WO2015052988A1 - Polishing agent, polishing agent set and method for polishing base - Google Patents

Polishing agent, polishing agent set and method for polishing base Download PDF

Info

Publication number
WO2015052988A1
WO2015052988A1 PCT/JP2014/071232 JP2014071232W WO2015052988A1 WO 2015052988 A1 WO2015052988 A1 WO 2015052988A1 JP 2014071232 W JP2014071232 W JP 2014071232W WO 2015052988 A1 WO2015052988 A1 WO 2015052988A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
mass
insulating material
cmp
Prior art date
Application number
PCT/JP2014/071232
Other languages
French (fr)
Japanese (ja)
Inventor
友洋 岩野
知里 吉川
利明 阿久津
久貴 南
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015052988A1 publication Critical patent/WO2015052988A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4476Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications comprising polymerisation in situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Definitions

  • the present invention relates to an abrasive, an abrasive set, and a method for polishing a substrate.
  • the present invention relates to a polishing agent, a polishing agent set, and a substrate polishing method used in a substrate surface flattening step, which is a semiconductor element manufacturing technique. More particularly, the present invention relates to a polishing agent, a polishing agent set, and a substrate polishing method used in a flattening process of a shallow trench isolation (STI) insulating material, a premetal insulating material, an interlayer insulating material, and the like.
  • STI shallow trench isolation
  • CMP Chemical Mechanical Polishing
  • silica-based abrasive containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains.
  • silica silica
  • colloidal silica as abrasive grains.
  • Silica-based abrasives are characterized by high versatility, and a wide variety of materials can be polished regardless of insulating materials and conductive materials by appropriately selecting the abrasive content, pH, additives, and the like.
  • abrasives containing cerium compound particles as abrasive grains mainly for insulating materials such as silicon oxide there is an increasing demand for abrasives containing cerium compound particles as abrasive grains mainly for insulating materials such as silicon oxide.
  • a cerium oxide-based abrasive containing cerium oxide (ceria) particles as abrasive grains can polish silicon oxide at high speed even with a lower abrasive grain content than a silica-based abrasive (see, for example, Patent Documents 1 and 2 below).
  • a stopper (a polishing stop layer including a stopper material) disposed on the convex portion of the substrate having the concavo-convex pattern, and the substrate and the stopper so as to fill the concave portion of the concavo-convex pattern.
  • a laminated body having an insulating material (e.g., silicon oxide) disposed on the substrate is polished. In such polishing, the polishing of the insulating material is stopped by a stopper. That is, the polishing of the insulating material is stopped when the stopper is exposed.
  • Patent Document 8 listed below uses an abrasive containing hydroxide particles of a tetravalent metal element and at least one of a cationic polymer and a polysaccharide, using silicon nitride as a stopper material. Polishing the insulating material is disclosed.
  • an insulating material is polished using polysilicon as a stopper material by using an abrasive containing hydroxide particles of a tetravalent metal element and polyvinyl alcohol having a saponification degree of 95 mol% or less. Is disclosed.
  • JP-A-10-106994 Japanese Patent Application Laid-Open No. 08-022970 International Publication No. 2002/067309 International Publication No. 2012/070541 International Publication No. 2012/070542 JP 2006-249129 A International Publication No. 2012/070544 International Publication No. 2009/131133 International Publication No. 2010/143579
  • the present invention is intended to solve these problems, and an object thereof is to provide an abrasive, an abrasive set, and a substrate polishing method that can improve the polishing selectivity of an insulating material with respect to a stopper material. .
  • the present inventor uses a combination of abrasive grains containing a hydroxide of a tetravalent metal element, an ⁇ -glucose polymer having a specific weight average molecular weight, and a cationic polymer to insulate the stopper material. It has been found that the polishing selectivity of the material is further increased as compared with the prior art.
  • the abrasive according to the present invention contains water, abrasive grains containing a hydroxide of a tetravalent metal element, an ⁇ -glucose polymer, and a cationic polymer, and the weight of the ⁇ -glucose polymer
  • the average molecular weight is 20.0 ⁇ 10 3 or less.
  • weight average molecular weight is defined as the weight average molecular weight determined by gel permeation chromatography (GPC) analysis.
  • the polishing agent according to the present invention can improve the polishing selectivity of the insulating material with respect to the stopper material.
  • silicon nitride has been used for many years, but in recent years, processes using polysilicon have been increasing. In this case, it is necessary to suppress the polishing rate of polysilicon from the viewpoint of increasing the polishing selectivity of the insulating material with respect to polysilicon.
  • conventional abrasives do not have sufficient polishing selectivity for insulating materials relative to both silicon nitride and polysilicon, and there is room for improvement.
  • the polishing selectivity of the insulating material with respect to the stopper material can be improved regardless of whether silicon nitride or polysilicon is used as the stopper material.
  • the polishing agent according to the present invention in the CMP technology for flattening the shallow trench isolation insulating material, the premetal insulating material, the interlayer insulating material, etc., the insulating material can be reduced with low polishing scratches while highly flattening the insulating material. It can also be polished.
  • dishing may occur in the CMP process or the like for forming STI conventionally.
  • Dishing is a phenomenon in which an insulating material embedded in a recess is excessively removed, and a part of the surface to be polished is recessed like a dish. Therefore, in order to improve flatness, it is necessary to suppress the progress of dishing.
  • the present inventor uses a combination of an abrasive containing a hydroxide of a tetravalent metal element, a specific ⁇ -glucose polymer, a cationic polymer, and an amino group-containing sulfonic acid compound as a stopper. It has been found that the polishing selectivity of the insulating material with respect to the material is further enhanced as compared with the conventional material and the progress of dishing can be suppressed.
  • the abrasive according to the present invention may further include an amino group-containing sulfonic acid compound, and the degree of polymerization of ⁇ -glucose in the ⁇ -glucose polymer may be 3 or more.
  • the polishing selectivity of the insulating material with respect to the stopper material can be improved and the progress of dishing can be suppressed.
  • the surface to be polished can be flattened by suppressing the progress of dishing while maintaining the polishing selectivity of the insulating material with respect to the stopper material.
  • the ⁇ -glucose polymer preferably has at least one selected from the group consisting of a structural unit represented by the following formula (IA) and a structural unit represented by the following formula (IB). .
  • the polishing selectivity of the insulating material with respect to the stopper material can be further enhanced.
  • the tetravalent metal element hydroxide preferably contains a cerium hydroxide.
  • the pH of the abrasive according to the present invention is preferably 3.0 or more and 7.0 or less.
  • the insulating material can be polished at a suitable polishing rate, and the polishing selectivity of the insulating material to the stopper material can be further increased.
  • One embodiment of the present invention relates to the use of the abrasive for polishing a surface to be polished containing silicon oxide. That is, one embodiment of the abrasive according to the present invention is preferably used for polishing a surface to be polished containing silicon oxide.
  • the constituents of the abrasive are stored separately in a first liquid and a second liquid, the first liquid contains abrasive grains and water, and the second liquid is ⁇ .
  • - contains glucose polymer, cationic polymer and water.
  • the second liquid may contain an amino group-containing sulfonic acid compound.
  • the method for polishing a substrate according to the present invention may comprise a step of polishing the surface to be polished of the substrate using the abrasive. According to such a method for polishing a substrate, the same effects as those of the abrasive according to the present invention can be obtained.
  • the substrate polishing method according to the present invention includes a step of polishing a surface to be polished of the substrate using an abrasive obtained by mixing the first liquid and the second liquid in the abrasive set. May be. According to such a method for polishing a substrate, the same effects as those of the abrasive according to the present invention can be obtained.
  • a polishing agent capable of improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the polishing selectivity of the insulating material with respect to the stopper material can be improved in the polishing of the insulating material using the stopper.
  • the polishing selectivity of the insulating material with respect to the stopper material can be improved and the progress of dishing can be suppressed.
  • the polishing selectivity of the insulating material with respect to the stopper material is improved. Can be made.
  • the polishing selectivity of the insulating material with respect to the stopper material is increased. It is possible to improve and suppress the progress of dishing.
  • an abrasive or an abrasive set for polishing an insulating material using a stopper.
  • process is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. It is.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • this embodiment includes the first embodiment and the second embodiment.
  • polishing agent which concerns on this embodiment is a composition which touches a to-be-polished surface at the time of grinding
  • the abrasive according to the first embodiment contains at least water, abrasive grains containing a hydroxide of a tetravalent metal element, an ⁇ -glucose polymer, and a cationic polymer.
  • the abrasive according to the second embodiment includes water, abrasive grains containing a hydroxide of a tetravalent metal element, an ⁇ -glucose polymer having a degree of polymerization of ⁇ -glucose of 3 or more, a cationic polymer, And at least an amino group-containing sulfonic acid compound.
  • abrasive grains containing a hydroxide of a tetravalent metal element an ⁇ -glucose polymer having a degree of polymerization of ⁇ -glucose of 3 or more
  • a cationic polymer a cationic polymer
  • the essential components and components that can be optionally added are described below.
  • polishing agent which concerns on this embodiment contains the abrasive grain containing the hydroxide of a tetravalent metal element.
  • the “tetravalent metal element hydroxide” is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ⁇ ).
  • the hydroxide of the tetravalent metal element may contain an anion other than the hydroxide ion (for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇ ).
  • a hydroxide of a tetravalent metal element may contain an anion (for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇ ) bonded to the tetravalent metal element.
  • an anion for example, nitrate ion NO 3 ⁇ , sulfate ion SO 4 2 ⁇
  • the abrasive grains containing a hydroxide of the tetravalent metal element are more reactive with an insulating material (for example, silicon oxide) than conventional abrasive grains made of silica or ceria, and the insulating material can be removed at a high polishing rate. Can be polished.
  • examples of other abrasive grains that can be used in combination with the abrasive grains containing a hydroxide of a tetravalent metal element include silica particles, alumina particles, and ceria particles.
  • composite particles of tetravalent metal element hydroxide particles and silica particles can be used as abrasive grains containing a tetravalent metal element hydroxide.
  • the lower limit of the content of the tetravalent metal element hydroxide in the abrasive is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more based on the total mass of the abrasive grains. 98 mass% or more is especially preferable, and 99 mass% or more is very preferable.
  • the abrasive grains are composed of hydroxide particles of the tetravalent metal element from the viewpoint of easy preparation of an abrasive and further excellent polishing properties (substantially 100% by mass of the abrasive grains is the tetravalent metal). Elemental hydroxide particles).
  • Tetravalent metal element hydroxides are rare earth element hydroxides and zirconium hydroxides from the viewpoint of suppressing the generation of polishing scratches on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material. It is preferable to include at least one selected from the group consisting of
  • the tetravalent metal element is preferably a rare earth element from the viewpoint of further improving the polishing rate of the insulating material.
  • Examples of rare earth elements that can be tetravalent include lanthanoids such as cerium, praseodymium, and terbium, and cerium is more preferable from the viewpoint of easy availability and excellent polishing rate.
  • a rare earth element hydroxide and a zirconium hydroxide may be used in combination, and two or more rare earth elements may be selected and used.
  • a method for producing abrasive grains containing a hydroxide of a tetravalent metal element a technique of mixing a salt containing a tetravalent metal element and an alkali solution can be used. This method is described in, for example, “Science of rare earths” [edited by Adiya Ginya, Kagaku Dojin, 1999], pages 304-305.
  • a method for producing abrasive grains containing a hydroxide of a tetravalent metal element that is most suitable for the abrasive according to this embodiment is described in Patent Document 7. The descriptions of these documents are incorporated herein by reference.
  • M is preferably chemically active cerium (Ce).
  • Basic compounds in the alkaline solution include organic bases such as imidazole, tetramethylammonium hydroxide (TMAH), guanidine, triethylamine, pyridine, piperidine, pyrrolidine, chitosan; ammonia, potassium hydroxide, sodium hydroxide, calcium hydroxide.
  • organic bases such as imidazole, tetramethylammonium hydroxide (TMAH), guanidine, triethylamine, pyridine, piperidine, pyrrolidine, chitosan; ammonia, potassium hydroxide, sodium hydroxide, calcium hydroxide.
  • Inorganic bases such as Among these, from the viewpoint of further improving the polishing rate of the insulating material, at least one selected from the group consisting of ammonia and imidazole is preferable, and imidazole is more preferable.
  • Abrasive grains containing a hydroxide of a tetravalent metal element synthesized by the above method can be washed to remove metal impurities.
  • a method for cleaning the abrasive grains a method of repeating solid-liquid separation several times by centrifugation or the like can be used.
  • the abrasive grains can be washed in steps such as centrifugation, dialysis, ultrafiltration, and ion removal using an ion exchange resin.
  • abrasive grains obtained above are aggregated, it is preferable to disperse them in water by an appropriate method.
  • a method for dispersing abrasive grains in water which is the main dispersion medium, mechanical dispersion treatment using a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the dispersion treatment using a normal stirrer.
  • the dispersion method and the particle size control method for example, the method described in Chapter 3 “Latest Development Trends and Selection Criteria of Various Dispersers” in “Dispersion Technology Complete Collection” [Information Organization, July 2005] Can be used.
  • the water content of the tetravalent metal element can also be reduced by reducing the electrical conductivity (for example, 500 mS / m or less) of the dispersion containing abrasive grains containing a hydroxide of the tetravalent metal element by performing the above-described cleaning treatment.
  • the dispersibility of the abrasive grains containing the oxide can be increased. Therefore, the cleaning process may be applied as a dispersion process, and the cleaning process and the dispersion process may be used in combination.
  • the lower limit of the average grain size of the abrasive grains is preferably 1 nm or more, more preferably 2 nm or more, and further preferably 3 nm or more from the viewpoint of obtaining a more suitable polishing rate for the insulating material.
  • the upper limit of the average grain size of the abrasive grains is preferably 300 nm or less, more preferably 250 nm or less, and even more preferably 200 nm or less, from the viewpoint of further suppressing scratches on the surface to be polished. From the above viewpoint, the average grain size of the abrasive grains is more preferably 1 nm or more and 300 nm or less.
  • the “average particle diameter” of the abrasive grains means the average secondary particle diameter of the abrasive grains.
  • the average particle diameter of the abrasive grains can be measured, for example, by a photon correlation method for a slurry or a slurry in a polishing agent set described later.
  • the average particle size of the abrasive grains can be measured by, for example, device name: Zetasizer 3000HS manufactured by Malvern Instruments, device name: N5 manufactured by Beckman Coulter, and the like.
  • the measuring method using N5 can be performed as follows.
  • an aqueous dispersion in which the content of abrasive grains is adjusted to 0.2% by mass is prepared, and this aqueous dispersion is about 4 mL (L is “liter” in a 1 cm square cell. ) Put the cell in the device.
  • the value obtained by setting the refractive index of the dispersion medium to 1.33, the viscosity to 0.887 mPa ⁇ s, and measuring at 25 ° C. can be adopted as the average particle diameter of the abrasive grains.
  • the lower limit of the content of the abrasive grains is preferably 0.01% by mass or more and more preferably 0.02% by mass or more based on the total mass of the abrasive from the viewpoint of obtaining a more suitable polishing rate for the insulating material.
  • the upper limit of the content of the abrasive is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less, based on the total mass of the abrasive, from the viewpoint of increasing the storage stability of the abrasive.
  • 5 mass% or less is particularly preferable, 1 mass% or less is very preferable, and 0.5 mass% or less is very preferable.
  • the content of the abrasive grains is more preferably 0.01% by mass or more and 20% by mass or less based on the total mass of the abrasive.
  • polishing agent which concerns on this embodiment contains an additive.
  • the “additive” refers to a polishing agent other than water and abrasive grains in order to adjust polishing characteristics such as polishing rate and polishing selectivity; abrasive characteristics such as abrasive dispersibility and storage stability. Refers to the substance contained.
  • the abrasive according to this embodiment contains an ⁇ -glucose polymer as the first additive.
  • ⁇ -glucose polymer is defined as a polymer (for example, sugar) having a degree of polymerization of ⁇ -glucose of 2 or more unless otherwise specified.
  • a polymer (for example, sugar) having a degree of polymerization of ⁇ -glucose of 3 or more is used.
  • the first additive has an effect of suppressing an excessive increase in the polishing rate of the stopper material (for example, silicon nitride and polysilicon). Regarding the reason why this effect is obtained, it is presumed that the first additive covers the stopper, thereby suppressing the progress of polishing by the abrasive grains and suppressing the polishing rate from becoming excessively high.
  • Examples of ⁇ -glucose polymer include amylose; amylopectin; dextran; dextrin; maltodextrin; cyclodextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin; maltose, isomaltose, maltotriose, stachyose, etc.
  • Examples include oligosaccharides.
  • the ⁇ -glucose polymer used in the second embodiment includes amylose; amylopectin; dextran; dextrin; maltodextrin; cyclodextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin; maltotriose, stachyose And oligosaccharides.
  • the DE value of the ⁇ -glucose polymer (for example, the value according to the “LANE-EYNON method”) is preferably 13 to 50 from the viewpoint of further enhancing the polishing selectivity of the insulating material with respect to the stopper material.
  • dextrin having an aldehyde group at the end of the decomposition product obtained by decomposition of starch referred to as “general dextrin” for distinction from other dextrins
  • general dextrin for distinction from other dextrins
  • difficult to be partially decomposed in the process of starch decomposition Examples include indigestible dextrin collected by purifying the product; reduced dextrin in which the aldehyde end is reduced by hydrogenation and changed to a hydroxyl group. Any of these compounds can be used as the dextrin.
  • the ⁇ -glucose polymer used in the second embodiment includes “NSD” series manufactured by Sanei Saccharification Co., Ltd .; “Sandek” series manufactured by Sanwa Starch Co., Ltd .; “H-PDX” manufactured by Matsutani Chemical Co. “Max 1000”, “TK-16”, “Fiber Sol 2”, “Fiber Sol 2H” and the like.
  • the structural unit represented by the following formula (IA) and the following formula It is preferable to have at least one selected from the group consisting of structural units represented by IB), more preferably at least one selected from the group consisting of dextrin and maltose (dextrin is more preferable in the second embodiment) ).
  • the arrangement thereof is not limited and may be regular or random.
  • the ⁇ -glucose polymer is preferably at least one selected from the group consisting of dextrin and maltose from the viewpoint of excellent versatility (dextrin is more preferred in the second embodiment).
  • the ⁇ -glucose polymer preferably has at least one structural unit represented by the following formulas (II) to (VII), and more preferably has a structural unit represented by the formula (III).
  • the polishing selectivity of the insulating material with respect to the stopper material can be further enhanced.
  • the lower limit of the degree of polymerization of ⁇ -glucose is 2 or more, preferably 3 or more, and more preferably 5 or more from the viewpoint of further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the upper limit of the degree of polymerization of ⁇ -glucose is preferably 120 or less, more preferably 90 or less, and even more preferably 60 or less, from the viewpoint that a good polishing rate of the insulating material can be easily obtained.
  • the lower limit of the polymerization degree of ⁇ -glucose is 3 or more, preferably 5 or more, more preferably 7 or more from the viewpoint of further enhancing the polishing selectivity of the insulating material with respect to the stopper material and suppressing the progress of dishing. More preferred is 10 or more.
  • the upper limit of the degree of polymerization of ⁇ -glucose is preferably 120 or less, more preferably 90 or less, and even more preferably 60 or less, from the viewpoint that a good polishing rate of the insulating material can be easily obtained.
  • the “degree of polymerization of ⁇ -glucose” is defined as the number of structural units derived from ⁇ -glucose in one molecule.
  • the formula (IA) and the formula (I— B) is the total number of structural units represented by the formulas (II) to (VII) in one molecule.
  • the ⁇ -glucose polymer can be used alone or in combination of two or more for the purpose of adjusting polishing characteristics such as polishing selectivity.
  • the upper limit of the weight average molecular weight of the first additive is 20.0 ⁇ 10 3 from the viewpoint of obtaining a good polishing rate of the insulating material (for example, silicon oxide) and improving the polishing selectivity of the insulating material with respect to the stopper material. It is as follows.
  • the upper limit of the weight average molecular weight of the first additive is 20.0 ⁇ from the viewpoint of obtaining a better polishing rate of the insulating material (for example, silicon oxide) and further improving the polishing selectivity of the insulating material with respect to the stopper material.
  • the weight average molecular weight of the first additive in the first embodiment is preferably less than 10 3, more preferably 18.0 ⁇ 10 3 or less, more preferably 15.0 ⁇ 10 3 or less, particularly preferably 12.0 ⁇ 10 3 or less, very preferably 10.0 ⁇ 10 3 or less.
  • the lower limit of the weight average molecular weight of the first additive in the first embodiment is preferably 250 or more, more preferably 350 or more, still more preferably 500 or more, from the viewpoint of further improving polishing selectivity and flatness. 0 ⁇ 10 3 or more is particularly preferable, and 1.5 ⁇ 10 3 or more is extremely preferable. From the above viewpoint, the weight average molecular weight of the first additive in the first embodiment is more preferably 250 or more and 20.0 ⁇ 10 3 or less.
  • the lower limit of the weight average molecular weight of the first additive in the second embodiment is preferably 350 or more, more preferably 500 or more, still more preferably 800 or more. 0 ⁇ 10 3 or more is particularly preferable, and 1.5 ⁇ 10 3 or more is extremely preferable. From the above viewpoint, the weight average molecular weight of the first additive in the second embodiment is more preferably 350 or more and 20.0 ⁇ 10 3 or less.
  • a weight average molecular weight can be measured on condition of the following by the gel permeation chromatography method (GPC) using the calibration curve of a standard polystyrene, for example.
  • the lower limit of the content of the first additive is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the abrasive, from the viewpoint of further improving polishing selectivity and flatness. Preferably, 0.3% by mass or more is more preferable, and 0.5% by mass or more is particularly preferable.
  • the upper limit of the content of the first additive is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the abrasive, from the viewpoint of obtaining an appropriate polishing rate of the insulating material. 2.0 mass% or less is still more preferable.
  • the content of the first additive is more preferably 0.01% by mass or more and 5.0% by mass or less based on the total mass of the abrasive.
  • the sum total of content of each compound satisfy
  • polishing agent which concerns on this embodiment contains a cationic polymer as a 2nd additive other than said 1st additive.
  • the “cationic polymer” is a polymer having a cationic group or a group that can be ionized into a cationic group in a main chain or a side chain.
  • the cationic polymer has an effect of suppressing an excessive increase in the polishing rate of the stopper material (for example, silicon nitride and polysilicon) when used in combination with the first additive. Also, there is an effect of increasing the polishing rate of the insulating material (for example, silicon oxide) without deteriorating the flatness.
  • the polishing rate of the stopper material can be suppressed, and the first additive excessively covers the insulating material to reduce the polishing rate of the insulating material. It is considered that the polishing rate of the insulating material can be improved by suppressing this.
  • the cationic polymer interacts with the first additive so that the first additive appropriately coats the insulating material, thereby improving the polishing rate of the convex portion of the insulating material and insulating. In order to suppress the polishing rate of the concave portions of the material, it is considered that high flatness can be maintained.
