層715と、基板層715上に形成されたエッチング可能層725(例えば、堆積層)とを含む。エッチング可能層725は、1つ又は複数の適切な材料(例えば、酸化ケイ素、窒化ケイ素など)の層であり得る。実施形態では、堆積ツール610は、エッチング可能層725を基板層715に付着させるように構成することができる。実施形態では、堆積ツール610は、例えば、ALD、CVD又はPVDによって、エッチング可能層725として堆積層を付着させる。図6に概略的に示されるように、各々が基板層715及びエッチング可能層725を有する1つ又は複数の基板は、ステップ720で形成される。
[0091] 実施形態では、エッチング可能層725の厚さは、エッチング可能層725を基板層715に付着させた後に測定される。実施形態では、エッチング可能層725の厚さは、ステップ720が完了した後且つステップ730を開始する前に測定することができる。実施形態では、エッチング可能層725の厚さは、計測装置650又は異なる計測装置によって測定される。実施形態では、計測装置650は、エッチング可能層725の上面にある第1の位置及びエッチング可能層725の下面にある第2の位置を測定するように構成されたセンサを含む。従って、エッチング可能層725の厚さは、第1の位置と第2の位置との差として決定することができる。実施形態では、エッチング可能層725の厚さは、堆積ツール610に埋め込まれたセンサによって測定することができる。実施形態では、厚さは、基板にわたる厚さの空間分布を導出するために、基板にわたって測定される。
[0092] 実施形態では、エッチング可能層725の厚さは、堆積ツール610の1つ又は複数のプロセス変数に基づいて推定され、プロセス変数は、基板層715上に堆積させたエッチング可能層の材料の量を決定するために使用することができる。例えば、堆積ツール610によって付着させた単位時間当たりの堆積材料のボリューム(すなわち、堆積ツール610の堆積レート)は、堆積ツールによって付着させたエッチング可能層725の厚さを推定するために使用することができる。例えば、堆積ツール610の様々なプロセス変数(堆積レート、堆積時間など)は、エッチング可能層725の厚さを決定又は推定するために、データベース670に格納することも、ソフトウェアアプリケーション660によるアクセスが可能になるようにすることもできる。例えば、データベース670は、堆積ツール610の様々なプロセス変数がエッチング可能層725の厚さにどのように影響を及ぼすかを決定するために、実験的に発展させることができる。このように、実施形態では、エッチング可能層725の厚さは、例えば、計測装置650によって、その厚さを直接測定することなく、決定することができる。実施形態では、ステップ720の後の大多数の基板785のエッチング可能層725の厚さは、以前の測定及び/又は実験に基づいて知られており、ソフトウェアアプリケーション660では固定値として設定されている。
[0093] エッチング可能層の厚さの測定及び分析について説明されているが、エッチング可能層725の1つ又は複数の異なる又は追加のパラメータも同様に測定/分析することができる。
[0094] 実施形態では、ソフトウェアアプリケーション660は、エッチング可能層725のパラメータ(例えば、厚さ)に基づいて、堆積ツール610による最終的なエッチング済みの基板の特性(ステップ770において基板がエッチングツール640によって処理された後)への寄与を決定することができる。実施形態では、寄与は、エッチング可能層のパラメータの関数として数学的にモデル化することができる。例えば、層厚及びエッチング後のCD偏差に関連する数学モデル。層厚及びエッチング後のCDの例の文脈では、数学モデルは、異なる平均/ターゲットの堆積厚さに対するエッチング後のCD変化の変動性を評価することによって導出することができる。モデルは、例えば、層厚とエッチング後のCDとの間の関係を確立する較正プロセスを通じて前もって得ることができる。モデルは、大多数の生産基板を評価することによって導出することができ、その場合、層厚及びエッチング後のCDは測定されており、データに対する1つ又は複数の機械学習アルゴリズムを使用して関係が決定される。最終的なエッチング済みの基板(例えば、図7Hの基板785を参照)の特性は、最終的なエッチング済みの基板785上のパターンのクリティカルディメンション(クリティカルディメンションの変化、平均クリティカルディメンションなどを含む)、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性(或いはその1つ又は複数の空間分布)を含み得る。実施形態では、最終的なエッチング済みの基板785の特性は、最終的なエッチング済みの基板785上のパターンの1つ又は複数のフィンガープリント或いは最終的なエッチング済みの基板785にわたって多数の同じパターンを含む最終的なエッチング済みの基板785の1つ又は複数のフィンガープリントを含む。
[0095] 最終的なエッチング済みの基板785上のパターンのフィンガープリント或いは最終的なエッチング済みの基板785にわたって多数の同じパターンを含む最終的なエッチング済みの基板785のフィンガープリントは、パターン(又は複数のパターン)にわたる変化或いは最終的なエッチング済みの基板785にわたるパターンごとの変化を考慮することによって決定することができる。これらの変化は、最終的なエッチング済みの基板785上のパターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性に関して、或いは、最終的なエッチング済みの基板785にわたる多数の同じパターンのうちの1つ又は複数に関して存在し得る。パターンのフィンガープリント又は最終的なエッチング済みの基板785のフィンガープリントは、計測装置650によって測定することができる。
[0096] 実施形態では、数学モデルは、エッチング可能層725の測定パラメータ(例えば、厚さ)を堆積ツール610による特性への寄与に変換するために使用される。実施形態では、エッチング可能層725のパラメータは、堆積を実行するために使用される堆積ツール610の堆積チャンバ611、612に特有のものであり得、特定の基板に特有ではないものであり得る(従って、基板にわたって使用することができる)。従って、堆積ツール610による特性への寄与は、決定して、さらなる使用のために堆積ツール610の適用可能な堆積チャンバ611、612に関するデータベース670に格納することができる。実施形態では、堆積ツール610による特性への寄与は、事前に特徴付けられ、特定のパターニングプロセスの堆積プロセスにおいて使用される堆積ツール610の適用可能な堆積チャンバ611、612に関するデータベース670から得られる。
[0097] 図7Cに概略的に示されるように、ステップ730では、エッチング可能層725上にレジスト層735(例えば、フォトレジスト)を提供することができる。実施形態では、第1のトラックコンポーネント620は、図6に概略的に示されるように、エッチング可能層725上(例えば、ステップ730において一群の基板を形成するために、多数のエッチング可能の各々の上)にレジスト層735を塗布するように構成することができる。実施形態では、レジスト層735を提供する第1のトラックコンポーネント620は、トラックのレジストコーティングコンポーネントを含む。図6に概略的に示されるように、各々が基板層715、エッチング可能層725及びレジスト層735を有する1つ又は複数の基板は、ステップ730で形成される。堆積のために上記で説明されるものと同様の測定及び分析プロセスは、この段階で、レジスト層に対して使用することができる(例えば、レジスト厚さの空間分布、レジスト屈折率などを決定する)。
[0098] 図7Dを参照すると、基板は、ステップ740で示されるように、基板層715と、エッチング可能層725と、パターニングプロセスにおいて露光されているレジスト層735とを含む。実施形態では、ステップ740におけるリソグラフィ装置630は、図6に概略的に示されるように、1つ又は複数の基板730に塗布されたレジスト層725に1つ又は複数のパターンを生成するように構成される。図7Dでは、レジストは未だ現像されていないため、パターンは、基板のレジスト層735に埋め込まれるように示されている。リソグラフィ装置630は、図1を参照して説明されるような光リソグラフィ装置、又は、例えば、ナノインプリントリソグラフィツールを含み得る。例えば、光リソグラフィ装置630は、ステップ740で示されるように、パターニングデバイス635(図6を参照)から1つ又は複数の基板上のレジスト層735にパターンを転写するために、1つ又は複数の基板のレジスト層735に露光することができる。パターニングデバイス635は、基板が生産基板である際は、ステップ740において基板上の機能デバイスのパターンを生成するために使用することができる。或いは、パターニングデバイス635は、基板がモニタ基板である際は、計測目的でパターン設計を生成するために使用することができる。例えば、パターニングデバイス635は、ライン及び空間格子などの周期構造を生成するために使用することができる。
[0099] 実施形態では、ソフトウェアアプリケーション660は、リソグラフィ装置630による最終的なエッチング済みの基板785の特性への寄与を決定するように構成することができる。リソグラフィ装置630による最終的なエッチング済みの基板785の特性への寄与は、リソグラフィ装置630に関連する1つ又は複数の変数から導出される。実施形態では、リソグラフィ装置630に関連する1つ又は複数の変数の一群は、基板に特有ではない1つ又は複数の第1の変数を含み得る。それに従って、リソグラフィ装置630による寄与は、特定の基板に特有ではない(従って、パターニングプロセスの基板にわたって使用することができる)1つ又は複数の第1の変数から導出されるリソグラフィ装置630による第1の寄与を含む。さらに、リソグラフィ装置630による第1の寄与は、今後の使用のためにデータベース670に格納することができる。実施形態では、リソグラフィ装置630による第1の寄与は、事前に特徴付け、データベース670から得ることができる。実施形態では、1つ又は複数の第1の変数は、これらに限定されないが、リソグラフィ装置630による照明の1つ又は複数の変数、リソグラフィ装置630の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化、高周波レーザ波長変化、ジョーンズ瞳(Jones pupil)などを含み得る。それに加えて又はその代替として、リソグラフィ装置630に関連する1つ又は複数の変数の一群は、特定の基板に特有の1つ又は複数の第2の変数を含み得る。それに従って、リソグラフィ装置630による寄与は、特定の基板に特有の1つ又は複数の第2の変数から導出されるリソグラフィ装置630による第2の寄与を含み得る。実施形態では、1つ又は複数の第2の変数は、これらに限定されないが、リソグラフィ装置630の基板ステージの動きの移動標準偏差(MSD)及び/又はリソグラフィ装置630の基板ステージの動きの移動平均(MA)を含み得る。
[0100] 堆積のために上記で説明されるものと同様の測定及び分析プロセスは、この段階で、パターニング済みのレジストに対して使用することができる。例えば、1つ又は複数の第1及び/又は第2の変数の値は、リソグラフィ装置内のセンサ(例えば、干渉計、露光センサなど)から、機械のデバイス(例えば、アクチュエータ信号、レーザ信号など)からなど、導出することができる。
[0101] 実施形態では、図6を参照すると、リソグラフィ装置630によるパターニングの後、第2のトラックコンポーネント625は、ステップ750において1つ又は複数のパターニング済みの基板を形成するために、リソグラフィ装置630のパターン転写の後に、露光済みのレジストを現像するために使用される。図7Eに示されるように、現像後、パターニングデバイス635からレジスト層735に転写されたパターンは、ステップ750に示されるように、パターニング済みの基板においてはっきりと見ることができる。具体的には、図7Eでは、レジスト層735において4つのパターンラインが示されている。しかし、ステップ750のパターニング済みの基板のレジスト層735において、適切ないかなる数のパターンライン(又は別のタイプのパターン)も生成することができる。実施形態では、第2のトラックコンポーネント625は、トラックの現像コンポーネント及び/又はトラックのベークプレートコンポーネントである。実施形態では、第1のトラックコンポーネント620及び第2のトラックコンポーネント625は、異なるトラックである。実施形態では、第1のトラックコンポーネント620及び第2のトラックコンポーネント625は、同じトラックの異なるコンポーネントである。
[0102] 堆積のために上記で説明されるものと同様の測定及び分析プロセスは、この段階で、現像済みの/ベーキング済みのレジストに対して使用することができる。例えば、レジストの屈折率、レジストの厚さなどの値は、測定装置を使用して決定することができる。
[0103] 図7Fは、ステップ760におけるエッチングの後のエッチング済みの基板の垂直断面図を概略的に示す。示されるように、レジスト層735のレジストは少なくとも部分的に耐エッチング性を有するため、レジスト層735(具体的には、レジスト層735のパターン)によってカバーされていないエッチング可能層725の部分がエッチングされる。実施形態では、エッチングツール640は、ステップ760のエッチング済みの基板を形成するために、エッチング可能層725をエッチングするように或いはレジスト層735の1つ又は複数のパターンをエッチング可能層725に転写するように構成される。図7Gに示されるように、ステップ770では、エッチングが完了した後、必要に応じて、エッチング済みの基板からレジスト層735が除去される。具体的には、図7Gに示されるように、エッチング可能層725において4つのパターンラインが生成される。しかし、最終的なエッチング済みの基板785のエッチング可能層725において、適切ないかなる数のパターンライン(又は別のタイプのパターン)も生成することができる。エッチング可能層725の1つ又は複数のパターン(例えば、パターンライン)は、計測装置640によって測定が行われるように構成することができる。
[0104] 図7Hに概略的に示されるように、ステップ780では、計測装置650は、最終的なエッチング済みの基板785の特性を評価するように構成することができる。例えば、計測装置650は、最終的なエッチング済みの基板785上の計測ターゲットのパターンの特性を測定するように構成することができる。実施形態では、計測装置650は、最終的なエッチング済みの基板785の特性(具体的には、最終的なエッチング済みの基板785上の計測ターゲットのパターン)を測定することができる光(例えば、回折に基づく)計測ツールであり得る。実施形態では、特性は、最終的なエッチング済みの基板785上のパターン又は最終的なエッチング済みの基板785にわたる多数の同じパターンの各々のクリティカルディメンション(例えば、パターンライン762の幅及び/又は隣接するパターンライン間の間隔764)、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含み得る。実施形態では、特性は、最終的なエッチング済みの基板785上のパターンの1つ又は複数のフィンガープリント或いは多数の同じパターンを含む最終的なエッチング済みの基板の1つ又は複数のフィンガープリントを含み得、1つ又は複数のフィンガープリントは、クリティカルディメンション、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性と関連付けられる。実施形態では、計測装置650は、最終的なエッチング済みの基板785の表面の位置(例えば、表面の高さ及び/又は回転位置)を測定するためのレベルセンサも含み得る。
[0105] 実施形態では、ソフトウェアアプリケーション660は、エッチングツール640による最終的なエッチング済みの基板785の特性への寄与を決定するように構成することができる。具体的には、エッチングツール640による特性への寄与は、最終的なエッチング済みの基板785の特性から、エッチングツール640の上流にある1つ又は複数の処理装置による1つ又は複数の寄与を除去することによって得ることができる。図6に示されるように、エッチングツール640の上流にある1つ又は複数の処理装置は、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630及び第2のトラックコンポーネント625を含む。実施形態では、第1のトラックコンポーネント620及び第2のトラックコンポーネント625は、典型的には、最終的なエッチング済みの基板785の特性に対して、堆積ツール610及びリソグラフィ装置630と比べてごくわずかな及び無視できるほどの寄与を与えることができる。従って、エッチングツール640の上流にある1つ又は複数の処理装置による1つ又は複数の寄与は、堆積ツール610による寄与及びリソグラフィ装置630による寄与を含み得る。それに従って、エッチングツール640による最終的なエッチング済みの基板785の特性への寄与は、最終的なエッチング済みの基板785の特性から、堆積ツール610(リソグラフィ前処理装置)による寄与及びリソグラフィ装置630による寄与を除去することによって決定することができる。実施形態では、リソグラフィ装置630による最終的なエッチング済みの基板785の特性への寄与は、特定の基板に特有ではないリソグラフィ装置630による第1の寄与及び/又は特定の基板に特有のリソグラフィ装置630による第2の寄与を含み得る。実施形態では、エッチングツール640による最終的なエッチング済みの基板785の特性への寄与は、特定のパターニング済みの基板に特有ではない。実施形態では、エッチングツール640による最終的なエッチング済みの基板785の特性への寄与は、エッチングに使用されるエッチングツール640のエッチングチャンバ641、642に特有である。従って、決定後、エッチングツール640による寄与は、エッチングに使用されるエッチングツール640のエッチングチャンバ641、642に関するデータベース670に格納することができる。
[0106] 事例では、堆積ツール610、リソグラフィ装置及びエッチングツール640の既存の変数は、堆積ツール610が、最終的なエッチング済みの基板785上のパターンのフィンガープリント(例えば、CDフィンガープリント)に、例えば、0.2nmの寄与を与えることができるようなもの、リソグラフィ装置630が、最終的なエッチング済みの基板785上のパターンのフィンガープリントに、例えば、0.4nmの寄与を与えることができるようなもの、及び、エッチングツール640が、最終的なエッチング済みの基板785上のパターンのフィンガープリントに、例えば、0.2nmの寄与を与えることができるようなものであり得る。従って、堆積ツール610、リソグラフィ装置630及びエッチングツール640による最終的なエッチング済みの基板785上のパターンのフィンガープリントへの累積寄与は、0.9nmであり、それは、仮定の閾値(例えば、1nm)を下回る。
[0107] 例では、ステップ720の後、堆積ツール610による最終的なエッチング済みの基板785上のパターンのフィンガープリントへの寄与が0.5nmであると決定された場合は、これは、リソグラフィ装置630及び/又はエッチングツール640を調整しない状態で、堆積ツール610、リソグラフィ装置630及びエッチングツール640による累積寄与は、1.1nmであり、それは、仮定の閾値を0.1nm上回ることを示す。或いは、例では、ステップ760の後、エッチングツール640による最終的なエッチング済みの基板785上のパターンのフィンガープリントへの寄与が0.5nmであると決定された場合は、これは、堆積ツール610及び/又はリソグラフィ装置630を調整しない状態で、堆積ツール610、リソグラフィ装置630及びエッチングツール640による累積寄与は、1.1nmであり、それは、仮定の閾値を0.1nm上回ることを示す。いくつかの例では、これらの状況は、欠陥を生み出すこと及び/又は歩留まり損失をもたらすことがあり得る。
[0108] これを改善するため、閾値を下回る(例えば、1nmを下回る)値まで累積寄与を低減するために適用できる場合は、堆積ツール610、リソグラフィ装置630及び/又はエッチングツール640を動作する前に、堆積ツール610の1つ又は複数の変数(例えば、厚さ、厚さ均一性又は他の任意の適切な変数)、リソグラフィ装置630の1つ又は複数の変数(例えば、ドーズ、フォーカス及び/又は他の任意の適切な変数)並びに/或いはエッチングツール640の1つ又は複数の変数(例えば、エッチングレート、エッチングタイプ、動作温度及び/又は他の任意の適切な変数)を調整することができる。
