JP6965996B2 - Slurry and polishing method - Google Patents

Slurry and polishing method Download PDF

Info

Publication number
JP6965996B2
JP6965996B2 JP2020532130A JP2020532130A JP6965996B2 JP 6965996 B2 JP6965996 B2 JP 6965996B2 JP 2020532130 A JP2020532130 A JP 2020532130A JP 2020532130 A JP2020532130 A JP 2020532130A JP 6965996 B2 JP6965996 B2 JP 6965996B2
Authority
JP
Japan
Prior art keywords
mass
slurry
particles
polishing
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020532130A
Other languages
Japanese (ja)
Other versions
JPWO2020021729A1 (en
Inventor
理行 野村
友洋 岩野
貴彬 松本
智康 長谷川
友美 久木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2020021729A1 publication Critical patent/JPWO2020021729A1/en
Application granted granted Critical
Publication of JP6965996B2 publication Critical patent/JP6965996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Description

本発明は、スラリ及び研磨方法に関する。 The present invention relates to a slurry and a polishing method.

近年の半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)の形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。 In recent years, in the manufacturing process of semiconductor devices, the importance of processing technology for high density and miniaturization is increasing more and more. CMP (Chemical Mechanical Polishing) technology, which is one of the processing technologies, is the formation of shallow trench isolation (shallow trench isolation, hereinafter referred to as "STI") in the manufacturing process of semiconductor devices. It is an indispensable technology for flattening pre-metal insulating materials or interlayer isolation materials, and for forming plugs or embedded metal wiring.

最も多用されている研磨液としては、例えば、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨液が挙げられる。シリカ系研磨液は、汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。 Examples of the most frequently used polishing liquid include silica-based polishing liquid containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains. The silica-based polishing liquid is characterized by high versatility, and a wide variety of materials can be polished regardless of the insulating material and the conductive material by appropriately selecting the abrasive grain content, pH, additives and the like.

一方で、主に酸化珪素等の絶縁材料を対象とした研磨液として、セリウム化合物粒子を砥粒として含む研磨液の需要も拡大している。例えば、セリウム酸化物粒子を砥粒として含むセリウム酸化物系研磨液は、シリカ系研磨液よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。 On the other hand, there is an increasing demand for a polishing liquid containing cerium compound particles as abrasive grains as a polishing liquid mainly for insulating materials such as silicon oxide. For example, a cerium oxide-based polishing solution containing cerium oxide particles as abrasive grains can polish silicon oxide at a higher speed even with a lower abrasive grain content than a silica-based polishing solution (see, for example, Patent Documents 1 and 2 below).

特開平10−106994号公報Japanese Unexamined Patent Publication No. 10-106994 特開平08−022970号公報Japanese Unexamined Patent Publication No. 08-022970

ところで、近年、デバイスのセル部を縦方向に積層させる3D−NANDデバイスが台頭してきている。本技術では、セル形成時の絶縁材料の段差が従来のプレーナ型と比べて数倍高くなっている。それに伴い、デバイス製造のスループットを維持するためには、前記のとおりの高い段差をCMP工程等において素早く解消する必要があり、絶縁材料の研磨速度を向上させる必要がある。 By the way, in recent years, 3D-NAND devices in which cell portions of devices are laminated in the vertical direction have emerged. In this technology, the step of the insulating material at the time of cell formation is several times higher than that of the conventional planar type. Along with this, in order to maintain the throughput of device manufacturing, it is necessary to quickly eliminate the high step as described above in the CMP process or the like, and it is necessary to improve the polishing speed of the insulating material.

本発明は、前記課題を解決しようとするものであり、絶縁材料の研磨速度を向上させることが可能なスラリ、及び、当該スラリを用いた研磨方法を提供することを目的とする。 The present invention is intended to solve the above problems, and an object of the present invention is to provide a slurry capable of improving the polishing speed of an insulating material and a polishing method using the slurry.

本発明の一側面に係るスラリは、砥粒と、液状媒体と、を含有し、前記砥粒が、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、前記第2の粒子が、金属酸化物及び金属水酸化物からなる群より選ばれる少なくとも一種の金属化合物を含み、前記金属化合物が、複数の価数を取り得る金属を含み、前記金属の前記複数の価数の中で最も小さい価数の割合がX線光電子分光法において0.10以上である。 The slurry according to one aspect of the present invention contains abrasive grains and a liquid medium, and the abrasive grains include a first particle and a second particle in contact with the first particle. The second particle contains at least one metal compound selected from the group consisting of a metal oxide and a metal hydroxide, the metal compound contains a metal having a plurality of valences, and the plurality of the metals. The ratio of the smallest valence among the valences of is 0.10 or more in X-ray photoelectron spectroscopy.

本発明の一側面に係るスラリによれば、絶縁材料の研磨速度を向上させることが可能であり、絶縁材料を高い研磨速度で研磨できる。 According to the slurry according to one aspect of the present invention, it is possible to improve the polishing rate of the insulating material, and the insulating material can be polished at a high polishing rate.

本発明の他の一側面に係る研磨方法は、前記スラリを用いて被研磨面を研磨する工程を備える。このような研磨方法によれば、前記スラリを用いることにより、前記スラリと同様の前記効果を得ることができる。 The polishing method according to another aspect of the present invention includes a step of polishing the surface to be polished using the slurry. According to such a polishing method, by using the slurry, the same effect as that of the slurry can be obtained.

本発明によれば、絶縁材料の研磨速度を向上させることが可能なスラリ、及び、当該スラリを用いた研磨方法を提供することができる。 According to the present invention, it is possible to provide a slurry capable of improving the polishing speed of an insulating material and a polishing method using the slurry.

本発明によれば、絶縁材料を含む被研磨面の研磨へのスラリの使用を提供することができる。本発明によれば、半導体素子の製造技術である基体表面の平坦化工程へのスラリの使用を提供することができる。本発明によれば、STI絶縁材料、プリメタル絶縁材料又は層間絶縁材料の平坦化工程へのスラリの使用を提供することができる。 According to the present invention, it is possible to provide the use of a slurry for polishing a surface to be polished containing an insulating material. According to the present invention, it is possible to provide the use of a slurry in a process of flattening a surface of a substrate, which is a technique for manufacturing a semiconductor device. According to the present invention, it is possible to provide the use of a slurry in a flattening step of an STI insulating material, a premetal insulating material or an interlayer insulating material.

以下、本発明の実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

<定義>
本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
<Definition>
In the present specification, the numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "A or B" may include either A or B, or both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means. The term "process" is included in this term not only in an independent process but also in the case where the desired action of the process is achieved even if it cannot be clearly distinguished from other processes.

後述するように、本実施形態に係るスラリは砥粒(abrasive grain)を含有する。砥粒は、「研磨粒子」(abrasive particle)ともいわれるが、本明細書では「砥粒」という。砥粒は、一般的には固体粒子であって、研磨時に、砥粒が有する機械的作用(物理的作用)、及び、砥粒(主に砥粒の表面)の化学的作用によって、除去対象物が除去(remove)されると考えられるが、これに限定されない。本実施形態に係るスラリを用いた場合の研磨速度は、例えば、砥粒の含有量(粒子の合計量)をスラリの全質量を基準として0.1質量%に調整したときに得られる研磨速度に基づき比較することができる。 As will be described later, the slurry according to this embodiment contains abrasive grains. Abrasive particles are also called "abrasive particles", but are referred to as "abrasive particles" in the present specification. Abrasive particles are generally solid particles, and are to be removed by the mechanical action (physical action) of the abrasive grains and the chemical action of the abrasive grains (mainly the surface of the abrasive grains) during polishing. It is believed that the object will be removed, but not limited to this. The polishing rate when the slurry according to this embodiment is used is, for example, the polishing rate obtained when the content of abrasive grains (total amount of particles) is adjusted to 0.1% by mass based on the total mass of the slurry. Can be compared based on.

本明細書において、「研磨液」(polishing liquid、abrasive)とは、研磨時に被研磨面に触れる組成物として定義される。「研磨液」という語句自体は、研磨液に含有される成分を何ら限定しない。 As used herein, a "polishing liquid" (abrasive) is defined as a composition that comes into contact with the surface to be polished during polishing. The phrase "polishing liquid" itself does not limit the components contained in the polishing liquid.

本明細書における重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
使用機器:日立L−6000型[株式会社日立製作所製]
カラム:ゲルパックGL−R420+ゲルパックGL−R430+ゲルパックGL−R440[日立化成株式会社製 商品名、計3本]
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75mL/min
検出器:L−3300RI[株式会社日立製作所製]
The weight average molecular weight in the present specification can be measured, for example, by gel permeation chromatography (GPC) using a standard polystyrene calibration curve under the following conditions.
Equipment used: Hitachi L-6000 type [manufactured by Hitachi, Ltd.]
Column: Gelpack GL-R420 + Gelpack GL-R430 + Gelpack GL-R440 [Product name manufactured by Hitachi Kasei Co., Ltd., 3 in total]
Eluent: tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.75 mL / min
Detector: L-3300RI [manufactured by Hitachi, Ltd.]

<スラリ>
本実施形態に係るスラリは、必須成分として砥粒と液状媒体とを含有する。本実施形態に係るスラリは、例えば、研磨液(CMP研磨液)として用いることができる。
<Slurry>
The slurry according to the present embodiment contains abrasive grains and a liquid medium as essential components. The slurry according to this embodiment can be used as, for example, a polishing liquid (CMP polishing liquid).

砥粒は、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含む複合粒子を含有する。第2の粒子は、金属酸化物及び金属水酸化物からなる群より選ばれる少なくとも一種の金属化合物を含み、前記金属化合物が、複数の価数(原子価)を取り得る金属を含む。また、当該金属の複数の価数の中で最も小さい価数の割合は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)において0.10以上である。 The abrasive grains contain composite particles containing the first particles and the second particles in contact with the first particles. The second particle contains at least one metal compound selected from the group consisting of metal oxides and metal hydroxides, and the metal compound contains a metal having a plurality of valences (valences). The ratio of the smallest valence among the plurality of valences of the metal is 0.10 or more in X-ray Photoelectron Spectroscopy (XPS).

本実施形態に係るスラリを用いることにより絶縁材料(例えば酸化珪素)の研磨速度を向上させることができる。このように絶縁材料の研磨速度が向上する理由としては、例えば、酸化珪素を一例として下記の理由が挙げられる。但し、理由は下記に限定されない。 By using the slurry according to the present embodiment, the polishing speed of the insulating material (for example, silicon oxide) can be improved. Reasons for improving the polishing rate of the insulating material in this way include, for example, the following reasons, for example, silicon oxide. However, the reason is not limited to the following.

すなわち、酸化珪素の研磨に際しては、砥粒中の金属原子と酸化珪素の珪素原子とが酸素原子を介して結合する第1段階(例えば、金属原子がセリウムである場合にCe−O−Si結合が生成する段階)と、金属原子−酸素原子−珪素原子の結合を保持したまま、被研磨面における珪素原子と他の酸素原子との結合が切断されることにより珪素原子が被研磨面から除去される第2段階とが生じる。そして、砥粒が酸化珪素に接触した際に、砥粒中の金属の価数のうち、最も小さい価数の割合が大きいほど上記第1段階が進行しやすいことから酸化珪素の研磨が全体として進行しやすい。このような観点から、砥粒に含まれる金属の複数の価数の中で最も小さい価数の割合が上記所定値以上である場合には、上記第1段階が進行しやすいことから酸化珪素の研磨が全体として進行しやすい。以上より、酸化珪素の研磨速度が向上する。 That is, in polishing silicon oxide, the first step of bonding the metal atom in the abrasive grains and the silicon atom of silicon oxide via the oxygen atom (for example, Ce—O—Si bond when the metal atom is cerium). The silicon atom is removed from the surface to be polished by breaking the bond between the silicon atom and other oxygen atoms on the surface to be polished while maintaining the bond of metal atom-oxygen atom-silicon atom. The second step is to occur. When the abrasive grains come into contact with silicon oxide, the larger the ratio of the smallest valence among the valences of the metal in the abrasive grains, the easier it is for the first step to proceed. Therefore, the polishing of silicon oxide as a whole is performed. Easy to progress. From this point of view, when the ratio of the smallest valence among the plurality of valences of the metal contained in the abrasive grains is equal to or higher than the above-mentioned predetermined value, the first step is likely to proceed, so that silicon oxide is used. Polishing is easy to proceed as a whole. From the above, the polishing speed of silicon oxide is improved.

(砥粒)
本実施形態に係るスラリの砥粒は、上述のとおり、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含む複合粒子を含有する。第2の粒子は、金属酸化物及び金属水酸化物からなる群より選ばれる少なくとも一種の金属化合物を含み、前記金属化合物が、複数の価数を取り得る金属(以下、「金属M」という)を含む。すなわち、第2の粒子は、金属Mを含む酸化物、及び、金属Mを含む水酸化物からなる群より選ばれる少なくとも一種を含む。
(Abrasive grain)
As described above, the abrasive grains of the slurry according to the present embodiment include composite particles containing the first particles and the second particles in contact with the first particles. The second particle contains at least one metal compound selected from the group consisting of a metal oxide and a metal hydroxide, and the metal compound is a metal having a plurality of valences (hereinafter, referred to as "metal M"). including. That is, the second particle contains at least one selected from the group consisting of an oxide containing a metal M and a hydroxide containing a metal M.