  • the cationic polymer is at least one selected from the group consisting of an allylamine polymer, a diallylamine polymer, a vinylamine polymer, and an ethyleneimine polymer from the viewpoint of obtaining further excellent polishing selectivity of the insulating material with respect to the stopper material.
  • These polymers can be obtained by polymerizing at least one monomer component selected from the group consisting of allylamine, diallylamine, vinylamine, ethyleneimine, and derivatives thereof.
  • the polymer may have a structural unit derived from a monomer component other than allylamine, diallylamine, vinylamine, ethyleneimine and derivatives thereof, acrylamide, dimethylacrylamide, diethylacrylamide, hydroxyethylacrylamide, acrylic acid, It may have a structural unit derived from methyl acrylate, methacrylic acid, maleic acid, sulfur dioxide or the like.
  • Cationic polymers include allylamine, diallylamine, vinylamine, ethyleneimine homopolymer (polyallylamine, polydiallylamine, polyvinylamine, polyethyleneimine); homopolymers of derivatives of these monomer components; allylamine, diallylamine, Examples thereof include a copolymer having a structural unit derived from vinylamine, ethyleneimine or a derivative thereof. In the copolymer, the arrangement of structural units is arbitrary.
  • the cationic polymer may form a salt.
  • salts include organic acid salts such as acetic acid; halogen acid salts such as hydrochloride and bromate; inorganic acid salts such as phosphate, sulfate, nitrate, and carbonate.
  • the allylamine polymer is a polymer having a structure obtained by polymerizing allylamine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (VIII) or (IX).
  • the allylamine derivative include alkoxycarbonylated allylamine, methylcarbonylated allylamine, aminocarbonylated allylamine, ureated allylamine and the like.
  • each R independently represents a hydrogen atom or a monovalent organic group
  • X ⁇ represents an anion.
  • the diallylamine polymer is a polymer having a structure obtained by polymerizing diallylamine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (X) or (XI).
  • diallylamine derivatives include methyl diallylamine, diallyldimethylammonium salt, diallylmethylethylammonium salt, acylated diallylamine, aminocarbonylated diallylamine, alkoxycarbonylated diallylamine, aminothiocarbonylated diallylamine, hydroxyalkylated diallylamine, and the like.
  • ammonium salts include ammonium chloride. [In the formula, each R independently represents a hydrogen atom or a monovalent organic group, and X ⁇ represents an anion. ]
  • the vinylamine polymer is a polymer having a structure obtained by polymerizing vinylamine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (XII).
  • Examples of the vinylamine derivative include alkylated vinylamine, amidated vinylamine, ethylene oxideated vinylamine, propylene oxided vinylamine, alkoxylated vinylamine, carboxymethylated vinylamine, acylated vinylamine, and ureaated vinylamine.
  • R shows a hydrogen atom or a monovalent organic group each independently.
  • the ethyleneimine polymer is a polymer having a structure obtained by polymerizing ethyleneimine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (XIII).
  • Examples of the ethyleneimine derivative include aminoethylated acrylic polymer, alkylated ethyleneimine, ureaated ethyleneimine, propylene oxideated ethyleneimine and the like. [Wherein, R represents a hydrogen atom or a monovalent organic group. ]
  • Examples of the monovalent organic group represented by R in formulas (VIII) to (XIII) include an alkyl group such as a methyl group, an ethyl group, and a propyl group; and an amino group such as a primary amino group, a secondary amino group, and a tertiary amino group An amide group and the like.
  • X ⁇ in formula (IX) and formula (XI) is an organic acid ion such as acetate ion; halide ion such as chloride ion or bromide ion; inorganic such as phosphate ion, sulfate ion, nitrate ion or carbonate ion An acid ion etc. are mentioned.
  • cationic polymers examples include acrylic polymers such as cation-modified polyacrylamide and cation-modified polydimethylacrylamide; copolymers of dialkylenetriamines such as diethylenetriamine and other monomers (dicyandiamide / diethylenetriamine copolymer, etc.) Dicyandiamide / dialkylenetriamine copolymer, etc.); polysaccharides such as chitosan, chitosan derivatives, cation-modified cellulose, cation-modified dextran; obtained by polymerizing monomers derived from structural units constituting these compounds A copolymer or the like may be used.
  • acrylic polymers such as cation-modified polyacrylamide and cation-modified polydimethylacrylamide
  • copolymers of dialkylenetriamines such as diethylenetriamine and other monomers (dicyandiamide / diethylenetriamine copolymer, etc.) Dicyandiamide / dialkylenetriamine copolymer, etc
  • cationic polymers from the viewpoint of further improving the polishing selectivity of the insulating material (for example, silicon oxide) with respect to the stopper material (for example, silicon nitride and polysilicon), and from the viewpoint of further improving the polishing rate of the insulating material, Preferred are at least one selected from the group consisting of homopolymers of allylamine, homopolymers of allylamine derivatives, polymers having structural units derived from diallyldimethylammonium salts, and dicyandiamide / diethylenetriamine copolymers. More preferred is at least one selected from the group consisting of diallyldimethylammonium chloride.
  • Cationic polymers can be used alone or in combination of two or more for the purpose of adjusting polishing properties such as polishing selectivity and flatness.
  • the lower limit of the weight average molecular weight of the cationic polymer is preferably 100 or more, more preferably 300 or more from the viewpoint of further improving the polishing selectivity of the insulating material (for example, silicon oxide) with respect to the stopper material (for example, silicon nitride and polysilicon). 500 or more is more preferable.
  • the upper limit of the weight average molecular weight of the cationic polymer is preferably 1000 ⁇ 10 3 or less from the viewpoint of further improving the polishing selectivity of the insulating material (eg, silicon oxide) with respect to the stopper material (eg, silicon nitride and polysilicon), and 800 ⁇ 10 3 or less is more preferable, and 500 ⁇ 10 3 or less is more preferable.
  • the weight average molecular weight of the cationic polymer is more preferably 100 or more and 1000 ⁇ 10 3 or less.
  • the weight average molecular weight of the cationic polymer can be measured by the same method as the weight average molecular weight of the first additive.
  • the lower limit of the content of the cationic polymer is preferably 0.0001% by mass or more, more preferably 0.0002% by mass or more, based on the total mass of the abrasive, from the viewpoint of further improving polishing selectivity and flatness. 0.0005% by mass or more is more preferable, and 0.001% by mass or more is particularly preferable.
  • the upper limit of the content of the cationic polymer is preferably 1% by mass or less, more preferably 0.5% by mass or less, more preferably 0.1% by mass, based on the total mass of the abrasive, from the viewpoint of further excellent polishing selectivity.
  • the content of the cationic polymer is more preferably 0.0001% by mass or more and 1% by mass or less based on the total mass of the abrasive.
  • the polishing selectivity of the insulating material with respect to the stopper material for example, silicon nitride and polysilicon
  • the flatness the content of the cationic polymer can be improved. It is preferable to adjust appropriately according to the type or filming conditions.
  • the abrasive according to this embodiment includes the first additive and the second additive for the purpose of adjusting polishing characteristics such as polishing speed; abrasive characteristics such as abrasive dispersibility and storage stability.
  • a third additive may be further contained.
  • the amino group-containing sulfonic acid compound described later is not included in the third additive referred to here.
  • Examples of the third additive include carboxylic acid and amino acid. These may be used alone or in combination of two or more. By using these compounds, the balance between abrasive dispersibility and polishing characteristics is improved. In addition, although an amino acid has a carboxyl group, the compound corresponding to an amino acid is excluded as carboxylic acid.
  • Carboxylic acid has the effect of stabilizing the pH and further improving the polishing rate of the insulating material.
  • the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and lactic acid.
  • Amino acids have the effect of improving the dispersibility of abrasive grains containing a hydroxide of a tetravalent metal element and further improving the polishing rate of the insulating material.
  • amino acids arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, ⁇ -alanine, ⁇ -alanine, methionine, cysteine, phenylalanine, leucine, valine, isoleucine Etc.
  • the content of the third additive is based on the total mass of the abrasive from the viewpoint of obtaining the additive effect of the third additive while suppressing sedimentation of the abrasive grains. 0.001 mass% or more and 10 mass% or less are preferable. In addition, when using a some compound as a 3rd additive, it is preferable that the sum total of content of each compound satisfy
  • the polishing agent according to the second embodiment contains an amino group-containing sulfonic acid compound as another additive different from the first additive and the second additive.
  • the abrasive according to the first embodiment may contain an amino group-containing sulfonic acid compound as another additive different from the first additive and the second additive.
  • the “amino group-containing sulfonic acid compound” means at least one selected from the group consisting of a sulfonic acid group (sulfo group, —SO 3 H) and a sulfonic acid group (—SO 3 M: M is a metal atom), an amino group (—NH 2 ) in one molecule.
  • Examples of the metal atom M of the sulfonate group include alkali metals such as Na and K, and alkaline earth metals such as Mg and Ca.
  • the amino group-containing sulfonic acid in combination with the first additive and the second additive, polishing of the insulating material after exposure to the stopper (for example, the insulating material embedded in the recess) is suppressed, and the dishing progresses. Therefore, high flatness can be obtained.
  • Amino group-containing sulfonic acid compounds may be used alone or in combination of two or more for the purpose of adjusting polishing properties such as polishing selectivity and flatness.
  • the mechanism by which the amino group-containing sulfonic acid compound suppresses the progress of dishing is presumed as follows.
  • the sulfonyl group (—S ( ⁇ O) 2 —) is considered to form a protective layer on the surface of the insulating material by forming a hydrogen bond with a hydroxyl group (—OH) on the surface of the insulating material (eg, silicon oxide). .
  • a hydroxyl group eg, silicon oxide
  • the amino group also has hydrogen bonding ability, but it is considered that a highly polar sulfonyl group acts preferentially.
  • the reason why the amino group-containing sulfonic acid compound selectively protects only the concave portion is that the adsorption force to the material to be polished is weak and the amino group-containing sulfonic acid compound is detached at the convex portion where a higher load is applied. Is considered to progress.
  • the amino group-containing sulfonic acid compound preferably has a small number of sulfonic acid groups and sulfonic acid groups and amino groups present in one molecule.
  • the total of sulfonic acid groups and sulfonic acid groups present in one molecule is preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1.
  • the amino group present in one molecule is preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1.
  • the upper limit of the molecular weight of the amino group-containing sulfonic acid compound is preferably 1000 or less, more preferably 800 or less, and even more preferably 500 or less.
  • the lower limit of the molecular weight of the amino group-containing sulfonic acid compound is, for example, 97 or more.
  • the amino group-containing sulfonic acid compound is preferably a compound having one amino group and one sulfonic acid group or one sulfonic acid group in one molecule, specifically, sulfamic acid (also known as amidosulfuric acid); Aminomethanesulfonic acid, aminoethanesulfonic acid (1-aminoethanesulfonic acid, 2-aminoethanesulfonic acid (also known as taurine), etc.), aminoalkylsulfonic acid such as aminopropanesulfonic acid; aminobenzenesulfonic acid (alternic acid (also known as alternative acid) 2-aminobenzenesulfonic acid), metanilic acid (also known as 3-aminobenzenesulfonic acid), sulfanilic acid (also known as 4-aminobenzenesulfonic acid)), aminonaphthalenesulfonic acid and the like; salts thereof; Etc.
  • sulfamic acid also known as
  • amino group-containing sulfonic acid compound aminoalkyl sulfonic acid and fragrance are used from the viewpoint of further improving the flatness by further suppressing the polishing of the insulating material after exposure to the stopper (for example, the insulating material embedded in the recess).
  • group aminosulfonic acids At least one selected from the group consisting of group aminosulfonic acids is preferred, at least one selected from the group consisting of aminoethanesulfonic acid, alternic acid, metanilic acid and sulfanilic acid is more preferred, from aminoethanesulfonic acid and sulfanilic acid More preferably, at least one selected from the group consisting of
  • the lower limit of the content of the amino group-containing sulfonic acid compound is preferably 0.0005% by mass or more, more preferably 0.001% by mass or more, based on the total mass of the abrasive. 0.002% by mass or more is more preferable, and 0.005% by mass or more is particularly preferable.
  • the upper limit of the content of the amino group-containing sulfonic acid compound is preferably 0.2% by mass or less, more preferably 0.1% by mass or less, based on the total mass of the abrasive, from the viewpoint of further improving the polishing rate of the insulating material.
  • the content of the amino group-containing sulfonic acid compound is more preferably 0.0005% by mass or more and 0.2% by mass or less based on the total mass of the abrasive.
  • the content of the amino group-containing sulfonic acid compound is determined from the viewpoint of further improving the polishing rate of the insulating material, the polishing selectivity of the insulating material with respect to the stopper material, and the flatness (kind or filming conditions). It is preferable to adjust appropriately according to.
  • the polishing agent according to this embodiment has flatness, in-plane uniformity, polishing selectivity of silicon oxide with respect to silicon nitride (silicon oxide polishing rate / silicon nitride polishing rate), and polishing selectivity of silicon oxide with respect to polysilicon (
  • a water-soluble polymer may be contained for the purpose of adjusting polishing characteristics such as (silicon oxide polishing rate / polysilicon polishing rate).
  • the “water-soluble polymer” is defined as a polymer that dissolves 0.1 g or more in 100 g of water at 25 ° C. The first additive and the second additive are not included in the “water-soluble polymer”.
  • the water-soluble polymer is not particularly limited, and is a polysaccharide such as alginic acid, pectinic acid, carboxymethylcellulose, agar, curdlan, guar gum, or the like; a vinyl polymer such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyacrolein; Examples thereof include glycerin polymers such as glycerin derivatives.
  • the water-soluble polymers can be used alone or in combination of two or more.
  • the lower limit of the content of the water-soluble polymer is 0 on the basis of the total mass of the abrasive from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains.
  • 0.0001 mass% or more is preferable, 0.001 mass% or more is more preferable, and 0.01 mass% or more is still more preferable.
  • the upper limit of the content of the water-soluble polymer is preferably 5% by mass or less, preferably 1% by mass based on the total mass of the abrasive, from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains.
  • the content of the water-soluble polymer is more preferably 0.0001% by mass or more and 5% by mass or less based on the total mass of the abrasive.
  • the sum total of content of each compound satisfy
  • the lower limit of the pH of the abrasive according to the first embodiment is preferably 3.0 or more, more preferably 3.5 or more, still more preferably 3.8 or more, from the viewpoint of further improving the polishing rate of the insulating material. 0.0 or more is particularly preferable.
  • the upper limit of the pH is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less from the viewpoint of further improving the polishing rate of the insulating material. From the above viewpoint, the pH of the abrasive is more preferably 3.0 or more and 7.0 or less.
  • the pH is defined as the pH at a liquid temperature of 25 ° C.
  • the lower limit of the pH of the abrasive according to the second embodiment is preferably 3.0 or more, more preferably 3.5 or more, still more preferably 4.0 or more, from the viewpoint of further improving the polishing rate of the insulating material. .5 or more is particularly preferable.
  • the upper limit of the pH is preferably 7.0 or less, more preferably 6.5 or less, still more preferably 6.0 or less, and particularly preferably 5.5 or less from the viewpoint of further improving the polishing rate of the insulating material. From the above viewpoint, the pH of the abrasive is more preferably 3.0 or more and 7.0 or less.
  • the pH is defined as the pH at a liquid temperature of 25 ° C.
  • the pH of the polishing agent can be adjusted with an acid component such as an inorganic acid or an organic acid; an alkali component such as ammonia, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole, or 2-methylimidazole.
  • a buffer may be added to stabilize the pH. Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the abrasive according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.). Specifically, for example, after calibrating two pH meters using a phthalate pH buffer solution (pH 4.01) and a neutral phosphate pH buffer solution (pH 6.86) as standard buffers, The value is measured after the electrode is placed in an abrasive and stabilized after 2 minutes or more. At this time, the liquid temperature of the standard buffer and the abrasive is both 25 ° C.
  • a pH meter for example, model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.
  • the abrasive according to this embodiment may be stored as a one-component abrasive containing at least abrasive grains, a first additive, a second additive, and water.
  • an additive liquid (second liquid) are mixed into a slurry and an additive liquid so that the composition of the abrasive is divided into a slurry and an additive liquid so as to become the abrasive.
  • the slurry includes at least abrasive grains and water, for example.
  • the additive liquid includes, for example, at least a first additive, a second additive, and water.
  • the first additive, the second additive, the third additive, the amino group-containing sulfonic acid compound, the water-soluble polymer, and the buffer solution are preferably included in the additive solution among the slurry and the additive solution.
  • the constituents of the abrasive are stored separately in a slurry (first liquid) and an additive liquid (second liquid), and the slurry contains abrasive grains and water, and the additive liquid May be an embodiment containing the first additive, the second additive, the amino group-containing sulfonic acid compound and water.
  • the constituents of the abrasive may be stored as an abrasive set divided into three or more liquids.
  • abrasive set slurry and additive liquid are mixed immediately before or during polishing to prepare an abrasive.
  • the one-component abrasive is stored as an abrasive stock solution with a reduced water content, and may be diluted with water immediately before or during polishing.
  • the two-component abrasive set is stored as a slurry storage solution and an additive storage solution with a reduced water content, and may be diluted with water immediately before or during polishing.
  • a method of supplying the abrasive onto the polishing surface plate a method of feeding and supplying the abrasive directly; a storage solution for abrasive and water are sent through separate pipes, A method in which these are combined, mixed and supplied; a method in which an abrasive stock solution and water are mixed and supplied in advance can be used.
  • the polishing rate can be adjusted by arbitrarily changing the combination of these two components.
  • methods for supplying the abrasive onto the polishing surface plate include the following methods. For example, the slurry and the additive liquid are sent through separate pipes, and these pipes are combined, mixed and supplied; the slurry storage liquid, the additive liquid storage liquid and water are sent through separate pipes, A method in which these are combined and mixed and supplied; a method in which slurry and additive solution are mixed and supplied in advance; and a method in which slurry storage solution, additive solution storage solution and water are mixed in advance and supplied it can.
  • polishing agent set on a polishing surface plate, respectively can also be used.
  • the surface to be polished is polished using an abrasive obtained by mixing the slurry and the additive liquid on the polishing platen.
  • the substrate polishing method according to the present embodiment may include a polishing step of polishing the surface to be polished of the substrate using the one-part polishing agent, and the slurry and additive liquid in the polishing agent set are mixed. You may provide the grinding
  • the substrate polishing method according to the present embodiment may be a substrate polishing method having an insulating material and a stopper material.
  • the one-part abrasive or the slurry and additive liquid in the abrasive set A polishing step of selectively polishing the insulating material with respect to the stopper material may be provided using an abrasive obtained by mixing the above.
  • the base body may have, for example, a member containing an insulating material and a member (stopper) containing a stopper material.
  • the stopper material is preferably at least one selected from the group consisting of polysilicon and silicon nitride.
  • the stopper material is more preferably polysilicon.
  • silicon nitride is more preferable as the stopper material.
  • the abrasive is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing surface plate.
  • the material to be polished is polished by relatively moving the substrate and the polishing surface plate.
  • at least a part of the material to be polished is removed by polishing.
  • Examples of the substrate to be polished include a substrate.
  • a material to be polished is formed on a substrate for manufacturing a semiconductor element (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed).
  • a substrate is mentioned.
  • materials to be polished include insulating materials such as silicon oxide; stopper materials such as polysilicon and silicon nitride.
  • the material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as materials to be polished.
  • the material to be polished may be in the form of a film (film to be polished), and may be a silicon oxide film, a polysilicon film, a silicon nitride film, or the like.
  • the material to be polished (such as an insulating material such as silicon oxide) formed on such a substrate is polished with the above-mentioned abrasive and the excess portions are removed to eliminate the unevenness of the surface of the material to be polished, A smooth surface is obtained over the entire surface of the abrasive material.
  • the abrasive according to this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
  • the insulating material in can be polished.
  • the stopper material constituting the stopper is a material whose polishing rate is lower than that of the insulating material, and polysilicon, silicon nitride and the like are preferable.
  • polishing method for a semiconductor substrate on which an insulating material is formed.
  • a polishing apparatus a general polishing apparatus having a holder capable of holding a substrate such as a semiconductor substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached.
  • a motor or the like whose rotation speed can be changed is attached to each of the holder and the polishing surface plate.
  • the polishing apparatus include an APPLIED MATERIALS polishing apparatus (trade name: Mira-3400, Reflexion LK) and a polishing apparatus manufactured by Ebara Corporation (trade name: F REX-300).
  • polishing pad general nonwoven fabric, foam, non-foam, etc.
  • material of the polishing pad include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name) and Aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like can be used.
  • foamed polyurethane and non-foamed polyurethane are particularly preferable from the viewpoint of obtaining a further excellent polishing rate and flatness.
  • the polishing pad may be grooved so that the abrasive is collected.
  • the rotation speed of the polishing platen is preferably 200 min ⁇ 1 (rpm) or less so that the semiconductor substrate does not pop out, and the polishing pressure (processing load) applied to the semiconductor substrate causes polishing scratches. From the viewpoint of sufficiently suppressing this, 100 kPa or less is preferable.
  • the surface of a polishing pad is always covered with the abrasive
  • the semiconductor substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used to improve cleaning efficiency.
  • a brush may be used to improve cleaning efficiency.
  • the abrasive, the abrasive set and the polishing method according to this embodiment can be suitably used for forming STI.
  • the lower limit of the polishing selection ratio of the insulating material (eg, silicon oxide) to the stopper material (eg, silicon nitride and polysilicon) is preferably 50 or more, more preferably 120 or more, still more preferably 180 or more, and particularly preferably 200 or more.
  • polishing agent which concerns on one Embodiment, 210 or more are very preferable.
  • the polishing selection ratio is less than 50, the polishing rate of the insulating material with respect to the polishing rate of the stopper material is small, and it is difficult to stop polishing at a predetermined position when forming the STI.
  • the polishing selection ratio is 50 or more, the polishing can be easily stopped, which is more suitable for the formation of STI.
  • the abrasive, the abrasive set and the polishing method according to this embodiment can also be used for polishing a premetal insulating material.
  • a premetal insulating material in addition to silicon oxide, for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used, and further, silicon oxyfluoride, fluorinated amorphous carbon, and the like can be used.
  • the abrasive, the abrasive set and the polishing method according to this embodiment can be applied to materials other than insulating materials such as silicon oxide.
  • materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe Inorganic conductive materials such as ITO; polymer resins such as polyimides, polybenzoxazoles, acrylics, epoxies, and phenols.
  • the polishing agent, the polishing agent set, and the polishing method according to the present embodiment are not only film-like objects to be polished, but also various types composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, and the like. It can also be applied to substrates.
  • the polishing agent, the polishing agent set, and the polishing method according to the present embodiment are not only for manufacturing semiconductor elements, but also for image display devices such as TFTs and organic ELs; optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators Optical elements such as optical switching elements and optical waveguides; light emitting elements such as solid lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
  • the container containing the metal salt aqueous solution was placed in a water tank filled with water.
  • the water temperature of the water tank was adjusted to 40 [° C.] using an external circulation device COOLNICS circulator (manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101).