[0109] 別の例では、現像後のレジスト層735上のパターンのクリティカルディメンション(CD_litho)は、例えば、30nmである。エッチング後の最終的なエッチング済みの基板785のエッチング可能層725上のパターンのクリティカルディメンション(CD_etch)は、例えば、25nmである。CD_etchとCD_lithoとの差(すなわち、5nm)は、リソグラフィ・エッチング(litho-etch)バイアスと呼ばれ、堆積ツール610による寄与に基づき得、例えば、エッチング可能層715の厚さに基づき得る(例えば、エッチング可能層715の厚さが例えば100nmの際、リソグラフィ・エッチングバイアスは、5nmである)。リソグラフィ・エッチングバイアスは、エッチングツール640の1つ又は複数の変数設定(例えば、エッチングツール640のエッチングチャンバ641、642のエッチングレート、エッチングタイプ、動作温度及び/又は他の変数)に基づいてさらに決定することができる。従って、堆積ツール610、リソグラフィ装置630及びエッチングツール640はすべて、CD_etchに寄与を与えることができる。上記で説明されるように、CD_etchは、CD_lithoとリソグラフィ・エッチングバイアスを加えることによって決定することができる。具体的には、CD_lithoは、リソグラフィ装置630の1つ又は複数の変数(ドーズ及び/又はリソグラフィ装置に関連する他の任意の適切な変数)を調整することによって変更することができる。リソグラフィ・エッチングバイアスは、堆積ツール610の1つ又は複数の変数(例えば、堆積レート、堆積時間など)を調整することによって変更することができ、それにより、エッチング可能層715の異なる厚さが生じ得る(例えば、最初は100nmをターゲットとする)。それに加えて又はその代替として、リソグラフィ・エッチングバイアスは、エッチングツール640の1つ又は複数の変数(例えば、エッチングレート、エッチングタイプ、動作温度)を調整することによって変更することもできる。ステップ720の後、エッチング可能層715の厚さが110nmと測定された場合(例えば、100nmのターゲットより大きい)は、これは、リソグラフィ・エッチングバイアスが増加し得る(例えば、5nmから8nmに)ことを示す。従って、リソグラフィ装置630及び/又はエッチングツール640を調整しない状態では、リソグラフィ・エッチングバイアスの増加により、CD_etchは、ターゲット値から逸脱し得る。これを改善するため、例えば、リソグラフィ装置630を動作する前に、例えば25nmから例えば23nmのより小さな値にCD_lithoをリターゲットすることができ、その結果、結果として得られるCD_etchは、ターゲット値であり得るか又はターゲット値に近くなり得る。このことは、例えば、ドーズラチチュード(ドーズラチチュードは、ドーズ値の変化に対するクリティカルディメンション(具体的には、CD_litho)の感度を示す)に応じて、例えば、リソグラフィ装置630のドーズを変更することによって行うことができる。このことは、リソグラフィ装置630のドーズの代替として又はリソグラフィ装置630のドーズに加えて、リソグラフィ装置630の1つ又は複数の他の適切な変数を調整することによって行うことができることに留意すべきである。リソグラフィ装置630の動作前にリソグラフィ装置630に関連する1つ又は複数の変数を調整することに加えて又はその代替として、エッチングツール610の動作前に堆積ツール610に関連する1つ又は複数の変数を調整すること並びに/或いはエッチングツール640の動作前にエッチングツール640に関連する1つ又は複数の変数を調整することができる。このフィードフォワード方法についてのさらなる詳細は、図8で説明する。
[0110] 従って、実施形態では、フィードフォワードタイプの補正(図8を参照してさらに詳細に説明する)を行うことができる。例えば、実施形態では、リソグラフィ装置630に関連する1つ又は複数の変数(例えば、ドーズ、フォーカスなど)は、リソグラフィ装置630の動作前に、堆積ツール610による寄与に基づいて調整することができる。例えば、実施形態では、エッチングツール640に関連する1つ又は複数の変数は、エッチングツール640の動作前に、堆積ツール610及び/又はリソグラフィ装置630による最終的なエッチング済みの基板785の特性への総寄与に基づいて調整することができる。エッチングツール640に関連する1つ又は複数の変数は、これらに限定されないが、エッチングレート、エッチングタイプ、動作温度及び/又はエッチングツール640の他の任意の適切な変数を含み得る。このことは、エッチングツール640に関連する1つ又は複数の変数の調整が堆積ツール610及びリソグラフィ装置630による最終的なエッチング済みの基板の特性への総寄与の少なくとも一部分を補償できるように行われ、それにより、最終的なエッチング済みの基板785の特性のターゲット値からの最終的なエッチング済みの基板785の特性の偏差が低減される。いくつかの例では、堆積ツール610及び/又はリソグラフィ装置630による特性への累積寄与がターゲットから逸脱し過ぎる際は、ステップ720のパターニング済みの基板は、エッチングツール640によって処理するというよりむしろ、再加工する(例えば、レジスト層735を剥ぎ取る)ことができる。
[0111] 図7I〜7Lは、上記で説明される実施形態による、エッチングツール640による最終的なエッチング済みの基板785のフィンガープリントへの寄与を決定する方法の例を示す。図7Iは、最終的なエッチング済みの基板785を示す概略図である。最終的なエッチング済みの基板785は、その基板に形成された多数のダイ792、794、796などを含む。ダイ792、794、796などの各々は、計測装置650によって測定される同じパターン又はパターニング済みの構成を含むが、パターンごとに(又は基板ごとに)様々な特性におけるわずかな相違が存在し得る。実施形態では、特定の特性(例えば、クリティカルディメンションなど)の相違は、設計又はターゲットパターンからの偏差と見なすことができる。実施形態では、特定の特性のそれらの相違は、最終的なエッチング済みの基板785上のパターンの一群の平均パターンからの偏差と見なすことができる。相違は、定量化するか又は異なる方法で特徴付けることができる。それらの相違は、一例では、基板にわたって全体的に、最終的なエッチング済みの基板785のフィンガープリントと見なすことができる。相違又は最終的なエッチング済みの基板785のフィンガープリントは、図7Iでは、この簡単な例の場合、最終的なエッチング済みの基板785のターゲット(若しくは設計)パターン構成又は平均パターンからの関連パターンの偏差の定量化に応じて、ダイに示されるような数値(例えば、nmの単位又は任意の尺度単位)で表現される各ダイにおける相違を示す。例えば、実施形態では、ダイ792、794、796などのパターンのフィンガープリントに対する値はそれぞれ、2nm、1nm、−2nmなどである。これらの相違は、計測装置650によって行われる測定を使用して決定される(例えば、計測装置650によって行われた測定からある特定の値(最終的なエッチング済みの基板785上のターゲット又は設計パターン構成に対するターゲット又は設計値或いはパターンの一群(ダイ792、794、796などの)の測定値の平均など)を減ずる)。
[0112] 図7Jは、堆積ツール610による最終的なエッチング済みの基板785のフィンガープリントへの寄与を概略的に描写する。堆積ツール610による寄与は、エッチング可能層725の厚さに基づく数学モデルに従って推定することができる。例えば、図7Jに示されるように、数学モデルは、数学モデルに基づいて各ダイ792、794、796などのパターンに0.5nmの寄与があると仮定で考えることができる。
[0113] 図7Kは、リソグラフィ装置630による最終的なエッチング済みの基板785のフィンガープリントへの寄与を概略的に描写する。リソグラフィ装置による寄与は、上記で説明されるようなリソグラフィ装置630に関連する1つ又は複数の変数に基づいて推定することができる。例えば、図7Kに示されるように、リソグラフィ装置630は、各ダイ792、794、796などのパターンにそれぞれ1nm、0.5nm、−3nmなどの寄与があると考えることができる。
[0114] 図7Lは、エッチングツール640による最終的なエッチング済みの基板785のフィンガープリントへの寄与を概略的に描写する。エッチングツール640による寄与は、図7Lに示されるように、図7Iに示されるような最終的なエッチング済みの基板785のフィンガープリントから図7Jに示されるような堆積ツール610による寄与及び図7Kに示されるようなリソグラフィ装置630による寄与を減ずることによって導出することができる。具体的には、例えば、エッチングツール640は、各ダイ792、794、796などのパターンにそれぞれ0.5nm、0nm、0.5nmなどの寄与があると考えることができる。
[0115] 実施形態では、ソフトウェアアプリケーション660は、エッチングツール640による特性への決定された寄与(任意選択により、許容範囲内)を使用して、修正情報を作成するように構成することができる。例えば、ソフトウェアアプリケーション660は、エッチングツール640(又は別の処理装置)による寄与に対して、エッチングツール640による決定された寄与が閾値(許容範囲を含み得る)を満たすか又は交差するかどうか(例えば、許容範囲内)を判断するように構成することができる。実施形態では、ソフトウェアアプリケーション660は、閾値からのエッチングツール640(又は別の処理装置)による決定された寄与の偏差(例えば、差)を決定する。例えば、エッチングツール640による最終的なエッチング済みの基板785上のパターンの特性(例えば、クリティカルディメンションフィンガープリントなど)への寄与に対する閾値は、仮定の例では、0.2nmに設定することができる。エッチングツール640による最終的なエッチング済みの基板785上のパターンの特性への決定された寄与が0.5nmである場合は、偏差は、ソフトウェアアプリケーション660によって0.3nmであると決定される。実施形態では、ソフトウェアアプリケーション660は、エッチングツール640による特性への決定された寄与が基板にわたって閾値を満たすかどうかに関する空間分布を決定する。
[0116] それに加えて又はその代替として、ソフトウェアアプリケーション660は、計測装置650からの測定データ(例えば、最終的なエッチング済みの基板785にわたる特性又は空間分布、例えば、クリティカルディメンション、クリティカルディメンション均一性、側壁角、フィーチャ高さ、底面傾斜、パターンシフト、幾何学的非対称性など)を直接使用して、修正情報を作成するように構成することができる。例えば、ソフトウェアアプリケーション660は、計測装置650によって測定された特性の測定値が特性のターゲット値(許容範囲を含み得る)を満たすかどうかを判断するように構成することができる。実施形態では、ソフトウェアアプリケーション660は、計測装置650によって測定された特性の測定値と少なくとも1つの特性のターゲット値との間の偏差(例えば、差)を決定する。実施形態では、偏差は、クリティカルディメンションエラー、側壁角エラー、フィーチャ高さエラー、底面傾斜エラー、パターンシフトエラーなどであり得る。実施形態では、ソフトウェアアプリケーション660は、計測装置650によって測定された特性の測定値が最終的なエッチング済みの基板785にわたって特性のターゲット値を満たすかどうかに関する空間分布を決定する。
[0117] エッチングツール640(又は別の処理装置)による決定された寄与が閾値を満たさないか若しくは交差しないという決定及び/又は計測装置650によって測定された特性の測定値が特性のターゲット値(許容範囲を含み得る)を満たさないか若しくは交差しないという決定に応答して、行動を取ることができる。実施形態では、ソフトウェアアプリケーション660は、グラフィカルユーザインタフェース(GUI)上に通知と共に情報を表示することによって、そのような決定をユーザに通知することができる。
[0118] 実施形態では、ソフトウェアアプリケーション660は、例えば、エッチングツール640(又は別の処理装置)による決定された寄与と閾値との間の偏差及び/又は計測装置650によって測定された特性の測定値と特性のターゲット値との間の偏差を補正する(例えば、許容範囲内まで除去するか又は低減する)ために、エッチングツール640の1つ又は複数の変数(例えば、1つ又は複数のエッチングチャンバ611、612のエッチングレート、エッチングタイプ及び/又は動作温度)を修正するための修正情報を作成するように構成される。実施形態では、修正は、空間に特有のものであることも(例えば、空間的に異なる修正を適用する)、パターン/基板にわたって均一のオフセットを適用することも可能である。実施形態では、修正情報は、偏差(例えば、差)に少なくとも部分的に基づいてエッチングツール640を調整するために使用することができる。具体的には、修正情報は、エッチングツール640の1つ又は複数の変数を調整するために作成することができる。例えば、修正情報は、偏差又は特性の測定値の空間分布に空間的に基づいて1つ又は複数のエッチング変数(例えば、エッチングレート、エッチングタイプ、動作温度など)を修正するために使用することができる。
[0119] 実施形態では、修正情報は、2つ以上のエッチングツール640の性能を整合させるように、同じエッチングツール640の異なるエッチングチャンバを整合させるように及び/又は異なるエッチングツール640の異なるエッチングチャンバを整合させるように、1つ又は複数の変数(例えば、エッチングレート、エッチングタイプ、動作温度など)を調整するために使用することができる。従って、偏差が評価されるターゲット値は、別のエッチングツール640及び/又はエッチングチャンバ641、642による特性への寄与である。例えば、エッチング済みの基板785は、エッチングツール640の第1のエッチングチャンバ641を使用して、エッチングツール640の第2のエッチングチャンバ642を使用して又はその両方を使用して、エッチング可能層725をエッチングすることによって形成することができる。第1のエッチングチャンバ641と第2のエッチングチャンバ642との間の性能を整合させるため、ソフトウェアアプリケーション660は、第1のエッチングチャンバ641によるエッチングツール640の第1のエッチングチャンバ641によって処理された第1のパターンの特性への第1の寄与と、第2のエッチングチャンバ642によるエッチングツール640の第2のエッチングチャンバ642によって処理された第2のパターンの同じ特性への第2の寄与との間の偏差を決定するように構成することができる。ソフトウェアアプリケーション660は、第1の寄与と第2の寄与との間の偏差を補正するために、第1のエッチングチャンバ641及び/又は第2のエッチングチャンバ642の1つ又は複数のエッチング変数(例えば、エッチングレート、エッチングタイプ、動作温度など)を調整するために修正情報を作成するようにさらに構成することができる。従って、実施形態では、修正情報は、第1の寄与(エッチングツール640の第1のエッチングチャンバ641の)と第2の寄与(エッチングツール640の第2のエッチングチャンバ642の)を許容範囲内で整合させることができる。従って、修正後、エッチングツール640の第1のエッチングチャンバ641、642の性能は、エッチングツール640の第2のエッチングチャンバ642の性能と許容範囲内で整合させることができる。
[0120] 論考はエッチングツールのモニタリング又は評価に焦点が置かれているが、実施形態では、処理装置ベースライナシステム600を使用して、第2のトラック(又は現像ツール若しくはベーキングツールなどのそのコンポーネント)、堆積ツール、化学機械研摩/平坦化(CMP)ツール或いは基板の物理的特性を変更する他の非リソグラフィ処理ツールなどの別の非リソグラフィ処理装置をモニタすることができる。1つ又は複数のそのようなツールの事例では、層725はエッチング可能である必要はなく、当然ながら、基板の処理は、エッチング(例えば、トラックの現像コンポーネント又はベーキングコンポーネント)を伴う必要はない。
[0121] 従って、評価ツールがトラックである際は、修正情報は、ベーキングツールのベーキング温度(例えば、グローバルな変化若しくは空間分布変化)などの1つ又は複数のトラック変数を調整するために使用することができる。評価ツールが堆積ツールである際は、修正情報は、1つ又は複数の堆積変数(例えば、堆積レートのグローバルな若しくは空間的な変化、堆積の空間的な相違など)を調整するために使用することができる。評価ツールがCMPツールである際は、修正情報は、1つ又は複数の平坦化変数(例えば、平坦化レートのグローバルな若しくは空間的な変化、平坦化の空間的な相違など)を調整するために使用することができる。
[0122] 実施形態では、測定値及び/又は修正情報は、例えば、エッチングツールのエッチングツールチャンバに特有のもの、多数のエッチングツールの中の1つのエッチングツールに特有のものなど、特定の装置に特有のものであり得る。従って、モニタリング及び/又は制御は、ツール及び/又はその部分に特有のものであり得る。従って、例えば、機能デバイスの特定のパターニングプロセスにおいてどのツール及び/又はその部分が使用されているかに基づいて、パターニングプロセスにおいて1つ又は複数の基板を処理するために使用されているツール及び/又はその部分に適切な修正情報を適用することができる。
[0123] さらに、エッチングツール640(又は上記で説明されるような非リソグラフィ処理ツール(例えば、第2のトラックコンポーネント625、堆積ツール、CMPツールなど)における偏差は、例えば、非リソグラフィ処理ツール(例えば、堆積ツール610、第1のトラックコンポーネント620)又はリソグラフィ装置630などの別のツールにおいて補正することも、その逆も可能である。従って、修正情報は、評価されているツールに対するものである必要はない。例えば、リソグラフィ装置630の1つ又は複数のリソグラフィ変数を調整することができる。実施形態では、1つ又は複数のリソグラフィ変数は、ドーズ及び/又はフォーカスを含む。例として、修正情報は、例えば、光学収差を補正又は適用するために調整機構AMを採用することによって、照明強度分布を補正又は修正するためにアジャスタADを採用することによって、パターニングデバイスサポート構造MTの位置を補正又は修正するためにパターニングデバイスサポート構造MTのポジショナPMを採用することによって、基板テーブルWTの位置を補正又は修正するために基板テーブルWTのポジショナPMを採用することによってなど、リソグラフィ装置の1つ又は複数の修正装置を調整するために作成することができる。
[0124] 従って、非リソグラフィ処理ツールの評価の例では、修正情報は、非リソグラフィ処理ツール並びに/或いは非リソグラフィ処理ツールの上流又は下流にある1つ又は複数の処理装置の1つ又は複数の変数を修正するために作成することができる。1つ又は複数の処理ツールは、例えば、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625、エッチングツール640などを含み得る。
[0125] 実施形態では、ソフトウェアアプリケーション660は、1つ又は複数の数学モデルを使用して、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625、エッチングツール640及び/又は1つ若しくは複数の他の処理装置(例えば、化学機械平坦化ツール(図示せず))から選択される1つ又は複数によって補正可能な特性における偏差を決定する。ソフトウェアアプリケーション660は、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625、エッチングツール640及び/又は偏差を補正する(例えば、許容範囲内まで除去するか又は低減する)ための1つ若しくは複数の他の処理装置から選択される1つ又は複数のツールの構成を可能にする修正情報を提供するようにさらに構成することができる。実施形態では、数学モデルのうちの1つ又は複数は、パラメータ化された時点でデータに適合する基底関数の集合を定義する。実施形態では、モデルは、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625、エッチングツール640及び/又は1つ若しくは複数の他の処理装置(例えば、化学機械平坦化ツール)から選択される1つ又は複数の装置に行うことができる修正を含む。ソフトウェアアプリケーション660は、補正可能な偏差が特定の範囲内にあるかどうかを判断することができる。すなわち、指定された1つ又は複数の処理装置に行うことができる修正の範囲は、適用可能な処理ツールのうちの1つ又は複数の変数に行うことができる修正の量と関係して、上限、下限及び/又はその両方を有し得る。
