JP6981203B2 - 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 - Google Patents

非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 Download PDF

Info

Publication number
JP6981203B2
JP6981203B2 JP2017224969A JP2017224969A JP6981203B2 JP 6981203 B2 JP6981203 B2 JP 6981203B2 JP 2017224969 A JP2017224969 A JP 2017224969A JP 2017224969 A JP2017224969 A JP 2017224969A JP 6981203 B2 JP6981203 B2 JP 6981203B2
Authority
JP
Japan
Prior art keywords
particles
less
negative electrode
silicon oxide
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017224969A
Other languages
English (en)
Other versions
JP2018088406A (ja
Inventor
俊介 山田
信亨 石渡
直人 丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2018088406A publication Critical patent/JP2018088406A/ja
Application granted granted Critical
Publication of JP6981203B2 publication Critical patent/JP6981203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系二次電池用負極材、それを用いた非水系二次電池用負極及びこの負極を備えた非水系二次電池に関する。
近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。特に、リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFやLiBF等のリチウム塩を溶解させた非水電解液からなる非水系リチウム二次電池が開発され、実用化されている。
この非水系リチウム二次電池の負極材としては種々のものが提案されているが、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛やコークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素質粒子が用いられている。また、一部の電解液に対して比較的安定しているなどの理由で非晶質の炭素材料も用いられている。更には、黒鉛粒子の表面に非晶質炭素を被覆あるいは付着させ、黒鉛による高容量かつ不可逆容量が小さいという特性と、非晶質炭素による電解液との安定性に優れるという特性との2つの特性を併せもたせた炭素材料も用いられている。
このように、従来、負極材料として種々の黒鉛系の炭素材料が用いられているが、更に、黒鉛そのものの加工プロセスを改良したものとして、特許文献1には、炭素材料の積算細孔容積が特定の範囲であり、かつ細孔径と体積基準平均粒子径の比(PD/d50(%))が特定の範囲であるものが低温出力特性に優れることが開示されている。
国際公開第2016/006617号
本発明者等の検討により、前記特許文献1では、高容量化のための検討がなされておらず、ここに記載される負極材では、サイクル特性が不十分であるという問題があることが見出された。
即ち、本発明の課題は、高容量であり、サイクル特性等に優れた非水系二次電池用負極材、並びにこれを用いた非水系二次電池用負極及び非水系二次電池を提供することにある。
本発明者等が上記課題を解決するために鋭意検討した結果、前記特許文献1に記載されている炭素質粒子に対して特定の粒度分布を有する酸化珪素粒子を組み合わせた非水系二次電池用負極材を用いることにより、上記課題を解決し得ることを見出した。即ち、本発明の要旨は以下の通りである。
[1] 炭素質粒子(A)と酸化珪素粒子(B)を含み、炭素質粒子(A)は、細孔径0.01μm以上1μm以下の範囲の積算細孔容積が0.08mL/g以上、下記式で表される細孔径と粒子径の比(PD/d50(%))が1.8以下であり、かつ酸化珪素粒子(B)の小粒子側から10%積算部の粒子径(d10)が0.001μm以上6μm以下である非水系二次電池用負極材。
PD/d50(%)=([水銀圧入法により求められる細孔分布における細孔径0.01μm以上1μm以下の範囲のモード細孔径(PD)]/[体積基準平均粒子径(d50)])×100
[2] 炭素質粒子(A)のフロー式粒子像分析より求められる円形度が0.88以上である、[1]に記載の非水系二次電池用負極材。
[3] 炭素質粒子(A)が天然黒鉛の造粒物を含む、[1]又は[2]に記載の非水系二次電池用負極材。
[4] 炭素質粒子(A)が球形化黒鉛と炭素質物とが複合化した複合炭素材を含む、[1]乃至[3]のいずれかに記載の非水系二次電池用負極材。
[5] 酸化珪素粒子(B)における珪素原子数(MSi)に対する酸素原子数(M)の比(M/MSi)が0.5〜1.6である、[1]乃至[4]のいずれかに記載の非水系二次電池用負極材。
[6] 酸化珪素粒子(B)の平均粒子径(d50)が0.01μm以上20μm以下である、[1]乃至[5]のいずれかに記載の非水系二次電池用負極材。
[7] 下記式で表される炭素質粒子(A)と酸化珪素粒子(B)の平均粒子径比([R=酸化珪素粒子(B)の平均粒子径]/[炭素質粒子(A)の平均粒子径])が0.001以上10以下である、[1]乃至[6]のいずれかに記載の非水系二次電池用負極材。
[8] 酸化珪素粒子(B)がゼロ価の珪素原子を含む、[1]乃至[7]のいずれかに記載の非水系二次電池用負極材。
[9] 珪素の微結晶を含む、[1]乃至[8]のいずれかに記載の非水系二次電池用負極材。
[10] 集電体と、該集電体上に形成された活物質層とを備える非水系二次電池用負極であって、該活物質層が[1]乃至[9]のいずれかに記載の非水系二次電池用負極材を含有する、非水系二次電池用負極。
[11] 正極及び負極、並びに電解質を備える非水系二次電池であって、該負極が[10]に記載の非水系二次電池用負極である、非水系二次電池。
本発明によれば、高容量であり、サイクル特性等に優れた非水系二次電池用負極材、並びにこれを用いた非水系二次電池用負極及び非水系二次電池が提供される。
以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本発明において、「〜」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
なお、以下において、本発明の非水系二次電池用負極材、炭素質粒子(A)、酸化珪素粒子(B)等の平均粒子径、即ち、体積基準の粒度分布に基づいて測定された小粒子側から50%積算部の粒子径を単に「d50」と称し、体積基準の粒度分布に基づいて測定された小粒子側から10%積算部の粒子径を「d10」と称し、体積基準の粒度分布に基づいて測定された小粒子側から90%積算部の粒子径を「d90」と称す場合がある。これらの粒子径はいずれも、後述の実施例の項に記載される方法で測定される。
〔負極材〕
本発明の非水系二次電池用負極材(以下において、「本発明の負極材」と称す場合がある。)は、炭素質粒子(A)(以下において、「本発明の炭素質粒子(A)」と称す場合がある。)と酸化珪素粒子(B)(以下において、「本発明の酸化珪素粒子(B)」と称す場合がある。)を含み、炭素質粒子(A)は、細孔径0.01μm以上1μm以下の範囲の積算細孔容積が0.08mL/g以上、下記式で表される細孔径と粒子径の比(PD/d50(%)、以下単に「PD/d50(%)」と称す場合がある。)が1.8以下であり、かつ酸化珪素粒子(B)の小粒子側から10%積算部の粒子径(d10)が0.001μm以上6μm以下である非水系二次電池用負極材。
PD/d50(%)=([水銀圧入法により求められる細孔分布における細孔径0.01μm以上1μm以下の範囲のモード細孔径(PD)]/[体積基準平均粒子径(d50)])×100
[メカニズム]
<炭素質粒子(A)による作用効果>
細孔径0.01μm以上1μm以下の範囲の積算細孔容積が0.08mL/g以上で、PD/d50(%)が1.8以下である本発明の炭素質粒子(A)は、適度に緻密な粒子内空隙構造を形成しており、粒子間空隙を適度に確保すると同時に、電極内における活物質粒子の充電に伴う膨張に追随して変形することが可能になり、高容量且つ良好なサイクル特性を得ることが出来たと考えられる。
<酸化珪素粒子(B)による作用効果>
高容量の酸化珪素粒子(B)を含むことによって、高容量な負極材を得ることが可能となる。
しかも、この酸化珪素粒子(B)は、小粒子側から10%積算部の粒子径(d10)が0.001μm以上6μm以下と、適切な量の微粉が存在することにより導電パスが確保され、サイクル特性が良好となる。
特に、酸化珪素粒子(B)がにおける珪素原子数(MSi)に対する酸素原子数(M)の比(M/MSi)が0.5〜1.6であることによって、高容量であると同時に、Liイオンの吸蔵・放出に伴う体積変化量が小さく、炭素質粒子(A)の体積変化量と近くなり、炭素質粒子(A)との接触が損なわれることによる性能低下を低減させることが可能となる。
また、酸化珪素粒子(B)がゼロ価の珪素原子を含むことによって、Liイオンを吸蔵・放出する電位の範囲が炭素質粒子(A)と近くなり、Liイオンの吸蔵・放出に伴う体積変化が炭素質粒子(A)と同時に起こるため、炭素質粒子(A)と酸化珪素粒子(B)の界面のズレが生じにくくなり、炭素質粒子(A)との接触が損なわれることによる性能低下を低減させることが可能となる。
<炭素質粒子(A)と酸化珪素粒子(B)のブレンドによる作用効果>
適度に緻密な細孔を有する炭素質粒子(A)と、適切な量の微粉が存在する酸化珪素粒子(B)とをブレンドすることで、炭素質粒子(A)の粒子間空隙に酸化珪素粒子(B)を効果的に配置できるようなり、導電パスが確保される。さらに、適度に緻密な粒子内空隙構造を有する炭素質粒子(A)が、酸化珪素粒子(B)の充電に伴う膨張に追随して変形することで、導電パスが保持されやすくなる。これにより、高容量、且つ優れたサイクル特性を得ることが出来ると考えられる。
[炭素質粒子(A)]
本発明の炭素質粒子(A)は、細孔径0.01μm以上1μm以下の範囲の積算細孔容積が0.08mL/g以上で、PD/d50(%)が1.8以下であれば特に限定されないが、例えば、黒鉛、非晶質炭素、黒鉛化度の小さい炭素質物が挙げられる。
中でも、黒鉛が、商業的に容易に入手可能であり、理論上372mAh/gの高い充放電容量を有し、さらには他の負極用活物質を用いた場合と比較して、高電流密度での充放電特性の改善効果が大きいため好ましい。黒鉛としては、不純物の少ないものが好ましく、必要に応じて、公知の種々の精製処理を施して用いることができる。黒鉛の種類としては、天然黒鉛、人造黒鉛等が挙げられ、高容量且つ高電流密度での充放電特性が良好な点から天然黒鉛がより好ましい。
また、これらを炭素質物、例えば非晶質炭素や黒鉛化物で被覆したものを用いてもよい。本発明ではこれらを単独で、又は2種以上を組み合わせて使用することができる。
非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素前駆体を不融化処理し、焼成した粒子が挙げられる。
黒鉛化度の小さい炭素質物粒子としては、有機物を通常2500℃未満の温度で焼成したものが挙げられる。有機物としては、コールタールピッチ、乾留液化油などの石炭系重質油;常圧残油、減圧残油などの直留系重質油;原油、ナフサなどの熱分解時に副生するエチレンタール等の分解系重質油などの石油系重質油;アセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素;フェナジンやアクリジンなどの窒素含有環状化合物;チオフェンなどの硫黄含有環状化合物;アダマンタンなどの脂肪族環状化合物;ビフェニル、テルフェニルなどのポリフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラールなどのポリビニルエステル類、ポリビニルアルコールなどの熱可塑性高分子などが挙げられる。
前記炭素質物粒子の黒鉛化度の程度に応じて、焼成温度は600℃以上とすることができ、好ましくは900℃以上、より好ましくは950℃以上であり、通常2500℃未満
とすることができ、好ましくは2000℃以下、より好ましくは1400℃以下の範囲である。
焼成の際、有機物に燐酸、ホウ酸、塩酸などの酸類、水酸化ナトリウム等のアルカリ類などを混合することもできる。
人造黒鉛としては、例えば、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を焼成し、黒鉛化したものが挙げられる。
焼成温度は、2500℃以上、3200℃以下の範囲とすることができ、焼成の際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。
天然黒鉛は、その性状によって、鱗片状黒鉛(Flake Graphite)、鱗状黒鉛(Crystal Line Graphite)、塊状黒鉛(Vein Graphite)、土壌黒鉛(Amorphous Graphite)に分類される(「粉粒体プロセス技術集成」((株)産業技術センター、昭和49年発行)の黒鉛の項、および「HANDBOOK OF CARBON,GRAPHITE,DIAMOND AND FULLERENES」(NoyesPublications発行)参照)。黒鉛化度は、鱗状黒鉛や塊状黒鉛が100%で最も高く、これに次いで鱗片状黒鉛が99.9%で高く、黒鉛化度が高い黒鉛が本発明において好適である。なかでも不純物の少ないものが好ましく、必要に応じて、公知である種々の精製処理を施して用いることができる。
天然黒鉛の産地は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等である。鱗状黒鉛の産地は、主にスリランカである。土壌黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。
天然黒鉛の中でも、例えば、鱗状、鱗片状、又は塊状の天然黒鉛、高純度化した鱗片状黒鉛、後述する球形化処理した天然黒鉛(以降、球形化天然黒鉛と称す。)等が挙げられる。中でも、炭素材の内部に好適な緻密な細孔を形成させることができ、優れた粒子の充填性や充放電負荷特性を発揮するという観点から、球形化天然黒鉛が最も好ましい。
本発明の炭素質粒子(A)としては、上記天然黒鉛や人造黒鉛に、非晶質炭素及び/又は黒鉛化度の小さい黒鉛質物を被覆した粒子を用いることもできる。また、酸化物やその他金属を含んでいてもよい。その他金属としては、Sn、Si、Al、BiなどのLiと合金化可能な金属が挙げられる。
<炭素質粒子(A)の製造方法>
本発明の炭素質粒子(A)の製造方法は、細孔径0.01μm以上1μm以下の範囲の積算細孔容積が0.08mL/g以上であり、PD/d50(%)が1.8以下となるとなるように製造できる方法であれば特に制限はないが、達成手段の一つとしては、d50が80μm以下となるように粒度を調整した鱗片状天然黒鉛を球形化(造粒)処理する際に生成する微粉を、球形化処理した黒鉛(以降、球形化黒鉛と称すことがある。)となる母材に付着、及び/又は球形化黒鉛の粒子に内包しながら球形化処理する方法が挙げられる。
具体的には、少なくとも衝撃、圧縮、摩擦、及びせん断力のいずれかの力学的エネルギーを付与して原料炭素材を造粒する造粒工程を有し、前記造粒工程を、下記1)及び2)の条件を満足する造粒剤の存在下で行うことでもよい。
1)前記原料炭素材を造粒する工程時に液体である。
2)造粒剤が有機溶剤を含まないか、有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、又は引火点を有するときには該引火点が5℃以上である。
上記造粒工程を有すれば、必要に応じて別の工程を更に有していてもよい。別の工程は単独で実施してもよいし、複数工程を同時に実施してもよい。一実施形態としては、以下の第1工程乃至第6工程を含むものが挙げられる。
(第1工程)原料炭素材の粒度を調整する工程
(第2工程)原料炭素材と造粒剤とを混合する工程
(第3工程)原料炭素材を造粒する工程
(第4工程)造粒剤を除去する工程
(第5工程)造粒炭素材を高純度化する工程
(第6工程)造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着する工程
以下、これら工程について説明する。
(第1工程)原料炭素材の粒度を調整する工程
本発明の炭素質粒子(A)の製造用いる原料炭素材は特に限定されず、前述した人造黒鉛や天然黒鉛を使用することが出来る。中でも、結晶性が高く高容量であることから天然黒鉛を使用することが好ましい。天然黒鉛としては、例えば、鱗状、鱗片状、塊状又は板状の天然黒鉛が挙げられ、中でも、鱗片状黒鉛が好ましい。
第1工程で得られる、球形化黒鉛の原料となる鱗片上黒鉛などの原料炭素材の平均粒子径d50は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、好ましくは80μm以下、より好ましくは50μm以下、更に好ましくは35μm以下、特に好ましくは20μm以下、とりわけ好ましくは10μm以下、最も好ましくは8μm以下である。
d50が上記範囲にある場合、不可逆容量の増加やサイクル特性の低下を防ぐことができる。また、球形化黒鉛の粒子内空隙構造を緻密に制御することができ、PD/d50(%)を1.8以下とすることが容易となる。このため、電解液が粒子内空隙へと効率的に行き渡ることが出来るようになり、粒子内のLiイオン挿入脱離サイトを効率的に利用できようになるため、低温出力特性やサイクル特性が向上する傾向にある。さらに、球形化黒鉛の円形度を高く調整することができるため、Liイオン拡散の屈曲度が上がることなく粒子間空隙中のスムーズな電解液移動が可能となり、急速充放電特性が向上する。
また、d50が上記範囲にある場合、造粒工程中に生成する微粉を、造粒された黒鉛(以降、造粒炭素材と称す。)となる母材に付着或いは母材の内部に包む込みながら造粒することが可能になり、球形化度が高く微粉が少ない造粒炭素材を得ることが出来る。
原料炭素材のd50を上記範囲に調整する方法として、例えば(天然)黒鉛粒子を粉砕、及び/または分級する方法が挙げられる。
粉砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としては、機械式粉砕機、気流式粉砕機、旋回流式粉砕機等が挙げられる。具体的には、ボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル、サイクロンミル、ターボミル等が挙げられる。特に、d50が10μm以下の黒鉛粒子を得る場合には、気流式粉砕機や旋回流式粉砕機を用いることが好ましい。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができ、また、湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
また、第一工程で得られる、原料炭素材としては以下のような物性を満足することが好ましい。
原料炭素材に含まれる灰分は、炭素材の全重量に対して、好ましくは1重量%以下、より好ましくは0.5重量%以下であり、更に好ましくは0.1重量%以下である。また、灰分の下限は1ppm以上であることが好ましい。
灰分が上記範囲内であると非水系二次電池とした場合に、充放電時の炭素質粒子(A)と電解液との反応による電池性能の劣化を無視できる程度に抑えることができる。また、炭素質粒子(A)の製造に多大な時間とエネルギーと汚染防止のための設備とを必要としないため、コストの上昇も抑えられる。
原料炭素材のアスペクト比は、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上、特に好ましくは15以上である。また、好ましくは1000以下、より好ましくは500以下、更に好ましくは100以下、特に好ましくは50以下である。アスペクト比の定義は、後述の本発明の炭素質粒子(A)のアスペクト比の定義と同様である。アスペクト比が大きすぎると粒子径が100μm程度の大きな粒子ができやすい傾向があり、小さすぎる粒子は、一方向からの加圧をした際に接触面積が小さいため、強固な造粒体が形成されない傾向があり、また粒子を造粒しても鱗片状黒鉛の小さい比表面積が反映して、比表面積が30m/gを超える造粒体となる傾向がある。
原料炭素材のX線広角回折法による002面の面間隔(d002)及び結晶子の大きさ(Lc)は、通常(d002)が3.37Å以下で(Lc)が900Å以上であり、(d002)が3.36Å以下で(Lc)が950Å以上であることが好ましい。面間隔(d002)及び結晶子の大きさ(Lc)は、炭素材バルクの結晶性を示す値であり、002面の面間隔(d002)の値が小さいほど、また結晶子の大きさ(Lc)が大きいほど、結晶性が高い炭素材であることを示し、黒鉛層間に入るリチウムの量が理論値に近づくので容量が増加する。結晶性が低いと高結晶性黒鉛を電極に用いた場合の優れた電池特性(高容量で、且つ不可逆容量が低い)が発現されない。面間隔(d002)と結晶子サイズ(Lc)は、上記範囲が組み合わされていることが特に好ましい。