本実施形態に係るスラリにおいて、金属Mの複数の価数の中で最も小さい価数の割合は、絶縁材料の研磨速度が向上する観点から、X線光電子分光法において0.10以上である。前記価数の割合は、金属Mの全量(全原子)を1とした場合の割合であり、対象の価数を有する原子の数の割合(単位:at%)である。前記価数の割合は、実施例に記載の方法により測定できる。X線光電子分光スペクトルのピーク位置は、化学シフトに起因して、価数に応じて異なる。一方、それぞれのピークの原子数と、ピークの面積とは比例する。従って、スペクトルの形状に基づき、各価数の原子の個数の比が得られる。金属Mの価数の調整方法としては、砥粒に酸化処理又は還元処理を施す方法等が挙げられる。酸化処理の方法としては、酸化作用を有する試薬で砥粒を処理する方法;空気中又は酸素雰囲気下で高温処理する方法等が挙げられる。還元処理の方法としては、還元作用を有する試薬で砥粒を処理する方法;水素等の還元雰囲気下で高温処理する方法などが挙げられる。金属Mは、複数の価数を有していてよい。最も小さい価数は、例えば3価であってよい。 In the slurry according to the present embodiment, the ratio of the smallest valence among the plurality of valences of the metal M is 0.10 or more in X-ray photoelectron spectroscopy from the viewpoint of improving the polishing rate of the insulating material. The ratio of the valence is the ratio when the total amount of the metal M (all atoms) is 1, and is the ratio of the number of atoms having the target valence (unit: at%). The ratio of valences can be measured by the method described in Examples. The peak position of the X-ray photoelectron spectroscopic spectrum varies depending on the valence due to the chemical shift. On the other hand, the number of atoms in each peak is proportional to the area of the peak. Therefore, the ratio of the number of atoms of each valence can be obtained based on the shape of the spectrum. Examples of the method for adjusting the valence of the metal M include a method of subjecting the abrasive grains to an oxidation treatment or a reduction treatment. Examples of the oxidation treatment method include a method of treating abrasive grains with a reagent having an oxidizing action; a method of treating at a high temperature in air or in an oxygen atmosphere. Examples of the method of reduction treatment include a method of treating abrasive grains with a reagent having a reducing action; a method of treating at high temperature in a reducing atmosphere such as hydrogen. The metal M may have a plurality of valences. The smallest valence may be, for example, trivalent.

前記価数の割合は、絶縁材料の研磨速度が更に向上する観点から、0.12以上が好ましく、0.14以上がより好ましく、0.15以上が更に好ましく、0.16以上が特に好ましい。前記価数の割合は、絶縁材料の研磨速度が更に向上する観点から、0.50以下が好ましい。 The ratio of the valences is preferably 0.12 or more, more preferably 0.14 or more, further preferably 0.15 or more, and particularly preferably 0.16 or more, from the viewpoint of further improving the polishing rate of the insulating material. The ratio of the valences is preferably 0.50 or less from the viewpoint of further improving the polishing rate of the insulating material.

第2の粒子の粒径は、第1の粒子の粒径よりも小さいことが好ましい。第1の粒子及び第2の粒子の粒径の大小関係は、複合粒子のSEM画像等から判別することができる。一般的に、粒径が小さい粒子では、粒径が大きい粒子に比べて単位質量当たりの表面積が大きいことから反応活性が高い。一方、粒径が小さい粒子の機械的作用(機械的研磨力)は、粒径が大きい粒子に比べて小さい。しかしながら、本実施形態においては、第2の粒子の粒径が第1の粒子の粒径より小さい場合であっても、第1の粒子及び第2の粒子の相乗効果を発現させることが可能であり、優れた反応活性及び機械的作用を容易に両立することができる。 The particle size of the second particle is preferably smaller than the particle size of the first particle. The magnitude relationship between the particle sizes of the first particles and the second particles can be determined from the SEM image of the composite particles and the like. In general, particles having a small particle size have a higher surface area per unit mass than particles having a large particle size, and therefore have higher reaction activity. On the other hand, the mechanical action (mechanical polishing force) of the particles having a small particle size is smaller than that of the particles having a large particle size. However, in the present embodiment, even when the particle size of the second particle is smaller than the particle size of the first particle, it is possible to exhibit the synergistic effect of the first particle and the second particle. Therefore, excellent reaction activity and mechanical action can be easily compatible with each other.

第1の粒子の粒径の下限は、絶縁材料の研磨速度が更に向上する観点から、15nm以上が好ましく、25nm以上がより好ましく、35nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、80nm以上が非常に好ましく、100nm以上がより一層好ましい。第1の粒子の粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、1000nm以下が好ましく、800nm以下がより好ましく、600nm以下が更に好ましく、400nm以下が特に好ましく、300nm以下が極めて好ましく、200nm以下が非常に好ましく、150nm以下がより一層好ましい。前記観点から、第1の粒子の粒径は、15〜1000nmであることがより好ましい。第1の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。 The lower limit of the particle size of the first particles is preferably 15 nm or more, more preferably 25 nm or more, further preferably 35 nm or more, particularly preferably 40 nm or more, and extremely preferably 50 nm or more from the viewpoint of further improving the polishing rate of the insulating material. Preferably, 80 nm or more is very preferable, and 100 nm or more is even more preferable. The upper limit of the particle size of the first particle is preferably 1000 nm or less, more preferably 800 nm or less, and more preferably 600 nm from the viewpoint of improving the dispersibility of the abrasive grains and easily suppressing scratches on the surface to be polished. The following is further preferable, 400 nm or less is particularly preferable, 300 nm or less is extremely preferable, 200 nm or less is very preferable, and 150 nm or less is even more preferable. From the above viewpoint, the particle size of the first particles is more preferably 15 to 1000 nm. The average particle size (average secondary particle size) of the first particles may be in the above range.

第2の粒子の粒径の下限は、絶縁材料の研磨速度が更に向上する観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。第2の粒子の粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、50nm以下が好ましく、30nm以下がより好ましく、25nm以下が更に好ましく、20nm以下が特に好ましく、15nm以下が極めて好ましく、10nm以下が非常に好ましい。前記観点から、第2の粒子の粒径は、1〜50nmであることがより好ましい。第2の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。 The lower limit of the particle size of the second particles is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 3 nm or more, from the viewpoint of further improving the polishing rate of the insulating material. The upper limit of the particle size of the second particle is preferably 50 nm or less, more preferably 30 nm or less, and more preferably 25 nm from the viewpoint of improving the dispersibility of the abrasive grains and easily suppressing scratches on the surface to be polished. The following is more preferable, 20 nm or less is particularly preferable, 15 nm or less is extremely preferable, and 10 nm or less is very preferable. From the above viewpoint, the particle size of the second particle is more preferably 1 to 50 nm. The average particle size (average secondary particle size) of the second particles may be in the above range.

スラリ中の砥粒(複合粒子及び遊離粒子を含む砥粒全体)の平均粒径(平均二次粒径)は、下記の範囲が好ましい。砥粒の平均粒径の下限は、絶縁材料の研磨速度が更に向上する観点から、16nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、100nm以上が非常に好ましく、120nm以上がより一層好ましく、140nm以上が更に好ましい。砥粒の平均粒径の上限は、砥粒の分散性が向上する観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、1050nm以下が好ましく、1000nm以下がより好ましく、800nm以下が更に好ましく、600nm以下が特に好ましく、500nm以下が極めて好ましく、400nm以下が非常に好ましく、300nm以下がより一層好ましく、200nm以下が更に好ましく、160nm以下が特に好ましく、155nm以下が極めて好ましい。前記観点から、砥粒の平均粒径は、16〜1050nmであることがより好ましい。 The average particle size (average secondary particle size) of the abrasive grains (the entire abrasive grains including composite particles and free particles) in the slurry is preferably in the following range. The lower limit of the average particle size of the abrasive grains is preferably 16 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, particularly preferably 40 nm or more, and extremely preferably 50 nm or more from the viewpoint of further improving the polishing rate of the insulating material. , 100 nm or more is very preferable, 120 nm or more is even more preferable, and 140 nm or more is even more preferable. The upper limit of the average particle size of the abrasive grains is preferably 1050 nm or less, more preferably 1000 nm or less, and more preferably 800 nm or less from the viewpoint of improving the dispersibility of the abrasive grains and easily suppressing scratches on the surface to be polished. Is particularly preferable, 600 nm or less is particularly preferable, 500 nm or less is extremely preferable, 400 nm or less is very preferable, 300 nm or less is even more preferable, 200 nm or less is further preferable, 160 nm or less is particularly preferable, and 155 nm or less is extremely preferable. From the above viewpoint, the average particle size of the abrasive grains is more preferably 16 to 150 nm.

平均粒径は、例えば、光回折散乱式粒度分布計(例えば、ベックマン・コールター株式会社製、商品名:N5、又は、マイクロトラック・ベル株式会社製、商品名:マイクロトラックMT3300EXII)を用いて測定することができる。 The average particle size is measured using, for example, a light diffraction / scattering type particle size distribution meter (for example, manufactured by Beckman Coulter Co., Ltd., trade name: N5, or manufactured by Microtrack Bell Co., Ltd., trade name: Microtrack MT3300EXII). can do.

スラリ中における砥粒のゼータ電位(砥粒全体のゼータ電位)は、下記の範囲が好ましい。砥粒のゼータ電位は、絶縁材料の研磨速度が更に向上する観点から、+10mV以上が好ましく、+20mV以上がより好ましく、+25mV以上が更に好ましく、+30mV以上が特に好ましく、+40mV以上が極めて好ましく、+50mV以上が非常に好ましい。砥粒のゼータ電位の上限は、特に限定されず、例えば+200mV以下である。 The zeta potential of the abrasive grains (the zeta potential of the entire abrasive grains) in the slurry is preferably in the following range. The zeta potential of the abrasive grains is preferably +10 mV or more, more preferably +20 mV or more, further preferably +25 mV or more, particularly preferably +30 mV or more, extremely preferably +40 mV or more, and +50 mV or more from the viewpoint of further improving the polishing speed of the insulating material. Is very preferable. The upper limit of the zeta potential of the abrasive grains is not particularly limited, and is, for example, +200 mV or less.

第1の粒子は、負のゼータ電位を有することができる。第2の粒子は、正のゼータ電位を有することができる。 The first particle can have a negative zeta potential. The second particle can have a positive zeta potential.

ゼータ電位とは、粒子の表面電位を表す。ゼータ電位は、例えば、動的光散乱式ゼータ電位測定装置(例えば、ベックマン・コールター株式会社製、商品名:DelsaNano C)を用いて測定することができる。粒子のゼータ電位は、添加剤を用いて調整できる。例えば、セリウム酸化物を含有する粒子にモノカルボン酸(例えば酢酸)を接触させることにより、正のゼータ電位を有する粒子を得ることができる。また、セリウム酸化物を含有する粒子に、リン酸二水素アンモニウム、カルボキシル基を有する材料(例えばポリアクリル酸)等を接触させることにより、負のゼータ電位を有する粒子を得ることができる。 The zeta potential represents the surface potential of a particle. The zeta potential can be measured using, for example, a dynamic light scattering type zeta potential measuring device (for example, manufactured by Beckman Coulter, Inc., trade name: DelsaNano C). The zeta potential of the particles can be adjusted with additives. For example, by contacting a particle containing a cerium oxide with a monocarboxylic acid (for example, acetic acid), particles having a positive zeta potential can be obtained. Further, by contacting the particles containing the cerium oxide with ammonium dihydrogen phosphate, a material having a carboxyl group (for example, polyacrylic acid), or the like, particles having a negative zeta potential can be obtained.

第1の粒子は、絶縁材料の研磨速度が更に向上する観点から、珪素(Si)、バナジウム(V)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、銀(Ag)、インジウム(In)、スズ(Sn)、希土類元素(希土類金属元素)、タングステン(W)、及び、ビスマス(Bi)からなる群より選ばれる少なくとも一種の金属(以下、「金属m」という)を含むことが好ましい。金属mは、絶縁材料の研磨速度が更に向上する観点から、希土類元素として、スカンジウム(Sc)及びランタノイドからなる群より選ばれる少なくとも一種を含むことが好ましい。金属mは、絶縁材料の研磨速度が更に向上する観点から、ランタノイドとして、セリウム(Ce)、プラセオジム(Pr)、ユウロピウム(Eu)、テルビウム(Tb)、及び、イッテルビウム(Yb)からなる群より選ばれる少なくとも一種を含むことが好ましい。金属mは、絶縁材料の研磨速度が更に向上する観点から、希土類元素を含むことが好ましく、ランタノイドを含むことがより好ましく、セリウムを含むことが更に好ましい。 The first particles are silicon (Si), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Si), from the viewpoint of further improving the polishing speed of the insulating material. At least one metal selected from the group consisting of Cu), silver (Ag), indium (In), tin (Sn), rare earth element (rare earth metal element), tungsten (W), and bismuth (Bi) (hereinafter referred to as "Bi"). It is preferable to include (referred to as "metal m"). The metal m preferably contains at least one selected from the group consisting of scandium (Sc) and lanthanoids as a rare earth element from the viewpoint of further improving the polishing rate of the insulating material. The metal m is selected from the group consisting of cerium (Ce), praseodymium (Pr), europium (Eu), terbium (Tb), and ytterbium (Yb) as lanthanoids from the viewpoint of further improving the polishing speed of the insulating material. It is preferable to include at least one of these. From the viewpoint of further improving the polishing rate of the insulating material, the metal m preferably contains a rare earth element, more preferably contains a lanthanoid, and further preferably contains cerium.

第1の粒子は、有機化合物を含んでよく、高分子化合物(ポリマー)を含んでよい。高分子化合物としては、ポリスチレン、ポリフェニレンサルファイド、ポリアミドイミド、エポキシ樹脂、ポリフッ化ビニリデン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエステル、ポリエーテルサルフォン、ポリ乳酸、エチルセルロース樹脂、アクリル樹脂等が挙げられる。 The first particle may contain an organic compound and may contain a polymer compound (polymer). Examples of the polymer compound include polystyrene, polyphenylene sulfide, polyamideimide, epoxy resin, polyvinylidene fluoride, polyethylene terephthalate, polybutylene terephthalate, polyester, polyether sulfone, polylactic acid, ethyl cellulose resin, acrylic resin and the like.