[0126] 例えば、実施形態では、x方向におけるリソグラフィ装置630の補正可能な偏差(すなわち、座標(x,y)におけるΔx)は、
Δx=k+kx+ky+k+kxy+k11+k13+k15y+k17xy+k19 (1)
によってモデル化することができ、式中、kは、パラメータ(一定であり得る)であり、k3、k5、k7、k9、k11、k13、k15、k17、k19は、x、y、x、xy、y、x、xy、xy、yのそれぞれの項に対するパラメータ(一定であり得る)である。k1、k3、k5、k7、k9、k11、k13、k15、k17、k19のうちの1つ又は複数は、ゼロであり得る。
[0127] 関連して、実施形態では、y方向におけるリソグラフィ装置630の補正可能な偏差(すなわち、座標(x,y)におけるΔy)は、
Δy=k+ky+kx+k+k10yx+k12+k14+k16x+k18yx+k20 (2)
によってモデル化することができ、式中、kは、パラメータ(一定であり得る)であり、k、k、k、k10、k12、k14、k16、k18、k20は、y、x、y、yx、x、y、yx、yx、xのそれぞれの項に対するパラメータ(一定であり得る)である。k2、、k、k、k10、k12、k14、k16、k18、k20のうちの1つ又は複数は、ゼロであり得る。
[0128] 実施形態では、2つ以上の処理装置(例えば、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625及び/又はエッチングツール640から選択される2つ以上のもの)による偏差補正の共最適化が提供される。
[0129] 実施形態では、共最適化は、クリティカルディメンションエラー、パターンシフトエラーなどに対して別々に又は組み合わせて実行されるなど、異なるタイプの偏差に対して別々に又は組み合わせて実行される。実施形態では、堆積ツール610、第1のトラックコンポーネント620、リソグラフィ装置630、第2のトラックコンポーネント625及び/又はエッチングツール640は、ある特定のタイプのエラーをよりうまく補正することができ、従って、偏差補正は、2つ以上の選択された処理ツールの適切な異なる変数の中で適切に重み付けられるか又は割り振られる。
[0130] 実施形態では、ソフトウェアアプリケーション650は、基板750、760に付着させるため及び処理装置ベースライナで測定するための1つ又は複数のパターンターゲットを識別し、1つ又は複数のターゲットに対する計測レシピを発展させるように構成される。この文脈における計測レシピは、1つ若しくは複数の計測ターゲットを測定するために使用される計測装置640自体と関連付けられた及び/又は測定プロセスと関連付けられた1つ又は複数の変数(及び1つ又は複数の関連値)であり、測定ビームの1つ又は複数の波長、測定ビームの1つ又は複数のタイプの偏光、測定ビームの1つ又は複数のドーズ値、測定ビームの1つ又は複数のレーザ帯域幅、測定ビームで使用される検査装置の1つ又は複数のアパーチャ設定、ターゲット上に測定ビームを位置付けるために使用されるアライメントマーク、使用されるアライメントスキーム、多数のターゲットのサンプリングスキーム、ターゲットのレイアウト、ターゲット及び/又はターゲットの対象のポイントを測定するための動きスキームなどが挙げられる。
[0131] 実施形態では、1つ又は複数のターゲットは、パターニングプロセス用に設計すること及びパターニングプロセスに適するようにすることができる。例えば、残留変化(組織的な及び/又はランダムの)を最小化する1つ又は複数のターゲットを識別するために、多数のターゲット設計を評価することができる。実施形態では、その性能が機能デバイスと整合する1つ又は複数のターゲットを識別する(例えば、そのクリティカルディメンション、パターンシフトなどの尺度がデバイスのクリティカルディメンション、パターンシフトなどと整合するターゲットを識別する)ために、多数のターゲット設計を評価することができる。ターゲットは、ターゲットにおけるクリティカルディメンション(CD)、パターンシフト、側壁角、フィーチャ高さ、底面傾斜、幾何学的非対称性など又はそれらから選択される任意の組合せの測定用に設計することができる。
[0132] 図8を参照すると、フィードフォワード方法の例示的なフローが描写されている。フィードフォワード方法は、1つ又は複数の第2の処理装置の上流又は下流にある1つ又は複数の第1の処理装置による基板の特性への1つ又は複数の寄与に基づいて、1つ又は複数の第2の処理装置の1つ又は複数の変数を調整するために使用することができる。ステップ810では、以前に論じられるように、ソフトウェアアプリケーション660によって、1つ又は複数の第1の処理装置による最終的なエッチング済みの基板(例えば、最終的なエッチング済みの基板785)の特性への1つ又は複数の寄与が推定され、1つ又は複数の第2の処理装置は、適用可能な1つ又は複数の第1の処理装置の上流又は下流にある。実施形態では、1つ又は複数の第1の処理装置の少なくとも1つは、エッチングツール640など、リソグラフィ装置(例えば、リソグラフィ装置630)の下流にある。実施形態では、1つ又は複数の第2の処理装置の少なくとも1つは、リソグラフィ装置630である。実施形態では、1つ又は複数の第1の処理装置による最終的なエッチング済みの基板(例えば、最終的なエッチング済みの基板785)の特性への1つ又は複数の寄与は、以前に論じられるように、ソフトウェアアプリケーション660によって、1つ又は複数の第1の処理装置によって処理された後に測定値を使用して決定され、1つ又は複数の第2の処理装置は、適用可能な1つ又は複数の第1の処理装置の下流にある。実施形態では、1つ又は複数の第1の処理装置の少なくとも1つは、リソグラフィ装置(例えば、リソグラフィ装置630)の上流にある。例えば、1つ又は複数の第1の処理装置は、堆積ツール(例えば、堆積ツール610)及び/又はトラックのレジストコーティングコンポーネント(例えば、第1のトラックコンポーネント620)を含み得る。実施形態では、1つ又は複数の第2の処理装置の少なくとも1つは、リソグラフィ装置630及び/又はエッチングツール640である。
[0133] ステップ820では、ハードウェアコンピュータシステム(例えば、ソフトウェアアプリケーション660)によって、推定されるか又は別の方法で決定された1つ又は複数の寄与に少なくとも部分的に基づいて、1つ又は複数の第2の処理装置に関する情報が作成され、出力される。実施形態では、1つ又は複数の第2の処理装置は、必要に応じて、堆積ツール(例えば、堆積ツール610)、トラックのレジストコーティングコンポーネント(例えば、第1のトラックコンポーネント620)、リソグラフィ装置(例えば、リソグラフィ装置630)、トラックの現像コンポーネント(例えば、第2のトラックコンポーネント625)、トラックのベークプレートコンポーネント(例えば、第2のトラックコンポーネント625)及び/又はエッチングツール(例えば、エッチングツール640)からの1つ又は複数であり得る。実施形態では、1つ又は複数の第2の処理装置に関する情報は、第2の処理装置の少なくとも1つを調整するために用使用することができる修正情報である。実施形態では、修正情報は、1つ又は複数の第2の処理装置の1つ又は複数の変数を調整するために作成することができる。例えば、1つ又は複数の第2の処理装置の1つ又は複数の変数は、これらに限定されないが、リソグラフィ装置(例えば、リソグラフィ装置630)のドーズ及び/又はフォーカス並びに/或いはエッチングツール(例えば、エッチングツール640)のエッチングレート、エッチングタイプ及び/又は動作温度を含み得る。
[0134] 例えば、1つ又は複数の第1の処理装置は、堆積ツール(例えば、堆積ツール610)を含み得る。従って、堆積ツール610によるエッチング済みの基板(例えば、最終的なエッチング済みの基板785)の特性への寄与は、ステップ810において、例えば、堆積ツール610によって付着させたエッチング可能層(例えば、エッチング可能層725)の厚さに基づいて推定される。実施形態では、第2の処理装置は、リソグラフィ装置(例えば、リソグラフィ装置630)及び/又はエッチングツール(例えば、エッチングツール640)を含み得る。従って、修正情報は、ステップ820において、堆積ツールによる決定された寄与に基づいて、エッチングツールの1つ又は複数の変数を調整するため並びに/或いはリソグラフィ装置の1つ又は複数の変数を調整するために作成することができる。具体的には、エッチングツールの1つ又は複数の変数は、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ及び/又はエッチングツールの動作温度を含み得る。リソグラフィ装置の1つ又は複数の変数は、リソグラフィ装置のドーズ及び/又はフォーカスを含み得る。
[0135] 別の例では、1つ又は複数の第1の処理装置は、堆積ツール(例えば、堆積ツール610)及びリソグラフィ装置(例えば、リソグラフィ装置630)を含み得る。例えば、エッチング済みの基板(例えば、最終的なエッチング済みの基板785)の特性への堆積ツールによる寄与及びリソグラフィ装置による寄与はそれぞれ、ステップ810において推定される。第2の処理装置は、エッチングツールであり得る。従って、リソグラフィ装置及び堆積ツールによる総寄与が閾値を満たすか又は交差する(例えば、閾値範囲内に収まる)際は、修正情報は、ステップ820において、堆積ツール及びリソグラフィ装置による決定された寄与に基づいて、エッチングツールの1つ又は複数の変数を調整するために作成することができる。具体的には、エッチングツールの1つ又は複数の変数は、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ又はエッチングツールの動作温度を含み得る。実施形態では、堆積ツール及びリソグラフィ装置によるフィンガープリントへの総寄与が大き過ぎる(例えば、閾値範囲外である)際は、エッチングツールによる寄与を踏まえて考慮すると、堆積ツール及びリソグラフィ装置によって処理された基板(例えば、パターニング済みの基板750)は、エッチングツールによって処理するというよりむしろ、再加工することができる。
[0136] 別の例では、1つ又は複数の第1の処理装置は、エッチングツール(例えば、エッチングツール640)を含み得る。例えば、エッチングツールによるエッチング済みの基板(例えば、最終的なエッチング済みの基板785)の特性への寄与は、ステップ810において推定される(例えば、以前に処理された基板を使用して決定されたモデルから)。第2の処理装置は、リソグラフィツールであり得る。従って、エッチングツールによる寄与が閾値を交差するか又は満たす(例えば、閾値範囲内に収まる)際は、修正情報は、ステップ820において、エッチングツールによる推定された寄与に基づいて、リソグラフィツールの1つ又は複数の変数を調整するために作成することができる。具体的には、リソグラフィ装置の1つ又は複数の変数は、ドーズ及び/又はフォーカスを含み得る。実施形態では、エッチングツールによるフィンガープリントへの寄与が大き過ぎる(例えば、閾値範囲外である)際は、堆積ツール及び/又はリソグラフィツールによる寄与を踏まえて考慮すると、堆積ツールによって処理された基板(例えば、パターニング済みの基板750)は、リソグラフィツールによって処理するというよりむしろ、再加工することができる。
[0137] 図9を参照すると、リソグラフィ後処理装置(例えば、エッチングツール)による基板の特性への寄与を決定するための方法の例示的なフローが描写されている。示されるように、基板の特性へのリソグラフィ前処理装置による寄与915及びリソグラフィ装置(例えば、リソグラフィ装置630)による寄与925が得られ、930において組み合わされる。要素930(及び図の他の同様の要素)は正号を示しているが、動作は、加算である必要はなく、例えば、乗算、畳み込みなどでもよい。さらに、リソグラフィ後処理装置による寄与950は、最終的なエッチング済みの基板785の特性940からリソグラフィ前処理装置915及びリソグラフィ装置925による組み合わされた寄与930を除去することによって決定することができる。特性940(及び図の他の同様の要素)の除去は負号を示しているが、動作は、加算である必要はなく、例えば、除算、逆畳み込みなどでもよい。最終的なエッチング済みの基板785の特性940の値は、計測装置(例えば、計測装置650)によって測定される。従って、言い換えれば、リソグラフィ後処理装置による最終的なエッチング済みの基板785の特性への寄与950は、リソグラフィ前処理装置及びリソグラフィ処理装置のそれぞれによる寄与915、925を除去する(例えば、減算、逆畳み込みなどを通じて)ことによって導出することができる。
[0138] 上記で説明されるように、堆積ツールによる寄与915は、堆積ツール(例えば、堆積ツール610)によって形成されたエッチング可能層の厚さ910から導出することができる。リソグラフィ装置による寄与925は、リソグラフィ装置に関連する1つ又は複数の変数の一群920から導出することができる。
[0139] 実施形態では、リソグラフィ後処理装置は、トラックの現像コンポーネント(例えば、第2のトラックコンポーネント625)、トラックのベークプレートコンポーネント(例えば、第2のトラックコンポーネント625)及び/又はエッチングツール(例えば、エッチングツール640)を含み得る。リソグラフィ前処理装置915は、堆積ツール(例えば、堆積ツール610)及び/又はトラックのレジストコーティングコンポーネント(例えば、第1のトラックコンポーネント620)を含み得る。上記で説明されるように、トラック(例えば、第1のトラックコンポーネント620及び/又は第2のトラックコンポーネント625)による寄与は、堆積ツール610による寄与及びリソグラフィ装置630による寄与と比べて、わずかな又は無視できるほどであり得る。従って、実施形態では、リソグラフィ前処理装置による寄与915は、堆積ツール(例えば、堆積ツール610)による寄与のみを指し得、リソグラフィ後処理装置による寄与950は、エッチングツール(例えば、エッチングツール640)による寄与のみを指し得る。
[0140] 図10を参照すると、基板上の欠陥又は他のエラーを予測し、1つ又は複数の処理装置の1つ又は複数の変数を調整するための方法の例示的なフローが描写されている。示されるように、1つ又は複数の処理装置によって処理される基板に与えられる1つ又は複数の特性1030は、1つ又は複数の処理装置に特有の1つ又は複数の寄与(例えば、第1の寄与1015、第2の寄与1025及び第3の寄与950)を、1つ又は複数の特性1030を得るために処理されている基板に特有の第4の寄与1035と組み合わせることによって推定され、欠陥又は他のエラーを予測するために使用される。実施形態では、1つ又は複数の処理装置の少なくとも1つは、リソグラフィ装置の上流にある(すなわち、リソグラフィ前処理装置)。
[0141] 実施形態では、1つ又は複数の処理装置は、堆積ツール(例えば、堆積ツール610)、リソグラフィ装置(例えば、リソグラフィ装置630)及びエッチングツール(例えば、エッチングツール640)を含み得る。それに従って、第1の寄与1015は、堆積ツール(例えば、堆積ツール610)による寄与であり得、第2の寄与1025は、リソグラフィ装置(例えば、リソグラフィ装置630)による寄与であり得、第3の寄与950は、エッチングツール(例えば、エッチングツール640)による寄与であり得る。実施形態では、1つ又は複数の処理装置は、1つ又は複数のトラック(例えば、第1のトラックコンポーネント620及び/又は第2のトラックコンポーネント625)をさらに含み得る。それに従って、1つ又は複数の寄与は、第1のトラックコンポーネント620による寄与及び/又は第2のトラックコンポーネント625による寄与を含み得る。しかし、上記で説明されるように、第1のトラックコンポーネント620による寄与及び/又は第2のトラックコンポーネント625による寄与は、堆積ツールによる第1の寄与1015、リソグラフィ装置による第2の寄与1025及びエッチングツールによる第3の寄与950と比べて、わずかな又は無視できるほどであり得る。従って、実施形態では、第1のトラックコンポーネント620による寄与及び/又は第2のトラックコンポーネント625による寄与は、無視することができる。
[0142] 以前に述べられるように、堆積ツール(例えば、堆積ツール610)による第1の寄与1015は、堆積ツール(例えば、堆積ツール610)によって基板に形成されたエッチング可能層の変数(例えば、厚さ)1010から導出することができる。実施形態では、第1の寄与1015は、特定の基板に特有ではない(従って、パターニングプロセスの基板にわたって使用することができる)。実施形態では、第1の寄与1015は、堆積を実行するために使用される堆積ツール(例えば、堆積チャンバ610)の堆積チャンバ(例えば、堆積チャンバ611又は堆積チャンバ612)に特有である。従って、実施形態では、堆積ツールによるフィンガープリント1030への第1の寄与1015は、事前に特徴付け、データベース(例えば、データベース670)から得ることができ、その上、堆積プロセスにおいて使用される堆積ツール(例えば、堆積ツール610)の堆積チャンバ(例えば、堆積チャンバ611又は堆積チャンバ612)に関連して得ることができる。
[0143] リソグラフィ装置(例えば、リソグラフィ装置630)による第2の寄与1025は、リソグラフィ装置に関連する1つ又は複数の変数の一群1020から導出することができる。実施形態では、リソグラフィ装置(例えば、リソグラフィ装置630)に関連する1つ又は複数の変数の一群1020は、基板に特有ではない1つ又は複数の第1の変数を含み得る。それに従って、リソグラフィ装置(例えば、リソグラフィ装置630)による第2の寄与1025の少なくとも一部分は、特定の基板に特有ではない(従って、パターニングプロセスの基板にわたって使用することができる)1つ又は複数の第1の変数から導出することができる。従って、第2の寄与1025の少なくとも一部分は、事前に特徴付け、データベース(例えば、データベース670)から得ることができる。実施形態では、1つ又は複数の第1の変数は、これらに限定されないが、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化のうちの1つ又は複数を含み得る。
[0144] 実施形態では、エッチングツール(例えば、エッチングツール640)による第3の寄与950は、図9で説明されるようなプロセスによって得ることができる。エッチングツールによる第3の寄与950は、以前に説明されるようなプロセスによって事前に特徴付け、データベース(例えば、データベース670)から得ることができ、その上、エッチングツールによる第3の寄与950はエッチングツールのエッチングチャンバに特有のものであり得るため、エッチングで使用されるエッチングツール(例えば、エッチングツール640)のエッチングチャンバ(例えば、エッチングチャンバ641又はエッチングチャンバ642)に関連する特有のものであり得、特定の基板に特有ではないものであり得る(従って、パターニングプロセスの基板にわたって使用することができる)。
[0145] 実施形態では、1つ又は複数の処理装置による第4の寄与1035は、欠陥又は他のエラー予測が実行される1つ又は複数の基板に特有である。実施形態では、第4の寄与1035は、リソグラフィ装置に関連する1つ又は複数の変数であり、予測が実行される1つ又は複数の特定の基板に特有である。例えば、基板に特有のリソグラフィ装置の1つ又は複数の変数は、これらに限定されないが、リソグラフィ装置の基板ステージの動きのMSD、リソグラフィ装置の基板ステージの動きのMA及び/又はフォーカスのうちの1つ又は複数を含み得る。実施形態では、第4の寄与1035は、堆積ツールに関連する1つ又は複数の変数であり、予測が実行される1つ又は複数の特定の基板に特有である。例えば、堆積ツールの1つ又は複数の変数は、厚さであり得る。