  • COOLNICS circulator manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101
  • the alkali solution was mixed in the container at a mixing speed of 8.5 ⁇ 10 ⁇ 6 [m 3 / min].
  • a slurry precursor 1 containing abrasive grains containing tetravalent cerium hydroxide was obtained.
  • the pH of the slurry precursor 1 was 2.2.
  • the aqueous metal salt solution was stirred using a three-blade pitch paddle with a total length of 5 cm.
  • the obtained slurry precursor 1 was ultrafiltered while being circulated, and the ion content was removed until the conductivity was 50 mS / m or less. 2 was obtained.
  • the ultrafiltration was performed using a liquid level sensor while adding water so that the water level of the tank containing the slurry precursor 1 was kept constant.
  • the nonvolatile content of the slurry precursor 2 was calculated.
  • a cerium hydroxide slurry stock solution was collected and diluted with water so that the abrasive grain content was 0.2% by mass to obtain a measurement sample (aqueous dispersion).
  • a measurement sample aqueous dispersion
  • About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was installed in a device name: N5 manufactured by Beckman Coulter.
  • the dispersion medium was set to have a refractive index of 1.33 and a viscosity of 0.887 mPa ⁇ s, measured at 25 ° C., and the displayed average particle size value was defined as the average secondary particle size of the abrasive grains. The result was 21 nm.
  • Example A1 100 g of an additive stock solution containing 10% by weight of maltose [manufactured by Sanwa Starch Co., Ltd., Sanmalto-S], 0.08% by weight of 2-methylimidazole, 0.06% by weight of acetic acid and 89.86% by weight of water Then, 50 g of a cerium hydroxide slurry storage solution, 820 g of water, and 30 g of an aqueous solution containing 0.1% by mass of polydiallyldimethylammonium chloride [Senka Co., Ltd., Unisense FPA1000L] as a cationic polymer are mixed.
  • an abrasive for CMP 1000 g having the composition shown in Table 1 was prepared.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of maltose, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • the weight average molecular weight of the said maltose was measured on condition of the following, it was 259 (theoretical value from a chemical structure is 342).
  • Example A2 Maltose as a dextrin [Sandek # 300, manufactured by Sanwa Starch Co., Ltd. DE value (Dextrose Equivalent value): 31 to 36 (value according to “LANE-EYNON method”, the same shall apply hereinafter), moisture: 4% by mass or less.
  • a polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that all were changed to the manufacturer's nominal values.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • the dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
  • Example A3 Maltose as a dextrin [Sandek # 180, manufactured by Sanwa Starch Co., Ltd. DE value: 22 to 25, moisture: 5% by mass or less.
  • a polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that all were changed to the manufacturer's nominal values.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 5.4 ⁇ 10 3 .
  • the dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
  • Example A4 Maltose as a dextrin [Sandek # 100, manufactured by Sanwa Starch Co., Ltd. DE value: 13 to 16, water content: 5% by mass or less.
  • a polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that all were changed to the manufacturer's nominal values.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 18.4 ⁇ 10 3 .
  • the dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
  • Example A5 Maltose as dextrin [manufactured by Sanei Saccharification Co., Ltd., NSD # 700 (powder type). A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1, except that the DE value was changed to 17 to 21 (manufacturer nominal value).
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 7.9 ⁇ 10 3 .
  • the dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
  • Example A6 A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A5 except that polydiallyldimethylammonium chloride was changed to a dicyandiamide / diethylenetriamine copolymer [Senka Co., Ltd., Unisense KHP10L].
  • the abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of a dicyandiamide / diethylenetriamine copolymer.
  • Example A7 When preparing 100 g of the stock solution for additive solution, the amount of acetic acid added was changed to 0.1% by mass, and the amount of water increased by acetic acid was reduced. A polishing slurry for CMP having the following composition was prepared.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • Example A8 Maltose reduced dextrin [Matsuya Chemical Co., Ltd., H-PDX. The water content is 5% by mass or less. ]
  • a polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that the above was changed.
  • the abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the reduced dextrin was measured by the same method as in Example A1, it was 2.0 ⁇ 10 3 .
  • the reduced dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
  • Glucose [Wako Pure Chemical Industries, Ltd., Wako first grade D (+)-glucose. Molecular weight: 130] 100 g of additive solution containing 10% by mass, 0.08% by mass of 2-methylimidazole, 0.06% by mass of acetic acid and 89.86% by mass of water, and a storage solution for cerium hydroxide slurry By mixing 50 g and 850 g of water, an abrasive for CMP (1000 g) having the composition described in Table 2 was prepared. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of glucose.
  • Glucose [Wako Pure Chemical Industries, Ltd., Wako first grade D (+)-glucose. Molecular weight: 130] 100 g of additive solution containing 10% by mass, 0.08% by mass of 2-methylimidazole, 0.06% by mass of acetic acid and 89.86% by mass of water, and a storage solution for cerium hydroxide slurry 50 g, 820 g of water, and 30 g of an aqueous solution containing 0.1% by mass of polydiallyldimethylammonium chloride [manufactured by Senka Co., Ltd., Unisense FPA1000L] as a cationic polymer, are described in Table 2.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of glucose, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • Comparative Example A3 A polishing slurry for CMP having the composition described in Table 2 was prepared in the same manner as in Comparative Example A1, except that glucose was changed to dextrin (Sandex # 300, manufactured by Sanwa Starch Co., Ltd.).
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of dextrin.
  • Comparative Example A4 A polishing slurry for CMP having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A1, except that glucose was changed to dextrin [Sandek # 180, manufactured by Sanwa Starch Co., Ltd.].
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of dextrin.
  • a polishing slurry for CMP having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A1 except that glucose was changed to dextrin [manufactured by Sanei Saccharification Co., Ltd., NSD # 700].
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of dextrin.
  • Glucose dextrin [Sandex # 30, manufactured by Sanwa Starch Co., Ltd. DE value: 3 to 7, moisture: 5% by mass or less.
  • a CMP polishing slurry having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A2 except that all were changed to the manufacturer's nominal values.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • the weight average molecular weight of the dextrin was measured by the same method as in Example A1, and found to be 147 ⁇ 10 3 .
  • Glucose was dextrin [NSD # 300, manufactured by Sanei Saccharification Co., Ltd.
  • a polishing slurry for CMP having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A2, except that the DE value was changed to 10 to 12 (manufacturer nominal value).
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. In addition, it was 20.4 * 10 ⁇ 3 > when the weight average molecular weight of the said dextrin was measured by the method similar to Example A1.
  • PH Measurement temperature: 25 ⁇ 5 ° C
  • Measuring device manufactured by Electrochemical Instrument Co., Ltd., model number PHL-40 Measurement method: After calibrating two points using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH 6.86 (25 ° C.)), The electrode was placed in a CMP abrasive and the pH after the passage of 2 minutes or more and stabilized was measured with the measuring device. The results are shown in Tables 1 and 2.
  • a measurement sample (aqueous dispersion). About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was installed in a device name: N5 manufactured by Beckman Coulter. The dispersion medium was set to have a refractive index of 1.33 and a viscosity of 0.887 mPa ⁇ s, measured at 25 ° C., and the displayed average particle size value was defined as the average particle size (average secondary particle size). As a result, the average particle diameter was in the range of 14 to 16 nm in both Examples and Comparative Examples.
  • the substrate to be polished was polished under the following polishing conditions using each of the CMP polishing agents.
  • polishing device Mirra-3400 (manufactured by APPLIED MATERIALS) ⁇ CMP abrasive flow rate: 200 mL / min
  • Substrate to be polished a blanket wafer on which a pattern is not formed, a substrate in which a silicon oxide film having a thickness of 1 ⁇ m (1000 nm) is formed on a silicon substrate by a plasma CVD method, and polysilicon having a thickness of 0.2 ⁇ m (200 nm)
  • a substrate in which a film was formed on a silicon substrate by a CVD method and a substrate in which a silicon nitride film having a thickness of 0.2 ⁇ m (200 nm) was formed on a silicon substrate by a CVD method were used.
  • polishing pad foamed polyurethane resin having closed cells (Rohm and Haas Japan, model number IC1010), Shore D hardness: 60
  • Polishing pressure 20 kPa (3.0 psi) ⁇ Number of rotations of substrate and polishing surface plate:
  • Substrate / polishing surface plate 93/87 min ⁇ 1 (rpm) ⁇
  • Polishing time 1 min -Cleaning and drying of wafer: After CMP treatment, cleaning with a PVA brush (polyvinyl alcohol brush) was performed, followed by drying with a spin dryer.
  • PVA brush polyvinyl alcohol brush
  • Polishing rate of each film to be polished (silicon oxide film, silicon nitride film and polysilicon film) polished and cleaned under the above conditions (silicon oxide film polishing rate: SiO 2 RR, silicon nitride film polishing rate: SiNRR, polysilicon
  • the film polishing rate: p-SiRR) was determined from the following formula. Further, polishing selection ratios SiO 2 RR / SiNRR and SiO 2 RR / p-SiRR were determined.
  • Tables 1 and 2 show the measurement results obtained in Examples A1 to A8 and Comparative Examples A1 to A7.
  • Example A1 SiO 2 RR is 478 nm / min, SiNRR is 1.4 nm / min, p-SiRR is 1.0 nm / min, polishing selectivity SiO 2 RR / SiNRR is 341, and polishing selectivity SiO 2 RR / p -SiRR was 478, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
  • Example A2 the SiO 2 RR was 438 nm / min, the SiNRR was 0.5 nm / min, the polishing selection ratio SiO 2 RR / SiNRR was 876, and the polishing selection ratio was higher than those of Comparative Examples A1 to A7.
  • Example A3 SiO 2 RR was 355 nm / min, SiNRR was 0.6 nm / min, p-SiRR was 0.8 nm / min, polishing selectivity SiO 2 RR / SiNRR was 592, and polishing selectivity SiO 2 RR / p -SiRR was 444, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
  • Example A4 SiO 2 RR was 316 nm / min, SiNRR was 1.8 nm / min, p-SiRR was 0.5 nm / min, polishing selectivity SiO 2 RR / SiNRR was 176, polishing selectivity SiO 2 RR / p -SiRR was 632, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
  • Example A5 SiO 2 RR was 356 nm / min, SiNRR was 0.6 nm / min, p-SiRR was 0.4 nm / min, polishing selectivity SiO 2 RR / SiNRR was 593, and polishing selectivity SiO 2 RR / p -SiRR was 890, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
  • Example A6 SiO 2 RR was 316 nm / min, SiNRR was 1.2 nm / min, polishing selectivity SiO 2 RR / SiNRR was 263, and the polishing selectivity was higher than those of Comparative Examples A1 to A7.
  • Example A7 SiO 2 RR was 203 nm / min, SiNRR was 0.8 nm / min, polishing selectivity SiO 2 RR / SiNRR was 254, and the polishing selectivity was higher than those of Comparative Examples A1 to A7.
  • Example A8 SiO 2 RR was 383 nm / min, SiNRR was 0.5 nm / min, polishing selectivity SiO 2 RR / SiNRR was 766, and the polishing selectivity was higher than those of Comparative Examples A1 to A7.
  • the SiO 2 RR was 11 nm / min
  • the SiNRR was 77 nm / min
  • the polishing selection ratio SiO 2 RR / SiNRR was 0.1.
  • SiO 2 RR was 429 nm / min
  • SiNRR was 45 nm / min
  • p-SiRR was 2.1 nm / min
  • polishing selectivity SiO 2 RR / SiNRR was 10
  • polishing selectivity SiO 2 RR / p-SiRR. was 204.
  • SiO 2 RR was 128 nm / min
  • SiNRR was 33 nm / min
  • polishing selectivity SiO 2 RR / SiNRR was 3.9.
  • the SiO 2 RR was 159 nm / min
  • the SiNRR was 17 nm / min
  • the polishing selectivity ratio SiO 2 RR / SiNRR was 9.4.
  • SiO 2 RR was 3.9 nm / min
  • SiNRR was 1.4 nm / min
  • polishing selectivity SiO 2 RR / SiNRR was 2.8.
  • the SiO 2 RR was 2.1 nm / min
  • the SiNRR was 0.8 nm / min
  • the polishing selectivity ratio SiO 2 RR / SiNRR was 2.6.
  • the abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.02% of sulfanilic acid. Contains by mass%. It was 2.0 * 10 ⁇ 3 > when the weight average molecular weight of the said reduced dextrin was measured on condition of the following.
  • the reduced dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
  • Example B2 Example B1 except that the content of sulfanilic acid was changed to 0.03% by mass, the content of 2-methylimidazole was changed to 0.02% by mass, and the content of acetic acid was changed to 0.005% by mass
  • an abrasive for CMP having the composition shown in Table 3 was prepared.
  • the abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.03% of sulfanilic acid. Contains by mass%.
  • Example B3 Reduced dextrin is resistant to digestion [Miyagen Co., Ltd., Fiber Sol 2H. Moisture: 5% by mass or less. Manufacturer's nominal value], sulfanilic acid content changed to 0.01 mass%, 2-methylimidazole content changed to 0.012 mass%, and acetic acid content changed to 0.005 mass%
  • a polishing slurry for CMP having the composition shown in Table 3 was prepared in the same manner as in Example B1 except that the above was changed.
  • the CMP polishing slurry was 0.05% by weight of abrasive grains containing cerium hydroxide, 1.0% by weight of indigestible dextrin, 0.003% by weight of polydiallyldimethylammonium chloride, and 0.02% of sulfanilic acid. Contains 01% by mass.
  • the indigestible dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB). In addition, it was 2.5 * 10 ⁇ 3 > when the weight average molecular weight of the said indigestible dextrin was measured by the method similar to Example B1.
  • Example B4 CMP of the composition described in Table 3 was carried out in the same manner as in Example B3 except that the content of sulfanilic acid was changed to 0.02% by mass and the content of 2-methylimidazole was changed to 0.018% by mass.
  • a polishing slurry was prepared.
  • the CMP polishing slurry was 0.05% by weight of abrasive grains containing cerium hydroxide, 1.0% by weight of indigestible dextrin, 0.003% by weight of polydiallyldimethylammonium chloride, and 0.02% of sulfanilic acid. Contains 02% by mass.
  • Example B5 Example B3 except that 0.01% by mass of sulfanilic acid was changed to 0.02% by mass of 2-aminoethanesulfonic acid (taurine) and the content of 2-methylimidazole was changed to 0.08% by mass.
  • an abrasive for CMP having the composition shown in Table 3 was prepared.
  • the abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of indigestible dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, 2-aminoethanesulfone. Contains 0.02% by weight of acid.
  • Example B6 The abrasive content was changed to 0.02 mass%, the sulfanilic acid content was changed to 0.06 mass%, the 2-methylimidazole content was changed to 0.033 mass%, and the acetic acid content was changed.
  • a polishing slurry for CMP having the composition shown in Table 3 was prepared in the same manner as in Example B1, except that the amount was changed to 0.005% by mass.
  • the abrasive for CMP is 0.02% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.06% of sulfanilic acid. Contains by mass%.
  • the abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of D (+)-glucose, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • Example B7 For CMP having the composition shown in Table 4 in the same manner as in Example B1, except that sulfanilic acid was changed to 2-acrylamido-2-methylpropanesulfonic acid and the acetic acid content was changed to 0.005% by mass.
  • An abrasive was prepared.
  • the CMP abrasive is 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, 2-acrylamido-2- It contains 0.02% by mass of methylpropanesulfonic acid.
  • Example B8 Example B1 except that the content of 2-methylimidazole was changed to 0.08% by mass, the content of acetic acid was changed to 0.005% by mass, and an abrasive for CMP was prepared without using sulfanilic acid. Similarly, an abrasive for CMP having the composition shown in Table 4 was prepared. The abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • Example B2 A polishing slurry for CMP having the composition shown in Table 4 was prepared in the same manner as in Example B8 except that the reduced dextrin was changed to polyoxyethylene styrenated phenyl ether [Daiichi Kogyo Seiyaku Co., Ltd., Neugen EA207D]. did.
  • the abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of polyoxyethylene styrenated phenyl ether, and 0.003% by mass of polydiallyldimethylammonium chloride.
  • Example B3 Without using a cationic polymer, the sulfanilic acid content was changed to 0.01% by mass, the acetic acid content was changed to 0.005% by mass, and the 2-methylimidazole content was 0.013% by mass.
  • a polishing slurry for CMP having the composition shown in Table 4 was prepared in the same manner as in Example B1, except that the percentage was changed to%.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, and 0.01% by mass of sulfanilic acid.
  • Example B4 A polishing slurry for CMP having the composition shown in Table 5 was prepared in the same manner as in Example B1, except that the content of acetic acid was changed to 0.005% by mass without using reduced dextrin and cationic polymer. did.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 0.02% by mass of sulfanilic acid.
  • Example B5 A CMP abrasive having the composition shown in Table 5 was prepared in the same manner as in Example B8 except that the abrasive for CMP was prepared without using reduced dextrin.
  • the CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 0.003% by mass of polydiallyldimethylammonium chloride.
  • the abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of polyoxyethylene styrenated phenyl ether, 0.003% by mass of polydiallyldimethylammonium chloride, sulfanilic acid Is contained in an amount of 0.02% by mass.
  • Example B9 CMP of the composition described in Table 5 was performed in the same manner as in Example B8 except that 0.02% by mass of p-toluenesulfonic acid was added and the content of 2-methylimidazole was changed to 0.017% by mass.
  • a polishing slurry was prepared.
  • the CMP polishing slurry comprises 0.05% by weight abrasive grains containing cerium hydroxide, 1.0% by weight reduced dextrin, 0.003% by weight polydiallyldimethylammonium chloride, and p-toluenesulfonic acid. Contains 0.02% by mass.
  • Example B10 The same procedure as in Example B9 except that p-toluenesulfonic acid was changed to glycine (the content was not changed and was 0.02% by mass), and the content of 2-methylimidazole was changed to 0.008% by mass.
  • an abrasive for CMP having the composition shown in Table 5 was prepared.
  • the CMP abrasive is 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.02% by mass of glycine. %contains.
  • Example B11 Table 5 shows the same as in Example B2, except that the reduced dextrin was changed to maltose [Sanmalto-S, manufactured by Sanwa Starch Co., Ltd.] (content is 1.0% by mass without change).
  • An abrasive for CMP having the composition described above was prepared.
  • the abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of maltose, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.03% by mass of sulfanilic acid. contains.
  • the theoretical value of the molecular weight of maltose is 342.30, it was 259 when the weight average molecular weight of the said maltose was measured by the method similar to Example B1.
  • PH Measurement temperature: 25 ⁇ 5 ° C
  • Measuring device manufactured by Electrochemical Instrument Co., Ltd., model number PHL-40 Measurement method: After calibrating two points using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH 6.86 (25 ° C.)), The electrode was placed in a CMP abrasive and the pH after the passage of 2 minutes or more and stabilized was measured with the measuring device. The results are shown in Tables 3-5.
  • a measurement sample (aqueous dispersion). About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was installed in a device name: N5 manufactured by Beckman Coulter. The dispersion medium was set to have a refractive index of 1.33 and a viscosity of 0.887 mPa ⁇ s, measured at 25 ° C., and the displayed average particle size value was defined as the average particle size (average secondary particle size). As a result, in both the examples and the comparative examples, the average particle size was in the range of 10 to 30 nm.
  • Example B6 Reflexion LK (manufactured by APPLIED MATERIALS) was used, and in other examples and comparative examples, FREX-300 (manufactured by Ebara Corporation) was used.
  • ⁇ CMP abrasive flow rate 200 mL / min
  • Substrate to be polished a blanket wafer on which a pattern is not formed, a substrate in which a silicon oxide film having a thickness of 1 ⁇ m (1000 nm) is formed on a silicon substrate by a plasma CVD method, and a silicon nitride having a thickness of 0.2 ⁇ m (200 nm) A substrate in which a film was formed on a silicon substrate by a CVD method was used.
  • the polishing rate (silicon oxide film polishing rate: SiO 2 RR, silicon nitride film polishing rate: SiNRR) of each film to be polished (silicon oxide film, silicon nitride film) polished and cleaned under the above conditions was obtained from the following formula. . Further, the polishing selection ratio SiO 2 RR / SiNRR was determined. In addition, the film thickness difference of each to-be-polished film
  • formula film thickness apparatus (Filmetrics company make, brand name: F80). (Polishing rate: RR) (Thickness difference of each film to be polished before and after polishing (nm)) / (Polishing time (min))
  • Polishing apparatus The same polishing apparatus as that used for polishing the blanket wafer was used.
  • Pattern wafer As a pattern wafer on which a simulated pattern was formed, a 764 wafer (trade name, diameter: 300 mm) manufactured by SEMATECH was used.
  • a silicon nitride film is stacked on a silicon substrate as a stopper, a trench is formed in an exposure process, and a silicon oxide film is formed as an insulating film on the silicon substrate and the silicon nitride film so as to fill the silicon nitride film and the trench. It was a wafer obtained by laminating (SiO 2 film).
  • the silicon oxide film was formed by the HDP (High Density Plasma) method.
  • the pattern wafer has a line (convex portion) & space (concave portion) width of 1000 ⁇ m pitch, 200 ⁇ m pitch, 100 ⁇ m pitch, and a convex pattern density of 50%.
  • the line and space is a simulated pattern in which an active portion masked with a silicon nitride film that is a convex portion and a trench portion in which a groove that is a concave portion is formed are alternately arranged.
  • the line and space has a pitch of 100 ⁇ m means that the total width of the line portion and the space portion is 100 ⁇ m.
  • the line and space is 100 ⁇ m pitch and the convex pattern density is 50%” means a pattern in which convex widths: 50 ⁇ m and concave widths: 50 ⁇ m are alternately arranged.
  • the thickness of the silicon oxide film was 600 nm on both the silicon substrate and the silicon nitride film. Specifically, the thickness of the silicon nitride film on the silicon substrate is 150 nm, the thickness of the convex portion of the silicon oxide film is 600 nm, the thickness of the concave portion of the silicon oxide film is 600 nm, and the silicon oxide film The recess depth was 500 nm (trench depth 350 nm + silicon nitride film thickness 150 nm).
  • the remaining step is 100 nm or less by polishing the wafer using a known CMP abrasive having self-stopping properties (the polishing rate decreases when the remaining step of the simulated pattern decreases).
  • the wafer in a state was used. Specifically, using an abrasive in which HS-8005-D4 manufactured by Hitachi Chemical Co., Ltd., HS-7303GP manufactured by Hitachi Chemical Co., Ltd., and water are mixed at a ratio of 2: 1.2: 6.8, A wafer in which the film thickness of the convex silicon oxide film in a 1000 ⁇ m pitch 50% density pattern was polished to 130 nm was used.
  • the amount of residual step (dishing) is obtained from the following equation: Asked.
  • the film thickness of the film to be polished before and after polishing was determined using an optical interference film thickness apparatus (manufactured by Nanometrics, trade name: Nanospec AFT-5100).
  • Remaining step (dishing) (350 nm + silicon nitride film thickness (nm)) ⁇ (recessed silicon oxide film remaining film thickness (nm))
  • Tables 3 to 5 show the measurement results obtained in Examples B1 to B11 and Comparative Examples B1 to B6.