X線回折は以下の手法により測定する。
炭素粉末に総量の約15重量%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定する。その後、学振法を用いて面間隔(d002)及び結晶子の大きさ(Lc)を求める。
原料炭素材の充填構造は、粒子の大きさ、形状、粒子間相互作用力の程度等によって左右されるが、本明細書では充填構造を定量的に議論する指標の一つとしてタップ密度を適用することも可能である。本発明者らの検討では、真密度と平均粒子径がほぼ等しい黒鉛質粒子では、形状が球状で粒子表面が平滑であるほど、タップ密度が高い値を示すことが確認されている。すなわち、タップ密度を上げるためには、粒子の形状に丸みを帯びさせて球状に近づけ、粒子表面のささくれや欠損を除き平滑さを保つことが重要である。粒子形状が球状に近づき粒子表面が平滑であると、粉体の充填性も大きく向上する。原料炭素材のタップ密度は、好ましくは0.1g/cm以上であり、より好ましくは0.15g/cm以上であり、更に好ましくは0.2g/cm以上であり、特に好ましくは0.3g/cm以上である。タップ密度は実施例で後述する方法により測定する。
原料炭素材のアルゴンイオンレーザーラマンスペクトルは粒子の表面の性状を現す指標として利用されている。原料炭素材のアルゴンイオンレーザーラマンスペクトルにおける1580cm−1付近のピーク強度に対する1360cm−1付近のピーク強度比であるラマンR値は、好ましくは0.05以上0.9以下であり、より好ましくは0.05以上0.7以下であり、更に好ましくは0.05以上0.5以下である。R値は炭素粒子の表面近傍(粒子表面から100Å位まで)の結晶性を表す指標であり、R値が小さいほど結晶性が高い、あるいは結晶状態が乱れていないことを示す。ラマンスペクトルは以下に示す方法により測定する。具体的には、測定対象粒子をラマン分光器測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射すると共に、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。なお、アルゴンイオンレーザー光の波長は514.5nmとする。
原料炭素材のX線広角回折法は、粒子全体の結晶性を表す指標として用いられる。鱗片状黒鉛は、X線広角回折法による菱面体結晶構造に基づく101面の強度3R(101)と六方晶結晶構造に基づく101面の強度2H(101)との比3R/2Hが好ましくは0.1以上、より好ましくは0.15以上、更に好ましくは0.2以上である。菱面体結晶構造とは、黒鉛の網面構造の積み重なりが3層おきに繰り返される結晶形態である。また、六方晶結晶構造とはとは黒鉛の網面構造の積み重なりが2層おきに繰り返される結晶形態である。菱面体結晶構造3Rの比率の多い結晶形態を示す鱗片状黒鉛の場合、菱面体結晶構造3Rの比率の少ない黒鉛に比べLiイオンの受け入れ性が高い。
原料炭素材のBET法による比表面積は、好ましくは0.3m/g以上、より好ましくは0.5m/g以上、更に好ましくは1m/g以上、特に好ましくは2m/g以上、最も好ましくは5m/g以上であり、好ましくは30m/g以下、より好ましくは20m/g以下、更に好ましくは15m/g以下である。BET法による比表面積は後述する実施例の方法により測定する。原料炭素材の比表面積が上記範囲内にあると、Liイオンの受け入れ性が良好となり、不可逆容量の増加による電池容量の減少を防ぐことができる。鱗片状黒鉛の比表面積が小さすぎると、Liイオンの受け入れ性が悪くなり、大きすぎると不可逆容量の増加による電池容量の減少を防ぐことができない傾向がある。
造粒炭素材の原料炭素材(原料黒鉛)に含まれる水分量は、原料黒鉛の全重量に対して、好ましくは1重量%以下、より好ましくは0.5重量%以下であり、更に好ましくは0.1重量%以下、特に好ましくは0.05重量%以下、最も好ましくは0.01重量%以下である。また、水分量の下限は1ppm以上であることが好ましい。水分量は例えばJIS M8811に準拠した方法で測定することが出来る。水分量が上記範囲内であると、球形化処理の際に粒子間の静電引力が大きくなるため粒子間付着力が増し、微粉が母材に付着、及び球形化粒子に内包された状態となりやすく好ましい。また、疎水性造粒剤を用いる場合の濡れ性低下を防ぐことができる。
造粒炭素材の原料炭素材(原料黒鉛)の水分量を上記範囲とするために、必要に応じて乾燥処理を実施することが出来る。処理温度は、通常60℃以上、好ましくは100℃以上、より好ましくは200℃以上、更に好ましくは250℃以上、特に好ましくは300℃以上、最も好ましくは350℃であり、また通常1500℃以下、好ましくは1000℃以下、より好ましくは800℃以下、更に好ましくは600℃以下である。処理温度が低すぎると、水分量を十分に低減できない傾向があり、高すぎると、生産性の低下、コスト増大を招く傾向がある。
乾燥処理時間は、通常0.5〜48時間、好ましくは1〜40時間、より好ましくは2〜30時間、更に好ましくは、3〜24時間である。処理時間が長すぎると、生産性の低下を招き、短すぎると、熱処理効果が十分に発揮されない傾向になる。
熱処理の雰囲気は、大気雰囲気などの活性雰囲気、もしくは、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気が挙げられ、200℃〜300℃で熱処理する場合には特段制限はないが、300℃以上で熱処理を行う場合には、黒鉛表面の酸化を防止する観点で、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気が好ましい。
原料炭素材である球形化黒鉛の原料となる鱗片状黒鉛のXPSより求められる表面官能基量O/C値(%)は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.3以上、特に好ましくは0.5以上で、好ましくは5以下、より好ましくは3以下、更に好ましくは2.5以下、特に好ましくは2以下、最も好ましくは1.5以下である。表面官能基量O/C値(%)が上記範囲内であると、吸湿性が抑えられて粒子が乾燥状態を保ちやすく、球形化処理の際に粒子間の静電引力が大きくなるため粒子間付着力が増し、微粉が母材に付着、及び球形化粒子に内包された状態となりやすく好ましい。
(第2工程)原料炭素材と造粒剤とを混合する工程
本発明の実施形態で用いる造粒剤は、1)前記原料炭素材を造粒する工程時に液体及び2)造粒剤が有機溶剤を含まないか、有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、又は引火点を有するときには該引火点が5℃以上、の条件を満足するものである。
上記要件を満たす造粒剤を有することで、続く第3工程における原料炭素材を造粒する工程の際に、原料炭素材間を造粒剤が液架橋することにより、原料炭素材間に液架橋内の毛管負圧と液の表面張力によって生じる引力が粒子間に液架橋付着力として働くため、原料炭素材間の液架橋付着力が増大し、原料炭素材がより強固に付着することが可能となる。
本発明の実施形態においては、原料炭素材間を造粒剤が液架橋することによる原料炭素材間の液架橋付着力の強さはγcosθ値に比例する(ここで、γ:液の表面張力、θ:液と粒子の接触角)。すなわち、原料炭素材を造粒する際に、造粒剤は原料炭素材との濡れ性が高いことが好ましく、具体的にはγcosθ値>0となるようにcosθ>0となる造粒剤を選択するのが好ましく、造粒剤の下記測定方法で測定した黒鉛との接触角θが90°未満であることが好ましい。
(黒鉛との接触角θの測定方法)
HOPG表面に1.2μLの造粒剤を滴下し、濡れ広がりが収束して一秒間の接触角θの変化率が3%以下となったとき(定常状態ともいう)の接触角を接触角測定装置(協和界面社製自動接触角計DM−501)にて測定する。ここで、25℃における粘度が500cP以下の造粒剤を用いる場合には25℃における値を、25℃における粘度が500cPより大きい造粒剤を用いる場合には、粘度が500cP以下となる温度まで加温した温度における接触角θの測定値とする。
さらに、原料炭素材と造粒剤の接触角θが0°に近いほど、γcosθ値が大きくなるため、黒鉛粒子間の液架橋付着力が増大し、黒鉛粒子同士がより強固に付着することが可能となる。従って、前記造粒剤の黒鉛との接触角θは85°以下であることがより好ましく、80°以下であることが更に好ましく、50°以下であることがこと更に好ましく、30°以下であることが特に好ましく、20°以下であることが最も好ましい。
表面張力γが大きい造粒剤を使用することによっても、γcosθ値が大きくなり黒鉛粒子の付着力は向上するため、γは好ましくは0以上、より好ましくは15以上、更に好ましくは30以上である。
造粒剤の表面張力γは、表面張力計(例えば、協和界面科学株式会社製DCA−700)を用いてWilhelmy法により測定する。
また、粒子の移動に伴う液橋の伸びに対する抵抗成分として粘性力が働き、その大きさは粘度に比例する。このため、原料炭素材を造粒する造粒工程時において液体であれば造粒剤の粘度は特段限定されないが、造粒工程時において1cP以上であることが好ましい。
また造粒剤の、25℃における粘度は1cP以上100000cP以下であることが好ましく、5cP以上10000cP以下であることがより好ましく、10cP以上8000cP以下であることが更に好ましく、50cP以上6000cP以下であることが特に好ましい。粘度が上記範囲内にあると、原料炭素材を造粒する際に、ローターやケーシングとの衝突などの衝撃力による付着粒子の脱離を防ぐことが可能となる。
本発明で用いる造粒剤の粘度は、レオメーター(例えば、Rheometric Scientific社製ARES)を用い、カップに測定対象(ここでは造粒剤)を適量入れ、所定の温度に調節して測定する。せん断速度100s−1におけるせん断応力が0.1Pa以上の場合にはせん断速度100s−1で測定した値を、せん断速度100s−1におけるせん断応力が0.1Pa未満の場合には1000s−1で測定した値を、せん断速度1000s−1におけるせん断応力が0.1Pa未満の場合にはせん断応力が0.1Pa以上となるせん断速度で測定した値を、本明細における粘度と定義する。なお、用いるスピンドルを低粘度流体に適した形状とすることでもせん断応力を0.1Pa以上とすることが出来る。
さらに、本発明の実施形態で用いる造粒剤は、有機溶剤を含まないか、有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、あるいは引火点を有するときは引火点が5℃以上のものである。これにより、続く第3工程における原料炭素材を造粒する際に、衝撃や発熱に誘発される造粒剤の引火、火災、及び爆発の危険を防止することができるため、安定的に効率よく製造を実施することが出来る。
造粒剤としては、例えば、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイルやオレフィン系オイルやナフテン系オイルや芳香族系オイルなどの合成油、植物系油脂類や動物系脂肪族類やエステル類や高級アルコール類などの天然油、引火点5℃以上、好ましくは21℃以上の有機溶媒中に樹脂バインダーを溶解させた樹脂バインダー溶液などの有機化合物、水などの水系溶媒、及びそれらの混合物などが挙げられる。
引火点5℃以上の有機溶剤としては、キシレン、イソプロピルベンゼン、エチルベンゼン、プロピルベンゼンなどのアルキルベンゼン、メチルナフタレン、エチルナフタレン、プロピルナフタレンなどのアルキルナフタレン、スチレンなどのアリルベンゼン、アリルナフタレンなどの芳香族炭化水素類や、オクタン、ノナン、デカンなどの脂肪族炭化水素類や、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン類や、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミルなどのエステル類や、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリンなどのアルコール類や、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、メトキシプロパノール、メトキシプロピル−2−アセテート、メトキシメチルブタノール、メトキシブチルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、エチレングリコールモノフェニルエーテル、などのグリコール類誘導体類や、1,4−ジオキサンなどのエーテル類や、ジメチルホルムアミド、ピリジン、2−ピロリドン、N−メチル−2−ピロリドンなどの含窒素化合物、ジメチルスルホキシドなどの含硫黄化合物、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、クロロベンゼンなどの含ハロゲン化合物、及びそれらの混合物などが挙げられ、例えばトルエンのような引火点が低い物は含まれない。これら有機溶剤は単体で造粒剤としても用いることが出来る。なお、本明細書において、引火点は、公知の方法により測定できる。
樹脂バインダーとしては、公知のものを使用することができる。例えば、エチルセルロース、メチルセルロース、及びそれらの塩等のセルロース系の樹脂バインダー、ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリアクリル酸、及びそれらの塩等のアクリル系の樹脂バインダー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレート等のメタクリル系の樹脂バインダー、フェノール樹脂バインダー等を使用することができる。以上の中でも、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイル、芳香族系オイルが、球形化度(円形度)が高く微粉が少ない炭素材を製造できるため好ましい。
造粒剤としては、後述する造粒剤を除去する工程(第4工程)において、効率よく除去が可能であり、容量や出力特性や保存・サイクル特性などの電池特性への悪影響を与えることが無い性状のものが好ましい。具体的には、不活性雰囲気下700℃に加熱した時に通常50%以上、好ましくは80%以上、より好ましくは95%以上、更に好ましくは99%以上、特に好ましくは99.9%以上重量減少するものを適宜選択することが出来る。
原料炭素材と造粒剤を混合する方法として、例えば、原料炭素材と造粒剤とをミキサーやニーダーを用いて混合する方法や、有機化合物を低粘度希釈溶媒(有機溶剤)に溶解させた造粒剤と原料炭素材を混合した後に該希釈溶媒(有機溶剤)を除去する方法等が挙げられる。また、続く第3工程にて原料炭素材を造粒する際に、造粒装置に造粒剤と原料炭素材とを投入して、原料炭素材と造粒剤を混合する工程と造粒する工程とを同時に行う方法も挙げられる。
造粒剤の添加量は、原料炭素材100重量部に対して好ましくは0.1重量部以上、より好ましくは1重量部以上、更に好ましくは3重量部以上、より更に好ましくは6重量部以上、こと更に好ましくは10重量部以上、特に好ましくは12重量部以上、最も好ましくは15重量部以上であり、好ましくは1000重量部以下、より好ましくは100重量部以下、更に好ましくは80重量部以下、特に好ましくは50重量部以下、最も好ましくは20重量部以下である。上記範囲内にあると、粒子間付着力の低下による球形化度の低下や、装置への原料炭素材の付着による生産性の低下といった問題が生じ難くなる。
(第3工程)原料炭素材を造粒する工程(原料炭素材に対して球形化処理を行う工程)
炭素材は、原料炭素材に衝撃圧縮、摩擦、せん断力等の機械的作用を与えることにより球形化処理(以下、造粒とも称する)を施したものであることが好ましい。また、該球形化黒鉛は、複数の鱗片状又は鱗状黒鉛、及び磨砕された黒鉛微粉からなるものであることが好ましく、特に複数の鱗片状黒鉛からなるものであることが特に好ましい。
本発明の実施形態は、少なくとも衝撃、圧縮、摩擦、及びせん断力のいずれかの力学的エネルギーを付与して原料炭素材を造粒する造粒工程を有することが好ましい。
この工程に用いる装置としては、例えば、衝撃力を主体に、原料炭素材の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し与える装置を用いることができる。
具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された原料炭素材に対して衝撃、圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、原料炭素材を循環させることによって機械的作用を繰り返し与える機構を有するものであるのが好ましい。
このような装置としては、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン、クリプトロンオーブ(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム、ノビルタ、ファカルティ(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)、COMPOSI(日本コークス工業製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。
前記装置を用いて処理する場合、例えば、回転するローターの周速度は好ましくは30m/秒以上、より好ましくは50m/秒以上、更に好ましくは60m/秒以上、特に好ましくは70m/秒以上、最も好ましくは80m/秒以上であり、好ましくは100m/秒以下である。上記範囲内であると、より効率的に球形化と同時に微粉の母材への付着や母材による内包を行うことができるため好ましい。
また、原料炭素材に機械的作用を与える処理は、単に原料炭素材を通過させるだけでも可能であるが、原料炭素材を30秒以上、装置内を循環又は滞留させて処理するのが好ましく、より好ましくは1分以上、更に好ましくは3分以上、特に好ましくは5分以上、装置内を循環又は滞留させて処理する。
また原料炭素材を造粒する工程においては、原料炭素材を、その他の物質存在下で造粒してもよく、その他の物質としては、例えばリチウムと合金化可能な金属或いはその酸化物、鱗片状黒鉛、鱗状黒鉛、磨砕された黒鉛微粉、非晶質炭素、及び生コークスなどが挙げられる。原料炭素材以外の物質と併せて造粒することで様々なタイプの粒子構造の炭素質粒子(A)を製造できる。
また、原料炭素材や造粒剤や上記その他の物質は上記装置内に一度に全量投入してもよく、分けて逐次投入してもよく、連続投入してもよい。また、原料炭素材や造粒剤や上記その他の物質は上記装置内に同時に投入してもよく、混合して投入してもよく、別々に投入してもよい。原料炭素材と造粒剤と上記その他の物質を同時に混合してもよいし、原料炭素材と造粒剤を混合したものに上記その他の物質を添加してもよいし、その他の物質と造粒剤を混合したものに原料炭素材を添加してもよい。粒子設計に併せて、別途適切なタイミングで添加・混合することができる。
炭素材の球形化処理の際には、球形化処理中に生成する微粉を母材に付着、及び/又は球形化粒子に内包しながら球形化処理することがより好ましい。球形化処理中に生成する微粉を母材に付着、及び/又は球形化粒子に内包しながら球形化処理することにより、粒子内空隙構造をより緻密化することが可能となる。このため、電解液が粒子内空隙へと有効且つ効率的に行き渡り、粒子内のLiイオン挿入脱離サイトを効率的に利用できるようになるため、良好な低温出力特性やサイクル特性を示す傾向がある。また、母材に付着する微粉は球形化処理中に生成したものに限らず、鱗片状黒鉛粒度調整の際に同時に微粉を含むよう調整してもよいし、別途適切なタイミングで添加・混合してもよい。
微粉を母材に付着、及び球形化粒子に内包させるために、鱗片状黒鉛粒子−鱗片状黒鉛粒子間、鱗片状黒鉛粒子−微粉粒子間、及び微粉粒子−微粉粒子間の付着力を強くすることが好ましい。粒子間の付着力として、具体的には、粒子間介在物を介さないファンデルワールス力や静電引力、粒子間介在物を介する物理的及び/または化学架橋力等が挙げられる。
ファンデルワールス力は、平均粒子径(d50)が100μmを境に小さくなるほど「自重<付着力」となる。このため、球形化黒鉛の原料となる鱗片状黒鉛(原料炭素材)の平均粒子径(d50)が小さいほど粒子間付着力が増し、微粉が母材に付着、及び球形化粒子に内包された状態となりやすく好ましい。鱗片状黒鉛の平均粒子径(d50)は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上で、好ましくは80μm以下、より好ましくは50μm以下、更に好ましくは35μm以下、特に好ましくは20μm以下、とりわけ好ましくは10μm以下、最も好ましくは8μm以下である。
静電引力は、粒子摩擦等による帯電に由来しており、粒子が乾燥しているほど帯電しやすく粒子間付着力が大きくなる傾向がある。従って、例えば球形化処理を行う前の黒鉛に含まれる水分量を少なくしておくことで粒子間付着力を高めることができる。
球形化処理の際には、処理中の鱗片状黒鉛が吸湿しないよう、低湿度雰囲気下で行うことが好ましい、また処理中に機械処理のエネルギーにより鱗片状黒鉛表面の酸化反応が進行して酸性官能基が導入されることを防ぐことを目的として不活性雰囲下で球形化処理を行うことが好ましい。