[0146] 手順1040では、考慮中の特定の1つ又は複数の基板に対する特性(又は複数の特性)1030の1つ又は複数の値が閾値を交差するか又は満たすかどうかが判断される。閾値を交差しないか又は満たさない場合は、手順1050において、欠陥又は他のエラーが1つ又は複数の基板上に生成されるとは予測されない。次いで、方法は、手順1070で終了する。そうでない場合は、手順1060において、欠陥又は他のエラーが1つ又は複数の基板上に生成されると予測される。1065では、いくつかのオプションが可能である。例えば、1つ又は複数の基板が未だ処理されている場合は、欠陥又は他のエラーが予測される1つ又は複数の基板を処分するという信号、1つ又は複数の基板を再加工するという信号などを提供することができる。それに加えて又はその代替として、修正情報1065は、推定された特性に基づいて1つ又は複数の処理装置のうちの1つ又は複数を調整するために作成することができる。例えば、1つ又は複数の基板が未だ処理されている場合は、リソグラフィ後装置に対する修正情報を作成することができ、第4の寄与1035は、例えば、リソグラフィ装置に関連する。さらなる例として、修正情報は、潜在的な欠陥又は他のエラーを改善するように後続の基板を処理するために作成することができる。実施形態では、修正情報1065は、1つ又は複数の処理装置の1つ又は複数の変数を調整するために作成することができる。例えば、1つ又は複数の変数は、堆積ツールの堆積レート及び/又は堆積ツールの動作時間など、堆積ツール(例えば、堆積ツール610)の1つ又は複数の堆積変数を含み得る。例えば、1つ又は複数の変数は、リソグラフィ装置(例えば、リソグラフィ装置630)のドーズ及び/又はフォーカスなど、リソグラフィ装置(例えば、リソグラフィ装置630)の1つ又は複数のリソグラフィ変数を含み得る。別の例では、1つ又は複数の変数は、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ及び/又はエッチングツールの動作温度など、エッチングツール(例えば、エッチングツール640)の1つ又は複数のエッチング変数を含み得る。次いで、方法は、手順1070で終了する。
[0147] 図11を参照すると、基板上の欠陥又は他のエラーを予測するための方法の例示的なフローが描写されている。示されるように、1つ又は複数の処理装置によって処理される1つ又は複数の基板に与えられる特性は、1つ又は複数の処理装置の1つ又は複数のプロセス変数の第1の群1105による特性1130への第1の寄与1110と、1つ又は複数の処理装置の1つ又は複数のプロセス変数の第2の群1120による特性1130への第2の寄与1125とを組み合わせることによって推定される。具体的には、1つ又は複数のプロセス変数の第1の群1105による第1の寄与1110は、欠陥又は他のエラーが予測されている1つ又は複数の基板に特有ではないものであり得る。従って、第1の寄与1110は、1つ又は複数のプロセス変数の第1の群に基づいて事前に特徴付け、データベース(例えば、データベース670)から得ることができる。上記で論じられるものと同様に、寄与1110は、ある特定の1つ又は複数の処理装置及び/又はそのコンポーネント(例えば、エッチングチャンバ)に特有のものであり得る。
[0148] 1つ又は複数のプロセス変数の第1の群1105は、堆積ツールの堆積レート及び/又は堆積ツールの動作時間など、堆積ツールの1つ又は複数の堆積変数を含み得る。それに加えて、1つ又は複数のプロセス変数の第1の群1105は、基板に特有ではないリソグラフィ装置に関連する1つ又は複数の変数を含み得る。例えば、1つ又は複数の変数は、これらに限定されないが、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化及び/又は高周波レーザ波長変化のうちの1つ又は複数を含み得る。さらに、1つ又は複数のプロセス変数の第1の群1105は、エッチングツール(具体的には、エッチングツールのエッチングチャンバ)のエッチングレート、エッチングツール(具体的には、エッチングツールのエッチングチャンバ)のエッチングタイプ及び/又はエッチングツール(具体的には、エッチングツールのエッチングチャンバ)の動作温度など、エッチングツール(例えば、エッチングツール640)の1つ又は複数のエッチング変数を含み得る。
[0149] 実施形態では、1つ又は複数の処理装置の1つ又は複数のプロセス変数の第2の群1120は、考慮中の特定の1つ又は複数の基板に特有のリソグラフィ装置に関連する1つ又は複数の変数を含み得る。例えば、1つ又は複数の変数は、これらに限定されないが、リソグラフィ装置の基板ステージの動きのMSD、リソグラフィ装置の基板ステージの動きのMA及び/又はフォーカスのうちの1つ又は複数を含み得る。実施形態では、1つ又は複数の処理装置の1つ又は複数のプロセス変数の第2の群1120は、考慮中の特定の1つ又は複数の基板に特有の堆積ツールに関連する1つ又は複数の変数を含み得る。例えば、1つ又は複数の変数は、厚さを含み得る。
[0150] 1140では、推定された特性(又は複数の特性)1130が閾値を交差するか又は満たすかどうかが判断される。閾値を交差するか又は満たす場合は、1150において、欠陥又は他のエラーが基板上に生成されるとは予測されない。次いで、方法は、1170で終了する。そうでない場合は、1160において、欠陥又は他のエラーが1基板上に生成されると予測される。図10に対して上記で説明されるものと同様のステップを提供することができる。例えば、修正情報1165は、推定された特性1130に基づいて第1の群及び/又は第2の群からの1つ又は複数のプロセス変数を調整するために作成することができる。次いで、方法は、1170で終了する。
[0151] 図12は、本開示の実施形態による、エッチング済みの基板のクリティカルディメンション均一性の観点から第1の寄与1110を決定するための方法の例示的な図を描写している。示されるように、エッチング済みの基板(例えば、最終的なエッチング済みの基板785)のクリティカルディメンション均一性への寄与1110は、エッチング済みの基板の測定されたクリティカルディメンション均一性1220から、リソグラフィ装置(例えば、リソグラフィ装置630)によるエッチング済みの基板のクリティカルディメンション均一性への寄与1260及び堆積ツール(例えば、堆積ツール610)によるエッチング済みの基板のクリティカルディメンション均一性への寄与1250を除去することによって得ることができる。理解されるように、寄与1110は、多数の基板を評価することによって決定することができる。
[0152] 上記で述べられるように、実施形態では、堆積ツールによる寄与1250は、堆積ツールによって基板に付着させた堆積層の厚さに基づき得る。実施形態では、堆積ツールによる寄与1250は、事前に特徴付け、データベース(例えば、データベース670)から得ることができ、その上、堆積のために使用される堆積ツール(例えば、堆積ツール610)の堆積チャンバ(例えば、堆積チャンバ611又は堆積チャンバ612)に特有のものであり得る。上記で説明されるように、実施形態では、寄与1250は、エッチング済みの基板の測定されたクリティカルディメンション均一性1220と関連付けられた堆積に対する特定の条件(例えば、堆積ツールの設定パラメータ及び/又は堆積ツールによって測定若しくは別の方法で提供されたデータ)を使用して数学モデリングによって決定することができる。
[0153] 実施形態では、リソグラフィ装置による寄与1260は、リソグラフィ装置に関連する変数の一群から導出することができる。例えば、リソグラフィ装置に関連する変数の一群は、フォーカス及び基板の法線方向の基板の動きの移動標準偏差を含み得る。それに従って、リソグラフィ装置による寄与1260は、リソグラフィ装置のフォーカスから導出されるエッチング済みの基板のクリティカルディメンション均一性への第1の寄与1230と、基板の法線方向の基板の動きの移動標準偏差から導出されるエッチング済みの基板のクリティカルディメンション均一性への第2の寄与1240とを含み得る。実施形態では、リソグラフィ装置に関連する変数の一群は、1つ又は複数の他の又は追加の変数を含み得る。上記で説明されるように、実施形態では、寄与1260は、エッチング済みの基板の測定されたクリティカルディメンション均一性1220と関連付けられたリソグラフィ装置によってパターン転写するための特定の条件(例えば、リソグラフィ装置の設定パラメータ及び/又はリソグラフィ装置によって測定若しくは別の方法で提供されたデータ)を使用して数学モデリングによって決定することができる。
[0154] 従って、寄与1110は、1つ又は複数の処理装置の寄与1210の関数Fによって得ることができる。実施形態では、寄与1110は、1つ又は複数の処理装置(例えば、堆積ツール、リソグラフィ装置及び/又はエッチングツール)のフィンガープリントであり得るか又はフィンガープリントに関連し得る。実施形態では、関数Fは、多数の基板に対するデータを使用する寄与1210のグローバルフィット関数であり得る(例えば、上記で述べられる方程式(1)又は(2)と同様の、例えば、数学モデルを使用してフィットさせる)。実施形態では、寄与1110は、エッチング済みの基板のクリティカルディメンション均一性1220に関する1つ又は複数の処理装置の補正不可能な偏差又はエラーを示し得る。実施形態では、寄与1110は、データベース(例えば、データベース670)に格納することができる。いくつかの例では、寄与1110(又は他の寄与)は、エッチング済みの基板(例えば、最終的なエッチング済みの基板785)にわたる1つ又は複数のパターンのクリティカルディメンションの平均値のパーセンテージに変換し、次いで、データベース(例えば、データベース670)に格納することができる。
[0155] 図13は、本開示の実施形態による、1つ又は複数の基板上の欠陥又は他のエラーを予測するための方法の例示的な図を描写している。示されるように、エッチング済みの基板(例えば、最終的なエッチング済みの基板785)上のホットスポットの予測されたクリティカルディメンション均一性1310は、1つ又は複数の処理装置によるクリティカルディメンション均一性への寄与1320(寄与1110など、例えば、フィンガープリントの形態)と、1つ又は複数の基板に適用可能な測定及び/又はツールデータに基づくリソグラフィ装置によるクリティカルディメンション均一性への寄与1360と、1つ又は複数の基板に適用可能な測定及び/又はツールデータに基づく堆積ツールによるクリティカルディメンション均一性への寄与1350を組み合わせることによって推定される。
[0156] 実施形態では、堆積ツール(例えば、堆積ツール610)によるクリティカルディメンション均一性への寄与1350は、考慮中の1つ又は複数の基板上に堆積ツールによって付着させたエッチング可能層(例えば、堆積層)の厚さに基づいて特徴付けることができる。実施形態では、堆積ツールによる寄与1350は、堆積ツール及び/又はチャンバに対する数学モデルを使用して決定することができる。実施形態では、堆積ツールによる寄与1350は、1つ又は複数の基板に適用可能な測定データ(例えば、測定された厚さ)及び/又はツールデータ(例えば、設定パラメータ、ツール動作信号など)に基づいて決定することができる。
[0157] 実施形態では、リソグラフィ装置による寄与1360は、リソグラフィ装置に関連する変数の一群から導出することができる。例えば、リソグラフィ装置に関連する変数の一群は、フォーカス及び基板の法線方向の基板の動きの移動標準偏差を含み得る(ただし、さらなる又は異なる変数でもあり得る)。それに従って、リソグラフィ装置による寄与1360は、リソグラフィ装置のフォーカス1370から導出されるエッチング済みの基板のクリティカルディメンション均一性への第1の寄与1330と、基板の法線方向の基板の動きの移動標準偏差から導出されるエッチング済みの基板のクリティカルディメンション均一性への第2の寄与1340とを含み得る。具体的には、リソグラフィ装置のフォーカス1370は、考慮中の1つ又は複数の基板に特有ではない1つ又は複数の第1のフォーカス成分1380と、考慮中の1つ又は複数の基板に特有の1つ又は複数の第2のフォーカス成分1390とを組み合わせることによってモデル化することができる。実施形態では、1つ又は複数の第1のフォーカス成分1380は、これに限定されないが、リソグラフィ装置のフォーカスフィンガープリントを含み得る。実施形態では、1つ又は複数の第2のフォーカス成分1390は、これらに限定されないが、フォーカスに影響を及ぼすリソグラフィ装置のレベリング及び/又はサーボパラメータを含み得る。実施形態では、リソグラフィ装置の組み合わされた寄与1360は、例えば、図14に示されるような方法を使用して決定することができる。実施形態では、寄与1360は、リソグラフィ装置に対する数学モデルを使用して決定することができる。実施形態では、リソグラフィ装置による寄与1360は、1つ又は複数の基板に適用可能な測定データ(例えば、フォーカスに対する測定された高さ情報)及び/又はツールデータ(例えば、設定パラメータ、ツール動作信号など)に基づいて決定することができる。
[0158] 実施形態では、寄与1320(例えば、寄与1110の形態)は、図12で説明されるように決定することができる。寄与1320は、データベース(例えばデータベース670)から得ることができ、考慮中の1つ又は複数の基板を得る際に使用される1つ又は複数の処理装置に特有のもの(例えば、考慮中の1つ又は複数の基板をエッチングする際に使用されるエッチングツールのエッチングチャンバに特有のもの)であり得る。
[0159] エッチング済みの基板上のホットスポットのクリティカルディメンション均一性1310が推定された後、推定されたクリティカルディメンション均一性1310に基づいて、ホットスポットにおいて欠陥又は他のエラーが生成されるかどうかを判断することができる。例えば、推定されたクリティカルディメンション均一性1310が閾値を満たすか又は交差する場合は、ホットスポットにおいて欠陥又は他のエラーが生成されることはないと判断することができる。そうでない場合は、ホットスポットにおいて欠陥又は他のエラーが生成されると判断することができる。次いで、ユーザ信号、基板の再加工/処分、修正情報の作成などの適切な行動を取ることができる。
[0160] 図14は、基板上のCDへの組み合わされた寄与をモデル化する例を概略的に描写し、寄与は、フォーカス(F)1410、基板の法線方向の基板の動きの移動標準偏差(MSD)1420及び基板に平行な方向の基板の動きの移動標準偏差(MSD)1430など、複数のモデル化可能なプロセス変数の変化(例えば、エラー)である。従って、この例では、フォーカス(F)1410によるCDへの寄与の例は、寄与1415として示されており、移動標準偏差(MSD)1420によるCDへの寄与の例は、寄与1425として示されており、移動標準偏差(MSD)1430によるCDへの寄与の例は、寄与1435として示されている。次いで、これらの寄与の各々は、共に組み合わされる(1445)。例では、組み合わされた寄与は、CD(x,y)=a CD(F)(x,y)+b CD(MSD)(x,y)+c CD(MSD)(x,y)+...として表現されている。実施形態では、寄与1415、1425、1435はそれぞれ、フォーカス(F)1410、移動標準偏差(MSD)1420及び移動標準偏差(MSD)1430分布であり得、その事例では、CDモデルは、それらをCD分布に組み合わせるために使用されることになる。その上、ここでは示されていないクロス項(F×MSDの関数としてのCDなど)が存在し得る。CDの絶対値を得るため、CDの公称値又はシミュレーションされた値は、寄与と組み合わせることができる。a、b、cなどの係数は、モデル化可能なプロセス変数又はそれらの関数に対する計測データCDの感度である。MSDは、リソグラフィ装置におけるパターン転写の間の基板の位置決めエラーの移動標準偏差(MSD)であり、従って、位置決めエラーの高周波部分を表す。この例では、寄与は、基板にわたるものであるが、実施形態では、寄与のうちの1つ又は複数は、1つのダイ/フィールド当たりのものであり得る(次いで、その寄与は、例えば、その例の各々における適用可能な条件に応じて、基板にわたって繰り返すことができる)。寄与(又はその絶対値への変換)は、基板/ダイ/フィールドにわたって空間的に定義することができるため、フィンガープリントとして特徴付けることができる。図14の方法は、リソグラフィ装置による基板の特性への寄与のモデル化に限定されないことに留意すべきである。図14の方法は、製造プロセスにおける1つ又は複数の処理装置に関連する任意の1つ又は複数の変数による処理済みの基板の特性への組み合わされた寄与をモデル化するために使用することができる。1つ又は複数の変数は、1つ又は複数のリソグラフィ変数、1つ又は複数の堆積変数、1つ又は複数のトラック変数、1つ又は複数のエッチング変数、1つ又は複数の平坦化変数などを含み得る。
[0161] 実施形態では、本明細書で説明される寄与は、同じ処理装置内でさえも、パターニングプロセスの異なる特定の部分に特有のものであり得る。従って、処理装置又はコンポーネントに特有のものは、そのような特異性も包含する。
[0162] 実施形態では、本明細書で説明される寄与は、望ましくは、パターニングプロセス設定ごとに決定される。従って、実施形態では、寄与は、デバイスパターン、デバイス層などの特定の組合せに対して決定される。実施形態では、本明細書のデータは、パターニングプロセスのデバイスパターンと関連付けられた計測ターゲットを使用して測定されたデータに基づいて発展される。実施形態では、本明細書のデータは、デバイスパターン自体のものである。
[0163] 実施形態では、本明細書で説明される寄与は、1つ又は複数の処理装置の性能をモニタする際に使用される。すなわち、現在の測定データと組み合わされた寄与は、1つ又は複数の処理装置の現在の性能を決定する(例えば、ドリフトが存在するかどうかを識別する)ために使用することができる。組合せからのデータの分析に応答して、較正/再較正、修正情報の作成(例えば、フィードフォワード又はフィードバックアプリケーションのための)などの1つ又は複数の行動を取ることができる。
[0164] 実施形態では、寄与を決定するため、1つ又は複数のデバイスパターンでパターン形成された1つ又は複数の基板が使用される。実施形態では、寄与を決定するため、1つ又は複数のパターニング済みのモニタ基板が使用される(例えば、パターンは、デバイスパターン又はデバイスパターンと相関性がある別のパターンであり得る)。
[0165] 実施形態では、リソグラフィ装置は、1つ又は複数のモニタ基板を使用して、リソグラフィベースライナによる露光後に、モニタ及び/又は制御される。例えば、モニタ基板の1つ又は複数の特性(例えば、クリティカルディメンション)は、リソグラフィ基板の1つ又は複数の変数(例えば、フォーカス、ドーズなど)の尺度を導出するために測定することができる。1つ又は複数の特性の測定値及び/又は導出変数がそのターゲット値とは異なる場合(例えば、ベースライン設定からなど、閾値の範囲外)は、リソグラフィベースライナは、リソグラフィ装置の1つ又は複数の変数(例えば、ドーズ、フォーカスなど)を調整することができる。このように、リソグラフィ装置は、例えば、動作のベースラインからのドリフトに対して、モニタ及び/又は制御することができる。
[0166] 従って、実施形態では、整合(例えば、異なるエッチャ、異なる堆積チャンバなどの間の整合)、安定性制御(例えば、ドリフトのモニタなど)及び/又はオフセット/フィンガープリントのモニタリングを可能にするために、1つ又は複数の非リソグラフィ処理装置(例えば、エッチャ、堆積チャンバ、平坦化ツールなど)に対するベースライナを提供することができる。従って、実施形態では、エッチング後のCD(例えば、光学検査装置を使用して計測ターゲットにおいて、例えば、電子ビーム検査を使用してクリティカルデバイス/ホットスポットなどの測定デバイスパターンにおいて)が測定され、次いで、1つ又は複数の処理装置に対する1つ又は複数のフィンガープリントが導出される(例えば、装置タイプごとに)。例えば、リソグラフィ装置フォーカス及びMSDフィンガープリント並びに膜厚フィンガープリント測定値は、例えば、エッチングツールのエッチングフィンガープリントを分離するために使用される。次いで、1つ又は複数のフィンガープリントは、予測及び制御を可能にするために(例えば、リソグラフィ装置ドーズ補正(例えば、モニタフィーチャ又はホットスポットの既知のドーズ感度に基づく)、エッチング補正(エッチングレート、温度変化(例えば、1つ若しくは複数のゾーンの温度の変化など)及び/又は膜厚変化を使用して、基板別の測定データと組み合わせることができる。