  • B1 H-PDX (reduced dextrin)
  • B2 Fibersol 2H (digestible dextrin)
  • B3 D (+)-glucose
  • B4 Neugen EA207D (polyoxyethylene styrenated phenyl ether)
  • B5 San Marto-S (Maltos)
  • P1 polydiallyldimethylammonium chloride
  • S1 2-acrylamido-2-methylpropanesulfonic acid
  • Example B1 the SiO 2 RR is 478 nm / min, the SiNRR is 0.9 nm / min, the polishing selectivity ratio SiO 2 RR / SiNRR is 531, SiNRR is smaller than the comparative example, and the polishing selectivity ratio is the comparative example. It showed a higher value.
  • the remaining steps when the silicon nitride film was exposed were 11 nm, 4 nm, and 1 nm (1000 ⁇ m pitch, 200 ⁇ m pitch, and 100 ⁇ m pitch), respectively.
  • Comparative Example B1 since the ⁇ -glucose polymer was not used, it was confirmed that the polishing selectivity was low. Moreover, in comparative example B1, since the amino group containing sulfonic acid compound was not used, it was confirmed that the progress of dishing is not suppressed. In Examples B7 to B10, since the amino group-containing sulfonic acid compound was not used, the progress of dishing was not suppressed, but it was confirmed that the polishing selectivity was higher than that of the comparative example. In Comparative Examples B2 and B5, it was confirmed that the polishing selectivity was low because no ⁇ -glucose polymer was used. In Comparative Example B3, since no cationic polymer was used, it was confirmed that the polishing selection ratio was low.
  • Comparative Example B4 it was confirmed that the polishing selectivity was low because ⁇ -glucose polymer and cationic polymer were not used. In Comparative Example B6, it was confirmed that the polishing selectivity was low because no ⁇ -glucose polymer was used. In Example B11, since ⁇ -glucose polymer having a degree of polymerization of ⁇ -glucose of 3 or more was not used, it was confirmed that although the progress of dishing was not suppressed, the polishing selectivity was higher than that of the comparative example. It was done.
  • Pattern wafer evaluation 2 A pattern wafer similar to the pattern wafer evaluation 1 was prepared except that a polysilicon film was formed instead of the silicon nitride film.
  • polishing was performed using the polishing agent described in Examples B1 to B6 under the same conditions as in the pattern wafer evaluation 1, the remaining step was small before and after overpolishing, and the progress of dishing was suppressed. It was confirmed that it was obtained. From this, it was confirmed that even when the stopper material is polysilicon, the polishing selectivity of the insulating material with respect to the stopper material can be improved and the progress of dishing can be suppressed.
  • a polishing agent capable of improving the polishing selectivity of the insulating material with respect to the stopper material in polishing of the insulating material using the stopper.
  • the polishing selectivity of the insulating material with respect to the stopper material is improved.
  • a polishing agent, a polishing agent set and a polishing method that can be provided.
  • a polishing agent capable of improving the polishing selectivity of the insulating material with respect to the stopper material and suppressing the progress of dishing in polishing of the insulating material using the stopper.
  • polishing selection of the insulating material with respect to the stopper material it is possible to provide a polishing agent, a polishing agent set and a polishing method capable of improving the performance and suppressing the progress of dishing.
  • a process using polysilicon in addition to silicon nitride is also increasing.
  • insulation against the stopper material is achieved.
  • the polishing selectivity of the material can be improved and the progress of dishing can be suppressed.

Abstract

A polishing agent which contains water, abrasive grains containing a hydroxide of a tetravalent metal element, a polymerization product of α-glucose and a cationic polymer, and wherein the polymerization product of α-glucose has a weight average molecular weight of 20.0 × 103 or less.

Description

研磨剤、研磨剤セット及び基体の研磨方法Abrasive, abrasive set, and substrate polishing method
 本発明は、研磨剤、研磨剤セット及び基体の研磨方法に関する。特に、本発明は、半導体素子の製造技術である、基体表面の平坦化工程に用いられる研磨剤、研磨剤セット及び基体の研磨方法に関する。更に詳しくは、本発明は、シャロー・トレンチ・アイソレーション(STI)絶縁材料、プリメタル絶縁材料、層間絶縁材料等の平坦化工程において用いられる研磨剤、研磨剤セット及び基体の研磨方法に関する。 The present invention relates to an abrasive, an abrasive set, and a method for polishing a substrate. In particular, the present invention relates to a polishing agent, a polishing agent set, and a substrate polishing method used in a substrate surface flattening step, which is a semiconductor element manufacturing technique. More particularly, the present invention relates to a polishing agent, a polishing agent set, and a substrate polishing method used in a flattening process of a shallow trench isolation (STI) insulating material, a premetal insulating material, an interlayer insulating material, and the like.
 近年の半導体素子の製造工程では、高密度化・微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、STIの形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。 In recent semiconductor device manufacturing processes, the importance of processing technology for higher density and miniaturization is increasing. CMP (Chemical Mechanical Polishing), which is one of the processing techniques, is used to form STI, planarize premetal insulating material or interlayer insulating material, plug or embedded metal wiring in the manufacturing process of semiconductor devices. This technology is essential for formation.
 研磨剤として最も多用されているのは、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨剤である。シリカ系研磨剤は汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。 The most frequently used abrasive is a silica-based abrasive containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains. Silica-based abrasives are characterized by high versatility, and a wide variety of materials can be polished regardless of insulating materials and conductive materials by appropriately selecting the abrasive content, pH, additives, and the like.
 一方で、主に酸化珪素等の絶縁材料を対象とした、砥粒としてセリウム化合物粒子を含む研磨剤の需要も拡大している。例えば、酸化セリウム(セリア)粒子を砥粒として含む酸化セリウム系研磨剤は、シリカ系研磨剤よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1、2参照)。 On the other hand, there is an increasing demand for abrasives containing cerium compound particles as abrasive grains mainly for insulating materials such as silicon oxide. For example, a cerium oxide-based abrasive containing cerium oxide (ceria) particles as abrasive grains can polish silicon oxide at high speed even with a lower abrasive grain content than a silica-based abrasive (see, for example, Patent Documents 1 and 2 below). .
 ところで、近年、半導体素子の製造工程では更なる配線の微細化を達成することが求められており、研磨時に発生する研磨傷が問題となっている。すなわち、従来の酸化セリウム系研磨剤を用いて研磨を行った際に微小な研磨傷が発生しても、この研磨傷の大きさが従来の配線幅より小さいものであれば問題にならなかったが、更なる配線の微細化を達成しようとする場合には、研磨傷が微小であっても問題となってしまう。 By the way, in recent years, in the manufacturing process of semiconductor elements, it has been required to achieve further miniaturization of wiring, and polishing scratches generated during polishing have become a problem. That is, even if a fine polishing flaw occurs when polishing using a conventional cerium oxide-based abrasive, there is no problem if the size of the polishing flaw is smaller than the conventional wiring width. However, when trying to achieve further miniaturization of the wiring, there is a problem even if the polishing scratches are minute.
 この問題に対し、4価金属元素の水酸化物の粒子を用いた研磨剤が検討されている(例えば、下記特許文献3~5参照)。また、4価金属元素の水酸化物の粒子の製造方法についても検討されている(例えば、下記特許文献6、7参照)。これらの技術は、4価金属元素の水酸化物の粒子が有する化学的作用を活かしつつ機械的作用を極力小さくすることによって、粒子による研磨傷を低減しようとするものである。 For this problem, an abrasive using a hydroxide particle of a tetravalent metal element has been studied (for example, see Patent Documents 3 to 5 below). Further, a method for producing hydroxide particles of a tetravalent metal element has been studied (for example, see Patent Documents 6 and 7 below). These techniques try to reduce polishing scratches caused by particles by making the mechanical action as small as possible while taking advantage of the chemical action of the hydroxide particles of the tetravalent metal element.
 また、STIを形成するためのCMP工程等においては、凹凸パターンを有する基板の凸部上に配置されたストッパ(ストッパ材料を含む研磨停止層)と、凹凸パターンの凹部を埋めるように基板及びストッパの上に配置された絶縁材料(例えば酸化珪素)と、を有する積層体の研磨が行われる。このような研磨では、絶縁材料の研磨はストッパにより停止される。すなわち、ストッパが露出した段階で絶縁材料の研磨を停止させる。これは絶縁材料の研磨量(絶縁材料の除去量)を人為的に制御することが難しいためであり、ストッパが露出するまで絶縁材料を研磨することによって、研磨の程度を制御している。この場合、ストッパ材料に対する絶縁材料の研磨選択性(研磨速度比:絶縁材料の研磨速度/ストッパ材料の研磨速度)を高める必要がある。この課題に対し、下記特許文献8には、4価金属元素の水酸化物の粒子と、カチオン性の重合体及び多糖類の少なくとも一方とを含む研磨剤を用いて、窒化珪素をストッパ材料として絶縁材料を研磨することが開示されている。また、下記特許文献9には、4価金属元素の水酸化物の粒子と、ケン化度95モル%以下のポリビニルアルコールとを含む研磨剤を用いて、ポリシリコンをストッパ材料として絶縁材料を研磨することが開示されている。 Further, in a CMP process or the like for forming the STI, a stopper (a polishing stop layer including a stopper material) disposed on the convex portion of the substrate having the concavo-convex pattern, and the substrate and the stopper so as to fill the concave portion of the concavo-convex pattern. A laminated body having an insulating material (e.g., silicon oxide) disposed on the substrate is polished. In such polishing, the polishing of the insulating material is stopped by a stopper. That is, the polishing of the insulating material is stopped when the stopper is exposed. This is because it is difficult to artificially control the amount of polishing of the insulating material (the amount of removal of the insulating material), and the degree of polishing is controlled by polishing the insulating material until the stopper is exposed. In this case, it is necessary to increase the polishing selectivity of the insulating material with respect to the stopper material (polishing speed ratio: polishing speed of the insulating material / polishing speed of the stopper material). In response to this problem, Patent Document 8 listed below uses an abrasive containing hydroxide particles of a tetravalent metal element and at least one of a cationic polymer and a polysaccharide, using silicon nitride as a stopper material. Polishing the insulating material is disclosed. Further, in Patent Document 9 below, an insulating material is polished using polysilicon as a stopper material by using an abrasive containing hydroxide particles of a tetravalent metal element and polyvinyl alcohol having a saponification degree of 95 mol% or less. Is disclosed.
特開平10-106994号公報JP-A-10-106994 特開平08-022970号公報Japanese Patent Application Laid-Open No. 08-022970 国際公開第2002/067309号International Publication No. 2002/067309 国際公開第2012/070541号International Publication No. 2012/070541 国際公開第2012/070542号International Publication No. 2012/070542 特開2006-249129号公報JP 2006-249129 A 国際公開第2012/070544号International Publication No. 2012/070544 国際公開第2009/131133号International Publication No. 2009/131133 国際公開第2010/143579号International Publication No. 2010/143579
 近年、STIを形成するためのCMP工程等においては、平坦性を向上させるため、エロージョン(ストッパ材料の過研磨)を抑制するため等の目的で、ストッパ材料に対する絶縁材料の研磨選択性を更に高める必要がある。 In recent years, in a CMP process or the like for forming an STI, in order to improve flatness and to suppress erosion (overpolishing of the stopper material), the polishing selectivity of the insulating material with respect to the stopper material is further increased. There is a need.
 本発明は、これらの課題を解決しようとするものであり、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる研磨剤、研磨剤セット及び基体の研磨方法を提供することを目的とする。 The present invention is intended to solve these problems, and an object thereof is to provide an abrasive, an abrasive set, and a substrate polishing method that can improve the polishing selectivity of an insulating material with respect to a stopper material. .
 これに対し、本発明者は、4価金属元素の水酸化物を含む砥粒と、特定の重量平均分子量を有するα-グルコース重合物と、陽イオン性ポリマとを併用すると、ストッパ材料に対する絶縁材料の研磨選択性が従来に比して更に高まることを見出した。 On the other hand, the present inventor uses a combination of abrasive grains containing a hydroxide of a tetravalent metal element, an α-glucose polymer having a specific weight average molecular weight, and a cationic polymer to insulate the stopper material. It has been found that the polishing selectivity of the material is further increased as compared with the prior art.
 本発明に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、α-グルコース重合物と、陽イオン性ポリマと、を含有し、前記α-グルコース重合物の重量平均分子量が20.0×10以下である。 The abrasive according to the present invention contains water, abrasive grains containing a hydroxide of a tetravalent metal element, an α-glucose polymer, and a cationic polymer, and the weight of the α-glucose polymer The average molecular weight is 20.0 × 10 3 or less.
 ここで、「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)分析により求められる重量平均分子量として定義される。 Here, “weight average molecular weight” is defined as the weight average molecular weight determined by gel permeation chromatography (GPC) analysis.
 本発明に係る研磨剤によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。 The polishing agent according to the present invention can improve the polishing selectivity of the insulating material with respect to the stopper material.
 ところで、前記ストッパ材料としては、長年、窒化珪素が用いられてきたが、近年、ポリシリコンを用いたプロセスも増えてきている。この場合、ポリシリコンに対する絶縁材料の研磨選択性を高める観点から、ポリシリコンの研磨速度を抑制することが必要である。しかしながら、従来の研磨剤には、窒化珪素及びポリシリコンの両方に対する絶縁材料の研磨選択性は充分でなく、改善の余地がある。 By the way, as the stopper material, silicon nitride has been used for many years, but in recent years, processes using polysilicon have been increasing. In this case, it is necessary to suppress the polishing rate of polysilicon from the viewpoint of increasing the polishing selectivity of the insulating material with respect to polysilicon. However, conventional abrasives do not have sufficient polishing selectivity for insulating materials relative to both silicon nitride and polysilicon, and there is room for improvement.
 これに対し、本発明に係る研磨剤によれば、ストッパ材料として窒化珪素及びポリシリコンのいずれを用いても、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。 On the other hand, according to the abrasive according to the present invention, the polishing selectivity of the insulating material with respect to the stopper material can be improved regardless of whether silicon nitride or polysilicon is used as the stopper material.
 また、本発明に係る研磨剤によれば、シャロートレンチ分離絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、絶縁材料を高度に平坦化しつつ、絶縁材料を低研磨傷で研磨することもできる。 Further, according to the polishing agent according to the present invention, in the CMP technology for flattening the shallow trench isolation insulating material, the premetal insulating material, the interlayer insulating material, etc., the insulating material can be reduced with low polishing scratches while highly flattening the insulating material. It can also be polished.
 ところで、従来、STIを形成するためのCMP工程等においては、ディッシングが生じる場合がある。ディッシングとは、凹部に埋め込まれた絶縁材料が過剰に除去されて、被研磨面の一部が皿のように凹む現象である。そのため、平坦性を向上させるため、ディッシングの進行を抑制する必要がある。これに対し、本発明者は、4価金属元素の水酸化物を含む砥粒と、特定のα-グルコース重合物と、陽イオン性ポリマと、アミノ基含有スルホン酸化合物とを併用すると、ストッパ材料に対する絶縁材料の研磨選択性が従来に比して更に高まると共にディッシングの進行を抑制できることを見出した。 Incidentally, dishing may occur in the CMP process or the like for forming STI conventionally. Dishing is a phenomenon in which an insulating material embedded in a recess is excessively removed, and a part of the surface to be polished is recessed like a dish. Therefore, in order to improve flatness, it is necessary to suppress the progress of dishing. On the other hand, the present inventor uses a combination of an abrasive containing a hydroxide of a tetravalent metal element, a specific α-glucose polymer, a cationic polymer, and an amino group-containing sulfonic acid compound as a stopper. It has been found that the polishing selectivity of the insulating material with respect to the material is further enhanced as compared with the conventional material and the progress of dishing can be suppressed.
 本発明に係る研磨剤は、アミノ基含有スルホン酸化合物を更に含有し、前記α-グルコース重合物におけるα-グルコースの重合度が3以上である態様であってもよい。この場合、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる。また、凹凸を有する基板を研磨した際に、ストッパ材料に対する絶縁材料の研磨選択性を維持しつつ、ディッシングの進行を抑制することにより被研磨面を平坦化できる。 The abrasive according to the present invention may further include an amino group-containing sulfonic acid compound, and the degree of polymerization of α-glucose in the α-glucose polymer may be 3 or more. In this case, the polishing selectivity of the insulating material with respect to the stopper material can be improved and the progress of dishing can be suppressed. Further, when a substrate having irregularities is polished, the surface to be polished can be flattened by suppressing the progress of dishing while maintaining the polishing selectivity of the insulating material with respect to the stopper material.
 前記α-グルコース重合物は、下記式(I-A)で表される構造単位、及び、下記式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有することが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に高めることができる。
Figure JPOXMLDOC01-appb-C000002
The α-glucose polymer preferably has at least one selected from the group consisting of a structural unit represented by the following formula (IA) and a structural unit represented by the following formula (IB). . Thereby, the polishing selectivity of the insulating material with respect to the stopper material can be further enhanced.
Figure JPOXMLDOC01-appb-C000002
 4価金属元素の水酸化物は、セリウムの水酸化物を含むことが好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ、被研磨面における研磨傷の発生を抑制できる。 The tetravalent metal element hydroxide preferably contains a cerium hydroxide. Thereby, generation | occurrence | production of the grinding | polishing damage | wound in a to-be-polished surface can be suppressed, further improving the grinding | polishing selectivity of the insulating material with respect to a stopper material.
 本発明に係る研磨剤のpHは、3.0以上7.0以下であることが好ましい。これにより、絶縁材料を好適な研磨速度で研磨できると共に、ストッパ材料に対する絶縁材料の研磨選択比を更に高めることができる。 The pH of the abrasive according to the present invention is preferably 3.0 or more and 7.0 or less. Thereby, the insulating material can be polished at a suitable polishing rate, and the polishing selectivity of the insulating material to the stopper material can be further increased.
 本発明の一態様は、酸化珪素を含む被研磨面の研磨への前記研磨剤の使用に関する。すなわち、本発明に係る研磨剤の一態様は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。 One embodiment of the present invention relates to the use of the abrasive for polishing a surface to be polished containing silicon oxide. That is, one embodiment of the abrasive according to the present invention is preferably used for polishing a surface to be polished containing silicon oxide.
 本発明に係る研磨剤セットは、前記研磨剤の構成成分が第一の液と第二の液とに分けて保存され、第一の液が砥粒及び水を含み、第二の液がα-グルコース重合物、陽イオン性ポリマ及び水を含む。本発明に係る研磨剤セットによれば、本発明に係る研磨剤と同様の上記効果を得ることができる。前記第二の液は、アミノ基含有スルホン酸化合物を含んでいてもよい。 In the abrasive set according to the present invention, the constituents of the abrasive are stored separately in a first liquid and a second liquid, the first liquid contains abrasive grains and water, and the second liquid is α. -Contains glucose polymer, cationic polymer and water. According to the abrasive | polishing agent set which concerns on this invention, the said effect similar to the abrasive | polishing agent which concerns on this invention can be acquired. The second liquid may contain an amino group-containing sulfonic acid compound.
 本発明に係る基体の研磨方法は、前記研磨剤を用いて基体の被研磨面を研磨する工程を備えていてもよい。このような基体の研磨方法によれば、本発明に係る研磨剤と同様の上記効果を得ることができる。 The method for polishing a substrate according to the present invention may comprise a step of polishing the surface to be polished of the substrate using the abrasive. According to such a method for polishing a substrate, the same effects as those of the abrasive according to the present invention can be obtained.
 本発明に係る基体の研磨方法は、前記研磨剤セットにおける前記第一の液と前記第二の液とを混合して得られる研磨剤を用いて基体の被研磨面を研磨する工程を備えていてもよい。このような基体の研磨方法によれば、本発明に係る研磨剤と同様の上記効果を得ることができる。 The substrate polishing method according to the present invention includes a step of polishing a surface to be polished of the substrate using an abrasive obtained by mixing the first liquid and the second liquid in the abrasive set. May be. According to such a method for polishing a substrate, the same effects as those of the abrasive according to the present invention can be obtained.
 本発明によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる研磨剤、研磨剤セット及び基体の研磨方法を提供できる。本発明の一態様によれば、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる研磨剤、研磨剤セット及び基体の研磨方法を提供できる。 According to the present invention, it is possible to provide a polishing agent, a polishing agent set and a substrate polishing method capable of improving the polishing selectivity of the insulating material with respect to the stopper material. According to one embodiment of the present invention, it is possible to provide a polishing agent, a polishing agent set, and a substrate polishing method capable of improving the polishing selectivity of an insulating material with respect to a stopper material and suppressing the progress of dishing.
 本発明によれば、ストッパを用いた絶縁材料の研磨において、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。本発明の一態様によれば、ストッパを用いた絶縁材料の研磨において、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる。また、本発明によれば、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパを用いて絶縁材料を研磨するに際し、ストッパ材料に対する絶縁材料の研磨選択性を向上させることができる。本発明の一態様によれば、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパを用いて絶縁材料を研磨するに際し、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる。 According to the present invention, the polishing selectivity of the insulating material with respect to the stopper material can be improved in the polishing of the insulating material using the stopper. According to one embodiment of the present invention, in polishing of an insulating material using a stopper, the polishing selectivity of the insulating material with respect to the stopper material can be improved and the progress of dishing can be suppressed. In addition, according to the present invention, in CMP technology for flattening an STI insulating material, a pre-metal insulating material, an interlayer insulating material, etc., when the insulating material is polished using a stopper, the polishing selectivity of the insulating material with respect to the stopper material is improved. Can be made. According to one embodiment of the present invention, in CMP technology for planarizing an STI insulating material, a premetal insulating material, an interlayer insulating material, etc., when polishing an insulating material using a stopper, the polishing selectivity of the insulating material with respect to the stopper material is increased. It is possible to improve and suppress the progress of dishing.
 本発明によれば、ストッパを用いた絶縁材料の研磨への研磨剤又は研磨剤セットの使用を提供できる。また、本発明によれば、ストッパを用いたSTI絶縁材料、プリメタル絶縁材料、層間絶縁材料等の研磨への研磨剤又は研磨剤セットの使用を提供できる。さらに、本発明によれば、窒化珪素又はポリシリコンを含むストッパを用いた絶縁材料の研磨への研磨剤又は研磨剤セットの使用を提供できる。 According to the present invention, it is possible to provide use of an abrasive or an abrasive set for polishing an insulating material using a stopper. In addition, according to the present invention, it is possible to provide the use of an abrasive or a set of abrasives for polishing STI insulating material, premetal insulating material, interlayer insulating material and the like using a stopper. Furthermore, according to the present invention, it is possible to provide use of an abrasive or an abrasive set for polishing an insulating material using a stopper containing silicon nitride or polysilicon.
 以下、本発明の実施形態に係る研磨剤、研磨剤セット、及び、前記研磨剤又は前記研磨剤セットを用いた基体の研磨方法について詳細に説明する。 Hereinafter, an abrasive, an abrasive set, and a method for polishing a substrate using the abrasive or the abrasive set according to an embodiment of the present invention will be described in detail.