第2の粒子の金属Mは、絶縁材料の研磨速度が更に向上する観点から、希土類金属を含むことが好ましく、ランタノイドを含むことがより好ましく、セリウムを含むことが更に好ましい。ランタノイドとしては、セリウム、プラセオジム、ユウロピウム、テルビウム、イッテルビウム、及び、ルテチウムからなる群より選ばれる少なくとも一種を用いることができる。 The metal M of the second particle preferably contains a rare earth metal, more preferably contains a lanthanoid, and further preferably contains cerium from the viewpoint of further improving the polishing rate of the insulating material. As the lanthanoid, at least one selected from the group consisting of cerium, praseodymium, europium, terbium, ytterbium, and lutetium can be used.

第2の粒子は、絶縁材料の研磨速度が更に向上する観点から、金属水酸化物を含むことが好ましく、セリウムを含む水酸化物(セリウム水酸化物)を含むことがより好ましい。セリウム水酸化物を含む砥粒は、シリカ、セリウム酸化物等からなる粒子と比較して、水酸基の作用によって絶縁材料(例えば酸化珪素)との反応性(化学的作用)が高く、絶縁材料を更に高い研磨速度で研磨することができる。セリウム水酸化物は、例えば、セリウムイオンと、少なくとも1つの水酸化物イオン(OH)とを含む化合物である。セリウム水酸化物は、水酸化物イオン以外の陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2−)を含んでいてもよい。例えば、セリウム水酸化物は、セリウムイオンに結合した陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2−)を含んでいてもよい。The second particle preferably contains a metal hydroxide, and more preferably contains a hydroxide containing cerium (cerium hydroxide) from the viewpoint of further improving the polishing rate of the insulating material. Abrasive grains containing cerium hydroxide have higher reactivity (chemical action) with an insulating material (for example, silicon oxide) due to the action of hydroxyl groups than particles made of silica, cerium oxide, etc. It can be polished at a higher polishing speed. The cerium hydroxide is, for example, a compound containing a cerium ion and at least one hydroxide ion (OH −). Cerium hydroxide anions other than hydroxide ion (e.g., nitrate ion NO 3 - and sulfate ions SO 4 2-) may contain. For example, cerium hydroxide, anion bound to cerium ions (e.g., nitrate ion NO 3 - and sulfate ions SO 4 2-) may contain.

セリウム水酸化物は、セリウム塩と、アルカリ源(塩基)とを反応させることにより作製できる。セリウム水酸化物は、セリウム塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製できる。セリウム水酸化物は、セリウム塩溶液(例えばセリウム塩水溶液)とアルカリ液とを混合することにより得ることができる。セリウム塩としては、Ce(NO、Ce(SO、Ce(NH(NO、Ce(NH(SO等が挙げられる。The cerium hydroxide can be produced by reacting a cerium salt with an alkaline source (base). The cerium hydroxide can be prepared by mixing a cerium salt and an alkaline solution (for example, an alkaline aqueous solution). The cerium hydroxide can be obtained by mixing a cerium salt solution (for example, a cerium salt aqueous solution) and an alkaline solution. Examples of the cerium salt include Ce (NO 3 ) 4 , Ce (SO 4 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4, and the like.

セリウム水酸化物の製造条件等に応じて、セリウムイオン、1〜3個の水酸化物イオン(OH)及び1〜3個の陰イオン(Xc−)からなるCe(OH)(式中、a+b×c=4である)を含む粒子が生成すると考えられる(なお、このような粒子もセリウム水酸化物である)。Ce(OH)では、電子吸引性の陰イオン(Xc−)が作用して水酸化物イオンの反応性が向上しており、Ce(OH)の存在量が増加するに伴い研磨速度が向上すると考えられる。陰イオン(Xc−)としては、例えば、NO 及びSO 2−が挙げられる。セリウム水酸化物を含む粒子は、Ce(OH)だけでなく、Ce(OH)、CeO等も含み得ると考えられる。Ce (OH) a X b consisting of cerium ions, 1 to 3 hydroxide ions (OH ) and 1 to 3 anions (X c −), depending on the production conditions of cerium hydroxide. It is considered that particles containing (in the formula, a + b × c = 4) are generated (note that such particles are also cerium hydroxides). In Ce (OH) a X b , electron-withdrawing anions (X c- ) act to improve the reactivity of hydroxide ions, and the abundance of Ce (OH) a X b increases. It is considered that the polishing speed is improved accordingly. The anion (X c-), for example, NO 3 - and SO 4 2-and the like. It is considered that the particles containing cerium hydroxide may contain not only Ce (OH) a X b but also Ce (OH) 4 , CeO 2, and the like.

セリウム水酸化物を含む粒子がCe(OH)を含むことは、粒子を純水でよく洗浄した後に、FT−IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で、陰イオン(Xc−)に該当するピークを検出する方法により確認できる。X線光電子分光法により、陰イオン(Xc−)の存在を確認することもできる。The fact that the particles containing cerium hydroxide contain Ce (OH) a X b means that the particles are thoroughly washed with pure water, and then the FT-IR ATR method (Fourier transform InfraRed Spectrometer Attenuated Total Reflection method, Fourier transform infrared) is used. It can be confirmed by a method of detecting a peak corresponding to an anion (Xc- ) by a spectrophotometer total reflection measurement method). The presence of anions (Xc- ) can also be confirmed by X-ray photoelectron spectroscopy.

本実施形態に係るスラリの砥粒は、絶縁材料の研磨速度が更に向上する観点から、第2の粒子の粒径が第1の粒子の粒径よりも小さく、第1の粒子がセリウム酸化物を含有し、第2の粒子が、セリウム酸化物及びセリウム水酸化物からなる群より選ばれる少なくとも一種のセリウム化合物を含有する態様であることが好ましい。このように絶縁材料の研磨速度が向上する理由としては、例えば、下記の理由が挙げられる。但し、理由は下記に限定されない。 In the slurry abrasive grains according to the present embodiment, the particle size of the second particles is smaller than the particle size of the first particles from the viewpoint of further improving the polishing speed of the insulating material, and the first particles are cerium oxide. It is preferable that the second particle contains at least one cerium compound selected from the group consisting of cerium oxide and cerium hydroxide. Reasons for improving the polishing speed of the insulating material in this way include, for example, the following reasons. However, the reason is not limited to the following.

すなわち、セリウム酸化物を含有すると共に、第2の粒子よりも大きい粒径を有する第1の粒子は、第2の粒子と比較して、絶縁材料に対する機械的作用(メカニカル性)が強い。一方、セリウム化合物を含有すると共に、第1の粒子よりも小さい粒径を有する第2の粒子は、第1の粒子と比較して、絶縁材料に対する機械的作用は小さいものの、粒子全体における比表面積(単位質量当たりの表面積)が大きいため、絶縁材料に対する化学的作用(ケミカル性)が強い。このように、機械的作用が強い第1の粒子と、化学的作用が強い第2の粒子と、を併用することにより研磨速度向上の相乗効果が得られやすい。 That is, the first particle containing cerium oxide and having a particle size larger than that of the second particle has a stronger mechanical action (mechanical property) on the insulating material than the second particle. On the other hand, the second particle, which contains a cerium compound and has a particle size smaller than that of the first particle, has a smaller mechanical action on the insulating material than the first particle, but has a specific surface area of the entire particle. Since (surface area per unit mass) is large, it has a strong chemical action (chemical property) on the insulating material. As described above, the synergistic effect of improving the polishing speed can be easily obtained by using the first particle having a strong mechanical action and the second particle having a strong chemical action in combination.

第1の粒子及び第2の粒子を含む複合粒子は、ホモジナイザー、ナノマイザー、ボールミル、ビーズミル、超音波処理機等を用いて第1の粒子と第2の粒子とを接触させること、互いに相反する電荷を有する第1の粒子と第2の粒子とを接触させること、粒子の含有量が少ない状態で第1の粒子と第2の粒子とを接触させることなどにより得ることができる。 The first particle and the composite particle containing the second particle are brought into contact with the first particle and the second particle by using a homogenizer, a nanomizer, a ball mill, a bead mill, an ultrasonic processing machine or the like, and charge opposite to each other. It can be obtained by bringing the first particle having the above into contact with the second particle, bringing the first particle into contact with the second particle in a state where the content of the particle is small, and the like.

第1の粒子におけるセリウム酸化物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子の全体(スラリに含まれる第1の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第1の粒子は、実質的にセリウム酸化物からなる態様(実質的に第1の粒子の100質量%がセリウム酸化物である態様)であってもよい。 The lower limit of the content of cerium oxide in the first particles is based on the whole of the first particles (the whole of the first particles contained in the slurry; the same applies hereinafter) from the viewpoint of further improving the polishing rate of the insulating material. As a result, 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and 95% by mass or more is particularly preferable. The first particle may be in a mode substantially composed of cerium oxide (a mode in which 100% by mass of the first particle is substantially cerium oxide).

第2の粒子におけるセリウム化合物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第2の粒子の全体(スラリに含まれる第2の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第2の粒子は、実質的にセリウム化合物からなる態様(実質的に第2の粒子の100質量%がセリウム化合物である態様)であってもよい。 The lower limit of the content of the cerium compound in the second particles is based on the whole of the second particles (the whole of the second particles contained in the slurry; the same applies hereinafter) from the viewpoint of further improving the polishing rate of the insulating material. , 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 95% by mass or more. The second particle may be in a mode substantially composed of a cerium compound (a mode in which 100% by mass of the second particle is substantially a cerium compound).

スラリに特定の波長の光を透過させた際に分光光度計によって得られる下記式の吸光度の値により第2の粒子の含有量を推定することができる。すなわち、粒子が特定の波長の光を吸収する場合、当該粒子を含む領域の光透過率が減少する。光透過率は、粒子による吸収だけでなく、散乱によっても減少するが、第2の粒子では、散乱の影響が小さい。そのため、本実施形態では、下記式によって算出される吸光度の値により第2の粒子の含有量を推定することができる。
吸光度 =−LOG10(光透過率[%]/100)
The content of the second particle can be estimated from the absorbance value of the following formula obtained by the spectrophotometer when light of a specific wavelength is transmitted through the slurry. That is, when the particles absorb light of a specific wavelength, the light transmittance of the region containing the particles decreases. The light transmittance is reduced not only by absorption by the particles but also by scattering, but in the second particle, the influence of scattering is small. Therefore, in the present embodiment, the content of the second particle can be estimated from the value of the absorbance calculated by the following formula.
Absorbance = -LOG 10 (light transmittance [%] / 100)

砥粒における第1の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体(スラリに含まれる砥粒全体。以下同様)を基準として、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上が更に好ましい。砥粒における第1の粒子の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体を基準として、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。前記観点から、砥粒における第1の粒子の含有量は、砥粒全体を基準として50〜95質量%であることがより好ましい。 The lower limit of the content of the first particles in the abrasive grains is 50% by mass or more based on the entire abrasive grains (the entire abrasive grains contained in the slurry; the same applies hereinafter) from the viewpoint of further improving the polishing speed of the insulating material. It is more preferably more than 50% by mass, further preferably 60% by mass or more, particularly preferably 70% by mass or more, extremely preferably 75% by mass or more, very preferably 80% by mass or more, and 85% by mass or more. Even more preferably, 90% by mass or more is further preferable. The upper limit of the content of the first particles in the abrasive grains is preferably 95% by mass or less, more preferably 93% by mass or less, and 91% by mass, based on the entire abrasive grains, from the viewpoint of further improving the polishing rate of the insulating material. % Or less is more preferable. From the above viewpoint, the content of the first particles in the abrasive grains is more preferably 50 to 95% by mass with respect to the entire abrasive grains.

砥粒における第2の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体(スラリに含まれる砥粒全体)を基準として、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。砥粒における第2の粒子の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体を基準として、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、20質量%以下が極めて好ましく、10質量%以下が非常に好ましい。前記観点から、砥粒における第2の粒子の含有量は、砥粒全体を基準として5〜50質量%であることがより好ましい。 The lower limit of the content of the second particles in the abrasive grains is preferably 5% by mass or more based on the entire abrasive grains (the entire abrasive grains contained in the slurry) from the viewpoint of further improving the polishing speed of the insulating material. It is more preferably 9% by mass or more, and further preferably 9% by mass or more. The upper limit of the content of the second particles in the abrasive grains is preferably 50% by mass or less, more preferably less than 50% by mass, and 40% by mass, based on the entire abrasive grains, from the viewpoint of further improving the polishing rate of the insulating material. % Or less is more preferable, 30% by mass or less is particularly preferable, 20% by mass or less is extremely preferable, and 10% by mass or less is very preferable. From the above viewpoint, the content of the second particles in the abrasive grains is more preferably 5 to 50% by mass with respect to the entire abrasive grains.

砥粒におけるセリウム酸化物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体(スラリに含まれる砥粒全体)を基準として、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上が更に好ましい。砥粒におけるセリウム酸化物の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体を基準として、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。前記観点から、砥粒におけるセリウム酸化物の含有量は、砥粒全体を基準として50〜95質量%であることがより好ましい。 The lower limit of the content of cerium oxide in the abrasive grains is preferably 50% by mass or more, preferably 50% by mass or more, based on the entire abrasive grains (the entire abrasive grains contained in the slurry) from the viewpoint of further improving the polishing speed of the insulating material. % Is more preferable, 60% by mass or more is further preferable, 70% by mass or more is particularly preferable, 75% by mass or more is extremely preferable, 80% by mass or more is very preferable, and 85% by mass or more is even more preferable. 90% by mass or more is more preferable. The upper limit of the content of cerium oxide in the abrasive grains is preferably 95% by mass or less, more preferably 93% by mass or less, and 91% by mass, based on the entire abrasive grains, from the viewpoint of further improving the polishing rate of the insulating material. The following is more preferable. From the above viewpoint, the content of the cerium oxide in the abrasive grains is more preferably 50 to 95% by mass with respect to the entire abrasive grains.