[0167] 実施形態では、1つ又は複数の処理装置によってパターニングプロセスに従って基板が処理された後に、ハードウェアコンピュータシステムによって、リソグラフィ装置による特性への寄与及び1つ又は複数のリソグラフィ前処理装置による特性への寄与を基板の特性の値から除去することによって、1つ又は複数の処理装置が基板の特性に与える寄与を決定することを含む方法が提供される。
[0168] 実施形態では、1つ又は複数の処理装置は、エッチングツールを含む。実施形態では、1つ又は複数のリソグラフィ前処理装置による特性への寄与は、堆積ツールによる特性への寄与を含む。実施形態では、堆積ツールによる寄与は、堆積ツールによって形成された基板のエッチング可能層の特性から導出される。実施形態では、エッチング可能層の特性は、エッチング可能層の厚さである。実施形態では、リソグラフィ装置による特性への寄与は、リソグラフィ装置に関連する1つ又は複数の変数の一群から導出される。実施形態では、1つ又は複数の第1の変数は、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される1つ又は複数を含む。実施形態では、方法は、1つ又は複数の処理装置による寄与を使用して、考慮中の1つ又は複数の基板の特性が閾値を満たすか又は交差するかどうかを判断することと、閾値に関連する判断に応答して、1つ又は複数のリソグラフィ前処理装置、リソグラフィ装置並びに/或いは1つ又は複数のリソグラフィ後処理装置を調整するために修正情報を作成して出力することとをさらに含む。実施形態では、修正情報は、1つ又は複数のリソグラフィ前処理装置、リソグラフィ装置並びに/或いは1つ又は複数のリソグラフィ後処理装置の変数を修正するために使用され、変数は、堆積ツールの堆積変数、リソグラフィ装置のリソグラフィ変数及び/又はエッチングツールのエッチング変数を含む。実施形態では、変数は、堆積ツールの堆積変数を含み、堆積変数は、堆積ツールの堆積レート又は堆積ツールの動作時間を含む。実施形態では、変数は、リソグラフィ装置のリソグラフィ変数を含み、リソグラフィ変数は、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化を含む。実施形態では、変数は、エッチングツールのエッチング変数を含み、エッチング変数は、エッチングツールのエッチングタイプ及び/又はエッチングツールのエッチングレートを含む。実施形態では、修正情報を作成することは、リソグラフィ後処理装置の第1のコンポーネント及び/又は第2のコンポーネントの変数を調整するために修正情報を作成することを含む。実施形態では、リソグラフィ後処理装置は、エッチングツールであり、第1のコンポーネントは、エッチングツールの第1のエッチングチャンバであり、第2のコンポーネントは、エッチングツールの第2のエッチングチャンバであり、第1のコンポーネント及び/又は第2のコンポーネントの変数は、エッチングツールの第1のエッチングチャンバ及び/又はエッチングツールの第2のエッチングチャンバのエッチングレート、エッチングツールの第1のエッチングチャンバ及び/又はエッチングツールの第2のエッチングチャンバのエッチングタイプ、或いは、エッチングツールの第1のエッチングチャンバ及び/又はエッチングツールの第2のエッチングチャンバの動作温度を含む。実施形態では、1つ又は複数の基板は、1つ又は複数の処理装置の第1のチャンバによって処理されており、修正情報は、1つ又は複数の処理装置の第1のチャンバによって処理された1つ又は複数の基板に対する特性の1つ又は複数の値、及び、第2のチャンバによって処理された1つ又は複数の基板に対する特性の1つ又は複数の値をより厳密に整合させる。実施形態では、基板の特性の値は、計測装置で基板上の1つ又は複数の計測ターゲットを測定することによって得られる。実施形態では、基板の特性は、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、底面傾斜、フィーチャ高さ、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む。実施形態では、基板の特性は、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む。
[0169] 実施形態では、ハードウェアコンピュータシステムによって、パターニングプロセスで使用される1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第1の群の基板に特有の寄与と、1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第2の群の基板に特有ではない寄与とを組み合わせることによって、パターニングプロセスによって処理される基板に与えられる特性を推定することであって、第1の群及び/又は第2の群からの少なくとも1つのプロセス変数が、リソグラフィ装置の上流にある処理装置に関連する、推定することを含む方法が提供される。
[0170] 実施形態では、方法は、推定された特性に基づいて、欠陥又は他のエラーが基板上に生成されるかどうかを判断することをさらに含む。実施形態では、方法は、推定された特性に基づいて、第1の群及び/又は第2の群からの1つ又は複数のプロセス変数を調整するために修正情報を作成することをさらに含む。実施形態では、1つ又は複数のプロセス変数の第2の群は、堆積ツール、リソグラフィ装置及び/又はエッチングツールに関連する1つ又は複数の変数を含む。実施形態では、1つ又は複数のプロセス変数の第2の群は、堆積ツールの堆積レート又は堆積ツールの動作時間を含む。実施形態では、1つ又は複数のプロセス変数の第2の群は、リソグラフィ装置による照明に関連する1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される1つ又は複数の変数を含む。実施形態では、1つ又は複数のプロセス変数の第2の群は、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ又はエッチングツールの動作温度を含む。実施形態では、1つ又は複数のプロセス変数の第1の群は、リソグラフィ装置に関連する1つ又は複数の変数を含む。実施形態では、リソグラフィ装置に関連する1つ又は複数の変数は、リソグラフィ装置の基板ステージの動きの移動標準偏差又はリソグラフィ装置の基板ステージの動きの移動平均を含む。実施形態では、基板の特性は、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む。実施形態では、基板の特性は、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む。
[0171] 実施形態では、ハードウェアコンピュータシステムによって、1つ又は複数の処理装置による特性への1つ又は複数の寄与を特性の1つ又は複数の値と組み合わせることによって、1つ又は複数の処理装置によって処理される基板に与えられる特性を推定することであって、1つ又は複数の処理装置の少なくとも1つが、リソグラフィ装置の上流にある、推定することを含む方法が提供される。
[0172] 実施形態では、方法は、推定された特性に基づいて、欠陥が基板上に生成されるかどうかを判断することをさらに含む。実施形態では、1つ又は複数の処理装置は、堆積ツール、リソグラフィ装置及び/又はエッチングツールから選択される1つ又は複数を含む。実施形態では、1つ又は複数の処理装置による特性への1つ又は複数の寄与は、堆積ツールによる特性への寄与を含む。実施形態では、堆積ツールによる特性への寄与は、堆積ツールによって基板に形成されたエッチング可能層の特性から導出される。実施形態では、エッチング可能層の特性は、エッチング可能層の厚さである。実施形態では、1つ又は複数の処理装置による特性への1つ又は複数の寄与は、リソグラフィ装置による特性への寄与を含む。実施形態では、リソグラフィ装置による特性への寄与は、リソグラフィ装置に関連する1つ又は複数の変数の一群から導出される。実施形態では、リソグラフィ装置に関連する1つ又は複数の変数は、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される1つ又は複数の変数を含む。実施形態では、1つ又は複数の処理装置による特性への1つ又は複数の寄与は、エッチングツールによる特性への寄与を含む。実施形態では、方法は、推定された特性に基づいて、1つ又は複数の処理装置のうちの1つ又は複数を調整するために修正情報を作成して出力することをさらに含む。実施形態では、修正情報は、1つ又は複数の処理装置のうちの1つ又は複数の1つ又は複数の変数を修正するために使用される。実施形態では、1つ又は複数の変数は、堆積ツールの堆積変数、リソグラフィ装置のリソグラフィ変数及び/又はエッチングツールのエッチング変数を含む。実施形態では、1つ又は複数の変数は、堆積ツールの堆積変数を含み、堆積変数は、堆積ツールの堆積レート又は堆積ツールの動作時間を含む。実施形態では、1つ又は複数の変数は、リソグラフィ装置のリソグラフィ変数を含み、リソグラフィ変数は、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化を含む。実施形態では、1つ又は複数の変数は、エッチングツールのエッチング変数を含み、エッチング変数は、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ又はエッチングツールの動作温度を含む。実施形態では、基板の特性の1つ又は複数の値は、1つ又は複数の処理装置のうちの1つ又は複数からの測定値又は信号から決定される。実施形態では、基板の特性は、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む。実施形態では、基板の特性は、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む。
[0173] 実施形態では、1つ又は複数の第1の処理装置による基板の特性への1つ又は複数の寄与を決定することと、ハードウェアコンピュータシステムによって、1つ又は複数の寄与に少なくとも部分的に基づいて、1つ又は複数の第1の処理装置の下流にある1つ又は複数の第2の処理装置を調整するために修正情報を作成することとを含む方法が提供される。
[0174] 実施形態では、1つ又は複数の第1の処理装置の少なくとも1つは、リソグラフィ装置の上流にある。実施形態では、1つ又は複数の第1の処理装置は、堆積ツールを含む。実施形態では、1つ又は複数の第2の処理装置は、リソグラフィ装置及び/又はエッチングツールを含む。実施形態では、1つ又は複数の第1の処理装置による特性への1つ又は複数の寄与は、堆積ツールによる特性への寄与を含む。実施形態では、堆積ツールによる特性への寄与は、堆積ツールによって基板に形成されたエッチング可能層の特性から導出される。実施形態では、エッチング可能層の特性は、エッチング可能層の厚さである。実施形態では、修正情報は、1つ又は複数の第2の処理装置の変数を修正するために使用される。実施形態では、変数は、リソグラフィ装置のリソグラフィ変数を含む。実施形態では、変数は、エッチングツールのエッチング変数を含む。実施形態では、基板の特性は、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む。実施形態では、基板の特性は、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む。
[0175] この出願における論考は、基板上に形成されているデバイスの1つ又は複数の層間のオーバーレイを測定するように設計された計測プロセス及び計測ターゲットに関連する実施形態を考慮するが、本明細書の実施形態は、アライメント(例えば、パターニングデバイスと基板との間)を測定するためのプロセス及びターゲット、クリティカルディメンションを測定するためのプロセス及びターゲットなどの他の計測プロセス及びターゲットに等しく適用可能である。それに従って、本明細書におけるオーバーレイ計測ターゲット、オーバーレイデータなどへの言及は、他の種類の計測プロセス及びターゲットを可能にするために適切に修正されるものとして考慮すべきである。
[0176] 図15を参照すると、コンピュータシステム1500が示されている。コンピュータシステム1500は、情報を伝達するためのバス1502又は他の通信機構と、情報を処理するためにバス1502と結合されたプロセッサ1504(又は複数のプロセッサ1504、1505)とを含む。また、コンピュータシステム1500は、情報やプロセッサ1504によって実行される予定の命令を格納するためにバス1502と結合されたメインメモリ1506(ランダムアクセスメモリ(RAM)又は他の動的記憶装置など)も含む。また、メインメモリ1506は、プロセッサ1504によって実行される予定の命令を実行する間に一時的な変数又は他の中間情報を格納するためにも使用することができる。コンピュータシステム1500は、静的情報やプロセッサ1504用の命令を格納するためにバス1502と結合された読み取り専用メモリ(ROM)1508又は他の静的記憶装置をさらに含む。磁気ディスク又は光ディスクなどの記憶装置1510が提供され、情報及び命令を格納するためにバス1502と結合される。
[0177] コンピュータシステム1500は、バス1502を介して、コンピュータユーザに情報を表示するためのブラウン管(CRT)、フラットパネル又はタッチパネルディスプレイなどのディスプレイ1512に結合することができる。入力デバイス1514(英数字及び他のキーを含む)は、情報及びコマンド選択をプロセッサ1504に伝達するためにバス1502に結合される。別のタイプのユーザ入力デバイスは、方向情報及びコマンド選択をプロセッサ1504に伝達するため及びディスプレイ1512上でカーソルの動きを制御するためのカーソル制御1516(マウス、トラックボール又はカーソル方向キーなど)である。この入力デバイスは、典型的には、デバイスが平面における位置を指定できるようにする2軸(第1の軸(例えば、x)及び第2の軸(例えば、y))の2自由度を有する。また、入力デバイスとして、タッチパネル(スクリーン)ディスプレイを使用することもできる。
[0178] コンピュータシステム1500は、メインメモリ1506に含まれる1つ又は複数の命令の1つ又は複数のシーケンスをプロセッサ1504が実行することに応答して、図6のソフトウェアアプリケーション660として機能するのに適したものであり得る。そのような命令は、記憶装置1510などの別のコンピュータ可読媒体からメインメモリ1506に読み込むことができる。メインメモリ1506に含まれる命令のシーケンスの実行により、プロセッサ1504は、本明細書で説明されるように、ソフトウェアアプリケーション660によって実装されるプロセスを実行する。また、メインメモリ1506に含まれる命令のシーケンスを実行するために、マルチプロセッシング構成における1つ又は複数のプロセッサを採用することもできる。代替の実施形態では、ソフトウェア命令の代わりに又はソフトウェア命令と組み合わせて、配線回路を使用することができる。従って、実施形態は、ハードウェア回路とソフトウェアのいかなる特定の組合せにも限定されない。
[0179] 本明細書で使用される「コンピュータ可読媒体」という用語は、実行のためのプロセッサ1504への命令の提供に関与するいかなる媒体も指す。そのような媒体は、多くの形態を取ることができ、これらに限定されないが、不揮発性媒体、揮発性媒体及び伝送媒体を含む。不揮発性媒体は、例えば、記憶装置1510などの光又は磁気ディスクを含む。揮発性媒体は、メインメモリ1506などのダイナミックメモリを含む。伝送媒体は、バス1502を含むワイヤを含む同軸ケーブル、銅線及び光ファイバを含む。また、伝送媒体は、高周波(RF)及び赤外線(IR)データ通信の間に生成されるものなどの音響又は光波の形態も取ることができる。コンピュータ可読媒体の共通の形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、他の任意の磁気媒体、CD−ROM、DVD、他の任意の光媒体、パンチカード、紙テープ、孔パターンを有する他の任意の物理媒体、RAM、PROM、EPROM、FLASH−EPROM、他の任意のメモリチップ若しくはカートリッジ、以下で説明されるような搬送波、又は、コンピュータが読み取ることができる他の任意の媒体を含む。
[0180] コンピュータ可読媒体の様々な形態は、実行のためのプロセッサ1504への1つ又は複数の命令の1つ又は複数のシーケンスの保持に関与し得る。例えば、命令は、最初は、リモートコンピュータの磁気ディスク上に位置し得る。リモートコンピュータは、そのダイナミックメモリに命令をロードし、モデムを使用して電話回線上で命令を送信することができる。コンピュータシステム1500にローカル接続されたモデムは、電話回線上でデータを受信し、赤外線送信機を使用してデータを赤外線信号に変換することができる。バス1502に結合された赤外線検出器は、赤外線信号で運ばれるデータを受信し、バス1502にデータを置くことができる。バス1502は、メインメモリ1506にデータを運び、メインメモリ1506から、プロセッサ1504は、命令を回収して実行する。メインメモリ1506によって受信された命令は、任意選択により、プロセッサ1504による実行の前又は実行の後に、記憶装置1510に格納することができる。
[0181] また、コンピュータシステム1500は、バス1502に結合された通信インタフェース1518も含み得る。通信インタフェース1518は、ネットワークリンク1520への双方向データ通信結合を提供し、ネットワークリンク1520は、ローカルネットワーク1522に接続される。例えば、通信インタフェース1518は、対応するタイプの電話回線へのデータ通信接続を提供するためのサービス総合デジタル網(ISDN)カード又はモデムであり得る。別の例として、通信インタフェース1518は、互換性を有するLANへのデータ通信接続を提供するためのローカルエリアネットワーク(LAN)カードであり得る。また、ワイヤレスリンクも実装することができる。そのようないかなる実装形態においても、通信インタフェース1518は、様々なタイプの情報を表すデジタルデータストリームを運ぶ電気、電磁又は光信号を送信及び受信する。
[0182] ネットワークリンク1520は、典型的には、1つ又は複数のネットワークを通じて、他のデータデバイスへのデータ通信を提供する。例えば、ネットワークリンク1520は、ローカルネットワーク1522を通じて、ホストコンピュータ1524又はインターネットサービスプロバイダ(ISP)1526によって操作されたデータ機器への接続を提供することができる。これを受けて、ISP 1526は、現在では一般的に「インターネット」1528と呼ばれるワールドワイドパケットデータ通信を通じてデータ通信サービスを提供する。ローカルネットワーク1522及びインターネット1528は両方とも、デジタルデータストリームを運ぶ電気、電磁又は光信号を使用する。様々なネットワークを通じる信号及び通信インタフェース1518を通じるネットワークリンク1520上の信号(コンピュータシステム1500に及びコンピュータシステム1500からデジタルデータを運ぶ)は、情報を輸送する搬送波の例示的な形態である。
[0183] コンピュータシステム1500は、ネットワーク、ネットワークリンク1520及び通信インタフェース1518を通じて、メッセージの送信及びデータの受信(プログラムコードを含む)を行うことができる。インターネットの例では、サーバ1530は、インターネット1528、ISP 1526、ローカルネットワーク1522及び通信インタフェース1518を通じて、アプリケーションプログラム用の要求コードを送信することができる。1つ又は複数の実施形態によれば、そのようなダウンロードされたアプリケーションの1つは、例えば、本明細書で開示されるような方法に備える。受信コードは、受信された際にプロセッサ1504によって実行すること及び/又は後に実行するために記憶装置1510若しくは他の不揮発性記憶装置に格納することができる。このように、コンピュータシステム1500は、搬送波の形態のアプリケーションコードを得ることができる。