<定義>
 本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
<Definition>
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. It is.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 本明細書において、「研磨速度(Polishing Rate)」とは、単位時間当たりに材料が除去される速度(除去速度=Removal Rate)を意味する。 In this specification, “polishing rate” means a rate at which material is removed per unit time (removal rate = removal rate).
 本明細書において、「本実施形態」との語句には、第一実施形態及び第二実施形態が包含される。 In the present specification, the phrase “this embodiment” includes the first embodiment and the second embodiment.
<研磨剤>
 本実施形態に係る研磨剤は、研磨時に被研磨面に触れる組成物であり、例えばCMP用研磨剤である。具体的には、第一実施形態に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、α-グルコース重合物と、陽イオン性ポリマと、を少なくとも含有する。第二実施形態に係る研磨剤は、水と、4価金属元素の水酸化物を含む砥粒と、α-グルコースの重合度が3以上のα-グルコース重合物と、陽イオン性ポリマと、アミノ基含有スルホン酸化合物と、を少なくとも含有する。以下、必須成分、及び、任意に添加できる成分について説明する。
<Abrasive>
The abrasive | polishing agent which concerns on this embodiment is a composition which touches a to-be-polished surface at the time of grinding | polishing, for example, is an abrasive | polishing agent for CMP. Specifically, the abrasive according to the first embodiment contains at least water, abrasive grains containing a hydroxide of a tetravalent metal element, an α-glucose polymer, and a cationic polymer. The abrasive according to the second embodiment includes water, abrasive grains containing a hydroxide of a tetravalent metal element, an α-glucose polymer having a degree of polymerization of α-glucose of 3 or more, a cationic polymer, And at least an amino group-containing sulfonic acid compound. The essential components and components that can be optionally added are described below.
(砥粒)
 本実施形態に係る研磨剤は、4価金属元素の水酸化物を含む砥粒を含有する。「4価金属元素の水酸化物」は、4価の金属(M4+)と、少なくとも一つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば硝酸イオンNO 、硫酸イオンSO 2-)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば硝酸イオンNO 、硫酸イオンSO 2-)を含んでいてもよい。
(Abrasive grains)
The abrasive | polishing agent which concerns on this embodiment contains the abrasive grain containing the hydroxide of a tetravalent metal element. The “tetravalent metal element hydroxide” is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH ). The hydroxide of the tetravalent metal element may contain an anion other than the hydroxide ion (for example, nitrate ion NO 3 , sulfate ion SO 4 2− ). For example, a hydroxide of a tetravalent metal element may contain an anion (for example, nitrate ion NO 3 , sulfate ion SO 4 2− ) bonded to the tetravalent metal element.
 前記4価金属元素の水酸化物を含む砥粒は、シリカ又はセリアからなる従来の砥粒と比較して、絶縁材料(例えば酸化珪素)との反応性が高く、絶縁材料を高研磨速度で研磨できる。本実施形態に係る研磨剤において、4価金属元素の水酸化物を含む砥粒と併用することのできる他の砥粒としては、シリカ粒子、アルミナ粒子、セリア粒子等が挙げられる。また、4価金属元素の水酸化物を含む砥粒として、4価金属元素の水酸化物粒子とシリカ粒子との複合粒子等を用いることもできる。 The abrasive grains containing a hydroxide of the tetravalent metal element are more reactive with an insulating material (for example, silicon oxide) than conventional abrasive grains made of silica or ceria, and the insulating material can be removed at a high polishing rate. Can be polished. In the abrasive according to the present embodiment, examples of other abrasive grains that can be used in combination with the abrasive grains containing a hydroxide of a tetravalent metal element include silica particles, alumina particles, and ceria particles. In addition, as abrasive grains containing a tetravalent metal element hydroxide, composite particles of tetravalent metal element hydroxide particles and silica particles can be used.
 前記砥粒における前記4価金属元素の水酸化物の含有量の下限は、砥粒の全質量を基準として80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましく、99質量%以上が極めて好ましい。前記砥粒は、研磨剤の調製が容易であると共に研磨特性にも更に優れる観点から、前記4価金属元素の水酸化物粒子からなる(実質的に砥粒の100質量%が前記4価金属元素の水酸化物粒子である)ことが好ましい。 The lower limit of the content of the tetravalent metal element hydroxide in the abrasive is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more based on the total mass of the abrasive grains. 98 mass% or more is especially preferable, and 99 mass% or more is very preferable. The abrasive grains are composed of hydroxide particles of the tetravalent metal element from the viewpoint of easy preparation of an abrasive and further excellent polishing properties (substantially 100% by mass of the abrasive grains is the tetravalent metal). Elemental hydroxide particles).
 4価金属元素の水酸化物は、ストッパ材料に対する絶縁材料の研磨選択性を更に向上させつつ被研磨面における研磨傷の発生を抑制する観点から、希土類元素の水酸化物及びジルコニウムの水酸化物からなる群より選択される少なくとも一種を含むことが好ましい。4価金属元素は、絶縁材料の研磨速度を更に向上させる観点から、希土類元素が好ましい。4価を取りうる希土類元素としては、セリウム、プラセオジム、テルビウム等のランタノイドなどが挙げられ、入手が容易であり且つ研磨速度に更に優れる観点から、セリウムがより好ましい。希土類元素の水酸化物とジルコニウムの水酸化物とを併用してもよく、希土類元素から二種以上を選択して使用することもできる。 Tetravalent metal element hydroxides are rare earth element hydroxides and zirconium hydroxides from the viewpoint of suppressing the generation of polishing scratches on the surface to be polished while further improving the polishing selectivity of the insulating material with respect to the stopper material. It is preferable to include at least one selected from the group consisting of The tetravalent metal element is preferably a rare earth element from the viewpoint of further improving the polishing rate of the insulating material. Examples of rare earth elements that can be tetravalent include lanthanoids such as cerium, praseodymium, and terbium, and cerium is more preferable from the viewpoint of easy availability and excellent polishing rate. A rare earth element hydroxide and a zirconium hydroxide may be used in combination, and two or more rare earth elements may be selected and used.
 4価金属元素の水酸化物を含む砥粒を作製する方法としては、4価金属元素を含む塩とアルカリ液とを混合する手法が使用できる。この方法は、例えば、「希土類の科学」[足立吟也編、株式会社化学同人、1999年]304~305頁に説明されている。また、本実施形態に係る研磨剤に最も適した、4価金属元素の水酸化物を含む砥粒を作製する方法は、前記特許文献7に記載されている。これらの文献の記載は本明細書に援用される。 As a method for producing abrasive grains containing a hydroxide of a tetravalent metal element, a technique of mixing a salt containing a tetravalent metal element and an alkali solution can be used. This method is described in, for example, “Science of rare earths” [edited by Adiya Ginya, Kagaku Dojin, 1999], pages 304-305. A method for producing abrasive grains containing a hydroxide of a tetravalent metal element that is most suitable for the abrasive according to this embodiment is described in Patent Document 7. The descriptions of these documents are incorporated herein by reference.
 4価金属元素を含む塩としては、従来公知のものを特に制限なく使用でき、M(SO、M(NH(NO、M(NH(SO(Mは希土類元素を示す。)、Zr(SO・4HO等が挙げられる。Mとしては、化学的に活性なセリウム(Ce)が好ましい。 As the salt containing a tetravalent metal element, a conventionally known salt can be used without particular limitation, and M (SO 4 ) 2 , M (NH 4 ) 2 (NO 3 ) 6 , M (NH 4 ) 4 (SO 4 ) 4 (M represents a rare earth element), Zr (SO 4 ) 2 .4H 2 O, and the like. M is preferably chemically active cerium (Ce).
 アルカリ液としては、従来公知のものを特に制限なく使用できる。アルカリ液中の塩基性化合物としては、イミダゾール、テトラメチルアンモニウムヒドロキシド(TMAH)、グアニジン、トリエチルアミン、ピリジン、ピペリジン、ピロリジン、キトサン等の有機塩基;アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム等の無機塩基などが挙げられる。これらのうち、絶縁材料の研磨速度が更に向上する観点から、アンモニア及びイミダゾールからなる群より選択される少なくとも一種が好ましく、イミダゾールがより好ましい。前記方法で合成された4価金属元素の水酸化物を含む砥粒は、洗浄して金属不純物を除去できる。砥粒の洗浄方法としては、遠心分離等で固液分離を数回繰り返す方法などが使用できる。また、遠心分離、透析、限外濾過、イオン交換樹脂等によるイオンの除去などの工程で砥粒を洗浄することもできる。 As the alkali solution, a conventionally known one can be used without particular limitation. Basic compounds in the alkaline solution include organic bases such as imidazole, tetramethylammonium hydroxide (TMAH), guanidine, triethylamine, pyridine, piperidine, pyrrolidine, chitosan; ammonia, potassium hydroxide, sodium hydroxide, calcium hydroxide. Inorganic bases such as Among these, from the viewpoint of further improving the polishing rate of the insulating material, at least one selected from the group consisting of ammonia and imidazole is preferable, and imidazole is more preferable. Abrasive grains containing a hydroxide of a tetravalent metal element synthesized by the above method can be washed to remove metal impurities. As a method for cleaning the abrasive grains, a method of repeating solid-liquid separation several times by centrifugation or the like can be used. In addition, the abrasive grains can be washed in steps such as centrifugation, dialysis, ultrafiltration, and ion removal using an ion exchange resin.
 前記で得られた砥粒が凝集している場合、適切な方法で水中に分散させることが好ましい。主な分散媒である水に砥粒を分散させる方法としては、通常の撹拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等による機械的な分散処理を用いることができる。分散方法及び粒径制御方法については、例えば、「分散技術大全集」[株式会社情報機構、2005年7月]第三章「各種分散機の最新開発動向と選定基準」に記述されている方法を用いることができる。また、前記の洗浄処理を行って、4価金属元素の水酸化物を含む砥粒を含有する分散液の電気伝導度を下げる(例えば500mS/m以下)ことによっても、4価金属元素の水酸化物を含む砥粒の分散性を高めることができる。そのため、前記洗浄処理を分散処理として適用してもよく、前記洗浄処理と分散処理とを併用してもよい。 When the abrasive grains obtained above are aggregated, it is preferable to disperse them in water by an appropriate method. As a method for dispersing abrasive grains in water, which is the main dispersion medium, mechanical dispersion treatment using a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the dispersion treatment using a normal stirrer. Regarding the dispersion method and the particle size control method, for example, the method described in Chapter 3 “Latest Development Trends and Selection Criteria of Various Dispersers” in “Dispersion Technology Complete Collection” [Information Organization, July 2005] Can be used. Further, the water content of the tetravalent metal element can also be reduced by reducing the electrical conductivity (for example, 500 mS / m or less) of the dispersion containing abrasive grains containing a hydroxide of the tetravalent metal element by performing the above-described cleaning treatment. The dispersibility of the abrasive grains containing the oxide can be increased. Therefore, the cleaning process may be applied as a dispersion process, and the cleaning process and the dispersion process may be used in combination.
 砥粒の平均粒径の下限は、絶縁材料に対する更に好適な研磨速度を得る観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。砥粒の平均粒径の上限は、被研磨面に傷がつくことが更に抑制される観点から、300nm以下が好ましく、250nm以下がより好ましく、200nm以下が更に好ましい。上記観点から、砥粒の平均粒径は、1nm以上300nm以下であることがより好ましい。 The lower limit of the average grain size of the abrasive grains is preferably 1 nm or more, more preferably 2 nm or more, and further preferably 3 nm or more from the viewpoint of obtaining a more suitable polishing rate for the insulating material. The upper limit of the average grain size of the abrasive grains is preferably 300 nm or less, more preferably 250 nm or less, and even more preferably 200 nm or less, from the viewpoint of further suppressing scratches on the surface to be polished. From the above viewpoint, the average grain size of the abrasive grains is more preferably 1 nm or more and 300 nm or less.
 砥粒の「平均粒径」とは、砥粒の平均二次粒径を意味する。砥粒の平均粒径は、例えば、研磨剤、又は、後述する研磨剤セットにおけるスラリについて、光子相関法で測定できる。砥粒の平均粒径は、具体的には例えば、マルバーンインスツルメンツ社製の装置名:ゼータサイザー3000HS、ベックマンコールター社製の装置名:N5等で測定できる。N5を用いた測定方法は、以下のようにして行うことができる。具体的には例えば、砥粒の含有量を0.2質量%に調整した水分散液を調製し、この水分散液を1cm角のセルに約4mL(Lは「リットル」を示す。以下同じ)入れ、装置内にセルを設置する。分散媒の屈折率を1.33、粘度を0.887mPa・sに設定し、25℃において測定を行うことで得られる値を砥粒の平均粒径として採用できる。 The “average particle diameter” of the abrasive grains means the average secondary particle diameter of the abrasive grains. The average particle diameter of the abrasive grains can be measured, for example, by a photon correlation method for a slurry or a slurry in a polishing agent set described later. Specifically, the average particle size of the abrasive grains can be measured by, for example, device name: Zetasizer 3000HS manufactured by Malvern Instruments, device name: N5 manufactured by Beckman Coulter, and the like. The measuring method using N5 can be performed as follows. Specifically, for example, an aqueous dispersion in which the content of abrasive grains is adjusted to 0.2% by mass is prepared, and this aqueous dispersion is about 4 mL (L is “liter” in a 1 cm square cell. ) Put the cell in the device. The value obtained by setting the refractive index of the dispersion medium to 1.33, the viscosity to 0.887 mPa · s, and measuring at 25 ° C. can be adopted as the average particle diameter of the abrasive grains.
 砥粒の含有量の下限は、絶縁材料に対する更に好適な研磨速度が得られる観点から、研磨剤の全質量を基準として0.01質量%以上が好ましく、0.02質量%以上がより好ましい。砥粒の含有量の上限は、研磨剤の保存安定性が高くなる観点から、研磨剤の全質量を基準として20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、5質量%以下が特に好ましく、1質量%以下が極めて好ましく、0.5質量%以下が非常に好ましい。上記観点から、前記砥粒の含有量は、研磨剤の全質量を基準として0.01質量%以上20質量%以下であることがより好ましい。 The lower limit of the content of the abrasive grains is preferably 0.01% by mass or more and more preferably 0.02% by mass or more based on the total mass of the abrasive from the viewpoint of obtaining a more suitable polishing rate for the insulating material. The upper limit of the content of the abrasive is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less, based on the total mass of the abrasive, from the viewpoint of increasing the storage stability of the abrasive. Preferably, 5 mass% or less is particularly preferable, 1 mass% or less is very preferable, and 0.5 mass% or less is very preferable. From the above viewpoint, the content of the abrasive grains is more preferably 0.01% by mass or more and 20% by mass or less based on the total mass of the abrasive.
(添加剤)
 本実施形態に係る研磨剤は、添加剤を含有する。ここで、「添加剤」とは、研磨速度、研磨選択性等の研磨特性;砥粒の分散性、保存安定性等の研磨剤特性などを調整するために、水及び砥粒以外に研磨剤が含有する物質を指す。
(Additive)
The abrasive | polishing agent which concerns on this embodiment contains an additive. Here, the “additive” refers to a polishing agent other than water and abrasive grains in order to adjust polishing characteristics such as polishing rate and polishing selectivity; abrasive characteristics such as abrasive dispersibility and storage stability. Refers to the substance contained.
[第一の添加剤:α-グルコース重合物]
 本実施形態に係る研磨剤は、第一の添加剤として、α-グルコース重合物を含有する。本明細書において、「α-グルコース重合物」とは、特に断らない限り、α-グルコースの重合度が2以上の重合物(例えば糖)として定義される。第二実施形態においては、α-グルコースの重合度が3以上の重合物(例えば糖)が用いられる。第一の添加剤は、ストッパ材料(例えば窒化珪素及びポリシリコン)の研磨速度が過度に高くなることを抑制する効果がある。この効果が得られる理由について、第一の添加剤がストッパを被覆することにより、砥粒による研磨の進行が緩和されて研磨速度が過度に高くなることが抑制されるものと推測される。
[First additive: α-glucose polymer]
The abrasive according to this embodiment contains an α-glucose polymer as the first additive. In the present specification, “α-glucose polymer” is defined as a polymer (for example, sugar) having a degree of polymerization of α-glucose of 2 or more unless otherwise specified. In the second embodiment, a polymer (for example, sugar) having a degree of polymerization of α-glucose of 3 or more is used. The first additive has an effect of suppressing an excessive increase in the polishing rate of the stopper material (for example, silicon nitride and polysilicon). Regarding the reason why this effect is obtained, it is presumed that the first additive covers the stopper, thereby suppressing the progress of polishing by the abrasive grains and suppressing the polishing rate from becoming excessively high.
 α-グルコース重合物としては、アミロース;アミロペクチン;デキストラン;デキストリン;マルトデキストリン;α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等のシクロデキストリン;マルトース、イソマルトース、マルトトリオース、スタキオース等のオリゴ糖などが挙げられる。第二実施形態において用いられるα-グルコース重合物としては、アミロース;アミロペクチン;デキストラン;デキストリン;マルトデキストリン;α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等のシクロデキストリン;マルトトリオース、スタキオース等のオリゴ糖などが挙げられる。α-グルコース重合物のDE値(例えば「LANE-EYNON法」による値)は、ストッパ材料に対する絶縁材料の研磨選択性を更に高める観点から、13~50が好ましい。 Examples of α-glucose polymer include amylose; amylopectin; dextran; dextrin; maltodextrin; cyclodextrins such as α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin; maltose, isomaltose, maltotriose, stachyose, etc. Examples include oligosaccharides. The α-glucose polymer used in the second embodiment includes amylose; amylopectin; dextran; dextrin; maltodextrin; cyclodextrins such as α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin; maltotriose, stachyose And oligosaccharides. The DE value of the α-glucose polymer (for example, the value according to the “LANE-EYNON method”) is preferably 13 to 50 from the viewpoint of further enhancing the polishing selectivity of the insulating material with respect to the stopper material.
 上記デキストリンとしては、澱粉の分解により得られる、分解物末端にアルデヒド基を有したデキストリン(他のデキストリンとの区別のため、「一般デキストリン」という。);澱粉の分解の過程で一部分解されにくいものを精製することにより分取した難消化性デキストリン;前記アルデヒド末端を水素添加により還元し、ヒドロキシル基に変えた還元型デキストリン等が挙げられる。デキストリンとしては、これらのいずれの化合物も使用できる。 As the above dextrin, dextrin having an aldehyde group at the end of the decomposition product obtained by decomposition of starch (referred to as “general dextrin” for distinction from other dextrins); difficult to be partially decomposed in the process of starch decomposition Examples include indigestible dextrin collected by purifying the product; reduced dextrin in which the aldehyde end is reduced by hydrogenation and changed to a hydroxyl group. Any of these compounds can be used as the dextrin.
 α-グルコース重合物としては、サンエイ糖化株式会社製『NSD』シリーズ;三和澱粉工業株式会社製『サンマルト-S』、『サンデック』シリーズ;松谷化学工業株式会社製『H-PDX』、『マックス1000』、『TK-16』、『ファイバーソル2』、『ファイバーソル2H』等が挙げられる。第二実施形態において用いられるα-グルコース重合物としては、サンエイ糖化株式会社製『NSD』シリーズ;三和澱粉工業株式会社製『サンデック』シリーズ;松谷化学工業株式会社製『H-PDX』、『マックス1000』、『TK-16』、『ファイバーソル2』、『ファイバーソル2H』等が挙げられる。 As the α-glucose polymer, the “NSD” series manufactured by Sanei Saccharification Co., Ltd .; “Sun Mart-S”, “Sandeck” series manufactured by Sanwa Starch Co., Ltd .; “H-PDX”, “Max” manufactured by Matsutani Chemical 1000 ”,“ TK-16 ”,“ Fiber Sol 2 ”,“ Fiber Sol 2H ”and the like. The α-glucose polymer used in the second embodiment includes “NSD” series manufactured by Sanei Saccharification Co., Ltd .; “Sandek” series manufactured by Sanwa Starch Co., Ltd .; “H-PDX” manufactured by Matsutani Chemical Co. “Max 1000”, “TK-16”, “Fiber Sol 2”, “Fiber Sol 2H” and the like.
 α-グルコース重合物としては、ストッパ材料の研磨速度が過度に高くなることを抑制する効果を効果的に得る観点から、下記式(I-A)で表される構造単位、及び、下記式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有することが好ましく、デキストリン及びマルトースからなる群より選択される少なくとも一種がより好ましい(第二実施形態においてはデキストリンがより好ましい)。式(I-A)で表される構造単位及び式(I-B)で表される構造単位の両方を含む場合、その配列に制限はなく、規則的でもランダムでもよい。α-グルコース重合物としては、汎用性に優れる観点から、デキストリン及びマルトースからなる群より選択される少なくとも一種が好ましい(第二実施形態においてはデキストリンがより好ましい)。
Figure JPOXMLDOC01-appb-C000003
As the α-glucose polymer, from the viewpoint of effectively obtaining an effect of suppressing an excessive increase in the polishing rate of the stopper material, the structural unit represented by the following formula (IA) and the following formula ( It is preferable to have at least one selected from the group consisting of structural units represented by IB), more preferably at least one selected from the group consisting of dextrin and maltose (dextrin is more preferable in the second embodiment) ). In the case of including both the structural unit represented by the formula (IA) and the structural unit represented by the formula (IB), the arrangement thereof is not limited and may be regular or random. The α-glucose polymer is preferably at least one selected from the group consisting of dextrin and maltose from the viewpoint of excellent versatility (dextrin is more preferred in the second embodiment).
Figure JPOXMLDOC01-appb-C000003
 前記α-グルコース重合物は、下記式(II)~(VII)で表される構造単位の少なくとも一種を有することが好ましく、式(III)で表される構造単位を有することがより好ましい。これにより、ストッパ材料に対する絶縁材料の研磨選択性を更に高めることができる。
Figure JPOXMLDOC01-appb-C000004
The α-glucose polymer preferably has at least one structural unit represented by the following formulas (II) to (VII), and more preferably has a structural unit represented by the formula (III). Thereby, the polishing selectivity of the insulating material with respect to the stopper material can be further enhanced.
Figure JPOXMLDOC01-appb-C000004
 第一実施形態においてα-グルコースの重合度の下限は、ストッパ材料に対する絶縁材料の研磨選択性を更に高める観点から、2以上であり、3以上が好ましく、5以上がより好ましい。α-グルコースの重合度の上限は、絶縁材料の良好な研磨速度が得られ易い観点から、120以下が好ましく、90以下がより好ましく、60以下が更に好ましい。 In the first embodiment, the lower limit of the degree of polymerization of α-glucose is 2 or more, preferably 3 or more, and more preferably 5 or more from the viewpoint of further improving the polishing selectivity of the insulating material with respect to the stopper material. The upper limit of the degree of polymerization of α-glucose is preferably 120 or less, more preferably 90 or less, and even more preferably 60 or less, from the viewpoint that a good polishing rate of the insulating material can be easily obtained.