砥粒におけるセリウム水酸化物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体(スラリに含まれる砥粒全体)を基準として、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。砥粒におけるセリウム水酸化物の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、砥粒全体を基準として、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、20質量%以下が極めて好ましく、10質量%以下が非常に好ましい。前記観点から、砥粒におけるセリウム水酸化物の含有量は、砥粒全体を基準として5〜50質量%であることがより好ましい。 The lower limit of the content of cerium hydroxide in the abrasive grains is preferably 5% by mass or more based on the entire abrasive grains (the entire abrasive grains contained in the slurry) from the viewpoint of further improving the polishing rate of the insulating material. More preferably, it is 9% by mass or more, and further preferably 9% by mass or more. The upper limit of the content of cerium hydroxide in the abrasive grains is preferably 50% by mass or less, more preferably less than 50% by mass, and 40% by mass, based on the entire abrasive grains, from the viewpoint of further improving the polishing rate of the insulating material. % Or less is more preferable, 30% by mass or less is particularly preferable, 20% by mass or less is extremely preferable, and 10% by mass or less is very preferable. From the above viewpoint, the content of cerium hydroxide in the abrasive grains is more preferably 5 to 50% by mass based on the entire abrasive grains.

第1の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子及び第2の粒子の合計量を基準として、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上が更に好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子及び第2の粒子の合計量を基準として、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。前記観点から、第1の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として50〜95質量%であることがより好ましい。 The lower limit of the content of the first particles is preferably 50% by mass or more, preferably 50% by mass, based on the total amount of the first particles and the second particles from the viewpoint of further improving the polishing rate of the insulating material. More preferably, it is more preferably 60% by mass or more, particularly preferably 70% by mass or more, extremely preferably 75% by mass or more, very preferably 80% by mass or more, even more preferably 85% by mass or more, and 90% by mass. % Or more is more preferable. The upper limit of the content of the first particles is preferably 95% by mass or less, preferably 93% by mass or less, based on the total amount of the first particles and the second particles, from the viewpoint of further improving the polishing rate of the insulating material. Is more preferable, and 91% by mass or less is further preferable. From the above viewpoint, the content of the first particles is more preferably 50 to 95% by mass based on the total amount of the first particles and the second particles.

第2の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子及び第2の粒子の合計量を基準として、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度が更に向上する観点から、第1の粒子及び第2の粒子の合計量を基準として、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、20質量%以下が極めて好ましく、10質量%以下が非常に好ましい。前記観点から、第2の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として5〜50質量%であることがより好ましい。 The lower limit of the content of the second particles is preferably 5% by mass or more, preferably 7% by mass or more, based on the total amount of the first particles and the second particles from the viewpoint of further improving the polishing rate of the insulating material. Is more preferable, and 9% by mass or more is further preferable. The upper limit of the content of the second particles is preferably 50% by mass or less, preferably less than 50% by mass, based on the total amount of the first particles and the second particles, from the viewpoint of further improving the polishing rate of the insulating material. Is more preferable, 40% by mass or less is further preferable, 30% by mass or less is particularly preferable, 20% by mass or less is extremely preferable, and 10% by mass or less is very preferable. From the above viewpoint, the content of the second particle is more preferably 5 to 50% by mass based on the total amount of the first particle and the second particle.

スラリにおける第1の粒子の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.07質量%以上が極めて好ましく、0.08質量%以上が非常に好ましい。スラリにおける第1の粒子の含有量の上限は、絶縁材料の研磨速度が更に向上する観点、及び、スラリの保存安定性を高くする観点から、スラリの全質量を基準として、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.1質量%以下が非常に好ましく、0.09質量%以下がより一層好ましく、0.085質量%以下が更に好ましい。前記観点から、スラリにおける第1の粒子の含有量は、スラリの全質量を基準として0.005〜5質量%であることがより好ましい。 The lower limit of the content of the first particles in the slurry is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, based on the total mass of the slurry, from the viewpoint of further improving the polishing rate of the insulating material. Preferably, 0.01% by mass or more is further preferable, 0.05% by mass or more is particularly preferable, 0.07% by mass or more is extremely preferable, and 0.08% by mass or more is very preferable. The upper limit of the content of the first particles in the slurry is 5% by mass or less based on the total mass of the slurry from the viewpoint of further improving the polishing speed of the insulating material and increasing the storage stability of the slurry. Preferably, 3% by mass or less is more preferable, 1% by mass or less is further preferable, 0.5% by mass or less is particularly preferable, 0.3% by mass or less is extremely preferable, 0.1% by mass or less is very preferable, and 0. .09% by mass or less is even more preferable, and 0.085% by mass or less is even more preferable. From the above viewpoint, the content of the first particles in the slurry is more preferably 0.005 to 5% by mass based on the total mass of the slurry.

スラリにおける第2の粒子の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.012質量%以上が特に好ましく、0.015質量%以上が極めて好ましく、0.016質量%以上が非常に好ましい。スラリにおける第2の粒子の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、スラリの全質量を基準として、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下が更に好ましく、0.03質量%以下が更に好ましく、0.02質量%以下が特に好ましく、0.018質量%以下が極めて好ましい。前記観点から、スラリにおける第2の粒子の含有量は、スラリの全質量を基準として0.005〜5質量%であることがより好ましい。 The lower limit of the content of the second particle in the slurry is based on the total mass of the slurry from the viewpoint of further improving the chemical interaction between the abrasive grains and the surface to be polished and further improving the polishing speed of the insulating material. , 0.005% by mass or more, more preferably 0.008% by mass or more, further preferably 0.01% by mass or more, particularly preferably 0.012% by mass or more, and extremely preferably 0.015% by mass or more. 0.016% by mass or more is very preferable. The upper limit of the content of the second particle in the slurry makes it easy to avoid agglomeration of the abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, so that the characteristics of the abrasive grains are effective. From the viewpoint of easy utilization, 5% by mass or less is preferable, 3% by mass or less is more preferable, 1% by mass or less is further preferable, 0.5% by mass or less is particularly preferable, and 0. 1% by mass or less is extremely preferable, 0.05% by mass or less is very preferable, 0.04% by mass or less is further preferable, 0.035% by mass or less is further preferable, and 0.03% by mass or less is further preferable. 0.02% by mass or less is particularly preferable, and 0.018% by mass or less is extremely preferable. From the above viewpoint, the content of the second particles in the slurry is more preferably 0.005 to 5% by mass based on the total mass of the slurry.

スラリにおけるセリウム酸化物の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.07質量%以上が極めて好ましく、0.08質量%以上が非常に好ましい。スラリにおけるセリウム酸化物の含有量の上限は、絶縁材料の研磨速度が更に向上する観点、及び、スラリの保存安定性を高くする観点から、スラリの全質量を基準として、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.1質量%以下が非常に好ましく、0.09質量%以下がより一層好ましく、0.085質量%以下が更に好ましい。前記観点から、スラリにおけるセリウム酸化物の含有量は、スラリの全質量を基準として0.005〜5質量%であることがより好ましい。 The lower limit of the content of cerium oxide in the slurry is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, based on the total mass of the slurry, from the viewpoint of further improving the polishing rate of the insulating material. , 0.01% by mass or more is further preferable, 0.05% by mass or more is particularly preferable, 0.07% by mass or more is extremely preferable, and 0.08% by mass or more is very preferable. The upper limit of the content of cerium oxide in the slurry is preferably 5% by mass or less based on the total mass of the slurry from the viewpoint of further improving the polishing rate of the insulating material and increasing the storage stability of the slurry. 3, 3% by mass or less is more preferable, 1% by mass or less is further preferable, 0.5% by mass or less is particularly preferable, 0.3% by mass or less is extremely preferable, 0.1% by mass or less is very preferable, and 0. 09% by mass or less is even more preferable, and 0.085% by mass or less is even more preferable. From the above viewpoint, the content of cerium oxide in the slurry is more preferably 0.005 to 5% by mass based on the total mass of the slurry.

スラリにおけるセリウム水酸化物の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.012質量%以上が特に好ましく、0.015質量%以上が極めて好ましく、0.016質量%以上が非常に好ましい。スラリにおけるセリウム水酸化物の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、スラリの全質量を基準として、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下が更に好ましく、0.03質量%以下が更に好ましく、0.02質量%以下が特に好ましく、0.018質量%以下が極めて好ましい。前記観点から、スラリにおけるセリウム水酸化物の含有量は、スラリの全質量を基準として、0.005〜5質量%であることがより好ましい。 The lower limit of the content of cerium hydroxide in the slurry is based on the total mass of the slurry from the viewpoint of further improving the chemical interaction between the abrasive grains and the surface to be polished and further improving the polishing speed of the insulating material. , 0.005% by mass or more, more preferably 0.008% by mass or more, further preferably 0.01% by mass or more, particularly preferably 0.012% by mass or more, and extremely preferably 0.015% by mass or more. 0.016% by mass or more is very preferable. The upper limit of the content of cerium hydroxide in the slurry makes it easy to avoid agglomeration of abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, which makes the characteristics of the abrasive grains effective. From the viewpoint of easy utilization, 5% by mass or less is preferable, 3% by mass or less is more preferable, 1% by mass or less is further preferable, 0.5% by mass or less is particularly preferable, and 0. 1% by mass or less is extremely preferable, 0.05% by mass or less is very preferable, 0.04% by mass or less is further preferable, 0.035% by mass or less is further preferable, and 0.03% by mass or less is further preferable. 0.02% by mass or less is particularly preferable, and 0.018% by mass or less is extremely preferable. From the above viewpoint, the content of cerium hydroxide in the slurry is more preferably 0.005 to 5% by mass based on the total mass of the slurry.

スラリにおける砥粒の含有量の下限は、絶縁材料の研磨速度が更に向上する観点から、スラリの全質量を基準として、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.08質量%以上が更に好ましく、0.1質量%以上が特に好ましい。スラリにおける砥粒の含有量の上限は、スラリの保存安定性を高くする観点から、スラリの全質量を基準として、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.2質量%以下が非常に好ましく、0.15質量%以下がより一層好ましく、0.135質量%以下が更に好ましく、0.13質量%以下が特に好ましい。前記観点から、スラリにおける砥粒の含有量は、スラリの全質量を基準として0.01〜10質量%であることがより好ましい。 The lower limit of the abrasive grain content in the slurry is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the total mass of the slurry, from the viewpoint of further improving the polishing rate of the insulating material. 0.08% by mass or more is more preferable, and 0.1% by mass or more is particularly preferable. The upper limit of the content of abrasive grains in the slurry is preferably 10% by mass or less, more preferably 5% by mass or less, and 1% by mass or less, based on the total mass of the slurry, from the viewpoint of increasing the storage stability of the slurry. More preferably, 0.5% by mass or less is particularly preferable, 0.1% by mass or less is extremely preferable, 0.2% by mass or less is very preferable, 0.15% by mass or less is even more preferable, and 0.135% by mass or less. The following is more preferable, and 0.13% by mass or less is particularly preferable. From the above viewpoint, the content of abrasive grains in the slurry is more preferably 0.01 to 10% by mass based on the total mass of the slurry.

本実施形態に係るスラリは、前記第1の粒子及び前記第2の粒子を含む複合粒子以外の他の粒子を含有していてもよい。このような他の粒子としては、例えば、前記第2の粒子に接触していない前記第1の粒子;前記第1の粒子に接触していない前記第2の粒子;シリカ、アルミナ、ジルコニア、イットリア等からなる第3の粒子(第1の粒子及び第2の粒子を含まない粒子)が挙げられる。 The slurry according to the present embodiment may contain particles other than the first particles and composite particles containing the second particles. Examples of such other particles include the first particle that is not in contact with the second particle; the second particle that is not in contact with the first particle; silica, alumina, zirconia, yttria. A third particle (a particle not containing the first particle and the second particle) composed of the above can be mentioned.

(液状媒体)
液状媒体としては、特に制限はないが、脱イオン水、超純水等の水が好ましい。液状媒体の含有量は、他の構成成分の含有量を除いたスラリの残部でよく、特に限定されない。
(Liquid medium)
The liquid medium is not particularly limited, but water such as deionized water and ultrapure water is preferable. The content of the liquid medium may be the balance of the slurry excluding the content of other constituent components, and is not particularly limited.

(任意成分)
本実施形態に係るスラリは、任意の添加剤を更に含有していてもよい。任意の添加剤としては、カルボキシル基を有する材料(ポリオキシアルキレン化合物又は水溶性高分子に該当する化合物を除く)、ポリオキシアルキレン化合物、水溶性高分子、酸化剤(例えば過酸化水素)、分散剤(例えばリン酸系無機塩)等が挙げられる。添加剤のそれぞれは、一種を単独で又は二種以上を組み合わせて使用することができる。
(Arbitrary ingredient)
The slurry according to the present embodiment may further contain any additive. Optional additives include materials having a carboxyl group (excluding polyoxyalkylene compounds or compounds corresponding to water-soluble polymers), polyoxyalkylene compounds, water-soluble polymers, oxidizing agents (for example, hydrogen peroxide), and dispersions. Examples thereof include agents (for example, phosphoric acid-based inorganic salts). Each of the additives can be used alone or in combination of two or more.

カルボキシル基を有する材料としては、酢酸、プロピオン酸、酪酸、吉草酸等のモノカルボン酸;乳酸、リンゴ酸、クエン酸等のヒドロキシ酸;マロン酸、コハク酸、フマル酸、マレイン酸等のジカルボン酸;ポリアクリル酸、ポリマレイン酸等のポリカルボン酸;アルギニン、ヒスチジン、リシン等のアミノ酸などが挙げられる。 Materials having a carboxyl group include monocarboxylic acids such as acetic acid, propionic acid, butyric acid, and valeric acid; hydroxy acids such as lactic acid, malic acid, and citric acid; and dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, and maleic acid. Polycarboxylic acids such as polyacrylic acid and polymaleic acid; amino acids such as arginine, histidine, and lysine.