粒子間介在物を介する物理的及び/または化学的架橋力としては、液体性介在物、固体性介在物、を介する物理的及び/または化学的架橋力が挙げられる。上記化学的架橋力としては、粒子と粒子間介在物との間で化学反応、焼結、メカノケミカル効果などにより、共有結合、イオン結合、水素結合等が形成された場合の架橋力が挙げられる。
(第4工程)造粒剤を除去する工程
本発明の実施形態においては、前記造粒剤を除去する工程を有していてもよい。造粒剤を除去する方法としては、例えば、溶剤により洗浄する方法や、熱処理により造粒剤を揮発・分解除去する方法が挙げられる。
このときの熱処理温度は、好ましくは60℃以上、より好ましくは100℃以上、更に好ましくは200℃以上、特に好ましくは300℃以上、とりわけ好ましくは400℃以上、最も好ましくは500℃であり、好ましくは1500℃以下、より好ましくは1000℃以下、更に好ましくは800℃以下である。熱処理温度が上記範囲内にあると、十分に造粒剤を揮発・分解除去でき生産性を向上できる。
熱処理時間は、好ましくは0.5〜48時間、より好ましくは1〜40時間、更に好ましくは2〜30時間、特に好ましくは3〜24時間である。熱処理時間が上記範囲内にあると、十分に造粒剤を揮発・分解除去でき生産性を向上できる。
熱処理の雰囲気は、大気雰囲気などの活性雰囲気、もしくは、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気があげられ、200℃〜300℃で熱処理する場合には特段制限はないが、300℃以上で熱処理を行う場合には、黒鉛表面の酸化を防止する観点で、窒素雰囲気やアルゴン雰囲気などの不活性雰囲気が好ましい。
(第5工程)造粒炭素材を高純度化する工程
本発明においては、造粒炭素材を高純度化する工程を有していてもよい。造粒炭素材を高純度化する方法としては、硝酸や塩酸を含む酸処理を行う方法が挙げられ、活性の高い硫黄元となりうる硫酸塩を系内に導入することなく黒鉛中の金属、金属化合物、無機化合物などの不純物を除去できるため好ましい。
なお、上記酸処理は、硝酸や塩酸を含む酸を用いればよく、その他の酸、例えば、臭素酸、フッ酸、ホウ酸あるいはヨウ素酸などの無機酸、または、クエン酸、ギ酸、酢酸、シュウ酸、トリクロロ酢酸あるいはトリフルオロ酢酸などの有機酸を適宜混合した酸を用いることもできる。好ましくは濃フッ酸、濃硝酸、濃塩酸であり、より好ましくは濃硝酸、濃塩酸である。なお、本発明において硫酸にて黒鉛を処理してもよいが、本発明の効果や物性を損なわない程度の量と濃度にて用いることとする。
酸を複数用いる場合、例えば、フッ酸、硝酸、塩酸の組み合わせが、上記不純物を効率よく除去できるため好ましい。上記のように酸の種類を組み合わせた場合の混合酸の混合比率は、最も少ないものが通常10重量%以上、好ましくは20重量%以上、より好ましくは、25重量%以上である。上限は、全て等量混合した値である(100重量%/酸の種類で表される)。
酸処理における造粒炭素材と酸の混合比率(重量比率)は、通常100:10以上、好ましくは100:20以上、より好ましくは100:30以上、更に好ましくは100:40以上であり、また100:1000以下、好ましくは100:500以下、より好ましくは100:300以下である。酸の量が少なすぎると上記不純物を効率よく除去できなくなる傾向がある。一方、多すぎると、一回に洗浄できる造粒炭素材量が減り、生産性低下とコストの上昇を招くため、好ましくない。
酸処理は、造粒炭素材を前記のような酸性溶液に浸漬することにより行われる。浸漬時間は、通常0.5〜48時間、好ましくは1〜40時間、より好ましくは2〜30時間、更に好ましくは3〜24時間である。この時間が長すぎると、生産性低下とコストの上昇を招く傾向があり、短すぎると、上記不純物を十分に除去できなくなる傾向がある。
浸漬温度は、通常25℃以上、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上である。水系の酸を用いる場合の理論上限は水の沸点である100℃である。この温度が低すぎると、上記不純物を十分に除去できなくなる傾向がある。
酸洗浄により残った酸分を除去し、pHを弱酸性から中性域にまで上昇させる目的で、上記の酸処理後は、更に水洗浄を実施することが好ましい。例えば、前記酸処理後の造粒炭素材のpHが、通常3以上、好ましくは3.5以上、より好ましくは4以上、更に好ましくは4.5以上であれば、水で洗浄することは省略できるし、もし上記範囲でなければ、必要に応じて水で洗浄することが好ましい。洗浄する水は、イオン交換水や蒸留水を用いることが、洗浄効率の向上、不純物混入防止の観点から好ましい。水中のイオン量の指標となる比抵抗が、通常0.1MΩ・cm以上、好ましくは1MΩ・cm以上、より好ましくは、更に好ましくは10MΩ・cm以上である。25℃での理論上限は18.24MΩ・cmである。この数値が小さいと水中のイオン量が多くなることを示しており、不純物混入、洗浄効率低下の傾向がある。
水で洗浄する、つまり前記酸処理造粒炭素材と水とを撹拌する時間は、通常0.5〜48時間、好ましくは1〜40時間、より好ましくは2〜30時間、更に好ましくは3〜24時間である。この時間が長すぎると、生産効率が低下する傾向があり、短すぎると、残留不純物・酸分が増大する傾向になる。
前記酸処理造粒炭素材と水との混合割合は、通常100:10以上、好ましくは100:30以上、より好ましくは100:50以上、更に好ましくは100:100以上であり、また通常100:1000以下、好ましくは100:700以下、より好ましくは100:500以下、更に好ましくは100:400以下である。水量が多すぎると生産効率が低下する傾向があり、少なすぎると残留不純物・酸分が増大する傾向になる。
撹拌温度は、通常25℃以上、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上である。上限は水の沸点である100℃である。撹拌温度が低すぎると、残留不純物・酸分が増大する傾向になる。
また、水洗浄処理をバッチ式にて行う場合は、純水中での攪拌−ろ過の処理工程を複数回繰り返して洗浄行うことが不純物・酸分除去の観点から好ましい。上記処理は、上述した酸処理造粒炭素材のpHが上記範囲になるように繰り返し行ってもよい。通常、1回以上、好ましくは2回以上、より好ましくは3回以上である。
上述したように処理を施すことにより、得られた造粒炭素材の廃水イオン濃度が、通常200ppm以下、好ましくは100ppm以下、より好ましくは50ppm以下、更に好ましくは30ppm以下、また通常1ppm以上、好ましくは2ppm以上、より好ましくは3ppm以上、更に好ましくは4ppm以上となる。イオン濃度が高すぎると、酸分が残存してpHが低下する傾向があり、低すぎると処理に時間がかかり生産性の低下に繋がる傾向がある。
(第6工程)造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着する工程
本発明の実施形態では、造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着する工程を有していてもよい。すなわち、前記炭素材に炭素質物を複合化することができる。この工程によれば、電解液との副反応抑制や、急速充放電性の向上できる炭素質粒子(A)を得ることができる。
造粒炭素材に、さらに原料炭素材より結晶性が低い炭素質物を添着したものを「炭素質物複合炭素材」又は「複合炭素材」と呼ぶことがある。
造粒炭素材への炭素質物添着(複合化)処理は炭素質物となる有機化合物と、造粒炭素材を混合し、非酸化性雰囲気下、好ましくは窒素、アルゴン、二酸化炭素などの流通下に加熱して、有機化合物を炭素化又は黒鉛化させる処理である。
炭素質物となる具体的な有機化合物としては、軟質ないし硬質の種々のコールタールピッチや石炭液化油などの炭素系重質油、原油の常圧又は減圧蒸留残渣油などの石油系重質油、ナフサ分解によるエチレン製造の副生物である分解系重質油など種々のものを用いることができる。
また、分解系重質油を熱処理することで得られるエチレンタールピッチ、FCCデカントオイル、アシュランドピッチなどの熱処理ピッチ等を挙げることができる。さらにポリ塩化ビニル、ポリビニルアセテート、ポリビニルブチラール、ポリビニルアルコール等のビニル系高分子と3−メチルフェノールホルムアルデヒド樹脂、3,5−ジメチルフェノールホルムアルデヒド樹脂等の置換フェノール樹脂、アセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素、フェナジンやアクリジンなどの窒素環化合物、チオフェンなどのイオウ環化合物などを挙げることができる。また、固相で炭素化を進行させる有機化合物としては、セルロースなどの天然高分子、ポリ塩化ビニリデンやポリアクリロニトリルなどの鎖状ビニル樹脂、ポリフェニレン等の芳香族系ポリマー、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等熱硬化性樹脂やフルフリルアルコールのような熱硬化性樹脂原料などを挙げることができる。これらの中でも石油系重質油が好ましい。
加熱温度(焼成温度)は混合物の調製に用いた有機化合物により異なるが、通常は800℃以上、好ましくは900℃以上、より好ましくは950℃以上に加熱して十分に炭素化又は黒鉛化させる。加熱温度の上限は有機化合物の炭化物が、混合物中の鱗片状黒鉛の結晶構造と同等の結晶構造に達しない温度であり、通常は高くても3500℃である。加熱温度の上限は3000℃、好ましくは2000℃、より好ましくは1500℃に止めるのが好ましい。
上述したような処理を行った後、次いで解砕及び/又は粉砕処理を施すことにより、炭素質物複合炭素材とすることができる。
形状は任意であるが、平均粒子径は、通常2〜50μmであり、5〜35μmが好ましく、特に8〜30μmである。上記粒子径範囲となるよう、必要に応じて、解砕及び/又は粉砕及び/又は分級を行う。
なお、本実施形態の効果を損なわない限り、他の工程の追加や上述に記載のない制御条件を追加してもよい。
炭素質物複合炭素材中の炭素質物の含有量は、原料となる造粒炭素材に対して、通常0.01重量%以上、好ましくは0.1重量%以上、より好ましくは0.3%以上、更に好ましくは0.7重量%以上、特に好ましくは1重量%以上、最も好ましくは1.5重量%以上であり、また前記含有量は、通常20重量%以下、好ましくは15重量%以下、更に好ましくは10重量%以下、特に好ましくは7重量%以下、最も好ましくは5重量%以下である。
炭素質物複合炭素材中の炭素質物の含有量が多すぎると、非水系二次電池において高容量を達成する為に十分な圧力で圧延を行った場合に、炭素材にダメージが与えられて材料破壊が起こり、初期サイクル時充放電不可逆容量の増大、初期効率の低下を招く傾向がある。一方、含有量が小さすぎると、被覆による効果が得られにくくなる傾向がある。
また、炭素質物複合炭素材中の炭素質物の含有量は、下記式のように材料焼成前後のサンプル重量より算出できる。なおこのとき、造粒炭素材の焼成前後重量変化はないものとして計算する。
炭素質物の含有量(重量%)=[(w2−w1)/w1]×100
(w1を造粒炭素材の重量(kg)、w2を炭素質物複合炭素材の重量(kg)とする)
また、極板の配向性、電解液の浸透性、導電パス等を向上させ、サイクル特性、極版膨れ等の改善を目的とし、前記造粒炭素材とは異なる炭素材料を混合することができる(以下、前記造粒炭素材に、前記造粒炭素材とは異なる炭素材料を混合して得られた炭素材を「混合炭素材」と呼ぶことがある)。
前記炭素材とは異なる炭素材料としては、例えば天然黒鉛、人造黒鉛、炭素材を炭素質物で被覆した被覆黒鉛、非晶質炭素、金属粒子や金属化合物を含有した炭素材の中から選ばれる材料を用いることができる。これらの材料は、何れかを一種を単独で用いてもよく、二種以上を任意の組み合わせ及び組成で併用してもよい。
天然黒鉛としては、例えば、高純度化した炭素材や球形化した天然黒鉛を用いることができる。本発明でいう高純度化とは、通常、塩酸、硫酸、硝酸、弗酸などの酸中で処理する、若しくは複数の酸処理工程を組み合わせて行なうことにより、低純度天然黒鉛中に含まれる灰分や金属等を溶解除去する操作のことを意味し、通常、酸処理工程の後に水洗処理等を行ない高純度化処理工程で用いた酸分の除去をする。また、酸処理工程の代わりに2000℃以上の高温で処理することにより、灰分や金属等を蒸発、除去しても構わない。また、高温熱処理時に塩素ガス等ハロゲンガス雰囲気で処理することにより灰分や金属等を除去しても構わない。更にまた、これらの手法を任意に組み合わせて用いてもよい。
天然黒鉛の平均粒子径d50は、通常3μm以上、好ましくは5μm以上、より好ましくは8μm以上、特に好ましくは10μm以上、最も好ましくは12μm以上、また、通常30μm以下、好ましくは25μm以下、特に好ましくは23μm以下の範囲である。d50がこの範囲であれば、充放電効率、高速充放電特性、サイクル特性、生産性が良好となるため好ましい。
天然黒鉛のBET比表面積は、通常1m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上、更に好ましくは6m/g以上、特に好ましくは7m/g以上、また、通常30m/g以下、好ましくは15m/g以下、より好ましくは12m/g以下、更に好ましくは10m/g以下の範囲である。比表面積がこの範囲であれば、充放電効率、高速充放電特性、サイクル特性、生産性が良好となるため好ましい。
また、天然黒鉛のタップ密度は、通常0.6g/cm以上で、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下で、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。この範囲であれば高速充放電特性、生産性が良好となるため好ましい。
人造黒鉛としては、炭素材を黒鉛化した粒子等が挙げられ、例えば、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛化した粒子や、複数の黒鉛前駆体粒子を成形し焼成、黒鉛化し解砕した造粒粒子などを用いることができる。
人造黒鉛の平均粒子径d50は、通常5μm以上で、好ましくは10μm以上、また、通常30μm以下で、好ましくは25μm以下、更に好ましくは20μm以下の範囲である。この範囲であれば、極板膨れの抑制や生産性が良好となるため好ましい。
人造黒鉛のBET比表面積は、通常0.5m/g以上で、好ましくは1.0m/g以上、また、通常8m/g以下、好ましくは6m/g以下、更に好ましくは4m/g以下の範囲である。この範囲であれば、極板膨れの抑制や生産性が良好となるため好ましい。
また、人造黒鉛のタップ密度は、通常0.6g/cm以上で、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.5g/cm以下で、1.4g/cm以下が好ましく、1.3g/cm以下がより好ましい。この範囲であれば、極板膨れの抑制や生産性が良好となるため好ましい。
炭素材を炭素質物で被覆した被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に上述した炭素質物の前駆体である有機化合物を被覆、焼成及び/又は黒鉛化した粒子や、天然黒鉛や人造黒鉛に炭素質物を化学気相蒸着(CVD)により被覆した粒子を用いることができる。
被覆黒鉛の平均粒子径d50は、通常3μm以上、好ましくは5μm以上、より好ましくは8μm以上、特に好ましくは10μm以上、最も好ましくは12μm以上、また、通常30μm以下、好ましくは25μm以下、特に好ましくは23μm以下の範囲である。d50がこの範囲であれば、充放電効率、高速充放電特性、サイクル特性、生産性が良好となるため好ましい。
被覆黒鉛のBET比表面積は、通常0.5m/g以上、好ましくは1m/g以上、より好ましくは2m/g以上、さらに好ましくは3m/g以上、特に好ましくは4m/g以上である。また通常30m/g以下、好ましくは20m/g以下、より好ましくは10m/g以下、更に好ましくは7m/g以下、特に好ましくは6.5m/g以下、の範囲である。比表面積がこの範囲であれば、充放電効率、高速充放電特性、サイクル特性、生産性が良好となるため好ましい。
また、被覆黒鉛のタップ密度は、通常0.6g/cm以上で、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下で、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度がこの範囲であれば、高速充放電特性、生産性が良好となるため好ましい。
非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、易黒鉛化性有機化合物を不融化処理し、焼成した粒子を用いることができる。
非晶質炭素の平均粒子径d50は、通常5μm以上で、好ましくは12μm以上、また、通常30μm以下で、好ましくは20μm以下の範囲である。d50がこの範囲であれば、高速充放電特性、生産性が良好となるため好ましい。
非晶質炭素のBET比表面積は、通常1m/g以上で、好ましくは2m/g以上、更に好ましくは2.5m/g以上、また、通常8m/g以下で、好ましくは6m/g以下、更に好ましくは4m/g以下の範囲である。比表面積がこの範囲であれば、高速充放電特性、生産性が良好となるため好ましい。
また、非晶質炭素のタップ密度は、通常0.6g/cm以上で、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下で、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度がこの範囲であれば、高速充放電特性、生産性が良好となるため好ましい。
金属粒子や金属化合物を含有した炭素材としては、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物を黒鉛と複合化した材料が挙げられる。用いることができる金属又はその化合物としては、2種以上の金属からなる合金を使用してもよく、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその化合物が好ましく、中でも好ましくはSi及びSiOxである。この一般式SiOxは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0<x<2であり、好ましくは0.2以上、より好ましくは0.4以上、更に好ましくは0.6以上であり、好ましくは1.8以下、より好ましくは1.6以下、更に好ましくは1.4以下である。この範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
金属粒子の平均粒子径d50は、サイクル寿命の観点から、通常0.005μm以上、好ましくは0.01μm以上、より好ましくは0.02μm以上、更に好ましくは0.03μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径がこの範囲であると充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。
金属粒子のBET比表面積は、通常0.5m/g以上120m/g以下で、1m/g以上100m/g以下であることが好ましい。比表面積が前記範囲内であると、電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
造粒炭素材と造粒炭素材とは異なる炭素材料を混合するために用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、HelicalFlight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。
<炭素質粒子(A)の物性>
以下、本発明の炭素質粒子(A)の好ましい物性について、説明する。
(細孔径0.01μm以上1μm以下の範囲のモード細孔径(PD))
本発明の炭素質粒子(A)において、0.01μm以上1μm以下の範囲のモード細孔径(PD)は、水銀圧入法(水銀ポロシメトリー)を用いて測定した値であり、好ましくは0.01μm以上、より好ましくは0.03μm以上、更に好ましくは0.05μm以上、特に好ましくは0.06μm以上であり、最も好ましくは0.07μm以上であり、好ましくは1μm以下、より好ましくは0.65μm以下、更に好ましくは0.5μm以下、より更に好ましくは0.4μm以下、特に好ましくは0.3μm以下、より特に好ましくは0.2μm以下、最も好ましくは0.1μm以下である。
0.01μm以上1μm以下の範囲のモード細孔径(PD)が上記範囲を外れると、電解液が粒子内空隙へと効率的に行き渡ることが出来ず、粒子内のLiイオン挿入脱離サイトを効率的に利用できなくなるため、低温出力特性やサイクル特性が低下する傾向がある。
(細孔径0.01μm以上1μm以下の範囲の積算細孔容積)
本発明の炭素質粒子(A)において、0.01μm以上1μm以下の範囲の細孔容積は、水銀圧入法(水銀ポロシメトリー)を用いて測定した値であり、加圧処理される場合であっても、通常0.08mL/g以上、好ましくは0.09mL/g以上であり、より好ましくは0.10mL/g以上である。また、好ましくは0.3mL/g以下であり、より好ましくは0.25mL/g以下、更に好ましくは0.2mL/g以下、特に好ましくは0.18mL/g以下である。
0.01μm以上1μm以下の範囲の細孔容積が小さすぎる場合、粒子内へ電解液が侵入できなくなり粒子内のLiイオン挿入脱離サイトを効率的に利用できなくなる為、急速充放電をさせた時にリチウムイオンの挿入脱離がスムーズに進むことが難しくなり、低温出力特性が下がる傾向にある。一方で、上記する範囲に含まれる場合は、電解液が粒子内部へスムーズ且つ効率的に行き渡ることが可能になる為、充放電の際に粒子外周部だけでなく粒子内部に存在するLiイオン挿入脱離サイトを有効且つ効率的に利用することが可能になり、良好な低温出力特性を示す傾向にある。