 第二実施形態においてα-グルコースの重合度の下限は、ストッパ材料に対する絶縁材料の研磨選択性を更に高めると共にディッシングの進行を抑制する観点から、3以上であり、5以上が好ましく、7以上がより好ましく、10以上が更に好ましい。α-グルコースの重合度の上限は、絶縁材料の良好な研磨速度が得られ易い観点から、120以下が好ましく、90以下がより好ましく、60以下が更に好ましい。 In the second embodiment, the lower limit of the polymerization degree of α-glucose is 3 or more, preferably 5 or more, more preferably 7 or more from the viewpoint of further enhancing the polishing selectivity of the insulating material with respect to the stopper material and suppressing the progress of dishing. More preferred is 10 or more. The upper limit of the degree of polymerization of α-glucose is preferably 120 or less, more preferably 90 or less, and even more preferably 60 or less, from the viewpoint that a good polishing rate of the insulating material can be easily obtained.
 なお、本明細書において「α-グルコースの重合度」とは、一分子中におけるα-グルコースに由来する構造単位の数として定義され、例えば、前記式(I-A)、前記式(I-B)、前記式(II)~(VII)で表される構造単位の、一分子中の合計数である。 In the present specification, the “degree of polymerization of α-glucose” is defined as the number of structural units derived from α-glucose in one molecule. For example, the formula (IA) and the formula (I— B) is the total number of structural units represented by the formulas (II) to (VII) in one molecule.
 本実施形態に係る研磨剤において、α-グルコース重合物は、研磨選択性等の研磨特性を調整する目的で、それぞれ単独で又は二種類以上を組み合わせて使用できる。 In the abrasive according to this embodiment, the α-glucose polymer can be used alone or in combination of two or more for the purpose of adjusting polishing characteristics such as polishing selectivity.
 第一の添加剤の重量平均分子量の上限は、絶縁材料(例えば酸化珪素)の良好な研磨速度が得られると共にストッパ材料に対する絶縁材料の研磨選択性が向上する観点から、20.0×10以下である。第一の添加剤の重量平均分子量の上限は、絶縁材料(例えば酸化珪素)の更に良好な研磨速度が得られると共にストッパ材料に対する絶縁材料の研磨選択性が更に向上する観点から、20.0×10未満が好ましく、18.0×10以下がより好ましく、15.0×10以下が更に好ましく、12.0×10以下が特に好ましく、10.0×10以下が極めて好ましい。第一実施形態における第一の添加剤の重量平均分子量の下限は、研磨選択性及び平坦性が更に向上する観点から、250以上が好ましく、350以上がより好ましく、500以上が更に好ましく、1.0×10以上が特に好ましく、1.5×10以上が極めて好ましい。上記の観点から、第一実施形態における第一の添加剤の重量平均分子量は、250以上20.0×10以下がより好ましい。第二実施形態における第一の添加剤の重量平均分子量の下限は、研磨選択性及び平坦性が更に向上する観点から、350以上が好ましく、500以上がより好ましく、800以上が更に好ましく、1.0×10以上が特に好ましく、1.5×10以上が極めて好ましい。上記の観点から、第二実施形態における第一の添加剤の重量平均分子量は、350以上20.0×10以下がより好ましい。なお、重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定できる。 The upper limit of the weight average molecular weight of the first additive is 20.0 × 10 3 from the viewpoint of obtaining a good polishing rate of the insulating material (for example, silicon oxide) and improving the polishing selectivity of the insulating material with respect to the stopper material. It is as follows. The upper limit of the weight average molecular weight of the first additive is 20.0 × from the viewpoint of obtaining a better polishing rate of the insulating material (for example, silicon oxide) and further improving the polishing selectivity of the insulating material with respect to the stopper material. is preferably less than 10 3, more preferably 18.0 × 10 3 or less, more preferably 15.0 × 10 3 or less, particularly preferably 12.0 × 10 3 or less, very preferably 10.0 × 10 3 or less. The lower limit of the weight average molecular weight of the first additive in the first embodiment is preferably 250 or more, more preferably 350 or more, still more preferably 500 or more, from the viewpoint of further improving polishing selectivity and flatness. 0 × 10 3 or more is particularly preferable, and 1.5 × 10 3 or more is extremely preferable. From the above viewpoint, the weight average molecular weight of the first additive in the first embodiment is more preferably 250 or more and 20.0 × 10 3 or less. From the viewpoint of further improving polishing selectivity and flatness, the lower limit of the weight average molecular weight of the first additive in the second embodiment is preferably 350 or more, more preferably 500 or more, still more preferably 800 or more. 0 × 10 3 or more is particularly preferable, and 1.5 × 10 3 or more is extremely preferable. From the above viewpoint, the weight average molecular weight of the first additive in the second embodiment is more preferably 350 or more and 20.0 × 10 3 or less. In addition, a weight average molecular weight can be measured on condition of the following by the gel permeation chromatography method (GPC) using the calibration curve of a standard polystyrene, for example.
(条件)
 使用機器:LC-20AD(株式会社島津製作所製)
 カラム:Gelpack GL-W540+550
 溶離液:0.1M NaCl水溶液
 測定温度:40℃
 カラムサイズ:10.7mmI.D.×300mm
 流量:1.0mL/min
 試料濃度:0.2質量%
 検出器:RID-10A(株式会社島津製作所製)
(conditions)
Equipment used: LC-20AD (manufactured by Shimadzu Corporation)
Column: Gelpack GL-W540 + 550
Eluent: 0.1M NaCl aqueous solution Measurement temperature: 40 ° C
Column size: 10.7 mmI. D. × 300mm
Flow rate: 1.0 mL / min
Sample concentration: 0.2% by mass
Detector: RID-10A (manufactured by Shimadzu Corporation)
 第一の添加剤の含有量の下限は、研磨選択性及び平坦性が更に向上する観点から、研磨剤の全質量を基準として0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上が更に好ましく、0.5質量%以上が特に好ましい。第一の添加剤の含有量の上限は、絶縁材料の適度な研磨速度を得る観点から、研磨剤の全質量を基準として5.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下が更に好ましい。上記の観点から、第一の添加剤の含有量は、研磨剤の全質量を基準として0.01質量%以上5.0質量%以下がより好ましい。なお、第一の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。 The lower limit of the content of the first additive is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the abrasive, from the viewpoint of further improving polishing selectivity and flatness. Preferably, 0.3% by mass or more is more preferable, and 0.5% by mass or more is particularly preferable. The upper limit of the content of the first additive is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the abrasive, from the viewpoint of obtaining an appropriate polishing rate of the insulating material. 2.0 mass% or less is still more preferable. From the above viewpoint, the content of the first additive is more preferably 0.01% by mass or more and 5.0% by mass or less based on the total mass of the abrasive. In addition, when using a some compound as a 1st additive, it is preferable that the sum total of content of each compound satisfy | fills the said range.
[第二の添加剤:陽イオン性ポリマ]
 本実施形態に係る研磨剤は、前記第一の添加剤の他に、第二の添加剤として陽イオン性ポリマを含有する。「陽イオン性ポリマ」とは、カチオン基、又は、カチオン基にイオン化され得る基を、主鎖又は側鎖に有するポリマである。陽イオン性ポリマは、前記第一の添加剤と併用することにより、ストッパ材料(例えば窒化珪素及びポリシリコン)の研磨速度が過度に高くなることを抑制する効果がある。また、平坦性を悪化させることなく絶縁材料(例えば酸化珪素)の研磨速度を上昇させる効果もある。陽イオン性ポリマが前記第一の添加剤と相互作用することにより、ストッパ材料の研磨速度を抑制できると共に、前記第一の添加剤が絶縁材料を過度に被覆して絶縁材料の研磨速度が小さくなることを抑制することにより絶縁材料の研磨速度を向上させることができると考えられる。また、陽イオン性ポリマが前記第一の添加剤と相互作用することにより前記第一の添加剤が適度に絶縁材料を被覆することで、絶縁材料の凸部の研磨速度を向上させつつ、絶縁材料の凹部の研磨速度を抑制するため、高い平坦性を維持することもできると考えられる。
[Second additive: cationic polymer]
The abrasive | polishing agent which concerns on this embodiment contains a cationic polymer as a 2nd additive other than said 1st additive. The “cationic polymer” is a polymer having a cationic group or a group that can be ionized into a cationic group in a main chain or a side chain. The cationic polymer has an effect of suppressing an excessive increase in the polishing rate of the stopper material (for example, silicon nitride and polysilicon) when used in combination with the first additive. Also, there is an effect of increasing the polishing rate of the insulating material (for example, silicon oxide) without deteriorating the flatness. When the cationic polymer interacts with the first additive, the polishing rate of the stopper material can be suppressed, and the first additive excessively covers the insulating material to reduce the polishing rate of the insulating material. It is considered that the polishing rate of the insulating material can be improved by suppressing this. In addition, the cationic polymer interacts with the first additive so that the first additive appropriately coats the insulating material, thereby improving the polishing rate of the convex portion of the insulating material and insulating. In order to suppress the polishing rate of the concave portions of the material, it is considered that high flatness can be maintained.
 陽イオン性ポリマとしては、ストッパ材料に対する絶縁材料の更に優れた研磨選択性を得る観点から、アリルアミン重合体、ジアリルアミン重合体、ビニルアミン重合体及びエチレンイミン重合体からなる群より選択される少なくとも一種が好ましい。これらの重合体は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン及びこれらの誘導体からなる群より選択される少なくとも一種の単量体成分を重合させることにより得ることができる。前記重合体は、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン及びこれらの誘導体以外の単量体成分由来の構造単位を有していてもよく、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、アクリル酸、アクリル酸メチル、メタクリル酸、マレイン酸、二酸化硫黄等に由来する構造単位を有していてもよい。 The cationic polymer is at least one selected from the group consisting of an allylamine polymer, a diallylamine polymer, a vinylamine polymer, and an ethyleneimine polymer from the viewpoint of obtaining further excellent polishing selectivity of the insulating material with respect to the stopper material. preferable. These polymers can be obtained by polymerizing at least one monomer component selected from the group consisting of allylamine, diallylamine, vinylamine, ethyleneimine, and derivatives thereof. The polymer may have a structural unit derived from a monomer component other than allylamine, diallylamine, vinylamine, ethyleneimine and derivatives thereof, acrylamide, dimethylacrylamide, diethylacrylamide, hydroxyethylacrylamide, acrylic acid, It may have a structural unit derived from methyl acrylate, methacrylic acid, maleic acid, sulfur dioxide or the like.
 陽イオン性ポリマとしては、アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミンの単独重合体(ポリアリルアミン、ポリジアリルアミン、ポリビニルアミン、ポリエチレンイミン);これらの単量体成分の誘導体の単独重合体;アリルアミン、ジアリルアミン、ビニルアミン、エチレンイミン又はこれらの誘導体由来の構造単位を有する共重合体等が挙げられる。共重合体において構造単位の配列は任意である。例えば、(a)それぞれ同種の構造単位が連続したブロック共重合の形態、(b)構造単位A及び構造単位Bが特に秩序なく配列したランダム共重合の形態、(c)構造単位A及び構造単位Bが交互に配列した交互共重合の形態、等を含む任意の形態をとり得る。陽イオン性ポリマは塩を形成してもよい。このような塩としては、酢酸等の有機酸塩;塩酸塩、臭素酸塩等のハロゲン酸塩;リン酸塩、硫酸塩、硝酸塩、炭酸塩等の無機酸塩などが挙げられる。 Cationic polymers include allylamine, diallylamine, vinylamine, ethyleneimine homopolymer (polyallylamine, polydiallylamine, polyvinylamine, polyethyleneimine); homopolymers of derivatives of these monomer components; allylamine, diallylamine, Examples thereof include a copolymer having a structural unit derived from vinylamine, ethyleneimine or a derivative thereof. In the copolymer, the arrangement of structural units is arbitrary. For example, (a) a form of block copolymer in which the same type of structural units are continuous, (b) a form of random copolymerization in which the structural units A and B are particularly ordered, (c) structural units A and structural units It can take any form, including alternating copolymerization forms in which B are arranged alternately. The cationic polymer may form a salt. Examples of such salts include organic acid salts such as acetic acid; halogen acid salts such as hydrochloride and bromate; inorganic acid salts such as phosphate, sulfate, nitrate, and carbonate.
 アリルアミン重合体は、アリルアミン又はその誘導体を重合させた構造を有する重合体であり、例えば、下記式(VIII)又は(IX)で表される構造単位を有する重合体が挙げられる。アリルアミン誘導体としては、アルコキシカルボニル化アリルアミン、メチルカルボニル化アリルアミン、アミノカルボニル化アリルアミン、尿素化アリルアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
[式中、Rは、それぞれ独立に水素原子又は一価の有機基を示し、Xは、陰イオンを示す]
The allylamine polymer is a polymer having a structure obtained by polymerizing allylamine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (VIII) or (IX). Examples of the allylamine derivative include alkoxycarbonylated allylamine, methylcarbonylated allylamine, aminocarbonylated allylamine, ureated allylamine and the like.
Figure JPOXMLDOC01-appb-C000005
[In the formula, each R independently represents a hydrogen atom or a monovalent organic group, and X represents an anion.]
 ジアリルアミン重合体は、ジアリルアミン又はその誘導体を重合させた構造を有する重合体であり、例えば、下記式(X)又は(XI)で表される構造単位を有する重合体が挙げられる。ジアリルアミン誘導体としては、メチルジアリルアミン、ジアリルジメチルアンモニウム塩、ジアリルメチルエチルアンモニウム塩、アシル化ジアリルアミン、アミノカルボニル化ジアリルアミン、アルコキシカルボニル化ジアリルアミン、アミノチオカルボニル化ジアリルアミン、ヒドロキシアルキル化ジアリルアミン等が挙げられる。アンモニウム塩としては、アンモニウムクロリド等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
[式中、Rは、それぞれ独立に水素原子又は一価の有機基を示し、Xは、陰イオンを示す。]
The diallylamine polymer is a polymer having a structure obtained by polymerizing diallylamine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (X) or (XI). Examples of diallylamine derivatives include methyl diallylamine, diallyldimethylammonium salt, diallylmethylethylammonium salt, acylated diallylamine, aminocarbonylated diallylamine, alkoxycarbonylated diallylamine, aminothiocarbonylated diallylamine, hydroxyalkylated diallylamine, and the like. Examples of ammonium salts include ammonium chloride.
Figure JPOXMLDOC01-appb-C000006
[In the formula, each R independently represents a hydrogen atom or a monovalent organic group, and X represents an anion. ]
 ビニルアミン重合体は、ビニルアミン又はその誘導体を重合させた構造を有する重合体であり、例えば、下記式(XII)で表される構造単位を有する重合体が挙げられる。ビニルアミン誘導体としては、アルキル化ビニルアミン、アミド化ビニルアミン、エチレンオキサイド化ビニルアミン、プロピレンオキサイド化ビニルアミン、アルコキシ化ビニルアミン、カルボキシメチル化ビニルアミン、アシル化ビニルアミン、尿素化ビニルアミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
[式中、Rは、それぞれ独立に水素原子又は一価の有機基を示す。]
The vinylamine polymer is a polymer having a structure obtained by polymerizing vinylamine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (XII). Examples of the vinylamine derivative include alkylated vinylamine, amidated vinylamine, ethylene oxideated vinylamine, propylene oxided vinylamine, alkoxylated vinylamine, carboxymethylated vinylamine, acylated vinylamine, and ureaated vinylamine.
Figure JPOXMLDOC01-appb-C000007
[In formula, R shows a hydrogen atom or a monovalent organic group each independently. ]
 エチレンイミン重合体は、エチレンイミン又はその誘導体を重合させた構造を有する重合体であり、例えば、下記式(XIII)で表される構造単位を有する重合体が挙げられる。エチレンイミン誘導体としては、アミノエチル化アクリル重合体、アルキル化エチレンイミン、尿素化エチレンイミン、プロピレンオキサイド化エチレンイミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
[式中、Rは、水素原子又は一価の有機基を示す。]
The ethyleneimine polymer is a polymer having a structure obtained by polymerizing ethyleneimine or a derivative thereof, and examples thereof include a polymer having a structural unit represented by the following formula (XIII). Examples of the ethyleneimine derivative include aminoethylated acrylic polymer, alkylated ethyleneimine, ureaated ethyleneimine, propylene oxideated ethyleneimine and the like.
Figure JPOXMLDOC01-appb-C000008
[Wherein, R represents a hydrogen atom or a monovalent organic group. ]
 式(VIII)~式(XIII)におけるRの一価の有機基としては、メチル基、エチル基、プロピル基等のアルキル基;一級アミノ基、二級アミノ基、三級アミノ基等のアミノ基;アミド基などが挙げられる。式(IX)及び式(XI)におけるXとしては、酢酸イオン等の有機酸イオン;塩化物イオン、臭化物イオン等のハロゲン化物イオン;リン酸イオン、硫酸イオン、硝酸イオン、炭酸イオン等の無機酸イオンなどが挙げられる。 Examples of the monovalent organic group represented by R in formulas (VIII) to (XIII) include an alkyl group such as a methyl group, an ethyl group, and a propyl group; and an amino group such as a primary amino group, a secondary amino group, and a tertiary amino group An amide group and the like. X in formula (IX) and formula (XI) is an organic acid ion such as acetate ion; halide ion such as chloride ion or bromide ion; inorganic such as phosphate ion, sulfate ion, nitrate ion or carbonate ion An acid ion etc. are mentioned.
 陽イオン性ポリマとしては、カチオン変性したポリアクリルアミド、カチオン変性したポリジメチルアクリルアミド等のアクリル系ポリマ;ジエチレントリアミン等のジアルキレントリアミンと他の単量体との共重合体(ジシアンジアミド/ジエチレントリアミン共重合体等のジシアンジアミド/ジアルキレントリアミン共重合体など);キトサン、キトサン誘導体、カチオン変性したセルロース、カチオン変性したデキストラン等の多糖類;これらの化合物を構成する構成単位由来の単量体を重合させて得られる共重合体などを用いてもよい。 Examples of cationic polymers include acrylic polymers such as cation-modified polyacrylamide and cation-modified polydimethylacrylamide; copolymers of dialkylenetriamines such as diethylenetriamine and other monomers (dicyandiamide / diethylenetriamine copolymer, etc.) Dicyandiamide / dialkylenetriamine copolymer, etc.); polysaccharides such as chitosan, chitosan derivatives, cation-modified cellulose, cation-modified dextran; obtained by polymerizing monomers derived from structural units constituting these compounds A copolymer or the like may be used.
 前記陽イオン性ポリマの中でも、ストッパ材料(例えば窒化珪素及びポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨選択性が更に向上する観点、及び、絶縁材料の研磨速度が更に向上する観点から、アリルアミンの単独重合体、アリルアミン誘導体の単独重合体、ジアリルジメチルアンモニウム塩由来の構造単位を有する重合体、及び、ジシアンジアミド/ジエチレントリアミン共重合体からなる群より選択される少なくとも一種が好ましく、ポリアリルアミン及びポリジアリルジメチルアンモニウムクロリドからなる群より選択される少なくとも一種がより好ましい。陽イオン性ポリマは、研磨選択性、平坦性等の研磨特性を調整する目的で、それぞれ単独で又は二種類以上を組み合わせて使用できる。 Among the cationic polymers, from the viewpoint of further improving the polishing selectivity of the insulating material (for example, silicon oxide) with respect to the stopper material (for example, silicon nitride and polysilicon), and from the viewpoint of further improving the polishing rate of the insulating material, Preferred are at least one selected from the group consisting of homopolymers of allylamine, homopolymers of allylamine derivatives, polymers having structural units derived from diallyldimethylammonium salts, and dicyandiamide / diethylenetriamine copolymers. More preferred is at least one selected from the group consisting of diallyldimethylammonium chloride. Cationic polymers can be used alone or in combination of two or more for the purpose of adjusting polishing properties such as polishing selectivity and flatness.
 陽イオン性ポリマの重量平均分子量の下限は、ストッパ材料(例えば窒化珪素及びポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨選択性が更に向上する観点から、100以上が好ましく、300以上がより好ましく、500以上が更に好ましい。陽イオン性ポリマの重量平均分子量の上限は、ストッパ材料(例えば窒化珪素及びポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨選択性が更に向上する観点から、1000×10以下が好ましく、800×10以下がより好ましく、500×10以下が更に好ましい。上記の観点から、陽イオン性ポリマの重量平均分子量は、100以上1000×10以下がより好ましい。なお、陽イオン性ポリマの重量平均分子量は、第一の添加剤の重量平均分子量と同様の方法により測定できる。 The lower limit of the weight average molecular weight of the cationic polymer is preferably 100 or more, more preferably 300 or more from the viewpoint of further improving the polishing selectivity of the insulating material (for example, silicon oxide) with respect to the stopper material (for example, silicon nitride and polysilicon). 500 or more is more preferable. The upper limit of the weight average molecular weight of the cationic polymer is preferably 1000 × 10 3 or less from the viewpoint of further improving the polishing selectivity of the insulating material (eg, silicon oxide) with respect to the stopper material (eg, silicon nitride and polysilicon), and 800 × 10 3 or less is more preferable, and 500 × 10 3 or less is more preferable. From the above viewpoint, the weight average molecular weight of the cationic polymer is more preferably 100 or more and 1000 × 10 3 or less. The weight average molecular weight of the cationic polymer can be measured by the same method as the weight average molecular weight of the first additive.
 陽イオン性ポリマの含有量の下限は、研磨選択性及び平坦性が更に向上する観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.0002質量%以上がより好ましく、0.0005質量%以上が更に好ましく、0.001質量%以上が特に好ましい。陽イオン性ポリマの含有量の上限は、研磨選択性に更に優れる観点から、研磨剤の全質量を基準として1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましく、0.05質量%以下が特に好ましく、0.03質量%以下が極めて好ましく、0.01質量%以下が非常に好ましい。上記の観点から、陽イオン性ポリマの含有量は、研磨剤の全質量を基準として0.0001質量%以上1質量%以下がより好ましい。なお、陽イオン性ポリマとして複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。陽イオン性ポリマの含有量は、絶縁材料の研磨速度、ストッパ材料(例えば窒化珪素及びポリシリコン)に対する絶縁材料の研磨選択性、及び、平坦性が更に向上する観点から、絶縁材料の作製方法(種類又は膜付け条件)に応じて適宜調整することが好ましい。 The lower limit of the content of the cationic polymer is preferably 0.0001% by mass or more, more preferably 0.0002% by mass or more, based on the total mass of the abrasive, from the viewpoint of further improving polishing selectivity and flatness. 0.0005% by mass or more is more preferable, and 0.001% by mass or more is particularly preferable. The upper limit of the content of the cationic polymer is preferably 1% by mass or less, more preferably 0.5% by mass or less, more preferably 0.1% by mass, based on the total mass of the abrasive, from the viewpoint of further excellent polishing selectivity. The following is more preferable, 0.05% by mass or less is particularly preferable, 0.03% by mass or less is extremely preferable, and 0.01% by mass or less is very preferable. From the above viewpoint, the content of the cationic polymer is more preferably 0.0001% by mass or more and 1% by mass or less based on the total mass of the abrasive. In addition, when using a some compound as a cationic polymer, it is preferable that the sum total of content of each compound satisfy | fills the said range. From the viewpoint of further improving the polishing rate of the insulating material, the polishing selectivity of the insulating material with respect to the stopper material (for example, silicon nitride and polysilicon), and the flatness, the content of the cationic polymer can be improved. It is preferable to adjust appropriately according to the type or filming conditions.