ポリオキシアルキレン化合物としては、ポリアルキレングリコール、ポリオキシアルキレン誘導体等が挙げられる。 Examples of the polyoxyalkylene compound include polyalkylene glycols and polyoxyalkylene derivatives.

ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が挙げられる。ポリアルキレングリコールとしては、ポリエチレングリコール及びポリプロピレングリコールからなる群より選択される少なくとも一種が好ましく、ポリエチレングリコールがより好ましい。 Examples of the polyalkylene glycol include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like. As the polyalkylene glycol, at least one selected from the group consisting of polyethylene glycol and polypropylene glycol is preferable, and polyethylene glycol is more preferable.

ポリオキシアルキレン誘導体は、例えば、ポリアルキレングリコールに官能基若しくは置換基を導入した化合物、又は、有機化合物にポリアルキレンオキシドを付加した化合物である。前記官能基又は置換基としては、例えば、アルキルエーテル基、アルキルフェニルエーテル基、フェニルエーテル基、スチレン化フェニルエーテル基、グリセリルエーテル基、アルキルアミン基、脂肪酸エステル基、及び、グリコールエステル基が挙げられる。ポリオキシアルキレン誘導体としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンビスフェノールエーテル(例えば、日本乳化剤株式会社製、BAグリコールシリーズ)、ポリオキシエチレンスチレン化フェニルエーテル(例えば、花王株式会社製、エマルゲンシリーズ)、ポリオキシエチレンアルキルフェニルエーテル(例えば、第一工業製薬株式会社製、ノイゲンEAシリーズ)、ポリオキシアルキレンポリグリセリルエーテル(例えば、阪本薬品工業株式会社製、SC−Eシリーズ及びSC−Pシリーズ)、ポリオキシエチレンソルビタン脂肪酸エステル(例えば、第一工業製薬株式会社製、ソルゲンTWシリーズ)、ポリオキシエチレン脂肪酸エステル(例えば、花王株式会社製、エマノーンシリーズ)、ポリオキシエチレンアルキルアミン(例えば、第一工業製薬株式会社製、アミラヂンD)、並びに、ポリアルキレンオキシドを付加したその他の化合物(例えば、日信化学工業株式会社製、サーフィノール465、及び、日本乳化剤株式会社製、TMPシリーズ)が挙げられる。 The polyoxyalkylene derivative is, for example, a compound in which a functional group or a substituent is introduced into a polyalkylene glycol, or a compound in which a polyalkylene oxide is added to an organic compound. Examples of the functional group or substituent include an alkyl ether group, an alkyl phenyl ether group, a phenyl ether group, a styrene phenyl ether group, a glyceryl ether group, an alkyl amine group, a fatty acid ester group, and a glycol ester group. .. Examples of the polyoxyalkylene derivative include polyoxyethylene alkyl ether, polyoxyethylene bisphenol ether (for example, manufactured by Nippon Emulsifier Co., Ltd., BA glycol series), and polyoxyethylene styrene phenyl ether (for example, manufactured by Kao Co., Ltd., Emargen). Series), polyoxyethylene alkyl phenyl ether (for example, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neugen EA series), polyoxyalkylene polyglyceryl ether (for example, manufactured by Sakamoto Pharmaceutical Co., Ltd., SC-E series and SC-P series). , Polyoxyethylene sorbitan fatty acid ester (for example, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Sorgen TW series), polyoxyethylene fatty acid ester (for example, manufactured by Kao Co., Ltd., Emanon series), polyoxyethylene alkylamine (for example, No. 1) (Amyradin D) manufactured by Ichiko Pharmaceutical Co., Ltd., and other compounds to which polyalkylene oxide is added (for example, Surfinol 465 manufactured by Nisshin Chemical Industry Co., Ltd. and TMP series manufactured by Nippon Emulsifier Co., Ltd.) are mentioned. Be done.

「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する。前記ポリオキシアルキレン化合物に該当する高分子は「水溶性高分子」に含まれないものとする。水溶性高分子としては、特に制限はなく、ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル系ポリマ;カルボキシメチルセルロース、寒天、カードラン、デキストリン、シクロデキストリン、プルラン等の多糖類;ポリビニルアルコール、ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;ポリグリセリン、ポリグリセリン誘導体等のグリセリン系ポリマ;ポリエチレングリコールなどが挙げられる。 The "water-soluble polymer" is defined as a polymer that dissolves 0.1 g or more in 100 g of water. The polymer corresponding to the polyoxyalkylene compound shall not be included in the "water-soluble polymer". The water-soluble polymer is not particularly limited, and acrylic polymers such as polyacrylamide and polydimethylacrylamide; polysaccharides such as carboxymethyl cellulose, agar, curdran, dextrin, cyclodextrin, and pullulan; polyvinyl alcohol, polyvinylpyrrolidone, and poly. Vinyl-based polymers such as achlorin; glycerin-based polymers such as polyglycerin and polyglycerin derivatives; polyethylene glycol and the like can be mentioned.

(スラリの特性)
本実施形態に係るスラリのpHの下限は、絶縁材料の研磨速度が更に向上する観点から、2.0以上が好ましく、2.5以上がより好ましく、2.8以上が更に好ましく、3.0以上が特に好ましく、3.2以上が極めて好ましく、3.5以上が非常に好ましく、4.0以上がより一層好ましく、4.1以上が更に好ましい。pHの上限は、スラリの保存安定性が更に向上する観点から、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましく、5.0以下が特に好ましく、4.8以下が極めて好ましく、4.7以下が非常に好ましく、4.6以下がより一層好ましく、4.5以下が更に好ましく、4.4以下が特に好ましい。前記観点から、pHは、2.0〜7.0であることがより好ましい。スラリのpHは、液温25℃におけるpHと定義する。
(Characteristics of slurry)
The lower limit of the pH of the slurry according to the present embodiment is preferably 2.0 or more, more preferably 2.5 or more, further preferably 2.8 or more, and 3.0 or more, from the viewpoint of further improving the polishing rate of the insulating material. The above is particularly preferable, 3.2 or more is extremely preferable, 3.5 or more is very preferable, 4.0 or more is even more preferable, and 4.1 or more is further preferable. The upper limit of pH is preferably 7.0 or less, more preferably 6.5 or less, further preferably 6.0 or less, particularly preferably 5.0 or less, from the viewpoint of further improving the storage stability of the slurry. 8 or less is extremely preferable, 4.7 or less is very preferable, 4.6 or less is even more preferable, 4.5 or less is further preferable, and 4.4 or less is particularly preferable. From the above viewpoint, the pH is more preferably 2.0 to 7.0. The pH of the slurry is defined as the pH at a liquid temperature of 25 ° C.

スラリのpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール、アルカノールアミン等のアルカリ成分などによって調整できる。また、pHを安定化させるため、緩衝剤を添加してもよい。また、緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。 The pH of the slurry can be adjusted by an acid component such as an inorganic acid or an organic acid; an alkaline component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole, or alkanolamine. In addition, a buffer may be added to stabilize the pH. Moreover, you may add a buffering agent as a buffering liquid (a liquid containing a buffering agent). Examples of such a buffer solution include an acetate buffer solution and a phthalate buffer solution.

本実施形態に係るスラリのpHは、pHメータ(例えば、東亜ディーケーケー株式会社製の型番PHL−40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH:4.01)及び中性リン酸塩pH緩衝液(pH:6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極をスラリに入れて、2分以上経過して安定した後の値を測定する。標準緩衝液及びスラリの液温は、共に25℃とする。 The pH of the slurry according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by DKK-TOA CORPORATION). Specifically, for example, after calibrating the pH meter at two points using a phthalate pH buffer solution (pH: 4.01) and a neutral phosphate pH buffer solution (pH: 6.86) as standard buffer solutions. , Put the electrode of the pH meter in the slurry and measure the value after it stabilizes after 2 minutes or more. The temperature of both the standard buffer solution and the slurry is 25 ° C.

本実施形態に係るスラリをCMP研磨液として用いる場合、研磨液の構成成分を一液式研磨液として保存してもよく、砥粒及び液状媒体を含むスラリ(第1の液)と、添加剤及び液状媒体を含む添加液(第2の液)とを混合して前記研磨液となるように前記研磨液の構成成分をスラリと添加液とに分けた複数液式(例えば二液式)の研磨液セットとして保存してもよい。添加液は、例えば酸化剤を含んでいてもよい。前記研磨液の構成成分は、三液以上に分けた研磨液セットとして保存してもよい。 When the slurry according to the present embodiment is used as a CMP polishing liquid, the constituent components of the polishing liquid may be stored as a one-component polishing liquid, and a slurry (first liquid) containing abrasive grains and a liquid medium and an additive A multi-component type (for example, a two-component type) in which the constituent components of the polishing liquid are divided into a slurry and an additive liquid so as to be obtained by mixing the additive liquid (second liquid) containing the liquid medium and the polishing liquid. It may be stored as a polishing liquid set. The additive liquid may contain, for example, an oxidizing agent. The constituent components of the polishing liquid may be stored as a polishing liquid set divided into three or more liquids.

前記研磨液セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨液が作製される。また、一液式研磨液は、液状媒体の含有量を減じた研磨液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。複数液式の研磨液セットは、液状媒体の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。 In the polishing liquid set, a slurry and an additive liquid are mixed immediately before polishing or at the time of polishing to prepare a polishing liquid. Further, the one-component polishing liquid may be stored as a storage liquid for a polishing liquid in which the content of the liquid medium is reduced, and may be diluted with a liquid medium at the time of polishing and used. The multi-liquid type polishing liquid set may be stored as a storage liquid for slurry and a storage liquid for additive liquid in which the content of the liquid medium is reduced, and may be diluted with a liquid medium at the time of polishing.

<研磨方法>
本実施形態に係る研磨方法(基体の研磨方法等)は、前記スラリを用いて被研磨面(基体の被研磨面等)を研磨する研磨工程を備えている。研磨工程におけるスラリは、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液であってもよい。
<Polishing method>
The polishing method according to the present embodiment (polishing method of the substrate, etc.) includes a polishing step of polishing the surface to be polished (surface to be polished of the substrate, etc.) using the slurry. The slurry in the polishing step may be a polishing liquid obtained by mixing the slurry and the additive liquid in the polishing liquid set.

研磨工程では、例えば、被研磨材料を有する基体の当該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記スラリを被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。 In the polishing step, for example, the slurry is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing platen. The surface to be polished of the material to be polished is polished by relatively moving the substrate and the polishing platen. In the polishing step, for example, at least a part of the material to be polished is removed by polishing.

研磨対象である基体としては、被研磨基板等が挙げられる。被研磨基板としては、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基体が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状(被研磨膜)であってもよく、酸化珪素膜等の絶縁膜などであってもよい。 Examples of the substrate to be polished include a substrate to be polished. Examples of the substrate to be polished include a substrate in which a material to be polished is formed on a substrate (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed) related to manufacturing a semiconductor element. Examples of the material to be polished include an insulating material such as silicon oxide. The material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as the materials to be polished. The material to be polished may be in the form of a film (film to be polished), or may be an insulating film such as a silicon oxide film.

このような基板上に形成された被研磨材料(例えば、酸化珪素等の絶縁材料)を前記スラリで研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面を得ることができる。 By polishing the material to be polished (for example, an insulating material such as silicon oxide) formed on such a substrate with the slurry and removing the excess portion, the unevenness of the surface of the material to be polished is eliminated and the surface to be polished is covered. A smooth surface can be obtained over the entire surface of the polishing material.

本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、株式会社荏原製作所製の研磨装置:F−REX300、又は、APPLIED MATERIALS社製の研磨装置:MIRRAを使用できる。 In the polishing method according to the present embodiment, as the polishing apparatus, a general polishing apparatus having a holder capable of holding a substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached can be used. A motor or the like whose rotation speed can be changed is attached to each of the holder and the polishing surface plate. As the polishing device, for example, a polishing device manufactured by Ebara Corporation: F-REX300 or a polishing device manufactured by Applied Materials Co., Ltd .: MIRRA can be used.

研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル樹脂、ポリエステル、アクリル−エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性に更に優れる観点から、発泡ポリウレタン及び非発泡ポリウレタンからなる群より選択される少なくとも一種が好ましい。研磨パッドには、スラリがたまるような溝加工が施されていることが好ましい。 As the polishing pad, a general non-woven fabric, foam, non-foam or the like can be used. As the material of the polishing pad, polyurethane, acrylic resin, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name)) And aramid), polyimide, polyimideamide, polysiloxane copolymer, oxylan compound, phenol resin, polystyrene, polycarbonate, epoxy resin and other resins can be used. As the material of the polishing pad, at least one selected from the group consisting of foamed polyurethane and non-foamed polyurethane is preferable from the viewpoint of further excellent polishing speed and flatness. It is preferable that the polishing pad is grooved so that slurry can be accumulated.

研磨条件に制限はないが、研磨定盤の回転速度の上限は、基体が飛び出さないように200min−1(min−1=rpm)以下が好ましく、基体にかける研磨圧力(加工荷重)の上限は、研磨傷が発生することを抑制しやすい観点から、100kPa以下が好ましい。研磨している間、ポンプ等で連続的にスラリを研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常にスラリで覆われていることが好ましい。Although there is no limit to the polishing conditions, the upper limit of the rotational speed of the polishing platen is preferably 200min -1 (min -1 = rpm) or less so as not fly out is base, the upper limit of the polishing pressure (working load) applied to the substrate Is preferably 100 kPa or less from the viewpoint of easily suppressing the occurrence of polishing scratches. During polishing, it is preferable to continuously supply the slurry to the polishing pad with a pump or the like. There is no limit to the amount of this supply, but it is preferable that the surface of the polishing pad is always covered with slurry.