(細孔分布半値半幅(log(nm)))
本発明の炭素質粒子(A)の細孔分布半値半幅(log(nm))は、水銀圧入法(水銀ポロシメトリー)により求められる細孔分布(nm)の横軸を常用対数(log(nm))で表示したときの、細孔径0.01μm以上1μm以下の範囲に存在するピークの微細孔側の半値半幅を指す。
<炭素質粒子(A)のd50が13μm以上の炭素質粒子(A)である場合>
d50が13μm以上の炭素質粒子(A)が、鱗片状黒鉛、鱗状黒鉛、及び塊状黒鉛を球形化処理した炭素質粒子(A)である場合、細孔分布半値半幅(log(nm))は、好ましくは0.45以上、より好ましくは0.5以上、更に好ましくは0.6以上、特に好ましくは0.65以上、最も好ましくは0.7以上、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下、特に好ましくは1以下である。
また、d50が13μm以上の炭素質粒子(A)材が、鱗片状黒鉛、鱗状黒鉛、及び塊状黒鉛を球形化処理した黒鉛と炭素質物とが複合化した複合炭素材である場合、細孔分布半値半幅(log(nm))は、好ましくは0.3以上、より好ましくは0.35以上、更に好ましくは0.4以上、特に好ましくは0.45以上、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下、特に好ましくは1以下である。
<炭素質粒子(A)のd50が13μm未満の炭素材である場合>
炭素質粒子(A)がd50が13μm未満の炭素質粒子(A)である場合、細孔分布半値半幅(log(nm))は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上、好ましくは0.33以下、より好ましくは0.3以下、更に好ましくは0.25以下、特に好ましくは0.23以下である。
細孔分布半値半幅(log(nm))が上記範囲内であると、0.01μm以上1μm以下の範囲の粒子内空隙がより緻密な構造を形成されるため、電解液が粒子内部へスムーズ且つ効率的に行き渡ることが可能になり、充放電の際に、粒子外周部だけでなく粒子内部に存在するLiイオン挿入脱離サイトを有効且つ効率的に利用することが可能になり、良好な低温出力特性やサイクル特性を示す傾向がある。
(全細孔容積)
本発明の炭素質粒子(A)の全細孔容積は、水銀圧入法(水銀ポロシメトリー)を用いて測定した値であり、好ましくは0.1mL/g以上、より好ましくは0.3mL/g以上、更に好ましくは0.5mL/g以上、特に好ましくは0.6mL/g以上、最も好ましくは0.7mL/g以上である。また、好ましくは10mL/g以下、より好ましくは5mL/g以下、更に好ましくは2mL/g以下、特に好ましくは1mL/g以下である。
全細孔容積が上記範囲内であると、極板化時のバインダー量を過剰にする必要がなく、極板化時に増粘剤やバインダーの分散効果も得られ易くなる。
上記水銀ポロシメトリー用の装置として、水銀ポロシメータ(オートポア9520:マイクロメリティックス社製)を用いることができる。試料(炭素材)を0.2g前後の値となるように秤量し、パウダー用セルに封入し、室温、真空下(50μmHg以下)にて10分間脱気して前処理を実施する。
引き続き、4psia(約28kPa)に減圧して前記セルに水銀を導入し、圧力を4psia(約28kPa)から40000psia(約280MPa)までステップ状に昇圧させた後、25psia(約170kPa)まで降圧させる。
昇圧時のステップ数は80点以上とし、各ステップでは10秒の平衡時間の後、水銀圧入量を測定する。こうして得られた水銀圧入曲線からWashburnの式を用い、細孔分布を算出する。
なお、水銀の表面張力(γ)は485dyne/cm、接触角(ψ)は140°として算出する。平均細孔径は、累計細孔体積が50%となるときの細孔径として定義する。
(粒子径)
本発明の炭素質粒子(A)のd50は好ましくは3μm以上、より好ましくは4μm以上、更に好ましくは5μm以上、殊更に好ましくは8μm以上、特に好ましくは10μm以上、最も好ましくは12μm以上である。また平均粒子径d50は、好ましくは30μm以下、より好ましくは25μm以下、更に好ましくは23μm以下、殊更に好ましくは20μm以下、特に好ましくは17μm以下である。d50が上記範囲内であれば、不可逆容量の増加を抑制でき、またスラリー塗布における筋引きなどの生産性が損なわれないといった傾向がある。
平均粒子径d50が小さすぎると、炭素質粒子(A)を用いて得られる非水系二次電池の不可逆容量の増加、初期電池容量の損失を招く傾向があり、一方d50が大きすぎるとスラリー塗布における筋引きなどの工程不都合の発生、高電流密度充放電特性の低下、低温出力特性の低下を招く場合がある。
後述の本発明の酸化珪素粒子(B)のd50と本発明の炭素質粒子(A)のd50との比R=[酸化珪素粒子(B)の平均粒子径(d50)]/[炭素質粒子(A)の平均粒子径](d50)は0.01以上10以下であることが好ましい。この平均粒子径比Rが上記範囲内であると、炭素質粒子(A)同士の間隙に酸化珪素粒子(B)が存在させることができ、理論容量が炭素質粒子(A)よりも大きい酸化珪素粒子(B)の存在によって、さらなる高容量化を実現することができる。充放電によるLiイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子(B)の体積変化は、炭素質粒子(A)により形成された間隙が吸収するため、酸化珪素粒子(B)の体積変化に伴う導電パス切れを抑制し、結果としてサイクル特性向上、急速充放電特性、高容量化を実現することができる。この平均粒子径比Rは、より好ましくは0.01〜3であり、更に好ましくは0.1〜1、特に好ましくは0.15〜0.8であり、最も好ましくは0.2〜0.6である。
本発明の炭素質粒子(A)のd10は好ましくは20μm以下、より好ましくは17μm以下、更に好ましくは15μm以下、特に好ましくは13m以下、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは5μm以上である。
d10が上記範囲内にあると、粒子の凝集傾向が強くなり過ぎず、スラリー粘度上昇などの工程不都合の発生、非水系二次電池における電極強度の低下や初期充放電効率の低下を回避できる。また、高電流密度充放電特性の低下、低温出力特性の低下も回避する傾向にある。
本発明の炭素質粒子(A)のd90は好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは60μm以下、より更に好ましくは50μm以下、特に好ましくは45μm以下、最も好ましくは42μm以下、好ましくは10μm以上、より好ましくは15μm以上、更に好ましくは17μm以上、特に好ましくは20μm以上である。
d90が上記範囲内にあると、非水系二次電池における電極強度の低下や初期充放電効率の低下を回避でき、スラリーの塗布時の筋引きなどの工程不都合の発生、高電流密度充放電特性の低下、低温出力特性の低下も回避できる傾向にある。
本発明の炭素質粒子(A)の最大粒径dmaxは、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは120μm以下、特に好ましくは100μm以下、最も好ましくは80μm以下である。dmaxが上記範囲内にあると、筋引きなどの工程不都合の発生を抑制できる傾向にある。
また、最大粒径は、平均粒径d50の測定の際に得られた粒度分布において、粒子が測定された最も大きい粒径の値として定義される。
(PD/d50(%))
本発明の炭素質粒子(A)のPD/d50(%)は下記式で表され、通常1.8以下、好ましくは1.80以下、より好ましくは1.00以下、更に好ましくは0.90以下、特に好ましくは0.80以下、最も好ましくは0.70以下、通常0.01以上、好ましくは0.10以上、より好ましくは0.20以上である。
PD/d50(%)=([水銀圧入法により求められる細孔分布における細孔径0.01μm以上1μm以下の範囲のモード細孔径(PD)]/[体積基準平均粒子径(d50)])×100
PD/d50(%)が上記範囲を外れると、電解液が粒子内空隙へと効率的に行き渡ることが出来ず、粒子内のLiイオン挿入脱離サイトを効率的に利用できなくなるため、低温出力特性やサイクル特性が低下する傾向がある。
(3μm以下の粒子個数頻度)
本発明の炭素質粒子(A)の28kHzの超音波を出力60Wで5分間照射した際の粒径3μm以下の粒子個数頻度は、好ましくは1%以上、より好ましくは10%以上、好ましくは60%以下、より好ましくは55%以下、更に好ましくは50%以下、特に好ましくは40%以下、最も好ましくは30%以下である。
粒子個数頻度が上記範囲内であると、スラリー混練、電極圧延、充放電などの際に粒子崩壊や微粉剥離を生じにくくなり、低温出力特性やサイクル特性が良好となる傾向がある。
前記28kHzの超音波を出力60Wで5分間照射した際の粒径3μm以下の粒子個数頻度としては、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2体積%水溶液50mLに炭素材料0.2gを混合し、フロー式粒子像分析装置「シスメックスインダストリアル社製FPIA−2000」を用い、28kHzの超音波を出力60Wで所定時間照射した後、検出範囲を0.6〜400μmに指定して、粒子個数を測定した値を用いる。
(円形度)
本発明の炭素質粒子(A)の円形度は、通常0.88以上、好ましくは0.90以上、より好ましくは0.91以上である。また、円形度は好ましくは1以下、より好ましくは0.98以下、更に好ましくは0.97以下である。円形度が上記範囲内であると、当該炭素材を用いた非水系二次電池の高電流密度充放電特性の低下を抑制できる傾向にある。なお、円形度は以下の式で定義され、円形度が1のときに理論的真球となる。
また、円形度が上記範囲内であると、Liイオン拡散の屈曲度が下がって粒子間空隙中の電解液移動がスムーズになり、且つ適度に炭素材同士が接触することが可能なため、良好な急速充放電特性、及びサイクル特性を示す傾向がある。
円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
円形度の値としては、例えば、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、試料(炭素材)約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、分散液に28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が1.5〜40μmの範囲の粒子について測定した値を用いる。測定した粒子投影形状と同じ面積を持つ円(相当円)の周囲長を分子とし、測定した粒子投影形状の周囲長を分母とした比率を求め、平均を算出して、円形度とする。
(タップ密度)
本発明の炭素質粒子(A)のタップ密度は通常0.7g/cm以上、好ましくは0.75g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは0.83g/cm以上、殊更に好ましくは0.85g/cm以上、特に好ましくは0.88g/cm以上、より特に好ましくは0.9g/cm以上、最も好ましくは0.95g/cm以上であり、好ましくは1.3g/cm以下であり、より好ましくは1.2g/cm以下であり、更に好ましくは1.1g/cm以下である。
タップ密度が上記範囲内であると、極板化作製時のスジ引きなどの生産性が良好になり高速充放電特性に優れる。また、粒子内炭素密度が上昇し難いため圧延性も良好で、高密度の負極シートを形成し易くなる傾向にある。
前記タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して本発明の炭素質粒子(A)を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の質量から求めた密度として定義する。
(X線パラメータ)
本発明の炭素質粒子(A)の、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は、好ましくは0.335nm以上、0.340nm未満である。ここで、d値はより好ましくは0.339nm以下、更に好ましくは0.337nm以下、特に好ましくは0.336nm以下である。d002値が上記範囲内にあると、黒鉛の結晶性が高いため、初期不可逆容量が増加を抑制する傾向にある。ここで、0.335nmは黒鉛の理論値である。
また、学振法によるX線回折で求めた前記炭素材の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上、更に好ましくは500nm以上、特に好ましくは1000nm以上の範囲である。上記範囲内であると、結晶性が低過ぎない粒子となり、非水系二次電池とした場合に可逆容量が減少し難くなる。なお、Lcの下限は黒鉛の理論値である。
(灰分)
本発明の炭素質粒子(A)に含まれる灰分は、炭素材の全質量に対して、好ましくは1質量%以下、より好ましくは0.5質量%以下であり、更に好ましくは0.1質量%以下である。また、灰分の下限は1ppm以上であることが好ましい。
灰分が上記範囲内であると非水系二次電池とした場合に、充放電時の炭素材と電解液との反応による電池性能の劣化を無視できる程度に抑えることができる。また、炭素材の製造に多大な時間とエネルギーと汚染防止のための設備とを必要としないため、コストの上昇も抑えられる。
(BET比表面積(SA))
本発明の炭素質粒子(A)のBET法により測定した比表面積(SA)は、好ましくは1m/g以上、より好ましくは2m/g以上、更に好ましくは3m/g以上、特に好ましくは4m/g以上である。また、好ましくは30m/g以下、より好ましくは25m/g以下、更に好ましくは20m/g以下、殊更に好ましくは18m/g以下、特に好ましくは17m/g以下、最も好ましくは15m/g以下である。
比表面積が上記範囲内であると、Liが出入りする部位を十分確保することができるため高速充放電特性出力特性に優れ、活物質の電解液に対する活性も適度抑えることができるため、初期不可逆容量が大きくならず、高容量電池を製造できる傾向にある。
また、炭素材を使用して負極を形成した場合の、その電解液との反応性の増加を抑制でき、ガス発生を抑えることができるため、好ましい非水系二次電池を提供することができる。
BET比表面積は、表面積計(例えば、島津製作所製比表面積測定装置「ジェミニ2360」)を用い、炭素材試料に対して窒素流通下100℃、3時間の予備減圧乾燥を行なった後、液体窒素温度まで冷却し、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET多点法によって測定した値として定義する。
(表面官能基量O/C値(%))
X線光電子分光法測定(XPS)としてX線光電子分光器(例えば、アルバック・ファイ社製ESCA)を用い、測定対象(ここでは炭素材)を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とO1s(525〜545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度比O/C(O原子濃度/C原子濃度)×100を炭素材の表面官能基量O/C値と定義する。
XPSより求められる本発明の炭素質粒子(A)のO/C値は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.2以上、殊更に好ましくは1以上、特に好ましくは1.5以上、最も好ましくは2以上であり、好ましくは8以下、より好ましくは4以下、更に好ましくは3.5以下、特に好ましくは3以下、最も好ましくは2.5以下である。この表面官能基量O/C値が上記範囲内であれば、負極活物質表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が促進され急速充放電特性が良好となり、電解液との反応性が抑制され充放電効率が良好となる傾向がある。
(真密度)
本発明の炭素質粒子(A)の真密度は、好ましくは1.9g/cm以上、より好ましくは2g/cm以上、更に好ましくは2.1g/cm以上、殊更に好ましくは2.2g/cm以上であり、上限は2.26g/cmである。上限は黒鉛の理論値である。真密度が上記範囲内であると、炭素の結晶性が低すぎず、非水系二次電池とした場合の、その初期不可逆容量の増大を抑制できる傾向にある。
(アスペクト比)
本発明の炭素質粒子(A)の粉末状態でのアスペクト比は、理論上1以上であり、好ましくは1.1以上、より好ましくは1.2以上である。またアスペクト比は好ましくは10以下、より好ましくは8以下、更に好ましくは5以下である。
アスペクト比が上記範囲内であると、極板化時に炭素質粒子(A)を含むスラリー(負極形成材料)のスジ引きが起こり難く、均一な塗布面が得られ、非水系二次電池の高電流密度充放電特性の低下を回避する傾向にある。
アスペクト比は、3次元的に観察したときの炭素材料粒子の最長となる径Aと、それと直交する径のうち最短となる径Bとしたとき、A/Bで表される。炭素質粒子(A)の観察は、拡大観察ができる走査型電子顕微鏡で行う。厚さ50ミクロン以下の金属の端面に固定した任意の50個の炭素質粒子(A)を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、A、Bを測定し、A/Bの平均値を求める。
(ラマンR値)
本発明の炭素質粒子(A)のラマンR値は、特に限定されないが、その値は好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上、殊更に好ましくは0.15以上、特に好ましくは0.2以上である。また、ラマンR値は通常1以下、好ましくは0.8以下、より好ましくは0.7以下、更に好ましくは0.6以下、特に好ましくは0.5以下、最も好ましくは0.4以下である。
なお、前記ラマンR値は、ラマン分光法で求めたラマンスペクトルにおける1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比(I/I)として算出されたものと定義する。
なお、本明細書において「1580cm−1付近」とは1580〜1620cm−1の範囲を、「1360cm−1付近」とは1350〜1370cm−1の範囲を指す。
ラマンR値は炭素粒子の表面近傍(粒子表面から100Å位まで)の結晶性を表す指標であり、ラマンR値が小さいほど結晶性が高い、あるいは結晶状態が乱れていないことを示す。
ラマンR値が上記範囲内にあると、炭素質粒子(A)表面の結晶性は高くなり難く、高密度化した場合に負極板と平行方向に結晶が配向し難くなり、負荷特性の低下を回避する傾向にある。さらに、粒子表面の結晶も乱れ難く、負極の電解液との反応性の増大を抑制し、非水系二次電池の充放電効率の低下やガス発生の増加を回避できる傾向にある。
前記ラマンスペクトルは、ラマン分光器で測定できる。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。測定条件は以下の通りである。
アルゴンイオンレーザー光の波長 :514.5nm
試料上のレーザーパワー :25mW
分解能 :4cm−1
測定範囲 :1100cm−1〜1730cm−1 ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
(DBP吸油量)
本発明の炭素質粒子(A)のDBP(フタル酸ジブチル)吸油量は、好ましくは85mL/100g以下、より好ましくは70mL/100g以下、更に好ましくは65mL/100g以下、特に好ましくは60mL/100g以下である。また、DBP吸油量は好ましくは30mL/100g以上、より好ましくは40mL/100g以上である。
DBP吸油量が上記範囲内であると、炭素材の球形化の進み具合が十分であることを意味し、該炭素材を含むスラリーの塗布時にスジ引きなどを引き起こし難い傾向があり、粒子内にも細孔構造が存在するため、反応面の低下を回避する傾向にある。
また、DBP吸油量は、JIS K6217に準拠し、測定材料(炭素材)を40g投入し、滴下速度4mL/min、回転数125rpm、設定トルク500N・mとしたときの測定値として定義される。測定には、例えばブラベンダー社製 アブソープトメーター E型を用いることができる。
[酸化珪素粒子(B)]
<構成>
前述のメカニズムの項に説明したように、本発明の酸化珪素粒子(B)における珪素原子数(MSi)に対する酸素原子数(M)の比(M/MSi)は0.5〜1.6であることが好ましい。また、ゼロ価の珪素原子を含むことが好ましい。また、結晶化した珪素の微結晶を含むことが好ましい。
/MSiは、より好ましくは0.7〜1.3であり、特に好ましくは0.8〜1.2である。M/MSiが上記範囲であると、Liイオン等のアルカリイオンの出入りのしやすい高活性な非晶質の珪素酸化物からなる粒子により、炭素質粒子(A)に比べて高容量化を得ることができ、かつ非晶質構造により高サイクル維持率を達成することが可能となる。また、酸化珪素粒子(B)が、炭素質粒子(A)によって形成された間隙に炭素質粒子(A)との接点を確保しながら充填させることによって、充放電によるLiイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子(B)の体積変化を該間隙により吸収させることが可能となる。このことにより、酸化珪素粒子(B)の体積変化による導電パス切れを抑制することができる。