[第三の添加剤]
 本実施形態に係る研磨剤は、研磨速度等の研磨特性;砥粒の分散性、保存安定性等の研磨剤特性などを調整する目的で、前記第一の添加剤及び前記第二の添加剤の他に、第三の添加剤を更に含有していてもよい。なお、後述するアミノ基含有スルホン酸化合物は、ここでいう第三の添加剤には含まれないものとする。
[Third additive]
The abrasive according to this embodiment includes the first additive and the second additive for the purpose of adjusting polishing characteristics such as polishing speed; abrasive characteristics such as abrasive dispersibility and storage stability. In addition, a third additive may be further contained. The amino group-containing sulfonic acid compound described later is not included in the third additive referred to here.
 第三の添加剤としては、カルボン酸、アミノ酸等が挙げられる。これらはそれぞれ単独で又は二種類以上を組み合わせて使用してもよい。これらの化合物を用いることにより、砥粒の分散性と研磨特性のバランスが向上する。なお、アミノ酸はカルボキシル基を有するが、カルボン酸としては、アミノ酸に該当する化合物を除く。 Examples of the third additive include carboxylic acid and amino acid. These may be used alone or in combination of two or more. By using these compounds, the balance between abrasive dispersibility and polishing characteristics is improved. In addition, although an amino acid has a carboxyl group, the compound corresponding to an amino acid is excluded as carboxylic acid.
 カルボン酸は、pHを安定化させると共に絶縁材料の研磨速度を更に向上させる効果がある。カルボン酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、乳酸等が挙げられる。 Carboxylic acid has the effect of stabilizing the pH and further improving the polishing rate of the insulating material. Examples of the carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and lactic acid.
 アミノ酸は、4価金属元素の水酸化物を含む砥粒の分散性を向上させ、絶縁材料の研磨速度を更に向上させる効果がある。アミノ酸としては、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、トレオニン、グリシン、α-アラニン、β-アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等が挙げられる。 Amino acids have the effect of improving the dispersibility of abrasive grains containing a hydroxide of a tetravalent metal element and further improving the polishing rate of the insulating material. As amino acids, arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, α-alanine, β-alanine, methionine, cysteine, phenylalanine, leucine, valine, isoleucine Etc.
 第三の添加剤を使用する場合、第三の添加剤の含有量は、砥粒の沈降を抑制しつつ第三の添加剤の添加効果が得られる観点から、研磨剤の全質量を基準として0.001質量%以上10質量%以下が好ましい。なお、第三の添加剤として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。 When using the third additive, the content of the third additive is based on the total mass of the abrasive from the viewpoint of obtaining the additive effect of the third additive while suppressing sedimentation of the abrasive grains. 0.001 mass% or more and 10 mass% or less are preferable. In addition, when using a some compound as a 3rd additive, it is preferable that the sum total of content of each compound satisfy | fills the said range.
[アミノ基含有スルホン酸化合物]
 第二実施形態に係る研磨剤は、前記第一の添加剤及び第二の添加剤とは異なる他の添加剤としてアミノ基含有スルホン酸化合物を含有する。また、第一実施形態に係る研磨剤は、前記第一の添加剤及び第二の添加剤とは異なる他の添加剤としてアミノ基含有スルホン酸化合物を含有してもよい。「アミノ基含有スルホン酸化合物」とは、スルホン酸基(スルホ基、-SOH)及びスルホン酸塩基(-SOM:Mは金属原子)からなる群より選ばれる少なくとも一種と、アミノ基(-NH)とを1分子内に有する化合物である。スルホン酸塩基の金属原子Mとしては、Na、K等のアルカリ金属、Mg、Ca等のアルカリ土類金属などが挙げられる。アミノ基含有スルホン酸を前記第一の添加剤及び第二の添加剤と併用することにより、ストッパ露出後の絶縁材料(例えば、凹部に埋め込まれた絶縁材料)の研磨が抑制されてディッシングの進行が抑制されるため、高い平坦性を得ることができる。アミノ基含有スルホン酸化合物は、研磨選択性、平坦性等の研磨特性を調整する目的で、それぞれ単独で又は二種類以上を組み合わせて使用してもよい。
[Amino group-containing sulfonic acid compound]
The polishing agent according to the second embodiment contains an amino group-containing sulfonic acid compound as another additive different from the first additive and the second additive. In addition, the abrasive according to the first embodiment may contain an amino group-containing sulfonic acid compound as another additive different from the first additive and the second additive. The “amino group-containing sulfonic acid compound” means at least one selected from the group consisting of a sulfonic acid group (sulfo group, —SO 3 H) and a sulfonic acid group (—SO 3 M: M is a metal atom), an amino group (—NH 2 ) in one molecule. Examples of the metal atom M of the sulfonate group include alkali metals such as Na and K, and alkaline earth metals such as Mg and Ca. By using the amino group-containing sulfonic acid in combination with the first additive and the second additive, polishing of the insulating material after exposure to the stopper (for example, the insulating material embedded in the recess) is suppressed, and the dishing progresses. Therefore, high flatness can be obtained. Amino group-containing sulfonic acid compounds may be used alone or in combination of two or more for the purpose of adjusting polishing properties such as polishing selectivity and flatness.
 アミノ基含有スルホン酸化合物がディッシングの進行を抑制するメカニズムとしては、以下のように推察する。スルホニル基(-S(=O)-)が絶縁材料(例えば酸化珪素)の表面の水酸基(-OH)と水素結合を形成することにより絶縁材料の表面に保護層が形成されると考えられる。これにより、絶縁材料の過研磨が抑制され、ディッシングの進行が抑制されると考えられる。このとき、アミノ基も水素結合能を有するが、極性の高いスルホニル基が優先的に作用すると考えられる。また、アミノ基含有スルホン酸化合物が凹部のみ選択的に保護する理由としては、被研磨材料への吸着力が弱く、より高い荷重がかけられる凸部ではアミノ基含有スルホン酸化合物が脱離し、研磨が進行すると考えられる。 The mechanism by which the amino group-containing sulfonic acid compound suppresses the progress of dishing is presumed as follows. The sulfonyl group (—S (═O) 2 —) is considered to form a protective layer on the surface of the insulating material by forming a hydrogen bond with a hydroxyl group (—OH) on the surface of the insulating material (eg, silicon oxide). . Thereby, it is considered that overpolishing of the insulating material is suppressed and the progress of dishing is suppressed. At this time, the amino group also has hydrogen bonding ability, but it is considered that a highly polar sulfonyl group acts preferentially. The reason why the amino group-containing sulfonic acid compound selectively protects only the concave portion is that the adsorption force to the material to be polished is weak and the amino group-containing sulfonic acid compound is detached at the convex portion where a higher load is applied. Is considered to progress.
 このような観点で、前記アミノ基含有スルホン酸化合物は、一分子中に存在するスルホン酸基及びスルホン酸塩基、並びに、アミノ基の数が少ないことが好ましい。一分子中に存在するスルホン酸基及びスルホン酸塩基の合計は、5以下が好ましく、3以下がより好ましく、2以下が更に好ましく、1が特に好ましい。また、一分子中に存在するアミノ基は、5以下が好ましく、3以下がより好ましく、2以下が更に好ましく、1が特に好ましい。 From this point of view, the amino group-containing sulfonic acid compound preferably has a small number of sulfonic acid groups and sulfonic acid groups and amino groups present in one molecule. The total of sulfonic acid groups and sulfonic acid groups present in one molecule is preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1. Further, the amino group present in one molecule is preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1.
 また、同様の観点で、前記アミノ基含有スルホン酸化合物の分子量の上限は、1000以下が好ましく、800以下がより好ましく、500以下が更に好ましい。前記アミノ基含有スルホン酸化合物の分子量の下限は、例えば97以上である。 Further, from the same viewpoint, the upper limit of the molecular weight of the amino group-containing sulfonic acid compound is preferably 1000 or less, more preferably 800 or less, and even more preferably 500 or less. The lower limit of the molecular weight of the amino group-containing sulfonic acid compound is, for example, 97 or more.
 アミノ基含有スルホン酸化合物としては、一分子中に、アミノ基を一つ有し且つスルホン酸基又はスルホン酸塩基を一つ有する化合物が好ましく、具体的には、スルファミン酸(別名アミド硫酸);アミノメタンスルホン酸、アミノエタンスルホン酸(1-アミノエタンスルホン酸、2-アミノエタンスルホン酸(別名タウリン)等)、アミノプロパンスルホン酸等のアミノアルキルスルホン酸;アミノベンゼンスルホン酸(オルタニル酸(別名2-アミノベンゼンスルホン酸)、メタニル酸(別名3-アミノベンゼンスルホン酸)、スルファニル酸(別名4-アミノベンゼンスルホン酸)等)、アミノナフタレンスルホン酸等の芳香族アミノスルホン酸;これらの塩;などが挙げられる。 The amino group-containing sulfonic acid compound is preferably a compound having one amino group and one sulfonic acid group or one sulfonic acid group in one molecule, specifically, sulfamic acid (also known as amidosulfuric acid); Aminomethanesulfonic acid, aminoethanesulfonic acid (1-aminoethanesulfonic acid, 2-aminoethanesulfonic acid (also known as taurine), etc.), aminoalkylsulfonic acid such as aminopropanesulfonic acid; aminobenzenesulfonic acid (alternic acid (also known as alternative acid) 2-aminobenzenesulfonic acid), metanilic acid (also known as 3-aminobenzenesulfonic acid), sulfanilic acid (also known as 4-aminobenzenesulfonic acid)), aminonaphthalenesulfonic acid and the like; salts thereof; Etc.
 アミノ基含有スルホン酸化合物としては、ストッパ露出後の絶縁材料(例えば、凹部に埋め込まれた絶縁材料)の研磨が更に抑制されることにより平坦性が更に向上する観点から、アミノアルキルスルホン酸及び芳香族アミノスルホン酸からなる群より選択される少なくとも一種が好ましく、アミノエタンスルホン酸、オルタニル酸、メタニル酸及びスルファニル酸からなる群より選択される少なくとも一種がより好ましく、アミノエタンスルホン酸及びスルファニル酸からなる群より選択される少なくとも一種が更に好ましい。 As the amino group-containing sulfonic acid compound, aminoalkyl sulfonic acid and fragrance are used from the viewpoint of further improving the flatness by further suppressing the polishing of the insulating material after exposure to the stopper (for example, the insulating material embedded in the recess). At least one selected from the group consisting of group aminosulfonic acids is preferred, at least one selected from the group consisting of aminoethanesulfonic acid, alternic acid, metanilic acid and sulfanilic acid is more preferred, from aminoethanesulfonic acid and sulfanilic acid More preferably, at least one selected from the group consisting of
 アミノ基含有スルホン酸化合物の含有量の下限は、平坦性が更に向上する観点から、研磨剤の全質量を基準として0.0005質量%以上が好ましく、0.001質量%以上がより好ましく、0.002質量%以上が更に好ましく、0.005質量%以上が特に好ましい。アミノ基含有スルホン酸化合物の含有量の上限は、絶縁材料の研磨速度に更に優れる観点から、研磨剤の全質量を基準として0.2質量%以下が好ましく、0.1質量%以下がより好ましく、0.09質量%以下が更に好ましく、0.08質量%以下が特に好ましく、0.07質量%以下が極めて好ましく、0.06質量%以下が非常に好ましい。上記の観点から、アミノ基含有スルホン酸化合物の含有量は、研磨剤の全質量を基準として0.0005質量%以上0.2質量%以下がより好ましい。なお、アミノ基含有スルホン酸化合物として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。アミノ基含有スルホン酸化合物の含有量は、絶縁材料の研磨速度、ストッパ材料に対する絶縁材料の研磨選択性、及び、平坦性が更に向上する観点から、絶縁材料の作製方法(種類又は膜付け条件)に応じて適宜調整することが好ましい。 From the viewpoint of further improving the flatness, the lower limit of the content of the amino group-containing sulfonic acid compound is preferably 0.0005% by mass or more, more preferably 0.001% by mass or more, based on the total mass of the abrasive. 0.002% by mass or more is more preferable, and 0.005% by mass or more is particularly preferable. The upper limit of the content of the amino group-containing sulfonic acid compound is preferably 0.2% by mass or less, more preferably 0.1% by mass or less, based on the total mass of the abrasive, from the viewpoint of further improving the polishing rate of the insulating material. 0.09% by mass or less is more preferable, 0.08% by mass or less is particularly preferable, 0.07% by mass or less is extremely preferable, and 0.06% by mass or less is very preferable. From the above viewpoint, the content of the amino group-containing sulfonic acid compound is more preferably 0.0005% by mass or more and 0.2% by mass or less based on the total mass of the abrasive. In addition, when using a some compound as an amino group containing sulfonic acid compound, it is preferable that the sum total of content of each compound satisfy | fills the said range. The content of the amino group-containing sulfonic acid compound is determined from the viewpoint of further improving the polishing rate of the insulating material, the polishing selectivity of the insulating material with respect to the stopper material, and the flatness (kind or filming conditions). It is preferable to adjust appropriately according to.
(水溶性高分子)
 本実施形態に係る研磨剤は、平坦性、面内均一性、窒化珪素に対する酸化珪素の研磨選択性(酸化珪素の研磨速度/窒化珪素の研磨速度)、ポリシリコンに対する酸化珪素の研磨選択性(酸化珪素の研磨速度/ポリシリコンの研磨速度)等の研磨特性を調整する目的で、水溶性高分子を含有していてもよい。ここで、「水溶性高分子」とは、25℃において水100gに対して0.1g以上溶解する高分子として定義する。また、前記第一の添加剤及び前記第二の添加剤は、「水溶性高分子」に含まれないものとする。
(Water-soluble polymer)
The polishing agent according to this embodiment has flatness, in-plane uniformity, polishing selectivity of silicon oxide with respect to silicon nitride (silicon oxide polishing rate / silicon nitride polishing rate), and polishing selectivity of silicon oxide with respect to polysilicon ( A water-soluble polymer may be contained for the purpose of adjusting polishing characteristics such as (silicon oxide polishing rate / polysilicon polishing rate). Here, the “water-soluble polymer” is defined as a polymer that dissolves 0.1 g or more in 100 g of water at 25 ° C. The first additive and the second additive are not included in the “water-soluble polymer”.
 前記水溶性高分子としては、特に制限はなく、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、グアーガム等の多糖類;ポリビニルアルコール、ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;ポリグリセリン、ポリグリセリン誘導体等のグリセリン系ポリマなどが挙げられる。水溶性高分子は、それぞれ単独で又は二種類以上を組み合わせて使用できる。 The water-soluble polymer is not particularly limited, and is a polysaccharide such as alginic acid, pectinic acid, carboxymethylcellulose, agar, curdlan, guar gum, or the like; a vinyl polymer such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyacrolein; Examples thereof include glycerin polymers such as glycerin derivatives. The water-soluble polymers can be used alone or in combination of two or more.
 水溶性高分子を使用する場合、水溶性高分子の含有量の下限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨剤の全質量を基準として0.0001質量%以上が好ましく、0.001質量%以上がより好ましく、0.01質量%以上が更に好ましい。水溶性高分子の含有量の上限は、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる観点から、研磨剤の全質量を基準として5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。上記の観点から、水溶性高分子の含有量は、研磨剤の全質量を基準として0.0001質量%以上5質量%以下がより好ましい。水溶性高分子として複数の化合物を用いる場合、各化合物の含有量の合計が前記範囲を満たしていることが好ましい。 When the water-soluble polymer is used, the lower limit of the content of the water-soluble polymer is 0 on the basis of the total mass of the abrasive from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains. 0.0001 mass% or more is preferable, 0.001 mass% or more is more preferable, and 0.01 mass% or more is still more preferable. The upper limit of the content of the water-soluble polymer is preferably 5% by mass or less, preferably 1% by mass based on the total mass of the abrasive, from the viewpoint of obtaining the effect of adding the water-soluble polymer while suppressing sedimentation of the abrasive grains. The following is more preferable, and 0.5% by mass or less is still more preferable. From the above viewpoint, the content of the water-soluble polymer is more preferably 0.0001% by mass or more and 5% by mass or less based on the total mass of the abrasive. When using a some compound as water-soluble polymer, it is preferable that the sum total of content of each compound satisfy | fills the said range.
(研磨剤の特性)
 第一実施形態に係る研磨剤のpHの下限は、絶縁材料の研磨速度が更に向上する観点から、3.0以上が好ましく、3.5以上がより好ましく、3.8以上が更に好ましく、4.0以上が特に好ましい。また、pHの上限は、絶縁材料の研磨速度が更に向上する観点から、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましい。上記の観点から、研磨剤のpHは、3.0以上7.0以下がより好ましい。pHは液温25℃におけるpHと定義する。
(Abrasive properties)
The lower limit of the pH of the abrasive according to the first embodiment is preferably 3.0 or more, more preferably 3.5 or more, still more preferably 3.8 or more, from the viewpoint of further improving the polishing rate of the insulating material. 0.0 or more is particularly preferable. The upper limit of the pH is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less from the viewpoint of further improving the polishing rate of the insulating material. From the above viewpoint, the pH of the abrasive is more preferably 3.0 or more and 7.0 or less. The pH is defined as the pH at a liquid temperature of 25 ° C.
 第二実施形態に係る研磨剤のpHの下限は、絶縁材料の研磨速度が更に向上する観点から、3.0以上が好ましく、3.5以上がより好ましく、4.0以上が更に好ましく、4.5以上が特に好ましい。また、pHの上限は、絶縁材料の研磨速度が更に向上する観点から、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましく、5.5以下が特に好ましい。上記の観点から、研磨剤のpHは、3.0以上7.0以下がより好ましい。pHは液温25℃におけるpHと定義する。 The lower limit of the pH of the abrasive according to the second embodiment is preferably 3.0 or more, more preferably 3.5 or more, still more preferably 4.0 or more, from the viewpoint of further improving the polishing rate of the insulating material. .5 or more is particularly preferable. The upper limit of the pH is preferably 7.0 or less, more preferably 6.5 or less, still more preferably 6.0 or less, and particularly preferably 5.5 or less from the viewpoint of further improving the polishing rate of the insulating material. From the above viewpoint, the pH of the abrasive is more preferably 3.0 or more and 7.0 or less. The pH is defined as the pH at a liquid temperature of 25 ° C.
 研磨剤のpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール、2-メチルイミダゾール等のアルカリ成分などによって調整できる。また、pHを安定化させるため、緩衝液を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。 The pH of the polishing agent can be adjusted with an acid component such as an inorganic acid or an organic acid; an alkali component such as ammonia, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole, or 2-methylimidazole. A buffer may be added to stabilize the pH. Examples of such a buffer include acetate buffer and phthalate buffer.
 本実施形態に係る研磨剤のpHは、pHメータ(例えば、電気化学計器株式会社製の型番PHL-40)で測定できる。具体的には例えば、フタル酸塩pH緩衝液(pH4.01)と中性リン酸塩pH緩衝液(pH6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨剤に入れて、2分以上経過して安定した後の値を測定する。このとき、標準緩衝液と研磨剤の液温は共に25℃とする。 The pH of the abrasive according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by Electrochemical Instrument Co., Ltd.). Specifically, for example, after calibrating two pH meters using a phthalate pH buffer solution (pH 4.01) and a neutral phosphate pH buffer solution (pH 6.86) as standard buffers, The value is measured after the electrode is placed in an abrasive and stabilized after 2 minutes or more. At this time, the liquid temperature of the standard buffer and the abrasive is both 25 ° C.
 本実施形態に係る研磨剤は、砥粒と、第一の添加剤と、第二の添加剤と、水とを少なくとも含む一液式研磨剤として保存してもよく、スラリ(第一の液)と添加液(第二の液)とを混合して前記研磨剤となるように前記研磨剤の構成成分をスラリと添加液とに分けた二液式の研磨剤セット(例えばCMP用研磨剤セット)として保存してもよい。スラリは、例えば、砥粒及び水を少なくとも含む。添加液は、例えば、第一の添加剤、第二の添加剤及び水を少なくとも含む。第一の添加剤、第二の添加剤、第三の添加剤、アミノ基含有スルホン酸化合物、水溶性高分子及び緩衝液は、スラリ及び添加液のうち添加液に含まれることが好ましい。例えば、研磨剤セットは、前記研磨剤の構成成分がスラリ(第一の液)と添加液(第二の液)とに分けて保存され、前記スラリが砥粒及び水を含み、前記添加液が第一の添加剤、第二の添加剤、アミノ基含有スルホン酸化合物及び水を含む態様であってもよい。なお、前記研磨剤の構成成分は、三液以上に分けた研磨剤セットとして保存してもよい。 The abrasive according to this embodiment may be stored as a one-component abrasive containing at least abrasive grains, a first additive, a second additive, and water. ) And an additive liquid (second liquid) are mixed into a slurry and an additive liquid so that the composition of the abrasive is divided into a slurry and an additive liquid so as to become the abrasive. Set). The slurry includes at least abrasive grains and water, for example. The additive liquid includes, for example, at least a first additive, a second additive, and water. The first additive, the second additive, the third additive, the amino group-containing sulfonic acid compound, the water-soluble polymer, and the buffer solution are preferably included in the additive solution among the slurry and the additive solution. For example, in the abrasive set, the constituents of the abrasive are stored separately in a slurry (first liquid) and an additive liquid (second liquid), and the slurry contains abrasive grains and water, and the additive liquid May be an embodiment containing the first additive, the second additive, the amino group-containing sulfonic acid compound and water. The constituents of the abrasive may be stored as an abrasive set divided into three or more liquids.
 前記研磨剤セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨剤が調製される。また、一液式研磨剤は、水の含有量を減じた研磨剤用貯蔵液として保存されると共に、研磨直前又は研磨時に水で希釈して用いられてもよい。二液式の研磨剤セットは、水の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨直前又は研磨時に水で希釈して用いられてもよい。 In the abrasive set, slurry and additive liquid are mixed immediately before or during polishing to prepare an abrasive. In addition, the one-component abrasive is stored as an abrasive stock solution with a reduced water content, and may be diluted with water immediately before or during polishing. The two-component abrasive set is stored as a slurry storage solution and an additive storage solution with a reduced water content, and may be diluted with water immediately before or during polishing.
 一液式研磨剤の場合、研磨定盤上への研磨剤の供給方法としては、研磨剤を直接送液して供給する方法;研磨剤用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめ研磨剤用貯蔵液及び水を混合しておき供給する方法等を用いることができる。 In the case of a one-pack type abrasive, as a method of supplying the abrasive onto the polishing surface plate, a method of feeding and supplying the abrasive directly; a storage solution for abrasive and water are sent through separate pipes, A method in which these are combined, mixed and supplied; a method in which an abrasive stock solution and water are mixed and supplied in advance can be used.