本実施形態は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。本実施形態によれば、酸化珪素を含む被研磨面の研磨へのスラリの使用を提供することができる。本実施形態は、STIの形成及び層間絶縁材料の高速研磨に好適に使用できる。絶縁材料(例えば酸化珪素)の研磨速度の下限は、850nm/min以上が好ましく、900nm/min以上がより好ましく、1000nm/min以上が更に好ましい。 This embodiment is preferably used for polishing the surface to be polished containing silicon oxide. According to this embodiment, it is possible to provide the use of a slurry for polishing a surface to be polished containing silicon oxide. This embodiment can be suitably used for forming STI and high-speed polishing of interlayer insulating materials. The lower limit of the polishing rate of the insulating material (for example, silicon oxide) is preferably 850 nm / min or more, more preferably 900 nm / min or more, and further preferably 1000 nm / min or more.

本実施形態は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素、リン−シリケートガラス、ボロン−リン−シリケートガラス、シリコンオキシフロリド、フッ化アモルファスカーボン等が挙げられる。 The present embodiment can also be used for polishing a premetal insulating material. Examples of the premetal insulating material include silicon oxide, phosphorus-silicate glass, boron-phosphorus-silicate glass, silicon oxyfluorolide, and amorphous carbon fluoride.

本実施形態は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。 This embodiment can be applied to materials other than insulating materials such as silicon oxide. Examples of such materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe and the like. Phase change material; Inorganic conductive material such as ITO; Polyimide-based, polybenzoxazole-based, acrylic-based, epoxy-based, phenol-based and other polymer resin materials and the like can be mentioned.

本実施形態は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等から構成される各種基板にも適用できる。 This embodiment can be applied not only to a film-like polishing target but also to various substrates composed of glass, silicon, SiC, SiCe, Ge, GaN, GaP, GaAs, sapphire, plastic and the like.

本実施形態は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置などの製造に用いることができる。 In this embodiment, not only the manufacture of semiconductor elements, but also image display devices such as TFTs and organic ELs; optical components such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators; optical elements such as optical switching elements and optical waveguides. Light emitting elements such as solid-state lasers and blue laser LEDs; can be used in the manufacture of magnetic storage devices such as magnetic disks and magnetic heads.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

<セリウム酸化物スラリの準備>
セリウム酸化物を含む粒子(第1の粒子。以下、「セリウム酸化物粒子」という)と、和光純薬工業株式会社製の商品名:リン酸二水素アンモニウム(分子量:97.99)とを混合して、セリウム酸化物粒子を5.0質量%(固形分含量)含有するセリウム酸化物スラリ(pH:7)を調製した。リン酸二水素アンモニウムの配合量は、セリウム酸化物粒子の全量を基準として1質量%に調整した。
<Preparation of cerium oxide slurry>
Particles containing cerium oxide (first particles; hereinafter referred to as "cerium oxide particles") and trade name: ammonium dihydrogen phosphate (molecular weight: 97.99) manufactured by Wako Pure Chemical Industries, Ltd. are mixed. Then, a cerium oxide slurry (pH: 7) containing 5.0% by mass (solid content) of cerium oxide particles was prepared. The blending amount of ammonium dihydrogen phosphate was adjusted to 1% by mass based on the total amount of cerium oxide particles.

マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内にセリウム酸化物スラリを適量投入し、セリウム酸化物粒子の平均粒径を測定した。表示された平均粒径値を平均粒径(平均二次粒径)として得た。セリウム酸化物スラリにおけるセリウム酸化物粒子の平均粒径は145nmであった。 Trade name manufactured by Microtrac Bell Co., Ltd .: An appropriate amount of cerium oxide slurry was put into Microtrac MT3300EXII, and the average particle size of the cerium oxide particles was measured. The displayed average particle size value was obtained as the average particle size (average secondary particle size). The average particle size of the cerium oxide particles in the cerium oxide slurry was 145 nm.

ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム酸化物スラリにおけるセリウム酸化物粒子のゼータ電位は−55mVであった。 A suitable amount of cerium oxide slurry was put into DelsaNano C, a trade name manufactured by Beckman Coulter Co., Ltd., and the measurement was carried out twice at 25 ° C. The average value of the displayed zeta potentials was obtained as the zeta potentials. The zeta potential of the cerium oxide particles in the cerium oxide slurry was -55 mV.

<セリウム水酸化物スラリの準備>
(セリウム水酸化物の合成)
480gのCe(NH(NO50質量%水溶液(日本化学産業株式会社製、商品名:CAN50液)を7450gの純水と混合して溶液を得た。次いで、この溶液を撹拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/minの混合速度で滴下して、セリウム水酸化物を含む沈殿物を得た。セリウム水酸化物の合成は、温度20℃、撹拌速度500min−1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
<Preparation of cerium hydroxide slurry>
(Synthesis of cerium hydroxide)
480g of Ce (NH 4) 2 (NO 3) 6 50 % by weight aqueous solution (Nihon Kagaku Sangyo Co., Ltd., trade name: CAN 50 solution) to obtain a solution by mixing with pure water 7450G. Then, while stirring this solution, 750 g of an imidazole aqueous solution (10 mass% aqueous solution, 1.47 mol / L) was added dropwise at a mixing rate of 5 mL / min to obtain a precipitate containing cerium hydroxide. The synthesis of cerium hydroxide was carried out at a temperature of 20 ° C. and a stirring speed of 500 min- 1. Stirring was performed using a 3-blade pitch paddle having a total blade length of 5 cm.

得られた沈殿物(セリウム水酸化物を含む沈殿物)を遠心分離(4000min−1、5分間)した後にデカンテーションで液相を除去することによって固液分離を施した。固液分離により得られた粒子10gと、水990gと、を混合した後、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物を含む粒子(第2の粒子。以下、「セリウム水酸化物粒子」という)を含有するセリウム水酸化物スラリ(粒子の含有量:1.0質量%)を調製した。The obtained precipitate (precipitate containing cerium hydroxide) was centrifuged (4000 min -1 , 5 minutes), and then the liquid phase was removed by decantation to perform solid-liquid separation. After mixing 10 g of the particles obtained by solid-liquid separation and 990 g of water, the particles are dispersed in water using an ultrasonic washing machine, and the particles containing cerium hydroxide (second particles; hereinafter, A cerium hydroxide slurry (particle content: 1.0% by mass) containing (referred to as "cerium hydroxide particles") was prepared.

(平均粒径の測定)
ベックマン・コールター株式会社製、商品名:N5を用いてセリウム水酸化物スラリにおけるセリウム水酸化物粒子の平均粒径(平均二次粒径)を測定したところ、10nmであった。測定法は次のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(セリウム水酸化物スラリ。水分散液)を1cm角のセルに約1mL入れた後、N5内にセルを設置した。N5のソフトの測定サンプル情報の屈折率を1.333、粘度を0.887mPa・sに設定し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。
(Measurement of average particle size)
When the average particle size (average secondary particle size) of the cerium hydroxide particles in the cerium hydroxide slurry was measured using Beckman Coulter Co., Ltd., trade name: N5, it was 10 nm. The measurement method is as follows. First, about 1 mL of a measurement sample (cerium hydroxide slurry, aqueous dispersion) containing 1.0% by mass of cerium hydroxide particles was placed in a 1 cm square cell, and then the cell was placed in N5. The refractive index of the measurement sample information of the software of N5 was set to 1.333 and the viscosity was set to 0.887 mPa · s, the measurement was performed at 25 ° C., and the value displayed as Unimodal Size Mean was read.

(ゼータ電位の測定)
ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム水酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム水酸化物スラリにおけるセリウム水酸化物粒子のゼータ電位は+50mVであった。
(Measurement of zeta potential)
A suitable amount of cerium hydroxide slurry was put into DelsaNano C, a trade name manufactured by Beckman Coulter Co., Ltd., and the measurement was carried out twice at 25 ° C. The average value of the displayed zeta potentials was obtained as the zeta potentials. The zeta potential of the cerium hydroxide particles in the cerium hydroxide slurry was +50 mV.

(セリウム水酸化物粒子の構造分析)
セリウム水酸化物スラリを適量採取し、真空乾燥してセリウム水酸化物粒子を単離した後に純水で充分に洗浄して試料を得た。得られた試料について、FT−IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N−XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物粒子は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子がセリウム水酸化物粒子の少なくとも一部に含有されることから、セリウム水酸化物粒子がセリウム水酸化物を含有することが確認された。これらの結果より、セリウムの水酸化物が、セリウム元素に結合した水酸化物イオンを含むことが確認された。
(Structural analysis of cerium hydroxide particles)
An appropriate amount of cerium hydroxide slurry was collected, vacuum dried to isolate cerium hydroxide particles, and then sufficiently washed with pure water to obtain a sample. The obtained sample was subjected to measurement by FT-IR ATR method, hydroxide ions - in addition to the peak based on the nitrate ion (OH) (NO 3 -) peak based on was observed. Further, for the same sample, it was subjected to XPS (N-XPS) measurement for nitrogen, a peak based on NH 4 + is not observed, a peak based on nitrate ions was observed. From these results, it was confirmed that the cerium hydroxide particles contained at least a part of the particles having nitrate ions bonded to the cerium element. Further, since particles having hydroxide ions bonded to the cerium element are contained in at least a part of the cerium hydroxide particles, it was confirmed that the cerium hydroxide particles contain the cerium hydroxide. From these results, it was confirmed that the hydroxide of cerium contains hydroxide ions bonded to the element of cerium.

<スラリの調製>
(実施例1)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリ25gと、イオン交換水1935gとを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリ40gを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子を含有する試験用スラリ(セリウム酸化物粒子の含有量:0.1質量%、セリウム水酸化物粒子の含有量:0.0125質量%)を調製した。
<Preparation of slurry>
(Example 1)
While stirring at a rotation speed of 300 rpm using a two-blade stirring blade, 25 g of the cerium hydroxide slurry and 1935 g of ion-exchanged water were mixed to obtain a mixed solution. Subsequently, 40 g of the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then ultrasonic waves are irradiated using an ultrasonic cleaner (device name: US-105) manufactured by SND Co., Ltd. It was stirred while stirring. As a result, a test slurry containing composite particles containing cerium oxide particles and cerium hydroxide particles in contact with the cerium oxide particles (content of cerium oxide particles: 0.1% by mass, cerium). Content of hydroxide particles: 0.0125% by mass) was prepared.

(実施例2)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリ30gと、イオン交換水1930gとを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリ40gを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子に加えて、セリウム酸化物粒子に接触していないセリウム水酸化物粒子(遊離粒子)を含有する試験用スラリ(セリウム酸化物粒子の含有量:0.1質量%、セリウム水酸化物粒子の含有量:0.015質量%)を調製した。
(Example 2)
While stirring at a rotation speed of 300 rpm using a two-bladed stirring blade, 30 g of the cerium hydroxide slurry and 1930 g of ion-exchanged water were mixed to obtain a mixed solution. Subsequently, 40 g of the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then ultrasonic waves are irradiated using an ultrasonic cleaner (device name: US-105) manufactured by SND Co., Ltd. It was stirred while stirring. As a result, in addition to the composite particles containing the cerium oxide particles and the cerium hydroxide particles in contact with the cerium oxide particles, the cerium hydroxide particles (free particles) not in contact with the cerium oxide particles. A test slurry (content of cerium oxide particles: 0.1% by mass, content of cerium hydroxide particles: 0.015% by mass) containing the above was prepared.

(実施例3)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリ35gと、イオン交換水1925gとを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリ40gを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子に加えて、セリウム酸化物粒子に接触していないセリウム水酸化物粒子(遊離粒子)を含有する試験用スラリ(セリウム酸化物粒子の含有量:0.1質量%、セリウム水酸化物粒子の含有量:0.0175質量%)を調製した。
(Example 3)
While stirring at a rotation speed of 300 rpm using a two-bladed stirring blade, 35 g of the cerium hydroxide slurry and 1925 g of ion-exchanged water were mixed to obtain a mixed solution. Subsequently, 40 g of the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then ultrasonic waves are irradiated using an ultrasonic cleaner (device name: US-105) manufactured by SND Co., Ltd. It was stirred while stirring. As a result, in addition to the composite particles containing the cerium oxide particles and the cerium hydroxide particles in contact with the cerium oxide particles, the cerium hydroxide particles (free particles) not in contact with the cerium oxide particles. A test slurry (content of cerium oxide particles: 0.1% by mass, content of cerium hydroxide particles: 0.0175% by mass) containing the above was prepared.

(実施例4)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリ40gと、イオン交換水1920gとを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリ40gを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子に加えて、セリウム酸化物粒子に接触していないセリウム水酸化物粒子(遊離粒子)を含有する試験用スラリ(セリウム酸化物粒子の含有量:0.1質量%、セリウム水酸化物粒子の含有量:0.02質量%)を調製した。
(Example 4)
While stirring at a rotation speed of 300 rpm using a two-blade stirring blade, 40 g of the cerium hydroxide slurry and 1920 g of ion-exchanged water were mixed to obtain a mixed solution. Subsequently, 40 g of the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then ultrasonic waves are irradiated using an ultrasonic cleaner (device name: US-105) manufactured by SND Co., Ltd. It was stirred while stirring. As a result, in addition to the composite particles containing the cerium oxide particles and the cerium hydroxide particles in contact with the cerium oxide particles, the cerium hydroxide particles (free particles) not in contact with the cerium oxide particles. A test slurry (content of cerium oxide particles: 0.1% by mass, content of cerium hydroxide particles: 0.02% by mass) containing the above was prepared.

(比較例1)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら前記セリウム酸化物スラリ40gとイオン交換水1960gとを混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム酸化物粒子を含有する試験用スラリ(セリウム酸化物粒子の含有量:0.1質量%)を調製した。
(Comparative Example 1)
After mixing 40 g of the cerium oxide slurry and 1960 g of ion-exchanged water while stirring at a rotation speed of 300 rpm using a two-blade stirring blade, an ultrasonic cleaner manufactured by SND Co., Ltd. (device name: US-105) ) Was used to stir while irradiating ultrasonic waves. As a result, a test slurry containing cerium oxide particles (content of cerium oxide particles: 0.1% by mass) was prepared.