[0184] 本開示の実施形態は、本明細書で開示されるような方法について説明する機械可読命令の1つ若しくは複数のシーケンスを含むコンピュータプログラム、又は、そのようなコンピュータプログラムが格納されるデータ記憶媒体(例えば、半導体メモリ、磁気若しくは光ディスク)の形態を取ることができる。さらに、機械可読命令は、2つ以上のコンピュータプログラムにおいて具体化することができる。2つ以上のコンピュータプログラムは、1つ又は複数の異なるメモリ及び/又はデータ記憶媒体上に格納することができる。
[0185] 本明細書で説明されるコントローラの各々又は組合せは何れも、リソグラフィ装置の少なくとも1つのコンポーネント内に位置する1つ又は複数のコンピュータプロセッサによって1つ又は複数のコンピュータプログラムが読み取られた際に動作可能である。コントローラの各々又は組合せは、信号の受信、処理及び送信を行うための任意の適切な構成を有し得る。1つ又は複数のプロセッサは、コントローラの少なくとも1つと通信するように構成される。例えば、各コントローラは、上記で説明される方法のための機械可読命令を含むコンピュータプログラムを実行するための1つ又は複数のプロセッサを含み得る。コントローラは、そのようなコンピュータプログラムを格納するためのデータ記憶媒体及び/又はそのような媒体を受け入れるためのハードウェアを含み得る。従って、コントローラは、1つ又は複数のコンピュータプログラムの機械可読命令に従って動作することができる。このテキストでは、ICの製造における検査装置の使用への具体的な言及が行われているが、本明細書で説明される検査装置は、集積光学系、磁区メモリの誘導及び検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッドなどの製造などの他の応用を有し得ることを理解すべきである。当業者であれば、そのような代替の応用の文脈では、本明細書における「ウェーハ」又は「ダイ」という用語の使用は、「基板」又は「ターゲット部分」というより一般的な用語のそれぞれと同義であると見なすことができることが理解されよう。本明細書で言及される基板は、例えば、トラック(典型的には、レジストの層を基板に塗布し、露光済みのレジストを現像するツール)、計測ツール及び/又は検査ツールにおいて、露光前又は露光後に処理することができる。適用可能な場合は、本明細書の本開示は、そのような及び他の基板処理ツールに適用することができる。さらに、基板は、例えば、多層ICを作成するために何回も処理することができ、その結果、本明細書で使用される基板という用語は、複数の処理済みの層を既に含んでいる基板も指し得る。
[0186] 本発明のさらなる実施形態を以下の番号付き条項のリストで開示する。
1.1つ又は複数の処理装置によってパターニングプロセスに従って基板が処理された後に、ハードウェアコンピュータシステムによって、リソグラフィ装置による特性への寄与及び1つ又は複数のリソグラフィ前処理装置による特性への寄与を基板の特性の値から除去することによって、1つ又は複数の処理装置が基板の特性に与える寄与を決定することを含む方法。
2.1つ又は複数の処理装置が、エッチングツールを含む、条項1に記載の方法。
3.1つ又は複数のリソグラフィ前処理装置による特性への寄与が、堆積ツールによる特性への寄与を含む、条項1又は2に記載の方法。
4.堆積ツールによる寄与が、堆積ツールによって形成された基板のエッチング可能層の特性から導出される、条項3に記載の方法。
5.エッチング可能層の特性が、エッチング可能層の厚さである、条項4に記載の方法。
6.リソグラフィ装置による特性への寄与が、リソグラフィ装置に関連する1つ又は複数の変数の一群から導出される、条項1〜5の何れか一項に記載の方法。
7.1つ又は複数の第1の変数が、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される1つ又は複数を含む、条項6に記載の方法。
8.1つ又は複数の処理装置による寄与を使用して、考慮中の1つ又は複数の基板の特性が閾値を満たすか又は交差するかどうかを判断することと、
閾値に関連する判断に応答して、1つ又は複数のリソグラフィ前処理装置、リソグラフィ装置並びに/或いは1つ又は複数のリソグラフィ後処理装置を調整するために修正情報を作成して出力することと
をさらに含む、条項1〜7の何れか一項に記載の方法。
9.修正情報が、1つ又は複数のリソグラフィ前処理装置、リソグラフィ装置並びに/或いは1つ又は複数のリソグラフィ後処理装置の変数を修正するために使用され、変数が、堆積ツールの堆積変数、リソグラフィ装置のリソグラフィ変数及び/又はエッチングツールのエッチング変数を含む、条項8に記載の方法。
10.変数が、堆積ツールの堆積変数を含み、堆積変数が、堆積ツールの堆積レート又は堆積ツールの動作時間を含む、条項9に記載の方法。
11.変数が、リソグラフィ装置のリソグラフィ変数を含み、リソグラフィ変数が、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化を含む、条項9又は10に記載の方法。
12.変数が、エッチングツールのエッチング変数を含み、エッチング変数が、エッチングツールのエッチングタイプ及び/又はエッチングツールのエッチングレートを含む、条項9〜11の何れか一項に記載の方法。
13.修正情報を作成することが、リソグラフィ後処理装置の第1のコンポーネント及び/又は第2のコンポーネントの変数を調整するために修正情報を作成することを含む、条項8〜12の何れか一項に記載の方法。
14.リソグラフィ後処理装置が、エッチングツールであり、第1のコンポーネントが、エッチングツールの第1のエッチングチャンバであり、第2のコンポーネントが、エッチングツールの第2のエッチングチャンバであり、第1のコンポーネント及び/又は第2のコンポーネントの変数が、エッチングツールの第1のエッチングチャンバ及び/又はエッチングツールの第2のエッチングチャンバのエッチングレート、エッチングツールの第1のエッチングチャンバ及び/又はエッチングツールの第2のエッチングチャンバのエッチングタイプ、或いは、エッチングツールの第1のエッチングチャンバ及び/又はエッチングツールの第2のエッチングチャンバの動作温度を含む、条項13に記載の方法。
15.1つ又は複数の基板が、1つ又は複数の処理装置の第1のチャンバによって処理されており、修正情報が、1つ又は複数の処理装置の第1のチャンバによって処理された1つ又は複数の基板に対する特性の1つ又は複数の値、及び、第2のチャンバによって処理された1つ又は複数の基板に対する特性の1つ又は複数の値をより厳密に整合させる、条項8〜14の何れか一項に記載の方法。
16.基板の特性の値が、計測装置で基板上の1つ又は複数の計測ターゲットを測定することによって得られる、条項1〜15の何れか一項に記載の方法。
17.基板の特性が、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、底面傾斜、フィーチャ高さ、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む、条項1〜16の何れか一項に記載の方法。
18.基板の特性が、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む、条項17に記載の方法。
19.ハードウェアコンピュータシステムによって、パターニングプロセスで使用される1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第1の群の基板に特有の寄与と、1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第2の群の基板に特有ではない寄与とを組み合わせることによって、パターニングプロセスによって処理される基板に与えられる特性を推定することであって、第1の群及び/又は第2の群からの少なくとも1つのプロセス変数が、リソグラフィ装置の上流にある処理装置に関連する、推定することを含む方法。
20.推定された特性に基づいて、欠陥又は他のエラーが基板上に生成されるかどうかを判断することをさらに含む、条項19に記載の方法。
21.推定された特性に基づいて、第1の群及び/又は第2の群からの1つ又は複数のプロセス変数を調整するために修正情報を作成することをさらに含む、条項19又は20に記載の方法。
22.1つ又は複数のプロセス変数の第2の群が、堆積ツール、リソグラフィ装置及び/又はエッチングツールに関連する1つ又は複数の変数を含む、条項19〜21の何れか一項に記載の方法。
23.1つ又は複数のプロセス変数の第2の群が、堆積ツールの堆積レート又は堆積ツールの動作時間を含む、条項22に記載の方法。
24.1つ又は複数のプロセス変数の第2の群が、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される1つ又は複数の変数を含む、条項22又は23に記載の方法。
25.1つ又は複数のプロセス変数の第2の群が、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ又はエッチングツールの動作温度を含む、条項22〜24の何れか一項に記載の方法。
26.1つ又は複数のプロセス変数の第1の群が、リソグラフィ装置に関連する1つ又は複数の変数を含む、条項19〜25の何れか一項に記載の方法。
27.リソグラフィ装置に関連する1つ又は複数の変数が、リソグラフィ装置の基板ステージの動きの移動標準偏差又はリソグラフィ装置の基板ステージの動きの移動平均を含む、条項26に記載の方法。
28.基板の特性が、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む、条項19〜27の何れか一項に記載の方法。
29.基板の特性が、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む、条項28に記載の方法。
30.ハードウェアコンピュータシステムによって、1つ又は複数の処理装置による特性への1つ又は複数の寄与を特性の1つ又は複数の値と組み合わせることによって、1つ又は複数の処理装置によって処理される基板に与えられる特性を推定することであって、1つ又は複数の処理装置の少なくとも1つが、リソグラフィ装置の上流にある、推定することを含む方法。
31.推定された特性に基づいて、欠陥が基板上に生成されるかどうかを判断することをさらに含む、条項30に記載の方法。
32.1つ又は複数の処理装置が、堆積ツール、リソグラフィ装置及び/又はエッチングツールから選択される1つ又は複数を含む、条項30又は31に記載の方法。
33.1つ又は複数の処理装置による特性への1つ又は複数の寄与が、堆積ツールによる特性への寄与を含む、条項30〜32の何れか一項に記載の方法。
34.堆積ツールによる特性への寄与が、堆積ツールによって基板に形成されたエッチング可能層の特性から導出される、条項33に記載の方法。
35.エッチング可能層の特性が、エッチング可能層の厚さである、条項34に記載の方法。
36.1つ又は複数の処理装置による特性への1つ又は複数の寄与が、リソグラフィ装置による特性への寄与を含む、条項30〜35の何れか一項に記載の方法。
37.リソグラフィ装置による特性への寄与が、リソグラフィ装置に関連する1つ又は複数の変数の一群から導出される、条項36に記載の方法。
38.リソグラフィ装置に関連する1つ又は複数の変数が、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される1つ又は複数の変数を含む、条項37に記載の方法。
39.1つ又は複数の処理装置による特性への1つ又は複数の寄与が、エッチングツールによる特性への寄与を含む、条項30〜38の何れか一項に記載の方法。
40.推定された特性に基づいて、1つ又は複数の処理装置のうちの1つ又は複数を調整するために修正情報を作成して出力することをさらに含む、条項30〜39の何れか一項に記載の方法。
41.修正情報が、1つ又は複数の処理装置のうちの1つ又は複数の1つ又は複数の変数を修正するために使用される、条項40に記載の方法。
42.1つ又は複数の変数が、堆積ツールの堆積変数、リソグラフィ装置のリソグラフィ変数及び/又はエッチングツールのエッチング変数を含む、条項41に記載の方法。
43.1つ又は複数の変数が、堆積ツールの堆積変数を含み、堆積変数が、堆積ツールの堆積レート又は堆積ツールの動作時間を含む、条項42に記載の方法。
44.1つ又は複数の変数が、リソグラフィ装置のリソグラフィ変数を含み、リソグラフィ変数が、リソグラフィ装置による照明の1つ又は複数の変数、リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、リソグラフィ装置の基板ステージの動きの移動標準偏差、リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化を含む、条項42又は43に記載の方法。
45.1つ又は複数の変数が、エッチングツールのエッチング変数を含み、エッチング変数が、エッチングツールのエッチングレート、エッチングツールのエッチングタイプ又はエッチングツールの動作温度を含む、条項42〜44の何れか一項に記載の方法。
46.基板の特性の1つ又は複数の値が、1つ又は複数の処理装置のうちの1つ又は複数からの測定値又は信号から決定される、条項30〜45の何れか一項に記載の方法。
47.基板の特性が、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む、条項30〜46の何れか一項に記載の方法。
48.基板の特性が、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む、条項47に記載の方法。
49.1つ又は複数の第1の処理装置による基板の特性への1つ又は複数の寄与を決定することと、
ハードウェアコンピュータシステムによって、1つ又は複数の寄与に少なくとも部分的に基づいて、1つ又は複数の第1の処理装置の下流にある1つ又は複数の第2の処理装置を調整するために修正情報を作成することと
を含む方法。
50.1つ又は複数の第1の処理装置の少なくとも1つが、リソグラフィ装置の上流にある、条項49に記載の方法。
51.1つ又は複数の第1の処理装置が、堆積ツールを含む、条項50に記載の方法。
52.1つ又は複数の第2の処理装置が、リソグラフィ装置及び/又はエッチングツールを含む、条項49〜51の何れか一項に記載の方法。
53.1つ又は複数の第1の処理装置による特性への1つ又は複数の寄与が、堆積ツールによる特性への寄与を含む、条項49〜52の何れか一項に記載の方法。
54.堆積ツールによる特性への寄与が、堆積ツールによって基板に形成されたエッチング可能層の特性から導出される、条項53に記載の方法。
55.エッチング可能層の特性が、エッチング可能層の厚さである、条項54に記載の方法。
56.修正情報が、1つ又は複数の第2の処理装置の変数を修正するために使用される、条項49〜55の何れか一項に記載の方法。
57.変数が、リソグラフィ装置のリソグラフィ変数を含む、条項56に記載の方法。
58.変数が、エッチングツールのエッチング変数を含む、条項56又は57に記載の方法。
59.基板の特性が、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、フィーチャ高さ、底面傾斜、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数の特性を含む、条項49〜58の何れか一項に記載の方法。
60.基板の特性が、基板上のパターンにわたる特性の1つ又は複数のフィンガープリント、或いは、基板にわたる多数のパターンを含む基板にわたる特性の1つ又は複数のフィンガープリントを含む、条項59に記載の方法。
61.条項1〜60の何れか一項に記載の方法をプロセッサシステムに実行させるための機械可読命令を含む非一時的なコンピュータプログラム製品。
62.ハードウェアプロセッサシステムと、
機械可読命令を格納するように構成された非一時的なコンピュータ可読記憶媒体と
を含むシステムであって、機械可読命令が、実行されると、条項1〜60の何れか一項に記載の方法をハードウェアプロセッサシステムに実行させる、システム。
[0187] 上記では、光リソグラフィの文脈において本開示の実施形態の使用への具体的な言及を行ってきたが、本開示は、例えば、ナノインプリントリソグラフィなどの他の応用において使用することができ、文脈において認められる限り、光リソグラフィに限定されないことが理解されよう。ナノインプリントリソグラフィの事例では、パターニングデバイスは、インプリントテンプレート又はモールドである。本明細書で使用される「放射」及び「ビーム」という用語は、紫外線(UV)放射(例えば、365、355、248、193、157、126nmの又はそれに近い波長を有する)及び極紫外線(EUV)放射(例えば、5〜20nmの範囲の波長を有する)を含むすべてのタイプの電磁放射、並びに、イオンビーム又は電子ビームなどの粒子ビームを包含する。
[0188] 「レンズ」という用語は、文脈において認められる限り、屈折、反射、磁気、電磁及び静電光学コンポーネントを含む、様々なタイプの光学コンポーネントの何れか1つ又は組合せを指し得る。
[0189] 本明細書における閾値を交差するか又は通過するという用語への言及は、例えば、パラメータなどに基づいて、特定の値未満の値又は特定の値以下の値を有する何か、特定の値を超える値又は特定の値以上の値を有する何か、他のものより高く又は低くランク付けされている何か(例えば、ソーティングを通じて)を含み得る。
[0190] 本明細書におけるエラーを補正すること又はエラーの補正という用語への言及は、許容範囲内までエラーを除去すること又はエラーを低減することを含む。
[0191] 「最適化すること」及び「最適化」という用語は、本明細書で使用される場合は、リソグラフィ又はパターニング処理の結果及び/又はプロセスがより望ましい特性(基板への設計レイアウトの投影のより高い精度、より大きなプロセスウィンドウなど)を有するように、リソグラフィ装置、パターニングプロセスなどを調整することを指すか又は意味する。従って、「最適化すること」及び「最適化」という用語は、本明細書で使用される場合は、それらの1つ又は複数の変数に対する1つ又は複数の値の初期の集合と比べて、少なくとも1つの関連計量において、改善(例えば、局所最適)を提供する1つ又は複数の変数に対する1つ又は複数の値を特定するプロセスを指すか又は意味する。「最適」及び他の関連用語は、それに従って解釈すべきである。実施形態では、最適化ステップは、1つ又は複数の計量におけるさらなる改善を提供するために、反復して適用することができる。
[0192] システムの最適化プロセスでは、システム又はプロセスの性能指数は、費用関数として表すことができる。最適化プロセスは、要するに、費用関数を最適化する(例えば、最小化又は最大化する)システム又はプロセスの変数(設計変数)の集合を見出すプロセスである。費用関数は、最適化の目標に応じて、適切ないかなる形態も有し得る。例えば、費用関数は、これらの特性の意図する値(例えば、理想的な値)に対するシステム又はプロセスのある特定の特性(評価ポイント)の偏差の加重二乗平均平方根(RMS)であり得る。また、費用関数は、これらの偏差の最大(すなわち、最低偏差)でもあり得る。本明細書における「評価ポイント」という用語は、システム又はプロセスのいかなる特性も含むように広義に解釈すべきである。システムの設計変数は、システム又はプロセスの実装形態の実用性が原因で、有限範囲及び/又は相互依存関係にあるものに限定され得る。リソグラフィ装置又はパターニングプロセスの事例では、制約は、調節可能な範囲などのハードウェアの物理的プロパティ及び特性、並びに/或いは、パターニングデバイス製造可能性設計規則と関連付けられる場合が多く、評価ポイントは、基板上のレジスト像上の物理的なポイント並びに非物理的な特性(ドーズ及びフォーカスなど)を含み得る。
[0193] 上記では本開示の具体的な実施形態について説明してきたが、本開示は、説明されるもの以外でも実践できることが理解されよう。例えば、本開示は、上記で開示されるような方法を説明する機械可読命令の1つ又は複数のシーケンスを含むコンピュータプログラムの形態、或いは、そのようなコンピュータプログラムが格納されるデータ記憶媒体(例えば、半導体メモリ、磁気又は光ディスク)の形態を取ることができる。
[0194] 上記の説明は、例示であることを意図し、制限することは意図しない。従って、当業者であれば、以下に記載される請求項の範囲から逸脱することなく、説明されるような本開示の変更を行えることが明らかであろう。