ゼロ価の珪素原子を含む酸化珪素粒子(B)は、固体NMR(29Si−DDMAS)測定において、通常、酸化珪素において存在する−110ppm付近を中心とし、特にピークの頂点が−100〜−120ppmの範囲にあるブロードなピーク(P1)に加えて、−70ppmを中心とし、特にピークの頂点が−65〜−85ppmの範囲にあるブロードなピーク(P2)が存在することが好ましい。これらのピークの面積比(P2)/(P1)は、0.1≦(P2)/(P1)≦1.0であることが好ましく、0.2≦(P2)/(P1)≦0.8の範囲であることがより好ましい。ゼロ価の珪素原子を含む酸化珪素粒子(B)が上記性状を有することによって、容量が大きく、かつ、サイクル特性の高い負極材を得ることができる。
また、ゼロ価の珪素原子を含む酸化珪素粒子(B)は、水酸化アルカリを作用させた時に水素を生成することが好ましい。この時発生する水素量から換算される酸化珪素粒子(B)中のゼロ価の珪素原子の量としては、2〜45重量%が好ましく、5〜36重量%程度であることがより好ましく、10〜30重量%程度であることが更に好ましい。ゼロ価の珪素原子の量が、2重量%未満では、充放電容量が小さくなる場合があり、逆に45重量%を超えるとサイクル特性が劣る場合がある。
珪素の微結晶を含む酸化珪素粒子(B)は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径が好ましくは1〜500nm、より好ましくは2〜200nm、更に好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiOx、x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
酸化珪素粒子(B)中の珪素の微結晶の量は、2〜45重量%が好ましく、5〜36重量%程度であることがより好ましく、10〜30重量%程度であることが更に好ましい。この珪素の微結晶量が2重量%未満では、充放電容量が小さくなる場合があり、逆に45重量%を超えるとサイクル性が劣る場合がある。
<物性>
(粒子径)
本発明の酸化珪素粒子(B)の平均粒子径、即ち、体積基準の粒子径分布における小粒子側から50%体積積算部の粒子径(d50)は、0.1μm以上20μm以下であることが好ましい。酸化珪素粒子(B)のd50が上記範囲であれば、電極にした場合、炭素質粒子(A)によって形成された間隙に酸化珪素粒子(B)が存在し、充放電によるLiイオン等のアルカリイオンの吸蔵・放出に伴う酸化珪素粒子(B)の体積変化を間隙が吸収して、体積変化による導電パス切れを抑制し、結果としてサイクル特性を向上させることができる。酸化珪素粒子(B)のd50はより好ましくは0.3〜15μmであり、更に好ましくは0.4〜10μm、特に好ましくは0.5〜8μmである。
なお、本発明の酸化珪素粒子(B)のd50は、本発明の炭素質粒子(A)のd50に対して、前述の好適なR=[酸化珪素粒子(B)の平均粒子径(d50)]/[炭素質粒子(A)の平均粒子径(d50)]を満たすことが好ましい。
本発明の酸化珪素粒子(B)の体積基準の粒子径分布における小粒子側から10%体積積算部の粒子径(d10)は0.001μm以上6μm以下であることが好ましい。酸化珪素粒子(B)のd10が上記範囲で、適切な微粉が存在することにより、炭素質粒子(A)同士の間隙に存在する酸化珪素粒子(B)により、良好な導電パスを取ることができ、サイクル特性が良好となるとともに、比表面積の増大を抑制して不可逆容量を低減することができる。酸化珪素粒子(B)のd10はより好ましくは0.01〜4μmであり、更に好ましくは0.1〜3μmである。
本発明の酸化珪素粒子(B)の体積基準の粒子径分布における小粒子側から90%体積積算部の粒子径(d90)は、0.5μm以上30μm以下であることが好ましい。d90が上記範囲であると酸化珪素粒子(B)が炭素質粒子(A)同士の間隙に存在しやすくなり、良好な導電パスを取ることができ、サイクル特性が良好となる。酸化珪素粒子(B)のd90はより好ましくは0.8〜20μmであり、更に好ましくは1〜15μm、特に好ましくは1.2〜12μmである。
(比表面積)
本発明の酸化珪素粒子(B)のBET法による比表面積は80m/g以下であることが好ましく、60m/g以下であることが好ましい。また、0.5m/g以上であることが好ましく、1m/g以上であることがより好ましく、1.5m/g以上であることが更に好ましい。酸化珪素粒子(B)のBET法による比表面積が前記範囲内であると、Liイオン等のアルカリイオンの入出力の効率を良好に維持でき、酸化珪素粒子(B)が好適な大きさとなるため、炭素質粒子(A)によって形成された間隙に存在させることができ、炭素質粒子(A)との導電パスを確保することができる。また、酸化珪素粒子(B)が好適な大きさとなるため不可逆容量の増大を抑制し、高容量を確保することができる。
BET法による比表面積は、後掲の実施例の項に記載の方法で測定される。
<酸化珪素粒子(B)の製造方法>
本発明で用いる酸化珪素粒子(B)は、通常、二酸化珪素(SiO)を原料とし、金属珪素(Si)及び/又は炭素を用いてSiOを熱還元させることにより得られる、SiOxのxの値が0<x<2で表される珪素酸化物からなる粒子の総称である(ただし、後述するように、珪素及び炭素以外の他の元素をドープすることも可能であり、この場合はSiOxとは異なる組成式となるが、このようなものも本発明に用いる酸化珪素粒子(B)に含まれる。)。珪素(Si)は、黒鉛と比較して理論容量が大きく、更に非晶質珪素酸化物は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。本発明の酸化珪素粒子(B)としては、前述の通り珪素原子数(MSi)に対する酸素原子数Mの比(M/MSi)が0.5〜1.6の酸化珪素粒子(B)であることが好ましい。
本発明で用いる酸化珪素粒子(B)は、酸化珪素粒子を核として、この表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の酸化珪素粒子であってもよい。酸化珪素粒子(B)は、非晶質炭素からなる炭素層を備えていない酸化珪素粒子(B1)及び複合型の酸化珪素粒子(B2)からなる群より選ばれる1種を単独で用いてもよく、2種以上を併用してもよい。ここで、「表面の少なくとも一部に非晶質炭素からなる炭素層を備えた」とは、炭素層が酸化珪素粒子の表面の一部又は全部を層状に覆う形態のみならず、炭素層が表面の一部又は全部に付着・添着する形態をも包含する。炭素層は、表面の全部を被覆するように備えていてもよく、一部を被覆あるいは付着・添着してもよい。
(酸化珪素粒子(B1)の製造方法)
酸化珪素粒子(B1)は、本発明の特性を満たすものであれば、製法は問わないが、例えば特許第3952118号公報に記載されたような方法によって製造された酸化珪素粒子を使用することができる。具体的には、二酸化珪素粉末と、金属珪素粉末あるいは炭素粉末とを特定の割合で混合し、この混合物を反応器に充填した後、常圧あるいは特定の圧力に減圧し、1000℃以上に昇温し、保持してSiOxガスを発生させ、冷却析出させて、一般式SiOx(xは0.5≦x≦1.6)で示される酸化珪素粒子を得ることができる。析出物は、力学的エネルギー処理を与えることで、粒子とすることができる。
力学的エネルギー処理は、例えば、ボールミル、振動ボールミル、遊星ボールミル、転動ボールミル等の装置を用いて、反応器に充填した原料と、この原料と反応しない運動体を入れて、これに振動、回転又はこれらが組み合わされた動きを与える方法によって、前記物性を満たす酸化珪素粒子(B)を形成することができる。
(複合型の酸化珪素粒子(B2)の製造方法)
酸化珪素粒子の表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の酸化珪素粒子(B2)を製造する方法としては特に制限はないが、酸化珪素粒子(B1)に石油系や石炭系のタールやピッチ、ポリビニルアルコール、ポリアクリルニトリル、フェノール樹脂、セルロース等の樹脂を必要により溶媒等を用いて混合した後、非酸化性雰囲気で500℃〜3000℃、好ましくは700℃〜2000℃、より好ましくは800〜1500℃で焼成することで、酸化珪素粒子の表面の少なくとも一部に非晶質炭素からなる炭素層を備えた複合型の酸化珪素粒子(B2)を製造することができる。
(不均化処理)
本発明の酸化珪素粒子(B)は、上記のようにして製造された酸化珪素粒子(B1)や複合型の酸化珪素粒子(B2)を更に熱処理を施して不均化処理したものであってもよく、不均化処理を施すことで、アモルファスSiOx中にゼロ価の珪素原子がSi微細結晶として偏在する構造が形成され、このようなアモルファスSiOx中のSi微細結晶により、本発明の負極材のメカニズムの項に記載した通り、Liイオンを吸蔵・放出する電位の範囲が炭素質粒子と近くなり、Liイオンの吸蔵・放出に伴う体積変化が炭素質粒子(A)と同時に起こるため、炭素質粒子(A)と酸化珪素粒子(B)の界面における相対位置関係が維持され、炭素質粒子との接触が損なわれることによる性能低下を低減させることが可能となる。
この不均化処理は、前述の酸化珪素粒子(B1)又は複合型の酸化珪素粒子(B2)を、900〜1400℃の温度域において、不活性ガス雰囲気下で加熱することにより行うことができる。
不均化処理の熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、Liイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。不均化処理の熱処理温度は好ましくは1000〜1300℃、より好ましくは1100〜1250℃である。なお、処理時間(不均化時間)は不均化処理温度に応じて10分〜20時間、特に30分〜12時間程度の範囲で適宜制御することができるが、例えば1100℃の処理温度においては5時間程度が好適である。
なお、上記不均化処理は、不活性ガス雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、Ar、He、H、N等の上記処理温度にて不活性なガス単独もしくはそれらの混合ガスを用いることができる。
(炭素コーティング/珪素微結晶分散酸化珪素粒子の製造)
本発明の酸化珪素粒子(B)は、珪素の微結晶を含む酸化珪素粒子の表面を炭素でコーティングした複合型の酸化珪素粒子であってもよい。
このような複合型の酸化珪素粒子の製造方法は特に限定されるものではないが、例えば下記I〜IIIの方法を好適に採用することができる。
I:一般式SiOx(0.5≦x<1.6)で表される酸化珪素粉末を原料として、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下900〜1400℃、好ましくは1000〜1400℃、より好ましくは1050〜1300℃、更に好ましくは1100〜1200℃の温度域で熱処理することにより、原料の酸化珪素粉末を珪素と二酸化珪素の複合体に不均化すると共に、その表面を化学蒸着する方法
II:一般式SiOx(0.5≦x<1.6)で表される酸化珪素粉末をあらかじめ不活性ガス雰囲気下900〜1400℃、好ましくは1000〜1400℃、より好ましくは1100〜1300℃で熱処理を施して不均化してなる珪素複合物、シリコン微粒子をゾルゲル法により二酸化珪素でコーティングした複合物、シリコン微粉末を煙霧状シリカ、沈降シリカのような微粉状シリカと水を介して凝固させたものを焼結して得られる複合物、又は珪素及びこの部分酸化物もしくは窒化物等の好ましくは0.1〜50μmの粒度まで粉砕したものをあらかじめ不活性ガス気流下で800〜1400℃で加熱したものを原料に、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下、800〜1400℃、好ましくは900〜1300℃、より好ましくは1000〜1200℃の温度域で熱処理して表面を化学蒸着する方法
III:一般式SiOx(0.5≦x<1.6)で表される酸化珪素粉末をあらかじめ500〜1200℃、好ましくは500〜1000℃、より好ましくは500〜900℃の温度域で有機物ガス及び/又は蒸気で化学蒸着処理したものを原料として、不活性ガス雰囲気下900〜1400℃、好ましくは1000〜1400℃、より好ましくは1100〜1300℃の温度域で熱処理を施して不均化する方法
上記I又はIIの方法における800〜1400℃(好ましくは900〜1400℃、特に1000〜1400℃)の温度域での化学蒸着処理(即ち、熱CVD処理)において、熱処理温度が800℃より低いと、導電性炭素皮膜と珪素複合物との融合、炭素原子の整列(結晶化)が不十分であり、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。
一方、上記I又はIIIの方法における酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。
なお、上記IIIの方法においては、CVD処理した後に酸化珪素の不均化を900〜1400℃、特に1000〜1400℃で行うために、化学蒸着(CVD)の処理温度としては800℃より低い温度域での処理でも最終的には炭素原子が整列(結晶化)した導電性炭素皮膜と珪素複合物とが表面で融合したものが得られるものである。
このように、好ましくは熱CVD(800℃以上での化学蒸着処理)を施すことにより炭素膜を作製するが、熱CVDの時間は、炭素量との関係で、適宜設定される。この処理において粒子が凝集する場合があるが、この凝集物をボールミル等で解砕する。また、場合によっては、再度同様に熱CVDを繰り返し行う。
なお、上記Iの方法において、原料として一般式SiOx(0.5≦x<1.6)で表される酸化珪素を用いた場合には、化学蒸着処理と同時に不均化反応を行わせ、二酸化珪素中に結晶構造を有するシリコンを微細に分散させることが重要であり、この場合、化学蒸着及び不均化を進行させるための処理温度、処理時間、有機物ガスを発生する原料の種類及び有機物ガス濃度を適宜選定する必要がある。熱処理時間((CVD/不均化)時間)は、通常0.5〜12時間、好ましくは1〜8時間、特に2〜6時間の範囲から選ばれるが、この熱処理時間は熱処理温度((CVD/不均化)温度)とも関係し、例えば、処理温度を1000℃にて行う場合には少なくとも5時間以上の処理を行うことが好ましい。
また、上記IIの方法において、有機物ガス及び/又は蒸気を含む雰囲気下に熱処理する場合の熱処理時間(CVD処理時間)は、通常0.5〜12時間、特に1〜6時間の範囲とすることができる。なお、SiOxの酸化珪素をあらかじめ不均化する場合の熱処理時間(不均化時間)は、通常0.5〜6時間、特に0.5〜3時間とすることができる。
更に、上記IIIの方法において、SiOxをあらかじめ化学蒸着処理する場合の処理時間(CVD処理時間)は、通常0.5〜12時間、特に1〜6時間とすることができ、不活性ガス雰囲気下での熱処理時間(不均化時間)は、通常0.5〜6時間、特に0.5〜3時間とすることができる。
有機物ガスを発生する原料として用いられる有機物としては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の脂肪族又は脂環式炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
なお、上記熱CVD(熱化学蒸着処理)及び/又は不均化処理は、非酸化性雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、上記有機物ガス単独あるいは有機物ガスとAr、He、H、N等の非酸化性ガスの混合ガスを用いることができる。
この場合、回転炉、ロータリーキルン等の炉芯管が水平方向に配設され、炉芯管が回転する構造の反応装置が好ましく、これにより酸化珪素粒子を転動させながら化学蒸着処理を施すことで、酸化珪素粒子同士に凝集を生じさせることなく、安定した製造が可能となる。炉芯管の回転速度は0.5〜30rpm、特に1〜10rpmとすることが好ましい。なお、この反応装置は、雰囲気を保持できる炉芯管と、炉芯管を回転させる回転機溝と、昇温・保持できる加熱機構を有しているものであれば特に限定せず、目的によって原料供給機構(例えばフィーダー)、製品回収機構(例えばホッパー)を設けることや、原料の滞留時間を制御するために、炉芯管を傾斜したり、炉芯管内に邪魔板を設けることもできる。また、炉芯管の材質についても特に限定はされず、炭化珪素、アルミナ、ムライト、窒化珪素等のセラミックスや、モリブデン、タングステンといった高融点金属、SUS、石英等を処理条件、処理目的によって適宜選定して使用することができる。
また、流動ガス線速u(m/sec)は、流動化開始速度umfとの比u/umfが1.5≦u/umf≦5となる範囲とすることで、より効率的に導電性皮膜を形成することができる。u/umfが1.5より小さいと流動化が不十分となり、導電性皮膜にバラツキを生じる場合があり、逆にu/umfが5を超えると、粒子同士の二次凝集が発生し、均一な導電性皮膜を形成することができない場合がある。なお、ここで流動化開始速度は、粒子の大きさ、処理温度、処理雰囲気等により異なり、流動化ガス(線速)を徐々に増加させ、その時の粉体圧損がW(粉体重量)/A(流動層断面積)となった時の流動化ガス線速の値と定義することができる。なお、umfは、通常0.1〜30cm/sec、好ましくは0.5〜10cm/sec程度の範囲で行うことができ、このumfを与える粒子径としては一般的に0.5〜100μm、好ましくは5〜50μmとすることができる。粒子径が0.5μmより小さいと二次凝集が起こり、個々の粒子の表面を有効に処理することができない場合がある。
<酸化珪素粒子(B)への他元素のドープ>
酸化珪素粒子(B)は、珪素、酸素以外の元素がドープされていてもよい。珪素、酸素以外の元素がドープされた酸化珪素粒子(B)は、粒子内部の化学構造が安定化することにより初期充放電効率、サイクル特性の向上が見込まれる。さらに、このような酸化珪素粒子(B)は、リチウムイオン受け入れ性が向上して炭素質粒子(A)のリチウムイオン受け入れ性に近づくので、炭素質粒子(A)と酸化珪素粒子(B)を共に含む負極材を用いることで、急速充電時にも負極電極内でリチウムイオンが極端に濃縮されることがなく、金属リチウムが析出しにくい電池を作製することができる。
ドープされる元素は通常、周期表第18族以外の元素であれば任意の元素から選ぶことができるが、珪素、酸素以外の元素がドープされた酸化珪素粒子(B)がより安定であるためには周期表第4周期までの元素が好ましい。具体的には、周期表第4周期までのアルカリ金属、アルカリ土類金属、Al、Ga、Ge、N、P、As、Se等の元素から選ぶことができる。珪素、酸素以外の元素がドープされた酸化珪素粒子(B)のリチウムイオン受け入れ性を向上させるためには、ドープされる元素は周期表第4周期までのアルカリ金属、アルカリ土類金属であることが好ましく、Mg、Ca、Liがより好ましく、Liが更に好ましい。これらは1種のみでも、2種以上を組み合わせて用いることもできる。
珪素、酸素以外の元素がドープされた酸化珪素粒子(B)における珪素原子数(MSi)に対するドープされた元素の原子数(M)の比、(M/MSi)としては、0.01〜5が好ましく、0.05〜4がより好ましく、0.1〜3が更に好ましい。M/MSiがこの範囲を下回ると珪素、酸素以外の元素をドープした効果が得られず、この範囲を上回るとドープ反応で消費されなかった珪素、酸素以外の元素が酸化珪素粒子の表面に残存し、酸化珪素粒子の容量を低下させる原因となることがある。
珪素、酸素以外の元素がドープされた酸化珪素粒子(B)を製造する方法としては、例えば、酸化珪素粒子とドープされる元素の単体、もしくは、化合物の粉体を混合し、不活性ガス雰囲気下において、50〜1200℃の温度で加熱する方法が挙げられる。また、例えば、二酸化珪素粉末と、金属珪素粉末あるいは炭素粉末とを特定の割合で混合し、これにドープされる元素の単体、もしくは、化合物の粉体を加え、この混合物を反応器に充填した後、常圧あるいは特定の圧力に減圧し、1000℃以上に昇温し、保持して発生するガスを冷却析出させて、珪素、酸素以外の元素がドープされた酸化珪素粒子を得る方法も挙げられる。
[負極材]
<炭素質粒子(A)と酸化珪素粒子(B)の含有割合>
本発明の負極材は、前述の本発明に好適な物性を備える炭素質粒子(A)と酸化珪素粒子(B)とを[炭素質粒子(A)の重量]:[酸化珪素粒子(B)の重量]=30:70〜99:1、特に40:60〜98:3、とりわけ50:50〜95:5の割合で含むことが好ましく、このような割合で炭素質粒子(A)と酸化珪素粒子(B)とを混合して用いることにより、炭素質粒子(A)同士によって形成された間隙に、高容量かつLiイオンの吸蔵・放出に伴う体積変化が小さい酸化珪素粒子(B)が存在することで、炭素質粒子(A)との接触が損なわれることによる性能低下が小さい、高容量な負極材を得ることが可能となる。
<物性>
(平均粒子径(d50))
本発明の負極材は、平均粒子径、即ち、体積基準の粒径分布における小粒子側から50%積算部の粒子径(d50)は3μm以上30μm以下であることが好ましい。本発明の負極材のd50が3μm以上であると、比表面積が大きくなることによる不可逆容量の増加を防ぐことができる。一方、d50が30μm以下であると、電解液と負極材の粒子との接触面積が減ることによる急速充放電性の低下を防ぐことができる。負極材のd50は好ましくは8〜27μm、更に好ましくは10〜25μm、特に好ましくは12〜23μmである。
(タップ密度)