(比較例2)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら前記セリウム水酸化物スラリ200gとイオン交換水1800gとを混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム水酸化物粒子を含有する試験用スラリ(セリウム水酸化物粒子の含有量:0.1質量%)を調製した。
(Comparative Example 2)
After mixing 200 g of the cerium hydroxide slurry and 1800 g of ion-exchanged water while stirring at a rotation speed of 300 rpm using a two-blade stirring blade, an ultrasonic cleaner manufactured by SND Co., Ltd. (device name: US- The mixture was stirred while irradiating ultrasonic waves using 105). As a result, a test slurry (content of cerium hydroxide particles: 0.1% by mass) containing cerium hydroxide particles was prepared.

<価数の測定>
ベックマン・コールター株式会社製の遠心分離機(商品名:Optima MAX−TL)を用いて試験用スラリを遠心加速度1.1×10Gで30分間処理することにより固相及び液相(上澄み液)を分離した。液相を除去した後、固相を25℃で24時間真空乾燥することにより測定試料を得た。この測定試料中の砥粒に含まれるセリウムの価数をX線光電子分光法により測定した。
<Measurement of valence>
The test slurry was treated with a centrifuge (trade name: Optima MAX-TL) manufactured by Beckman Coulter Co., Ltd. at a centrifugal acceleration of 1.1 × 10 4 G for 30 minutes to form a solid phase and a liquid phase (supernatant). ) Was separated. After removing the liquid phase, the solid phase was vacuum dried at 25 ° C. for 24 hours to obtain a measurement sample. The valence of cerium contained in the abrasive grains in this measurement sample was measured by X-ray photoelectron spectroscopy.

X線光電子分光法(XPS)の測定装置としてサーモフィッシャーサイエンティフィック製の商品名「K−Alpha」を用いた。測定条件は以下のとおりである。
[XPS条件]
パスエネルギー:100eV
積算回数:10回
結合エネルギー:870〜930eVの範囲
励起X線:monochromatic Al Kα1,2線(1486.6eV)
X線径:200μm
光電子脱出角度:45°
The trade name "K-Alpha" manufactured by Thermo Fisher Scientific was used as a measuring device for X-ray photoelectron spectroscopy (XPS). The measurement conditions are as follows.
[XPS conditions]
Path energy: 100 eV
Number of integrations: 10 times Binding energy: Range of 870 to 930 eV Excitation X-ray: monochromatic Al Kα 1, 2 lines (1486.6 eV)
X-ray diameter: 200 μm
Photoelectron escape angle: 45 °

次に、セリウムの価数について、装置に付属の解析ソフトを用いて、3価に起因する波形と、4価に起因する波形とを分離した。波形分離は、文献「Surface Science vol.563(2004)p.74−82」に記載の方法に準じて行った。そして、下記式に基づき3価の割合を求めた。測定結果を表1に示す。
3価の割合 = (3価の量[at%]/(3価の量[at%]+4価の量[at%])
Next, regarding the valence of cerium, the waveform caused by trivalent and the waveform caused by tetravalent were separated by using the analysis software attached to the apparatus. Waveform separation was performed according to the method described in the document "Surface Science vol.563 (2004) p.74-82". Then, the ratio of trivalents was calculated based on the following formula. The measurement results are shown in Table 1.
Percentage of trivalent = (Amount of trivalent [at%] / (Amount of trivalent [at%] + Amount of tetravalent [at%])

<pHの測定>
試験用スラリのpHを東亜ディーケーケー株式会社製の型番PHL−40を用いて測定した。測定結果を表1に示す。
<Measurement of pH>
The pH of the test slurry was measured using model number PHL-40 manufactured by DKK-TOA CORPORATION. The measurement results are shown in Table 1.

<砥粒のゼータ電位の測定>
ベックマン・コールター株式会社製の商品名「DelsaNano C」内に適量の試験用スラリを投入した。25℃において測定を2回行い、表示されたゼータ電位の平均値を採用した。測定結果を表1に示す。
<Measurement of zeta potential of abrasive grains>
An appropriate amount of test slurry was put into the trade name "DelsaNano C" manufactured by Beckman Coulter Co., Ltd. The measurement was performed twice at 25 ° C., and the average value of the displayed zeta potentials was adopted. The measurement results are shown in Table 1.

<砥粒の平均粒径の測定>
マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内に実施例1〜4及び比較例1の各試験用スラリを適量投入し、砥粒の平均粒径の測定を行った。また、ベックマン・コールター株式会社製の商品名:N5内に比較例2の試験用スラリを適量投入し、砥粒の平均粒径の測定を行った。表示されたそれぞれの平均粒径値を砥粒の平均粒径(平均二次粒径)として得た。測定結果を表1に示す。
<Measurement of average grain size of abrasive grains>
An appropriate amount of each test slurry of Examples 1 to 4 and Comparative Example 1 was put into Microtrac MT3300EXII, a trade name manufactured by Microtrac Bell Co., Ltd., and the average particle size of the abrasive grains was measured. Further, an appropriate amount of the test slurry of Comparative Example 2 was put into the trade name: N5 manufactured by Beckman Coulter Co., Ltd., and the average particle size of the abrasive grains was measured. The displayed average particle size values were obtained as the average particle size (average secondary particle size) of the abrasive grains. The measurement results are shown in Table 1.

<研磨速度の測定>
前記試験用スラリにおける砥粒の含有量(粒子の合計量)を0.1質量%に調整(イオン交換水で希釈)してCMP研磨液を得た。このCMP研磨液を用いて下記研磨条件で被研磨基板を研磨した。CMP研磨液における価数、pH、砥粒のゼータ電位及び平均粒径の値は、上述の試験用スラリの値と同等であった。
[CMP研磨条件]
研磨装置:MIRRA(APPLIED MATERIALS社製)
CMP研磨液の流量:200mL/min
被研磨基板:パターンが形成されていないブランケットウエハとして、プラズマCVD法で形成された厚さ2μmの酸化珪素膜をシリコン基板上に有する被研磨基板を用いた。
研磨パッド:独立気泡を有する発泡ポリウレタン樹脂(ダウ・ケミカル日本株式会社製、型番IC1010)
研磨圧力:13kPa(2.0psi)
被研磨基板及び研磨定盤の回転数:被研磨基板/研磨定盤=93/87rpm
研磨時間:1min
ウエハの洗浄:CMP処理後、超音波を印加しながら水で洗浄し、さらに、スピンドライヤで乾燥させた。
<Measurement of polishing speed>
The content of abrasive particles (total amount of particles) in the test slurry was adjusted to 0.1% by mass (diluted with ion-exchanged water) to obtain a CMP polishing liquid. The substrate to be polished was polished using this CMP polishing liquid under the following polishing conditions. The values of valence, pH, zeta potential of abrasive grains and average particle size in the CMP polishing liquid were equivalent to the values of the test slurry described above.
[CMP polishing conditions]
Polishing device: MIRRA (manufactured by Applied Materials)
Flow rate of CMP polishing liquid: 200 mL / min
Substrate to be polished: As a blanket wafer on which a pattern was not formed, a substrate to be polished having a silicon oxide film having a thickness of 2 μm formed by a plasma CVD method on a silicon substrate was used.
Polishing pad: Polyurethane foam resin with closed cells (Dow Chemical Japan Co., Ltd., model number IC1010)
Polishing pressure: 13 kPa (2.0 psi)
Rotation speed of substrate to be polished and polishing surface plate: substrate to be polished / polishing surface plate = 93/87 rpm
Polishing time: 1 min
Wafer cleaning: After the CMP treatment, the wafer was washed with water while applying ultrasonic waves, and further dried with a spin dryer.

前記条件で研磨及び洗浄した酸化珪素膜の研磨速度(SiORR)を下記式より求めた。測定結果を表1に示す。研磨前後における酸化珪素膜の膜厚差は、光干渉式膜厚測定装置(フィルメトリクス株式会社製、商品名:F80)を用いて求めた。
研磨速度(RR)=(研磨前後での酸化珪素膜の膜厚差[nm])/(研磨時間:1[min])

Figure 0006965996
The polishing rate (SiO 2 RR) of the silicon oxide film polished and washed under the above conditions was calculated from the following formula. The measurement results are shown in Table 1. The difference in film thickness of the silicon oxide film before and after polishing was determined using a light interference type film thickness measuring device (manufactured by Filmometrics Co., Ltd., trade name: F80).
Polishing speed (RR) = (difference in film thickness of silicon oxide film before and after polishing [nm]) / (polishing time: 1 [min])
Figure 0006965996

Claims (8)

砥粒と、液状媒体と、を含有し、
前記砥粒が、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、
前記第2の粒子が、金属酸化物及び金属水酸化物からなる群より選ばれる少なくとも一種の金属化合物を含み、
前記金属化合物が、複数の価数を取り得る金属を含み、
前記金属の前記複数の価数の中で最も小さい価数の割合がX線光電子分光法において0.10以上である、スラリ。
Containing abrasive grains and a liquid medium,
The abrasive grains include a first particle and a second particle in contact with the first particle.
The second particle contains at least one metal compound selected from the group consisting of metal oxides and metal hydroxides.
The metal compound contains a metal having a plurality of valences.
A slurry in which the ratio of the smallest valence among the plurality of valences of the metal is 0.10 or more in X-ray photoelectron spectroscopy.
前記最も小さい価数が3価である、請求項1に記載のスラリ。 The slurry according to claim 1, wherein the smallest valence is trivalent. 前記金属が希土類金属を含む、請求項1又は2に記載のスラリ。 The slurry according to claim 1 or 2, wherein the metal contains a rare earth metal. 前記金属がセリウムを含む、請求項1〜3のいずれか一項に記載のスラリ。 The slurry according to any one of claims 1 to 3, wherein the metal contains cerium. 前記第1の粒子が、珪素、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、銀、インジウム、スズ、希土類元素、タングステン、及び、ビスマスからなる群より選ばれる少なくとも一種を含む、請求項1〜4のいずれか一項に記載のスラリ。 Claims 1 to 1, wherein the first particle comprises at least one selected from the group consisting of silicon, vanadium, manganese, iron, cobalt, nickel, copper, silver, indium, tin, rare earth elements, tungsten, and bismuth. The slurry according to any one of 4. 前記第1の粒子がセリウム酸化物を含む、請求項1〜5のいずれか一項に記載のスラリ。 The slurry according to any one of claims 1 to 5, wherein the first particle contains a cerium oxide. 前記砥粒のゼータ電位が+10mV以上である、請求項1〜6のいずれか一項に記載のスラリ。 The slurry according to any one of claims 1 to 6, wherein the zeta potential of the abrasive grains is +10 mV or more. 請求項1〜7のいずれか一項に記載のスラリを用いて被研磨面を研磨する工程を備える、研磨方法。 A polishing method comprising a step of polishing a surface to be polished using the slurry according to any one of claims 1 to 7.
JP2020532130A 2018-07-26 2018-09-25 Slurry and polishing method Active JP6965996B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/028105 WO2020021680A1 (en) 2018-07-26 2018-07-26 Slurry and polishing method
JPPCT/JP2018/028105 2018-07-26
PCT/JP2018/035438 WO2020021729A1 (en) 2018-07-26 2018-09-25 Slurry and polishing method

Publications (2)

Publication Number Publication Date
JPWO2020021729A1 JPWO2020021729A1 (en) 2021-08-05
JP6965996B2 true JP6965996B2 (en) 2021-11-10

Family

ID=69180670

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2020532131A Active JP6965997B2 (en) 2018-07-26 2018-09-25 Slurry, polishing liquid manufacturing method, and polishing method
JP2020532130A Active JP6965996B2 (en) 2018-07-26 2018-09-25 Slurry and polishing method
JP2020532132A Active JP6965998B2 (en) 2018-07-26 2018-09-25 Slurry, polishing liquid manufacturing method, and polishing method
JP2020532133A Active JP6965999B2 (en) 2018-07-26 2018-09-25 Slurry and polishing method
JP2020532134A Active JP6989020B2 (en) 2018-07-26 2018-09-25 Slurry and its screening method, and polishing method
JP2020532391A Active JP6966000B2 (en) 2018-07-26 2019-07-22 Slurry and polishing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020532131A Active JP6965997B2 (en) 2018-07-26 2018-09-25 Slurry, polishing liquid manufacturing method, and polishing method

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2020532132A Active JP6965998B2 (en) 2018-07-26 2018-09-25 Slurry, polishing liquid manufacturing method, and polishing method
JP2020532133A Active JP6965999B2 (en) 2018-07-26 2018-09-25 Slurry and polishing method
JP2020532134A Active JP6989020B2 (en) 2018-07-26 2018-09-25 Slurry and its screening method, and polishing method
JP2020532391A Active JP6966000B2 (en) 2018-07-26 2019-07-22 Slurry and polishing method

Country Status (7)

Country Link
US (6) US20210301179A1 (en)
JP (6) JP6965997B2 (en)
KR (6) KR102589119B1 (en)
CN (6) CN112640050A (en)
SG (6) SG11202100636YA (en)
TW (5) TWI811406B (en)
WO (7) WO2020021680A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021680A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry and polishing method
WO2020065723A1 (en) * 2018-09-25 2020-04-02 日立化成株式会社 Slurry and polishing method
US20230191554A1 (en) * 2020-04-27 2023-06-22 Konica Minolta, Inc. Polishing system
KR20220101080A (en) * 2021-01-06 2022-07-19 쇼와덴코머티리얼즈가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
US11650939B2 (en) * 2021-02-02 2023-05-16 Dell Products L.P. Managing access to peripherals in a containerized environment