Claims (16)

  1. 1つ又は複数の処理装置によってパターニングプロセスに従って基板が処理された後に、ハードウェアコンピュータシステムによって、リソグラフィ装置による、第1の測定又は第1の信号から得られる特性への寄与を示す寄与値及び前記リソグラフィ装置の上流にある1つ又は複数のリソグラフィ前処理装置による、第2の測定又は第2の信号から得られる前記特性への寄与を示す寄与値を、測定から得られた前記基板の前記特性の値から除去することによって、前記1つ又は複数の処理装置が前記基板の前記特性に与える寄与を示す寄与値を導出すること
    を含む方法。
  2. 前記1つ又は複数の処理装置が、エッチングツールを含む、請求項1に記載の方法。
  3. 前記1つ又は複数のリソグラフィ前処理装置による前記特性への前記寄与値が、堆積ツールによる前記特性への寄与を示す寄与値を含む、請求項1又は2に記載の方法。
  4. 前記堆積ツールによる前記寄与値が、前記堆積ツールによって形成された前記基板のエッチング可能層の特性から導出される、請求項3に記載の方法。
  5. 前記エッチング可能層の前記特性が、前記エッチング可能層の厚さである、請求項4に記載の方法。
  6. 前記リソグラフィ装置による前記特性への前記寄与値が、前記リソグラフィ装置に関連する1つ又は複数の変数の一群から導出され、前記変数が、前記リソグラフィ装置による照明の1つ又は複数の変数、前記リソグラフィ装置の投影システムの1つ又は複数の変数、フォーカス、ドーズ、オーバーレイ、前記リソグラフィ装置の基板ステージの動きの移動標準偏差、前記リソグラフィ装置の基板ステージの動きの移動平均、レーザ帯域幅、露光時間、光学収差、高周波レーザ帯域幅変化並びに/或いは高周波レーザ波長変化から選択される、請求項1に記載の方法。
  7. 前記1つ又は複数の処理装置による前記寄与値を使用して、考慮中の1つ又は複数の基板の前記特性が閾値を満たすか又は交差するかどうかを判定することと、
    前記閾値に関連する判定に応答して、前記1つ又は複数のリソグラフィ前処理装置、前
    記リソグラフィ装置並びに/或いは前記リソグラフィ装置の下流にある1つ又は複数のリソグラフィ後処理装置を調整するために修正情報を作成して出力することと
    をさらに含む、請求項1に記載の方法。
  8. 前記修正情報が、前記1つ又は複数のリソグラフィ前処理装置、前記リソグラフィ装置並びに/或いは前記1つ又は複数のリソグラフィ後処理装置の変数を修正するために使用され、前記変数が、堆積ツールの堆積変数、リソグラフィ装置のリソグラフィ変数及び/又はエッチングツールのエッチング変数を含む、請求項7に記載の方法。
  9. 前記変数が、前記堆積ツールの前記堆積変数を含み、前記堆積変数が、前記堆積ツールの堆積レート又は前記堆積ツールの動作時間を含む、請求項8に記載の方法。
  10. 前記変数が、前記エッチングツールの前記エッチング変数を含み、前記エッチング変数が、前記エッチングツールのエッチングタイプ及び/又は前記エッチングツールのエッチングレートを含む、請求項8に記載の方法。
  11. 前記修正情報を作成することが、リソグラフィ後処理装置の第1のコンポーネント及び/又は第2のコンポーネントの変数を調整するために修正情報を作成することを含む、請求項7に記載の方法。
  12. 前記リソグラフィ後処理装置が、エッチングツールであり、前記第1のコンポーネントが、前記エッチングツールの第1のエッチングチャンバであり、前記第2のコンポーネントが、前記エッチングツールの第2のエッチングチャンバであり、前記第1のコンポーネント及び/又は前記第2のコンポーネントの前記変数が、前記エッチングツールの前記第1のエッチングチャンバ及び/又は前記エッチングツールの前記第2のエッチングチャンバのエッチングレート、前記エッチングツールの前記第1のエッチングチャンバ及び/又は前記エッチングツールの前記第2のエッチングチャンバのエッチングタイプ、或いは、前記エッチングツールの前記第1のエッチングチャンバ及び/又は前記エッチングツールの前記第2のエッチングチャンバの動作温度を含む、請求項11に記載の方法。
  13. 前記基板の前記特性が、パターンのクリティカルディメンション、クリティカルディメンション均一性、オーバーレイ、側壁角、底面傾斜、フィーチャ高さ、パターンシフト及び/又は幾何学的非対称性から選択される1つ又は複数のパラメータの1つ又は複数のフィンガープリントを含む、請求項1に記載の方法。
  14. ハードウェアコンピュータシステムによって、基板に特有ではない1つ又は複数のプロセス変数を含む第1の群であって、パターニングプロセスで使用される1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第1の群に基づく第1の寄与を示す第1の寄与値と、前記基板に特有の1つ又は複数のプロセス変数を含む第2の群であって、前記1つ又は複数の処理装置に関連する1つ又は複数のプロセス変数のうちの第2の群に基づく第2の寄与を示す第2の寄与値とを組み合わせることによって、前記パターニングプロセスによって処理される前記基板に与えられる推定の特性を導出することであって、前記第1の群及び/又は前記第2の群からの少なくとも1つのプロセス変数が、リソグラフィ装置の上流にある処理装置に関連する、導出すること
    を含む方法。
  15. 請求項1に記載の方法をプロセッサシステムに実行させるための機械可読命令を含む非一時的なコンピュータプログラム製品。
  16. ハードウェアプロセッサシステムと、
    機械可読命令を格納するように構成された非一時的なコンピュータ可読記憶媒体と
    を含むシステムであって、前記機械可読命令が、実行されると、請求項1に記載の方法をハードウェアプロセッサシステムに実行させる、システム。
JP2019506489A 2016-09-02 2017-08-03 処理装置をモニタするための方法及びシステム Active JP6982059B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16187040.7 2016-09-02
EP16187040.7A EP3290911A1 (en) 2016-09-02 2016-09-02 Method and system to monitor a process apparatus
PCT/EP2017/069669 WO2018041513A1 (en) 2016-09-02 2017-08-03 Method and system to monitor a process apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021004882A Division JP7212079B2 (ja) 2016-09-02 2021-01-15 処理装置をモニタするための方法及びシステム