本発明の負極材のタップ密度は、好ましくは0.8〜1.8g/cm、より好ましくは0.9〜1.7g/cm、更に好ましくは1.0〜1.6g・cmである。タップ密度が上記範囲内であると、負極とした場合に、炭素質粒子(A)によって形成される間隙に電解液及び酸化珪素粒子(B)を存在させることができ、高容量化、高レート特性化を実現することができる。
タップ密度は、後掲の実施例の項に記載の方法で測定される。
(比表面積)
本発明の負極材のBET法による比表面積は、通常0.5m/g以上、好ましくは2m/g以上、より好ましくは3m/g以上、さらに好ましくは4m/g以上、特に好ましくは5m/g以上である。また通常30m/g以下、好ましくは20m/g以下、より好ましくは10m/g以下、更に好ましくは8m/g以下、特に好ましくは6.5m/g以下である。比表面積がこの範囲を下回ると、Liが出入りする部位が少なく、リチウムイオン二次電池の高速充放電特性出力特性や低温入出力特性が劣り、一方、比表面積がこの範囲を上回ると活物質の電解液に対する活性が過剰になり、電解液との副反応の増大により電池の初期充放電効率の低下やガス発生量の増大を招き、電池容量が低下する傾向がある。
BET法による比表面積は、後掲の実施例の項に記載の方法で測定される。
〔非水系二次電池用負極〕
本発明の非水系二次電池用負極(以下、「本発明の負極」と称す場合がある。)は、集電体と、該集電体上に形成された活物質層とを備え、該活物質層が本発明の負極材を含有するものである。
本発明の負極材を用いて負極を作製するには、負極材に結着樹脂を配合したものを水性又は有機系媒体でスラリーとし、必要によりこれに増粘材を加えて集電体に塗布し、乾燥すればよい。
結着樹脂としては、非水電解液に対して安定で、かつ非水溶性のものを用いるのが好ましい。例えば、スチレン・ブタジエンゴム、イソプレンゴム及びエチレン・プロピレンゴム等のゴム状高分子;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリアクリル酸、及び芳香族ポリアミド等の合成樹脂;スチレン・ブタジエン・スチレンブロック共重合体やその水素添加物、スチレン・エチレン・ブタジエン、スチレン共重合体、スチレン・イソプレン及びスチレンブロック共重合体並びにその水素化物等の熱可塑性エラストマー;シンジオタクチック−1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、及びエチレンと炭素数3〜12のα−オレフィンとの共重合体等の軟質樹脂状高分子;ポリテトラフルオロエチレン・エチレン共重合体、ポリビニデンフルオライド、ポリペンタフルオロプロピレン及びポリヘキサフルオロプロピレン等のフッ素化高分子等を用いることができる。有機系媒体としては、例えば、N−メチルピロリドン及びジメチルホルムアミドを用いることができる。
結着樹脂は、負極材100重量部に対して通常は0.1重量部以上、好ましくは0.2重量部以上用いるのが好ましい。結着樹脂の使用量を負極材100重量部に対して0.1重量部以上とすることで、負極材料相互間や負極材料と集電体との結着力が十分となり、負極から負極材料が剥離することによる電池容量の減少及びリサイクル特性の悪化を防ぐことができる。
また、結着樹脂の使用量は負極材100重量部に対して10重量部以下とするのが好ましく、7重量部以下とするのがより好ましい。結着樹脂の使用量を負極材100重量部に対して10重量部以下とすることにより、負極の容量の減少を防ぎ、かつリチウムイオン等のアルカリイオンの負極材料への出入が妨げられる等の問題を防ぐことができる。
スラリーに添加する増粘材としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース及びヒドロキシプロピルセルロース等の水溶性セルロース類、ポリビニルアルコール並びにポリエチレングリコール等が挙げられる。中でも好ましいのはカルボキシメチルセルロースである。増粘材は負極材料100重量部に対して、通常0.1〜10重量部、特に0.2〜7重量部となるように用いるのが好ましい。
負極集電体としては、従来からこの用途に用い得ることが知られている、例えば、銅、銅合金、ステンレス鋼、ニッケル、チタン及び炭素等を用いればよい。集電体の形状は通常はシート状であり、その表面に凹凸をつけたもの、ネット及びパンチングメタル等を用いることも好ましい。
集電体に負極材と結着樹脂のスラリーを塗布・乾燥した後は、加圧して集電体上に形成された活物質層の密度を大きくして負極活物質層の単位体積当たりの電池容量を大きくするのが好ましい。活物質層の密度は1.2〜1.8g/cmの範囲にあることが好ましく、1.3〜1.6g/cmであることがより好ましい。
活物質層の密度を1.2g/cm以上とすることで、電極の厚みの増大に伴う電池の容量の低下を防ぐことができる。また、活物質層の密度を1.8g/cm以下とすることで、電極内の粒子間空隙が減少に伴い空隙に保持される電解液量が減り、リチウムイオン等のアルカリイオンの移動性が小さくなり急速充放電性が小さくなるのを防ぐことができる。
負極活物質層は、炭素質粒子(A)によって形成された間隙に酸化珪素粒子(B)が存在して構成されていることが好ましい。炭素質粒子(A)によって形成された間隙に酸化珪素粒子(B)が存在することで、高容量化し、レート特性を向上させることができる。
本発明の負極材を用いて形成した負極活物質層の水銀圧入法による10nm〜100000nmの範囲の細孔容量は、0.05ml/gであることが好ましく、0.1ml/g以上であることがより好ましい。細孔容量を0.05ml/g以上とすることによりリチウムイオン等のアルカリイオンの出入りの面積が大きくなる。
〔非水系二次電池〕
本発明の非水系二次電池は、正極及び負極、並びに電解質を備える非水系二次電池であって、負極として、本発明の負極を用いたものである。
本発明の非水系二次電池は、上記の本発明の負極を用いる以外は、常法に従って作成することができる。
[正極]
本発明の非水系二次電池の正極の活物質となる正極材料としては、例えば、基本組成がLiCoOで表されるリチウムコバルト複合酸化物、LiNiOで表されるリチウムニッケル複合酸化物、LiMnO及びLiMnで表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、並びにこれらの複合酸化物混合物等を用いればよい。更にはTiS、FeS、Nb、Mo、CoS、V、CrO、V、FeO、GeO及びLiNi0.33Mn0.33Co0.33、LiFePO等を用いればよい。
前記正極材料に結着樹脂を配合したものを適当な溶媒でスラリー化して集電体に塗布・乾燥することにより正極を作製できる。なおスラリー中にはアセチレンブラック及びケッチェンブラック等の導電材を含有させるのが好ましい。また所望により増粘材を含有させてもよい。
増粘材及び結着樹脂としてはこの用途に周知のもの、例えば負極の作成に用いるものとして例示したものを用いればよい。正極材料100重量部に対する配合比率は、導電材は0.5〜20重量部が好ましく、特に1〜15重量部が好ましい。増粘材は0.2〜10重量部が好ましく、特に0.5〜7重量部が好ましい。
正極材料100重量部に対する結着樹脂の配合比率は、結着樹脂を水でスラリー化するときは0.2〜10重量部が好ましく、特に0.5〜7重量部が好ましい。結着樹脂をN−メチルピロリドン等の結着樹脂を溶解する有機溶媒でスラリー化する場合は0.5〜20重量部、特に1〜15重量部が好ましい。
正極集電体としては、例えば、アルミニウム、チタン、ジルコニウム、ハフニウム、ニオブ及びタンタル等並びにこれらの合金が挙げられる。なかでもアルミニウム、チタン及びタンタル並びにその合金が好ましく、アルミニウム及びその合金が最も好ましい。
[電解質]
本発明の非水系二次電池に用いる電解質は、全固体電解質であっても、電解質が非水溶媒中に含まれる電解液であってもよいが、好ましくは電解質が非水溶媒中に含まれる電解液である。
電解液は、従来周知の非水溶媒に種々のリチウム塩を溶解させたものを用いることができる。非水溶媒としては、例えば、エチレンカーボネート、フルオロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート及びビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン等の環状エステル、クラウンエーテル、2−メチルテトラヒドロフラン、テトラヒドロフラン、1,2−ジメチルテトラヒドロフラン及び1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン等の鎖状エーテル等を用いればよい。通常はこれらの2種以上を混合して用いる。なかでも環状カーボネートと鎖状カーボネート、又はこれに更に他の溶媒を混合して用いるのが好ましい。
電解液には、ビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン及びジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていてもよい。更に、ジフェニルエーテル及びシクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。
非水溶媒に溶解させる電解質としては、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)及びLiC(CFSO等が挙げられる。電解液中の電解質の濃度は通常0.5〜2mol/L、好ましくは0.6〜1.5mol/Lである。
[セパレータ]
正極と負極との間に介在させるセパレータとしては、ポリエチレンやポリプロピレン等のポリオレフィンの多孔性シートや不織布を用いるのが好ましい。
[負極/正極容量比]
本発明の非水系二次電池は、負極/正極の容量比を1.01〜1.5に設計することが好ましく、1.2〜1.4に設計することがより好ましい。
本発明の非水系二次電池は、Liイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えるリチウムイオン二次電池であることが好ましい。
以下、実施例を用いて本発明の内容を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
〔物性ないし特性の測定・評価方法〕
[炭素質粒子(A)、酸化珪素粒子(B)、負極材の物性の測定]
<粒度分布>
体積基準の粒度分布は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2重量%水溶液(約10mL)に試料を分散させて、レーザー回折・散乱式粒度分布計LA−700(堀場製作所社製)を用いて測定した。
<細孔径0.01μm以上1μm以下の範囲のモード細孔径(PD)、細孔分布半値半幅(log(nm))、細孔径0.01μm以上1μm以下の範囲の積算細孔容積、全細孔容積>
水銀圧入法の測定としては、水銀ポロシメータ(マイクロメリティックス社製のオートポア9520)を用いて、パウダー用セルに試料を0.2g前後秤量封入し、室温、真空下(50μmHg以下)にて10分間の脱気前処理を実施した後、4psiaまでステップ状に減圧し水銀を導入し、4psiaから40000psiaまでステップ状に昇圧させ、更に25psiaまで降圧させた。得られた水銀圧入曲線からWashburnの式を用い、細孔分布を算出した。なお、水銀の表面張力は485dyne/cm、接触角は140°として算出した。
得られた細孔分布から、0.01μm以上1μm以下の範囲のモード細孔径(PD)、0.01μm以上1μm以下の範囲の細孔容積、全細孔容積を算出した。また、得られた細孔分布(nm)の横軸を常用対数(log(nm))で表示したときの、0.01μm以上1μm以下の範囲に存在するピークの微細孔側の半値半幅を細孔分布半値半幅(log(nm))と定義した。
<タップ密度>
粉体密度測定器タップデンサーKYT−3000((株)セイシン企業社製)を用いて測定した。20ccのタップセルに試料を落下させ、セルに満杯に充填した後、ストローク長10mmのタップを1000回行って、そのときの密度をタップ密度とした。
<比表面積(BET法)>
マイクロメリティックス社製 トライスターII3000を用いて測定した。150℃で1時間の減圧乾燥を実施した後、窒素ガス吸着によるBET多点法(相対圧0.05〜0.30の範囲において5点)により測定した。
<円形度>
フロー式粒子像分析装置(東亜医療電子社製FPIA−2000)を使用し、円相当径による粒径分布の測定および平均円形度の算出を行った。分散媒としてイオン交換水を使用し、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用した。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した相当径が10〜40μmの範囲の粒子の円形度を平均し、円形度とした。
<3μm以下の粒子個数頻度>
界面活性剤であるポリオキシエチレンソルビタンモノラウレート(ツィーン20(登録商標))の0.2体積%水溶液50mLに試料0.2gを混合し、フロー式粒子像分析装置「シスメックスインダストリアル社製FPIA−2000」を用い、28kHzの超音波を出力60Wで5分照射した後、検出範囲を0.6〜400μmに指定して、粒子個数を測定し、粒径3μm以下の粒子個数頻度を算出した。
[電池の評価]
<性能評価用負極の作製>
後述する炭素質粒子(A)と酸化珪素粒子(B)との混合物97.5重量%と、バインダーとしてカルボキシメチルセルロース(CMC)1重量%及びスチレン・ブタジエンゴム(SBR)48重量%水性ディスパージョン3.1重量%(SBR:1.5重量%)とを、ハイブリダイズミキサーにて混練し、スラリーとした。このスラリーを厚さ20μmの圧延銅箔上にブレード法で、目付け4〜5mg/cmとなるように塗布し、乾燥させた。
その後、負極活物質層の密度1.2〜1.4g/cmとなるようにロールプレスして負極シートとし、この負極シートを直径12.5mmの円形状に打ち抜き、90℃で8時間、真空乾燥し、評価用の負極とした。
<非水系二次電池(コイン型電池)の作製>
上記方法で作製した評価用負極と、対極としてリチウム金属箔を直径15mmの円板状に打ち抜いたものを用いた。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容積比=3:7)に、LiPFを1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、コイン型の性能評価用電池を作製した。
<放電容量、効率、コインサイクル維持率>
前述の方法で作製した非水系二次電池(コイン型電池)を用いて、下記の測定方法で電池充放電時の充電容量(mAh/g)と放電容量(mAh/g)を測定した。
0.05Cの電流密度でリチウム対極に対して5mVまで充電し、さらに5mVの一定電圧で電流密度が0.005Cになるまで充電し、負極中にリチウムをドープした後、0.1Cの電流密度でリチウム対極に対して1.5Vまで放電を行った。
充電容量、放電容量は以下のように求める。負極重量から負極と同面積に打ち抜いた銅箔の重量を差し引き、負極活物質とバインダーの組成比から求められる係数を乗ずることで負極活物質の重量を求め、この負極活物質の重量で1サイクル目の充電容量、放電容量を除して、重量当りの充電容量、放電容量を求めた。
このときの充電容量(mAh/g)を本負極材の1st充電容量(mAh/g)とし、放電容量(mAh/g)を1st放電容量(mAh/g)とした。
また、ここで得られた1サイクル目の放電容量(mAh/g)を充電容量(mAh/g)で除し、100倍した値を1st効率(%)とした。
上記操作を10サイクル実施し、10サイクル目の放電容量を1サイクル目の放電容量で除し、100倍した値をコインサイクル維持率とした。
〔炭素質粒子(A)〕
[炭素質粒子(A1)]
d50が100μmの鱗片状天然黒鉛を粉砕機により乾式旋回流式粉砕機により粉砕し、d50が8.1μm、タップ密度が0.39g/cm、水分量0.08重量%の鱗片状天然黒鉛を得た。得られた鱗片状天然黒鉛100gに造粒剤としてパラフィン系オイル(流動パラフィン、和光純薬工業社製、一級、25℃における物性:粘度=95cP、接触角=13.2°、表面張力=317mN/m、rCOSθ=30.9)を12g添加して撹梓混合した後、得られたサンプルをハンマーミル(IKA社製MF10)で回転数3000rpmにて解砕混合し、造粒剤が均一に添着した鱗片状天然黒鉛を得た。得られた造粒剤が均一に添着した鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、球形化処理中に生成する微粉を母材に付着、及び球形化粒子に内包させながら、ローター周速度85m/秒で10分間の機械的作用による球形化処理を行い、不活性ガス中で720℃熱処理を施すことで、球形化黒鉛の炭素質粒子(A1)を得た。前記測定法で炭素質粒子(A1)の物性を測定した。結果を表−1に示す。
<炭素質粒子(A2)>
炭素質粒子(A1)と非晶質炭素前駆体としてコールタールピッチを混合し、不活性ガス中で1300℃熱処理を施した後、焼成物を解砕・分級処理することにより、黒鉛粒子と非品質炭素とが複合化した複層構造炭素材の炭素質粒子(A2)を得た。焼成収率から、得られた複層構造炭素材において、球形化黒鉛質粒子と非晶質炭素との重量比率(球形化黒鉛質粒子:非晶質炭素)は1:0.08であることが確認された。前記測定法で炭素質粒子(A2)の物性を測定した。結果を表−1に示す。
<炭素質粒子(a1)>
d50が100μmの鱗片状天然黒鉛を、奈良機械製作所製ハイブリダイゼーションシステムNHS−1型にて、ローター周速度85m/秒で10分間の機械的作用による球形化処理を行った。得られたサンプルには母材に付着、及び球形化粒子に内包されていない状態の鱗片状黒鉛微粉が多く存在していることが確認された。このサンプルを分級し、上記鱗片状黒鉛微粉を除去し、球形化黒鉛の炭素質粒子(a1)を得た。前記測定法で炭素質粒子(a1)の物性を測定した。結果を表−1に示す。
<炭素質粒子(a2)>
炭素質粒子(a1)と非晶質炭素前駆体としてコールタールピッチを混合し、不活性ガス中で1300℃熱処理を施した後、焼成物を解砕−分級処理することにより、黒鉛粒子と非晶質炭素とが複合化した複層構造炭素材の炭素質粒子(a2)を得た。焼成収率から、得られた複層構造炭素材において、球形化黒鉛質粒子と非晶質炭素との重量比率(球形化黒鉛質粒子:非晶質炭素)は1:0.065であることが確認された。前記測定法で炭素質粒子(a2)の物性を測定した。結果を表−1に示す。
〔酸化珪素粒子(B)〕
<酸化珪素粒子(B1)>
市販の酸化珪素粒子(SiOx、x=1)(大阪チタニウムテクノロジーズ社製)を酸化珪素粒子(B1)として用いた。酸化珪素粒子(B1)は、d50が5.6μm、BET法比表面積が3.5m/gであった。酸化珪素粒子(B1)のX線回折パターンからは、2θ=28.4°付近のSi(111)に帰属される回折線を確認することができず、酸化珪素粒子(B1)はゼロ価の珪素原子を微結晶として含まないことを確認された。
<酸化珪素粒子(B2)>
酸化珪素粒子(B1)を不活性雰囲気下において、1000℃で6時間加熱処理して酸化珪素粒子(B2)を得た。酸化珪素粒子(B2)は、d50が5.4μm、BET法比表面積が2.1m/gであった。酸化珪素粒子(B2)のX線回折パターンからは、2θ=28.4°付近のSi(111)に帰属される回折線を確認することが可能であり、酸化珪素粒子(B2)はゼロ価の珪素原子を微結晶として含むことを確認された。なお、上記の回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径は3.2nmであった。
酸化珪素粒子(B1)、(B2)の物性を表−2にまとめて示す。
[実施例1]
炭素質粒子(A1)90重量部に対して、酸化珪素粒子(B1)10重量部を乾式混合し、混合物とした。前記測定法で各評価を行った。
[実施例2]
炭素質粒子(A2)90重量部に対して、酸化珪素粒子(B1)10重量部を乾式混合し、混合物とした。実施例1と同様の測定を行った。
[実施例3]
炭素質粒子(A2)90重量部に対して、酸化珪素粒子(B2)10重量部を乾式混合し、混合物とした。実施例1と同様の測定を行った。
[比較例1]
炭素質粒子(a1)90重量部に対して、酸化珪素粒子(B1)10重量部を乾式混合し、混合物とした。実施例1と同様の測定を行った。
[比較例2]
炭素質粒子(a2)90重量部に対して、酸化珪素粒子(B1)10重量部を乾式混合し、混合物とした。実施例1と同様の測定を行った。
実施例1〜3、比較例1〜2で得られた混合物の物性を表−3にまとめて示す。
また、実施例1〜3、比較例1〜2で得られた混合物よりなる負極材を用いて作製した電池の評価結果を表−4〜表−5にまとめて示す。
Figure 0006981203
Figure 0006981203
Figure 0006981203
Figure 0006981203
Figure 0006981203
実施例1及び比較例1は、炭素質粒子として、球形化黒鉛を使用した例である。表−4から、本発明の炭素質粒子(A)と本発明の酸化珪素粒子(B)を混合した負極材においては、高いコインサイクル維持率、即ち、良好なサイクル特性を得られることが分かる。
実施例2〜3及び比較例2は、炭素質粒子として、複層構造炭素材を使用した例である。表−5から、本発明の炭素質粒子(A)と本発明の酸化珪素粒子(B)を混合した負極材においては、良好な1st放電容量、1st効率、及び、高いコインサイクル維持率、即ち、良好なサイクル特性を得られることが分かる。