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941430B1 (en) 1970-08-25 1974-11-08
US5409544A (en) * 1990-08-20 1995-04-25 Hitachi, Ltd. Method of controlling adhesion of fine particles to an object in liquid
JP2524020B2 (en) * 1990-08-20 1996-08-14 株式会社日立製作所 Liquid particle adhesion control method
US5700180A (en) * 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
JP3278532B2 (en) 1994-07-08 2002-04-30 株式会社東芝 Method for manufacturing semiconductor device
TW311905B (en) * 1994-07-11 1997-08-01 Nissan Chemical Ind Ltd
US6420269B2 (en) * 1996-02-07 2002-07-16 Hitachi Chemical Company, Ltd. Cerium oxide abrasive for polishing insulating films formed on substrate and methods for using the same
JPH10106994A (en) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd Cerium oxide abrasive agent and polishing method of substrate
TW571361B (en) * 2001-02-20 2004-01-11 Hitachi Chemical Co Ltd Polishing agent and method for polishing a substrate
KR100512134B1 (en) 2001-02-20 2005-09-02 히다치 가세고교 가부시끼가이샤 Polishing compound and method for polishing substrate
US6821897B2 (en) 2001-12-05 2004-11-23 Cabot Microelectronics Corporation Method for copper CMP using polymeric complexing agents
EP1405889A1 (en) * 2002-02-20 2004-04-07 Nihon Micro Coating Co., Ltd. Polishing slurry
US7071105B2 (en) 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
US6939211B2 (en) * 2003-10-09 2005-09-06 Micron Technology, Inc. Planarizing solutions including abrasive elements, and methods for manufacturing and using such planarizing solutions
US7112123B2 (en) 2004-06-14 2006-09-26 Amcol International Corporation Chemical-mechanical polishing (CMP) slurry containing clay and CeO2 abrasive particles and method of planarizing surfaces
US20050119360A1 (en) 2003-11-28 2005-06-02 Kabushiki Kaisha Kobe Seiko Sho Method for producing porous material
JP2006249129A (en) 2005-03-08 2006-09-21 Hitachi Chem Co Ltd Method for producing polishing agent and polishing agent
KR101267971B1 (en) 2005-08-31 2013-05-27 가부시키가이샤 후지미인코퍼레이티드 Polishing Composition and Polishing Method
JP5105869B2 (en) 2006-04-27 2012-12-26 花王株式会社 Polishing liquid composition
JP2008112990A (en) * 2006-10-04 2008-05-15 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
JP2013141041A (en) * 2006-10-04 2013-07-18 Hitachi Chemical Co Ltd Method for polishing substrate
JP5281758B2 (en) * 2007-05-24 2013-09-04 ユシロ化学工業株式会社 Polishing composition
JP5385306B2 (en) * 2008-02-12 2014-01-08 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceria material and method for forming ceria material
KR101184731B1 (en) * 2008-03-20 2012-09-20 주식회사 엘지화학 Method for preparing cerium oxide, cerium oxide prepared therefrom and cmp slurry comprising the same
CN101550318B (en) * 2008-04-03 2012-11-14 北京有色金属研究总院 Ce3+ -contained rare-earth polishing powder and preparation method thereof
TWI615462B (en) 2008-04-23 2018-02-21 日商日立化成股份有限公司 Polishing agent and method for polishing substrate using the same
JP5287174B2 (en) * 2008-04-30 2013-09-11 日立化成株式会社 Abrasive and polishing method
TW201038690A (en) * 2008-09-26 2010-11-01 Rhodia Operations Abrasive compositions for chemical mechanical polishing and methods for using same
JP2010153782A (en) * 2008-11-20 2010-07-08 Hitachi Chem Co Ltd Polishing method for substrate
JP2010153781A (en) 2008-11-20 2010-07-08 Hitachi Chem Co Ltd Polishing method for substrate
KR101268615B1 (en) 2008-12-11 2013-06-04 히타치가세이가부시끼가이샤 Polishing solution for cmp and polishing method using the polishing solution
WO2010143579A1 (en) * 2009-06-09 2010-12-16 日立化成工業株式会社 Abrasive slurry, abrasive set, and method for grinding substrate
JP5640977B2 (en) 2009-07-16 2014-12-17 日立化成株式会社 CMP polishing liquid for polishing palladium and polishing method
CN102627914B (en) 2009-10-22 2014-10-29 日立化成株式会社 Polishing agent, concentrated one-pack type polishing agent, two-pack type polishing agent and method for polishing substrate
JP2011142284A (en) 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp polishing liquid, method of polishing substrate, and electronic component
SG188460A1 (en) 2010-09-08 2013-04-30 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrate materials for electrical, mechanical and optical devices
KR20130129397A (en) 2010-11-22 2013-11-28 히타치가세이가부시끼가이샤 Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
CN103374330B (en) 2010-11-22 2015-10-14 日立化成株式会社 The manufacture method of the manufacture method of abrasive particle, the manufacture method of suspension and lapping liquid
SG190058A1 (en) 2010-11-22 2013-06-28 Hitachi Chemical Co Ltd Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
JP5953762B2 (en) * 2011-01-25 2016-07-20 日立化成株式会社 CMP polishing liquid, manufacturing method thereof, and substrate polishing method
JP2012186339A (en) 2011-03-07 2012-09-27 Hitachi Chem Co Ltd Polishing liquid and polishing method of substrate using the same
WO2013035545A1 (en) * 2011-09-09 2013-03-14 旭硝子株式会社 Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products
JP2015088495A (en) 2012-02-21 2015-05-07 日立化成株式会社 Polishing material, polishing material set, and method for polishing base material
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
JP6107826B2 (en) 2012-08-30 2017-04-05 日立化成株式会社 Abrasive, abrasive set, and substrate polishing method
JP2014060205A (en) 2012-09-14 2014-04-03 Fujimi Inc Polishing composition
JP6139975B2 (en) 2013-05-15 2017-05-31 株式会社フジミインコーポレーテッド Polishing composition
WO2014199739A1 (en) 2013-06-12 2014-12-18 日立化成株式会社 Polishing liquid for cmp, and polishing method
US10047262B2 (en) * 2013-06-27 2018-08-14 Konica Minolta, Inc. Cerium oxide abrasive, method for producing cerium oxide abrasive, and polishing method
US9340706B2 (en) 2013-10-10 2016-05-17 Cabot Microelectronics Corporation Mixed abrasive polishing compositions
WO2015052988A1 (en) 2013-10-10 2015-04-16 日立化成株式会社 Polishing agent, polishing agent set and method for polishing base
JP6223786B2 (en) * 2013-11-12 2017-11-01 花王株式会社 Polishing liquid composition for hard and brittle materials
KR102138406B1 (en) 2013-12-26 2020-07-27 히타치가세이가부시끼가이샤 Abrasive, abrasive set, and method for polishing substrate
JP6360311B2 (en) 2014-01-21 2018-07-18 株式会社フジミインコーポレーテッド Polishing composition and method for producing the same
WO2016006553A1 (en) 2014-07-09 2016-01-14 日立化成株式会社 Cmp polishing liquid, and polishing method
JP6435689B2 (en) 2014-07-25 2018-12-12 Agc株式会社 Abrasive, polishing method, and additive liquid for polishing
CN106661429B (en) 2014-08-26 2019-07-05 凯斯科技股份有限公司 Polishing slurries composition
JP5893700B1 (en) * 2014-09-26 2016-03-23 花王株式会社 Polishing liquid composition for silicon oxide film
JP2016069535A (en) 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド Polishing composition and producing method thereof and polishing method
US9422455B2 (en) 2014-12-12 2016-08-23 Cabot Microelectronics Corporation CMP compositions exhibiting reduced dishing in STI wafer polishing
JP2016154208A (en) 2015-02-12 2016-08-25 旭硝子株式会社 Polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
CN107406752B (en) 2015-03-10 2020-05-08 日立化成株式会社 Polishing agent, stock solution for polishing agent, and polishing method
KR101773543B1 (en) * 2015-06-30 2017-09-01 유비머트리얼즈주식회사 Abrasive particles, Polishing slurry and fabricating method of abrasive particles
KR101761792B1 (en) * 2015-07-02 2017-07-26 주식회사 케이씨텍 Slurry comprising for sti polishing
SG11201801790UA (en) * 2015-09-09 2018-04-27 Hitachi Chemical Co Ltd Polishing liquid, polishing liquid set, and substrate polishing method
JP6570382B2 (en) 2015-09-09 2019-09-04 デンカ株式会社 Polishing silica additive and method using the same
JP6645136B2 (en) * 2015-11-20 2020-02-12 日立化成株式会社 Semiconductor substrate manufacturing method and cleaning liquid
KR101737938B1 (en) 2015-12-15 2017-05-19 주식회사 케이씨텍 Multi-function polishing slurry composition
JP6589622B2 (en) * 2015-12-22 2019-10-16 日立化成株式会社 Polishing liquid, polishing method, semiconductor substrate and electronic device
KR101761789B1 (en) 2015-12-24 2017-07-26 주식회사 케이씨텍 Additive composition for polishing slurry and positive polishing slurry composition comprising the same
KR20180112004A (en) 2016-02-16 2018-10-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Polishing system, method of making and method of using same
JP2017203076A (en) 2016-05-10 2017-11-16 日立化成株式会社 Cmp polisher and polishing method using the same
JPWO2018012174A1 (en) 2016-07-15 2019-06-13 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
KR101823083B1 (en) 2016-09-07 2018-01-30 주식회사 케이씨텍 Surface-modified colloidal ceria abrasive particle, preparing method of the same and polishing slurry composition comprising the same
JP6720791B2 (en) 2016-09-13 2020-07-08 Agc株式会社 Abrasive, polishing method, and polishing additive
WO2018062403A1 (en) * 2016-09-29 2018-04-05 花王株式会社 Polishing liquid composition
KR102619722B1 (en) 2016-10-27 2024-01-02 삼성디스플레이 주식회사 Method of manufacturing transistor array panel and polishing slurry used the same
WO2018088088A1 (en) * 2016-11-14 2018-05-17 日揮触媒化成株式会社 Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
WO2019035161A1 (en) 2017-08-14 2019-02-21 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
CN111566179B (en) * 2017-11-15 2022-03-04 圣戈本陶瓷及塑料股份有限公司 Composition for performing material removal operations and method of forming the same
WO2020021680A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry and polishing method
SG11202008797WA (en) * 2018-03-22 2020-10-29 Hitachi Chemical Co Ltd Polishing liquid, polishing liquid set, and polishing method
WO2020065723A1 (en) * 2018-09-25 2020-04-02 日立化成株式会社 Slurry and polishing method

Also Published As

Publication number Publication date
CN112640053A (en) 2021-04-09
WO2020021730A1 (en) 2020-01-30
US11492526B2 (en) 2022-11-08
CN112930585A (en) 2021-06-08
TWI771603B (en) 2022-07-21
TW202010822A (en) 2020-03-16
US11505731B2 (en) 2022-11-22
TWI804659B (en) 2023-06-11
JPWO2020021730A1 (en) 2021-08-02
KR20210027467A (en) 2021-03-10
JPWO2020021731A1 (en) 2021-08-05
TWI811406B (en) 2023-08-11
KR20210029227A (en) 2021-03-15
SG11202100586PA (en) 2021-03-30
US20210261821A1 (en) 2021-08-26
KR20210027466A (en) 2021-03-10
US11499078B2 (en) 2022-11-15
TWI804661B (en) 2023-06-11
SG11202100567YA (en) 2021-03-30
WO2020021729A1 (en) 2020-01-30
US11518920B2 (en) 2022-12-06
TW202020957A (en) 2020-06-01
KR20210029229A (en) 2021-03-15
JPWO2020021733A1 (en) 2021-08-02
SG11202100589TA (en) 2021-03-30
TW202012588A (en) 2020-04-01
JPWO2020022290A1 (en) 2021-08-12
KR102637046B1 (en) 2024-02-14
KR20210029228A (en) 2021-03-15
SG11202100636YA (en) 2021-03-30
TW202010820A (en) 2020-03-16
JP6965999B2 (en) 2021-11-10
US20210246346A1 (en) 2021-08-12
US20210309884A1 (en) 2021-10-07
US20210301179A1 (en) 2021-09-30
JP6965998B2 (en) 2021-11-10
JP6966000B2 (en) 2021-11-10
WO2020022290A1 (en) 2020-01-30
KR102589119B1 (en) 2023-10-12
CN112655075A (en) 2021-04-13
JP6989020B2 (en) 2022-01-05
WO2020021733A1 (en) 2020-01-30
SG11202100627YA (en) 2021-03-30
WO2020021732A1 (en) 2020-01-30
JPWO2020021732A1 (en) 2021-08-05
TW202010821A (en) 2020-03-16
US20210324237A1 (en) 2021-10-21
WO2020021731A1 (en) 2020-01-30
KR102589117B1 (en) 2023-10-12
JPWO2020021729A1 (en) 2021-08-05
CN112640050A (en) 2021-04-09
KR102589118B1 (en) 2023-10-12
CN112640052A (en) 2021-04-09
JP6965997B2 (en) 2021-11-10
CN112640051A (en) 2021-04-09
WO2020021680A1 (en) 2020-01-30
KR102580184B1 (en) 2023-09-18
TWI804660B (en) 2023-06-11
SG11202100610RA (en) 2021-02-25
TW202012589A (en) 2020-04-01
KR20210027457A (en) 2021-03-10
US20210261820A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6965996B2 (en) Slurry and polishing method
JP6973620B2 (en) Polishing liquid, polishing liquid set and polishing method
JP7056728B2 (en) Polishing liquid, polishing liquid set and polishing method
JP6888744B2 (en) Slurry and polishing method
JP7235164B2 (en) Polishing liquid, polishing liquid set and polishing method
JP6708994B2 (en) Slurry and polishing method
TWI835824B (en) Slurry, screening method and grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350