Publications (2)

Publication Number Publication Date
JP2019530207A JP2019530207A (ja) 2019-10-17
JP6982059B2 true JP6982059B2 (ja) 2021-12-17

Family

ID=56853531

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019506489A Active JP6982059B2 (ja) 2016-09-02 2017-08-03 処理装置をモニタするための方法及びシステム
JP2021004882A Active JP7212079B2 (ja) 2016-09-02 2021-01-15 処理装置をモニタするための方法及びシステム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021004882A Active JP7212079B2 (ja) 2016-09-02 2021-01-15 処理装置をモニタするための方法及びシステム

Country Status (7)

Country Link
US (3) US10571806B2 (ja)
EP (1) EP3290911A1 (ja)
JP (2) JP6982059B2 (ja)
KR (2) KR102223858B1 (ja)
CN (1) CN109642876A (ja)
TW (2) TWI649614B (ja)
WO (1) WO2018041513A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321740A1 (en) * 2016-11-11 2018-05-16 ASML Netherlands B.V. Determining an optimal operational parameter setting of a metrology system
EP3396458A1 (en) * 2017-04-28 2018-10-31 ASML Netherlands B.V. Method and apparatus for optimization of lithographic process
CN113376976A (zh) 2017-06-22 2021-09-10 Asml荷兰有限公司 用于确定对指纹的贡献的方法
US10580673B2 (en) * 2018-01-05 2020-03-03 Kla Corporation Semiconductor metrology and defect classification using electron microscopy
EP3588191A1 (en) * 2018-06-29 2020-01-01 ASML Netherlands B.V. Tuning patterning apparatus based on optical characteristic
EP3647873A1 (en) * 2018-11-02 2020-05-06 ASML Netherlands B.V. Method to characterize post-processing data in terms of individual contributions from processing stations
US20220327364A1 (en) * 2019-08-30 2022-10-13 Asml Netherlands B.V. Semiconductor device geometry method and system
WO2021160351A1 (en) * 2020-02-12 2021-08-19 Asml Netherlands B.V. Methods of tuning a model for a lithographic process and associated apparatuses
EP3872567A1 (en) * 2020-02-25 2021-09-01 ASML Netherlands B.V. Systems and methods for process metric aware process control
US11481922B2 (en) * 2020-04-07 2022-10-25 Kla Corporation Online navigational drift correction for metrology measurements
CN111430261B (zh) * 2020-05-21 2023-01-24 中国科学院微电子研究所 一种光刻机工艺稳定性检测方法及装置
TWI761975B (zh) * 2020-09-29 2022-04-21 新加坡商鴻運科股份有限公司 機台製程參數的異常監測裝置、方法及可讀存儲介質
CN114428444B (zh) * 2020-10-29 2024-01-26 中芯国际集成电路制造(上海)有限公司 套刻量测系统矫正方法
WO2022104699A1 (en) * 2020-11-20 2022-05-27 Yangtze Memory Technologies Co., Ltd. Feed-forward run-to-run wafer production control system based on real-time virtual metrology
CN113283162B (zh) * 2021-04-30 2022-10-28 晋城鸿智纳米光机电研究院有限公司 塑料光学镜片面形误差预测方法、电子装置及存储介质
TW202310131A (zh) * 2021-08-24 2023-03-01 日商東京威力科創股份有限公司 基板處理裝置、模型資料產生裝置、基板處理方法、及模型資料產生方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337600B1 (ko) 2000-04-06 2002-05-22 윤종용 노광 시간 조절 시스템
US6625512B1 (en) 2000-07-25 2003-09-23 Advanced Micro Devices, Inc. Method and apparatus for performing final critical dimension control
US6891627B1 (en) * 2000-09-20 2005-05-10 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
JP2002270482A (ja) 2001-03-06 2002-09-20 Toshiba Corp 露光工程の制御方法、露光工程の制御装置および製造装置
US7265382B2 (en) * 2002-11-12 2007-09-04 Applied Materials, Inc. Method and apparatus employing integrated metrology for improved dielectric etch efficiency
JP2005197362A (ja) 2004-01-05 2005-07-21 Toshiba Corp 露光処理システムおよび露光処理方法
US20050185174A1 (en) * 2004-02-23 2005-08-25 Asml Netherlands B.V. Method to determine the value of process parameters based on scatterometry data
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7478019B2 (en) * 2005-01-26 2009-01-13 Kla-Tencor Corporation Multiple tool and structure analysis
US7530048B2 (en) * 2005-04-09 2009-05-05 Cadence Design Systems, Inc. Defect filtering optical lithography verification process
US7916284B2 (en) * 2006-07-18 2011-03-29 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
NL1036245A1 (nl) 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
NL1036516A1 (nl) * 2008-03-05 2009-09-08 Asml Netherlands Bv Lithographic apparatus and method.
US7974723B2 (en) 2008-03-06 2011-07-05 Applied Materials, Inc. Yield prediction feedback for controlling an equipment engineering system
WO2010037472A2 (en) * 2008-09-30 2010-04-08 Asml Netherlands B.V. Method and system for determining a lithographic process parameter
NL2003806A (en) * 2008-12-15 2010-06-16 Asml Netherlands Bv Method for a lithographic apparatus.
US8612045B2 (en) * 2008-12-24 2013-12-17 Asml Holding N.V. Optimization method and a lithographic cell
KR101429629B1 (ko) 2009-07-31 2014-08-12 에이에스엠엘 네델란즈 비.브이. 계측 방법 및 장치, 리소그래피 시스템, 및 리소그래피 처리 셀
WO2011023517A1 (en) 2009-08-24 2011-03-03 Asml Netherlands B.V. Metrology method and apparatus, lithographic apparatus, lithographic processing cell and substrate comprising metrology targets
WO2012062501A1 (en) 2010-11-12 2012-05-18 Asml Netherlands B.V. Metrology method and apparatus, and device manufacturing method
US8468471B2 (en) * 2011-09-23 2013-06-18 Kla-Tencor Corp. Process aware metrology
WO2014065269A1 (ja) 2012-10-24 2014-05-01 東京エレクトロン株式会社 補正値算出装置、補正値算出方法及びコンピュータプログラム
JP2014192162A (ja) 2013-03-26 2014-10-06 Renesas Electronics Corp 半導体集積回路装置の製造方法
CN105308508B (zh) * 2013-06-12 2018-08-10 Asml荷兰有限公司 确定与临界尺寸相关的性质的方法、检查装置和器件制造方法
US10401279B2 (en) * 2013-10-29 2019-09-03 Kla-Tencor Corporation Process-induced distortion prediction and feedforward and feedback correction of overlay errors
US10466596B2 (en) * 2014-02-21 2019-11-05 Kla-Tencor Corporation System and method for field-by-field overlay process control using measured and estimated field parameters
US9383657B2 (en) 2014-03-03 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method and structure for lithography processes with focus monitoring and control
JP6393397B2 (ja) * 2014-06-30 2018-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置の照射線量決定方法、検査装置およびデバイス製造方法
US10151986B2 (en) * 2014-07-07 2018-12-11 Kla-Tencor Corporation Signal response metrology based on measurements of proxy structures
US10430719B2 (en) * 2014-11-25 2019-10-01 Stream Mosaic, Inc. Process control techniques for semiconductor manufacturing processes
US10372043B2 (en) * 2014-12-17 2019-08-06 Asml Netherlands B.V. Hotspot aware dose correction
KR102162234B1 (ko) * 2015-06-17 2020-10-07 에이에스엠엘 네델란즈 비.브이. 레시피간 일치도에 기초한 레시피 선택
WO2017063827A1 (en) * 2015-10-12 2017-04-20 Asml Netherlands B.V. Indirect determination of a processing parameter
WO2017114662A1 (en) * 2015-12-31 2017-07-06 Asml Netherlands B.V. Selection of measurement locations for patterning processes
US10504759B2 (en) * 2016-04-04 2019-12-10 Kla-Tencor Corporation Semiconductor metrology with information from multiple processing steps
US10475712B2 (en) * 2016-09-30 2019-11-12 Kla-Tencor Corporation System and method for process-induced distortion prediction during wafer deposition
US10768533B2 (en) * 2016-10-20 2020-09-08 Kla-Tencor Corporation Method and system for generating programmed defects for use in metrology measurements
US10281827B2 (en) * 2016-12-15 2019-05-07 Taiwan Semiconductor Manufacturing Co., Ltd Noise reduction for overlay control
US10262831B2 (en) * 2016-12-21 2019-04-16 Kla-Tencor Corporation Method and system for weak pattern quantification

Also Published As

Publication number Publication date
KR102223858B1 (ko) 2021-03-09
TW201921274A (zh) 2019-06-01
US11733610B2 (en) 2023-08-22
JP2019530207A (ja) 2019-10-17
WO2018041513A1 (en) 2018-03-08
KR20190045282A (ko) 2019-05-02
TW201812443A (zh) 2018-04-01
JP2021073510A (ja) 2021-05-13
US10571806B2 (en) 2020-02-25
JP7212079B2 (ja) 2023-01-24
TWI649614B (zh) 2019-02-01
KR20210028272A (ko) 2021-03-11
EP3290911A1 (en) 2018-03-07
US20200124968A1 (en) 2020-04-23
US20190196334A1 (en) 2019-06-27
US20240004299A1 (en) 2024-01-04
KR102308128B1 (ko) 2021-10-05
CN109642876A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6982059B2 (ja) 処理装置をモニタするための方法及びシステム
JP6765435B2 (ja) パターニングプロセスパラメータを決定する方法及び装置
JP6975344B2 (ja) パターニングプロセスについての情報を決定する方法、測定データにおける誤差を低減する方法、メトロロジプロセスを較正する方法、メトロロジターゲットを選択する方法
JP6931119B2 (ja) パターニングプロセスパラメータを決定する方法
KR102087310B1 (ko) 패터닝 프로세스 오차를 정정하기 위한 방법 및 장치
US11126093B2 (en) Focus and overlay improvement by modifying a patterning device
TWI623811B (zh) 校正圖案化製程誤差之方法、電腦程式產品與系統
KR102059018B1 (ko) 패터닝 공정 오차를 보정하는 장치 및 방법
KR102271283B1 (ko) 패턴 위치설정 정확도 증가 방법 및 시스템
KR20180072768A (ko) 패터닝 공정 오차를 보정하는 장치 및 방법
WO2017067765A1 (en) Method and apparatus to correct for patterning process error
JP7165195B2 (ja) メトロロジプロセスを最適化する方法
TWI646577B (zh) 監控製程裝置的方法與裝置
JP6782769B2 (ja) 2次元又は3次元の形状の階層的表現
JP2020518845A (ja) 光学メトロロジの性能を測定するための方法、基板、及び装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210125

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210126

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210226

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210302

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210423

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211005

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211105

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211118

R150 Certificate of patent or registration of utility model

Ref document number: 6982059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150