Claims (11)

  1. 炭素質粒子(A)と酸化珪素粒子(B)を含み、炭素質粒子(A)は、細孔径0.01μm以上1μm以下の範囲の積算細孔容積が0.08mL/g以上、下記式で表される細孔径と粒子径の比(PD/d50(%))が1.8以下であり、かつ酸化珪素粒子(B)の小粒子側から10%積算部の粒子径(d10)が0.001μm以上6μm以下であり、
    [炭素質粒子(A)の重量]:[酸化珪素粒子(B)の重量]=30:70〜99:1である非水系二次電池用負極材。
    PD/d50(%)=([水銀圧入法により求められる細孔分布における細孔径0.01μm以上1μm以下の範囲のモード細孔径(PD)]/[体積基準平均粒子径(d50)])×100
  2. 炭素質粒子(A)のフロー式粒子像分析より求められる円形度が0.88以上である、請求項1に記載の非水系二次電池用負極材。
  3. 炭素質粒子(A)が天然黒鉛の造粒物を含む、請求項1又は2に記載の非水系二次電池用負極材。
  4. 炭素質粒子(A)が球形化黒鉛と炭素質物とが複合化した複合炭素材を含む、請求項1乃至3のいずれか1項に記載の非水系二次電池用負極材。
  5. 酸化珪素粒子(B)における珪素原子数(MSi)に対する酸素原子数(M)の比(M/MSi)が0.5〜1.6である、請求項1乃至4のいずれか1項に記載の非水系二次電池用負極材。
  6. 酸化珪素粒子(B)の平均粒子径(d50)が0.01μm以上20μm以下である、請求項1乃至5のいずれか1項に記載の非水系二次電池用負極材。
  7. 下記式で表される炭素質粒子(A)と酸化珪素粒子(B)の平均粒子径比([R=酸化珪素粒子(B)の平均粒子径]/[炭素質粒子(A)の平均粒子径])が0.001以上10以下である、請求項1乃至6のいずれか1項に記載の非水系二次電池用負極材。
  8. 酸化珪素粒子(B)がゼロ価の珪素原子を含む、請求項1乃至7のいずれか1項に記載の非水系二次電池用負極材。
  9. 酸化珪素粒子(B)中に珪素の微結晶を含む、請求項1乃至8のいずれか1項に記載の非水系二次電池用負極材。
  10. 集電体と、該集電体上に形成された活物質層とを備える非水系二次電池用負極であって、該活物質層が請求項1乃至9のいずれか1項に記載の非水系二次電池用負極材を含有する、非水系二次電池用負極。
  11. 正極及び負極、並びに電解質を備える非水系二次電池であって、該負極が請求項10に記載の非水系二次電池用負極である、非水系二次電池。
JP2017224969A 2016-11-22 2017-11-22 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 Active JP6981203B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016227263 2016-11-22
JP2016227263 2016-11-22

Publications (2)

Publication Number Publication Date
JP2018088406A JP2018088406A (ja) 2018-06-07
JP6981203B2 true JP6981203B2 (ja) 2021-12-15

Family

ID=62494634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224969A Active JP6981203B2 (ja) 2016-11-22 2017-11-22 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池

Country Status (1)

Country Link
JP (1) JP6981203B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011371A (ko) * 2018-05-22 2021-02-01 미쯔비시 케미컬 주식회사 비수계 이차 전지용 부극재, 비수계 이차 전지용 부극 및 비수계 이차 전지
KR102321503B1 (ko) * 2018-06-12 2021-11-02 주식회사 엘지에너지솔루션 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
EP3869586A4 (en) * 2018-10-17 2022-07-13 Murata Manufacturing Co., Ltd. NEGATIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERY AND SECONDARY LITHIUM-ION BATTERY
WO2021092867A1 (zh) * 2019-11-14 2021-05-20 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN110911636B (zh) * 2019-11-14 2021-08-31 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
ES2953953T3 (es) 2020-04-30 2023-11-17 Contemporary Amperex Technology Co Ltd Batería secundaria, proceso de preparación de la misma y aparato que contiene la batería secundaria

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067639A (ja) * 2012-09-26 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
CN110635124A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
JP5796587B2 (ja) * 2013-02-22 2015-10-21 株式会社豊田自動織機 負極活物質、非水電解質二次電池用負極ならびに非水電解質二次電池
KR102582191B1 (ko) * 2014-07-07 2023-09-22 미쯔비시 케미컬 주식회사 탄소재, 탄소재의 제조 방법 및 탄소재를 사용한 비수계 2 차 전지
JP6634720B2 (ja) * 2014-07-07 2020-01-22 三菱ケミカル株式会社 炭素材、及び、非水系二次電池

Also Published As

Publication number Publication date
JP2018088406A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP7099325B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6981203B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP7192499B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6906891B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6828551B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6864250B2 (ja) 炭素材、及び、非水系二次電池
KR20190040366A (ko) 비수계 이차 전지용 탄소재, 그 탄소재를 사용한 부극 및 비수계 이차 전지
JP6609959B2 (ja) 非水系二次電池用複合炭素材、及び、非水系二次電池
JP6977504B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP7127275B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6561790B2 (ja) 非水系二次電池用炭素材及び非水系二次電池
JP6634720B2 (ja) 炭素材、及び、非水系二次電池
JP7443883B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6746918B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP2014067639A (ja) 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
JP2022095866A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP6609960B2 (ja) 炭素材、及び、非水系二次電池
JP6707935B2 (ja) 非水系二次電池用負極材の製造方法
JP6859593B2 (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6801171B2 (ja) 炭素材、及び、非水系二次電池
JP6596959B2 (ja) 非水系二次電池用複合粒子の製造方法
JP6759586B2 (ja) 炭素材、及び、非水系二次電池
JP6672755B2 (ja) 炭素材、及び、非水系二次電池
JP6794614B2 (ja) 炭素材、及び、非水系二次電池
JP2021185582A (ja) 炭素材、及び、非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R151 Written notification of patent or utility model registration

Ref document number: 6981203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151