 スラリと添加液とに分けた二液式の研磨剤セットとして保存する場合、これら二液の配合を任意に変えることにより研磨速度の調整ができる。研磨剤セットを用いて研磨する場合、研磨定盤上への研磨剤の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流、混合させて供給する方法;スラリ用貯蔵液、添加液用貯蔵液及び水を別々の配管で送液し、これらを合流、混合させて供給する方法;あらかじめスラリ及び添加液を混合しておき供給する方法;あらかじめスラリ用貯蔵液、添加液用貯蔵液及び水を混合しておき供給する方法を用いることができる。また、前記研磨剤セットにおけるスラリと添加液とをそれぞれ研磨定盤上へ供給する方法を用いることもできる。この場合、研磨定盤上においてスラリ及び添加液が混合されて得られる研磨剤を用いて被研磨面が研磨される。 When storing as a two-component abrasive set divided into slurry and additive solution, the polishing rate can be adjusted by arbitrarily changing the combination of these two components. In the case of polishing using an abrasive set, methods for supplying the abrasive onto the polishing surface plate include the following methods. For example, the slurry and the additive liquid are sent through separate pipes, and these pipes are combined, mixed and supplied; the slurry storage liquid, the additive liquid storage liquid and water are sent through separate pipes, A method in which these are combined and mixed and supplied; a method in which slurry and additive solution are mixed and supplied in advance; and a method in which slurry storage solution, additive solution storage solution and water are mixed in advance and supplied it can. Moreover, the method of supplying the slurry and additive liquid in the said abrasive | polishing agent set on a polishing surface plate, respectively can also be used. In this case, the surface to be polished is polished using an abrasive obtained by mixing the slurry and the additive liquid on the polishing platen.
<基体の研磨方法>
 本実施形態に係る基体の研磨方法は、前記一液式研磨剤を用いて基体の被研磨面を研磨する研磨工程を備えていてもよく、前記研磨剤セットにおけるスラリと添加液を混合して得られる研磨剤を用いて基体の被研磨面を研磨する研磨工程を備えていてもよい。また、本実施形態に係る基体の研磨方法は、絶縁材料及びストッパ材料を有する基体の研磨方法であってもよく、例えば、前記一液式研磨剤、又は、前記研磨剤セットにおけるスラリと添加液とを混合して得られる研磨剤を用いて、絶縁材料をストッパ材料に対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、ストッパ材料を含む部材(ストッパ)とを有していてもよい。ストッパ材料としては、ポリシリコン及び窒化珪素からなる群より選択される少なくとも一種が好ましい。第一実施形態に係る研磨剤を用いる研磨方法においてストッパ材料としては、ポリシリコンがより好ましい。第二実施形態に係る研磨剤を用いる研磨方法においてストッパ材料としては、窒化珪素がより好ましい。
<Polishing method of substrate>
The substrate polishing method according to the present embodiment may include a polishing step of polishing the surface to be polished of the substrate using the one-part polishing agent, and the slurry and additive liquid in the polishing agent set are mixed. You may provide the grinding | polishing process of grind | polishing the to-be-polished surface of a base | substrate using the obtained abrasive | polishing agent. In addition, the substrate polishing method according to the present embodiment may be a substrate polishing method having an insulating material and a stopper material. For example, the one-part abrasive or the slurry and additive liquid in the abrasive set A polishing step of selectively polishing the insulating material with respect to the stopper material may be provided using an abrasive obtained by mixing the above. In this case, the base body may have, for example, a member containing an insulating material and a member (stopper) containing a stopper material. The stopper material is preferably at least one selected from the group consisting of polysilicon and silicon nitride. In the polishing method using the abrasive according to the first embodiment, the stopper material is more preferably polysilicon. In the polishing method using the abrasive according to the second embodiment, silicon nitride is more preferable as the stopper material.
 研磨工程では、例えば、被研磨材料を有する基体の当該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨剤を被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。 In the polishing step, for example, the abrasive is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing surface plate. The material to be polished is polished by relatively moving the substrate and the polishing surface plate. In the polishing step, for example, at least a part of the material to be polished is removed by polishing.
 研磨対象である基体としては、基板等が挙げられ、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基板が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料;ポリシリコン、窒化珪素等のストッパ材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状(被研磨膜)であってもよく、酸化珪素膜、ポリシリコン膜、窒化珪素膜等であってもよい。 Examples of the substrate to be polished include a substrate. For example, a material to be polished is formed on a substrate for manufacturing a semiconductor element (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed). A substrate is mentioned. Examples of materials to be polished include insulating materials such as silicon oxide; stopper materials such as polysilicon and silicon nitride. The material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as materials to be polished. The material to be polished may be in the form of a film (film to be polished), and may be a silicon oxide film, a polysilicon film, a silicon nitride film, or the like.
 このような基体上に形成された被研磨材料(例えば酸化珪素等の絶縁材料)を前記研磨剤で研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面が得られる。本実施形態に係る研磨剤は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。 The material to be polished (such as an insulating material such as silicon oxide) formed on such a substrate is polished with the above-mentioned abrasive and the excess portions are removed to eliminate the unevenness of the surface of the material to be polished, A smooth surface is obtained over the entire surface of the abrasive material. The abrasive according to this embodiment is preferably used for polishing a surface to be polished containing silicon oxide.
 本実施形態では、少なくとも表面に酸化珪素を含む絶縁材料(例えば酸化珪素)と、絶縁材料の下層に配置されたストッパ(研磨停止層)と、ストッパの下に配置された半導体基板とを有する基体における絶縁材料を研磨できる。ストッパを構成するストッパ材料は、絶縁材料よりも研磨速度が低い材料であり、ポリシリコン、窒化珪素等が好ましい。このような基体では、ストッパが露出した時に研磨を停止させることにより、絶縁材料が過剰に研磨されることを防止できるため、絶縁材料の研磨後の平坦性を向上させることができる。 In the present embodiment, a base having an insulating material (for example, silicon oxide) containing at least silicon oxide on the surface, a stopper (polishing stop layer) disposed under the insulating material, and a semiconductor substrate disposed under the stopper The insulating material in can be polished. The stopper material constituting the stopper is a material whose polishing rate is lower than that of the insulating material, and polysilicon, silicon nitride and the like are preferable. In such a base, since the polishing is stopped when the stopper is exposed, the insulating material can be prevented from being excessively polished, and thus the flatness of the insulating material after polishing can be improved.
 以下、絶縁材料が形成された半導体基板の研磨方法を一例に挙げて、本実施形態に係る研磨方法を更に説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する半導体基板等の基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、例えば、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、APPLIED MATERIALS社製の研磨装置(商品名:Mirra-3400、Reflexion LK)、株式会社荏原製作所製の研磨装置(商品名:F REX-300)が挙げられる。 Hereinafter, the polishing method according to this embodiment will be further described by taking as an example a polishing method for a semiconductor substrate on which an insulating material is formed. In the polishing method according to the present embodiment, as a polishing apparatus, a general polishing apparatus having a holder capable of holding a substrate such as a semiconductor substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached. Can be used. For example, a motor or the like whose rotation speed can be changed is attached to each of the holder and the polishing surface plate. Examples of the polishing apparatus include an APPLIED MATERIALS polishing apparatus (trade name: Mira-3400, Reflexion LK) and a polishing apparatus manufactured by Ebara Corporation (trade name: F REX-300).
 研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、更に優れた研磨速度及び平坦性を得る観点から、発泡ポリウレタン及び非発泡ポリウレタンが好ましい。研磨パッドには、研磨剤がたまるような溝加工が施されていてもよい。 As the polishing pad, general nonwoven fabric, foam, non-foam, etc. can be used. Examples of the material of the polishing pad include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (for example, nylon (trade name) and Aramid), polyimide, polyimide amide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate, epoxy resin and the like can be used. As the material of the polishing pad, foamed polyurethane and non-foamed polyurethane are particularly preferable from the viewpoint of obtaining a further excellent polishing rate and flatness. The polishing pad may be grooved so that the abrasive is collected.
 研磨条件に制限はないが、研磨定盤の回転速度は、半導体基板が飛び出さないように200min-1(rpm)以下が好ましく、半導体基板にかける研磨圧力(加工荷重)は、研磨傷が発生することを充分に抑制する観点から、100kPa以下が好ましい。研磨している間、ポンプ等で連続的に研磨剤を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。 Although there are no restrictions on the polishing conditions, the rotation speed of the polishing platen is preferably 200 min −1 (rpm) or less so that the semiconductor substrate does not pop out, and the polishing pressure (processing load) applied to the semiconductor substrate causes polishing scratches. From the viewpoint of sufficiently suppressing this, 100 kPa or less is preferable. During polishing, it is preferable to continuously supply the polishing agent to the polishing pad with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with the abrasive | polishing agent.
 研磨終了後の半導体基板は、基板を流水中でよく洗浄して、基板に付着した粒子を除去することが好ましい。洗浄には、純水以外に希フッ酸又はアンモニア水を用いてもよく、洗浄効率を高めるためにブラシを用いてもよい。また、洗浄後は、半導体基板に付着した水滴を、スピンドライヤ等を用いて払い落としてから半導体基板を乾燥させることが好ましい。 The semiconductor substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate. For cleaning, dilute hydrofluoric acid or ammonia water may be used in addition to pure water, and a brush may be used to improve cleaning efficiency. Further, after cleaning, it is preferable to dry the semiconductor substrate after water droplets adhering to the semiconductor substrate are removed using a spin dryer or the like.
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、STIの形成に好適に使用できる。ストッパ材料(例えば窒化珪素及びポリシリコン)に対する絶縁材料(例えば酸化珪素)の研磨選択比の下限は、50以上が好ましく、120以上がより好ましく、180以上が更に好ましく、200以上が特に好ましく、第一実施形態に係る研磨剤を用いる場合、210以上が極めて好ましい。前記研磨選択比が50未満であると、ストッパ材料の研磨速度に対する絶縁材料の研磨速度の大きさが小さく、STIを形成する際に所定の位置で研磨を停止しにくくなる傾向がある。一方、前記研磨選択比が50以上であれば、研磨の停止が容易になり、STIの形成に更に好適である。 The abrasive, the abrasive set and the polishing method according to this embodiment can be suitably used for forming STI. The lower limit of the polishing selection ratio of the insulating material (eg, silicon oxide) to the stopper material (eg, silicon nitride and polysilicon) is preferably 50 or more, more preferably 120 or more, still more preferably 180 or more, and particularly preferably 200 or more. When using the abrasive | polishing agent which concerns on one Embodiment, 210 or more are very preferable. When the polishing selection ratio is less than 50, the polishing rate of the insulating material with respect to the polishing rate of the stopper material is small, and it is difficult to stop polishing at a predetermined position when forming the STI. On the other hand, when the polishing selection ratio is 50 or more, the polishing can be easily stopped, which is more suitable for the formation of STI.
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素の他、例えば、リン-シリケートガラス又はボロン-リン-シリケートガラスが使用され、更に、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。 The abrasive, the abrasive set and the polishing method according to this embodiment can also be used for polishing a premetal insulating material. As the premetal insulating material, in addition to silicon oxide, for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used, and further, silicon oxyfluoride, fluorinated amorphous carbon, and the like can be used.
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂などが挙げられる。 The abrasive, the abrasive set and the polishing method according to this embodiment can be applied to materials other than insulating materials such as silicon oxide. Examples of such materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe Inorganic conductive materials such as ITO; polymer resins such as polyimides, polybenzoxazoles, acrylics, epoxies, and phenols.
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等から構成される各種基板にも適用できる。 The polishing agent, the polishing agent set, and the polishing method according to the present embodiment are not only film-like objects to be polished, but also various types composed of glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, plastic, and the like. It can also be applied to substrates.
 本実施形態に係る研磨剤、研磨剤セット及び研磨方法は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置の製造に用いることができる。 The polishing agent, the polishing agent set, and the polishing method according to the present embodiment are not only for manufacturing semiconductor elements, but also for image display devices such as TFTs and organic ELs; optical parts such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators Optical elements such as optical switching elements and optical waveguides; light emitting elements such as solid lasers and blue laser LEDs; and magnetic storage devices such as magnetic disks and magnetic heads.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
(1)4価金属元素の水酸化物の合成
 7.603[L]の水を容器に入れた後、濃度50質量%の硝酸セリウムアンモニウム水溶液(化学式Ce(NH(NO、式量548.2g/mol、日本化学産業株式会社製、製品名50%CAN液)を0.715[L]加えて混合した。その後、液温を40[℃]に調整して金属塩水溶液(金属塩濃度:0.114mol/L)を得た。
(1) Synthesis of Tetravalent Metal Element Hydroxide 7.603 [L] of water was placed in a container, and then a 50% by weight aqueous cerium ammonium nitrate solution (chemical formula Ce (NH 4 ) 2 (NO 3 ) 6 , Formula amount 548.2 g / mol, manufactured by Nippon Chemical Industry Co., Ltd., product name 50% CAN solution) was added and mixed in an amount of 0.715 [L]. Thereafter, the liquid temperature was adjusted to 40 [° C.] to obtain a metal salt aqueous solution (metal salt concentration: 0.114 mol / L).
 次に、イミダゾールを水に溶解させて濃度0.7[mol/L]の水溶液を4.566[L]用意した後に、液温を40[℃]に調整してアルカリ液を得た。 Next, after imidazole was dissolved in water to prepare an aqueous solution having a concentration of 0.7 [mol / L] for 4.566 [L], the liquid temperature was adjusted to 40 [° C.] to obtain an alkaline solution.
 前記金属塩水溶液の入った容器を、水を張った水槽に入れた。外部循環装置クールニクスサーキュレータ(東京理化器械株式会社(EYELA)製、製品名クーリングサーモポンプ CTP101)を用いて、水槽の水温を40[℃]に調整した。水温を40[℃]に保持しつつ、撹拌速度400[min-1]で金属塩水溶液を撹拌しながら、前記アルカリ液を混合速度8.5×10-6[m/min]で容器内に加え、4価セリウムの水酸化物を含む砥粒を含有するスラリ前駆体1を得た。スラリ前駆体1のpHは2.2であった。なお、羽根部全長5cmの3枚羽根ピッチパドルを用いて金属塩水溶液を撹拌した。 The container containing the metal salt aqueous solution was placed in a water tank filled with water. The water temperature of the water tank was adjusted to 40 [° C.] using an external circulation device COOLNICS circulator (manufactured by Tokyo Rika Kikai Co., Ltd. (EYELA), product name cooling thermopump CTP101). While maintaining the water temperature at 40 [° C.], while stirring the aqueous metal salt solution at a stirring speed of 400 [min −1 ], the alkali solution was mixed in the container at a mixing speed of 8.5 × 10 −6 [m 3 / min]. In addition, a slurry precursor 1 containing abrasive grains containing tetravalent cerium hydroxide was obtained. The pH of the slurry precursor 1 was 2.2. The aqueous metal salt solution was stirred using a three-blade pitch paddle with a total length of 5 cm.
 分画分子量50000の中空糸フィルタを用いて、得られたスラリ前駆体1を循環させながら限外ろ過して、導電率が50mS/m以下になるまでイオン分を除去することにより、スラリ前駆体2を得た。前記限外ろ過は、液面センサを用いて、スラリ前駆体1の入ったタンクの水位を一定にするように水を添加しながら行った。得られたスラリ前駆体2を適量とり、乾燥前後の質量を量ることにより、スラリ前駆体2の不揮発分含量(4価セリウムの水酸化物を含む砥粒の含量)を算出した。なお、この段階で不揮発分含量が1.0質量%未満であった場合には、限外ろ過を更に行うことにより、1.1質量%を超える程度に濃縮した。最後に、適量の水を追加し、セリウム水酸化物スラリ用貯蔵液(粒子の含有量:1.0質量%)を調製した。セリウム水酸化物スラリ用貯蔵液は、下記実験A及び実験Bにおいて用いた。 Using a hollow fiber filter with a molecular weight cut off of 50000, the obtained slurry precursor 1 was ultrafiltered while being circulated, and the ion content was removed until the conductivity was 50 mS / m or less. 2 was obtained. The ultrafiltration was performed using a liquid level sensor while adding water so that the water level of the tank containing the slurry precursor 1 was kept constant. By taking an appropriate amount of the obtained slurry precursor 2 and measuring the mass before and after drying, the nonvolatile content of the slurry precursor 2 (content of abrasive grains containing tetravalent cerium hydroxide) was calculated. In addition, when the non-volatile content was less than 1.0% by mass at this stage, it was further concentrated to an extent exceeding 1.1% by performing ultrafiltration. Finally, an appropriate amount of water was added to prepare a cerium hydroxide slurry stock solution (particle content: 1.0 mass%). The cerium hydroxide slurry stock solution was used in Experiment A and Experiment B below.
 セリウム水酸化物スラリ用貯蔵液を適量採取し、砥粒含有量が0.2質量%となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを1cm角のセルに約4mL入れ、ベックマンコールター社製の装置名:N5内にセルを設置した。分散媒の屈折率を1.33、粘度を0.887mPa・sに設定して、25℃において測定を行い、表示された平均粒径値を砥粒の平均二次粒径とした。結果は21nmであった。 An appropriate amount of a cerium hydroxide slurry stock solution was collected and diluted with water so that the abrasive grain content was 0.2% by mass to obtain a measurement sample (aqueous dispersion). About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was installed in a device name: N5 manufactured by Beckman Coulter. The dispersion medium was set to have a refractive index of 1.33 and a viscosity of 0.887 mPa · s, measured at 25 ° C., and the displayed average particle size value was defined as the average secondary particle size of the abrasive grains. The result was 21 nm.
(2)実験A
<CMP用研磨剤の調製>
[実施例A1]
 マルトース[三和澱粉工業株式会社製、サンマルト-S]10質量%、2-メチルイミダゾール0.08質量%、酢酸0.06質量%及び水89.86質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとしてポリジアリルジメチルアンモニウムクロリド[センカ株式会社製、ユニセンスFPA1000L]を0.1質量%含有する水溶液30gとを混合することにより、表1に記載される組成のCMP用研磨剤(1000g)を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、マルトースを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。なお、前記マルトースの重量平均分子量を下記条件で測定したところ、259(化学構造からの理論値は342)であった。
(2) Experiment A
<Preparation of abrasive for CMP>
[Example A1]
100 g of an additive stock solution containing 10% by weight of maltose [manufactured by Sanwa Starch Co., Ltd., Sanmalto-S], 0.08% by weight of 2-methylimidazole, 0.06% by weight of acetic acid and 89.86% by weight of water Then, 50 g of a cerium hydroxide slurry storage solution, 820 g of water, and 30 g of an aqueous solution containing 0.1% by mass of polydiallyldimethylammonium chloride [Senka Co., Ltd., Unisense FPA1000L] as a cationic polymer are mixed. Thus, an abrasive for CMP (1000 g) having the composition shown in Table 1 was prepared. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of maltose, and 0.003% by mass of polydiallyldimethylammonium chloride. In addition, when the weight average molecular weight of the said maltose was measured on condition of the following, it was 259 (theoretical value from a chemical structure is 342).
(条件)
 使用機器:LC-20AD(株式会社島津製作所製)
 カラム:Gelpack GL-W540+550
 溶離液:0.1M NaCl水溶液
 測定温度:40℃
 カラムサイズ:10.7mmI.D.×300mm
 流量:1.0mL/min
 試料濃度:0.2質量%
 検出器:RID-10A(株式会社島津製作所製)
(conditions)
Equipment used: LC-20AD (manufactured by Shimadzu Corporation)
Column: Gelpack GL-W540 + 550
Eluent: 0.1M NaCl aqueous solution Measurement temperature: 40 ° C
Column size: 10.7 mmI. D. × 300mm
Flow rate: 1.0 mL / min
Sample concentration: 0.2% by mass
Detector: RID-10A (manufactured by Shimadzu Corporation)
[実施例A2]
 マルトースをデキストリン[三和澱粉工業株式会社製、サンデック#300。DE値(Dextrose Equivalent値):31~36(「LANE-EYNON法」による値。以下同じ。)、水分:4質量%以下。いずれもメーカ公称値]に変更した以外は実施例A1と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。前記デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、2.1×10であった。なお、前記デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。
[Example A2]
Maltose as a dextrin [Sandek # 300, manufactured by Sanwa Starch Co., Ltd. DE value (Dextrose Equivalent value): 31 to 36 (value according to “LANE-EYNON method”, the same shall apply hereinafter), moisture: 4% by mass or less. A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that all were changed to the manufacturer's nominal values. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 2.1 × 10 3 . The dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
[実施例A3]
 マルトースをデキストリン[三和澱粉工業株式会社製、サンデック#180。DE値:22~25、水分:5質量%以下。いずれもメーカ公称値]に変更した以外は実施例A1と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。前記デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、5.4×10であった。なお、前記デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。
[Example A3]
Maltose as a dextrin [Sandek # 180, manufactured by Sanwa Starch Co., Ltd. DE value: 22 to 25, moisture: 5% by mass or less. A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that all were changed to the manufacturer's nominal values. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 5.4 × 10 3 . The dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
[実施例A4]
 マルトースをデキストリン[三和澱粉工業株式会社製、サンデック#100。DE値:13~16、水分:5質量%以下。いずれもメーカ公称値]に変更した以外は実施例A1と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。前記デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、18.4×10であった。なお、前記デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。
[Example A4]
Maltose as a dextrin [Sandek # 100, manufactured by Sanwa Starch Co., Ltd. DE value: 13 to 16, water content: 5% by mass or less. A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that all were changed to the manufacturer's nominal values. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 18.4 × 10 3 . The dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
[実施例A5]
 マルトースをデキストリン[サンエイ糖化株式会社製、NSD#700(粉末タイプ)。DE値:17~21(メーカ公称値)]に変更した以外は実施例A1と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。前記デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、7.9×10であった。なお、前記デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。
[Example A5]
Maltose as dextrin [manufactured by Sanei Saccharification Co., Ltd., NSD # 700 (powder type). A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1, except that the DE value was changed to 17 to 21 (manufacturer nominal value). The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the dextrin was measured in the same manner as in Example A1, it was 7.9 × 10 3 . The dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
[実施例A6]
 ポリジアリルジメチルアンモニウムクロリドをジシアンジアミド/ジエチレントリアミン共重合体[センカ株式会社製、ユニセンスKHP10L]に変更した以外は実施例A5と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ジシアンジアミド/ジエチレントリアミン共重合体を0.003質量%含有する。
[Example A6]
A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A5 except that polydiallyldimethylammonium chloride was changed to a dicyandiamide / diethylenetriamine copolymer [Senka Co., Ltd., Unisense KHP10L]. The abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of a dicyandiamide / diethylenetriamine copolymer.
[実施例A7]
 添加液用貯蔵液100gを調製する際に、酢酸の添加量を0.1質量%に変更し、酢酸の増加分の水量を減じた以外は実施例A5と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。
[Example A7]
When preparing 100 g of the stock solution for additive solution, the amount of acetic acid added was changed to 0.1% by mass, and the amount of water increased by acetic acid was reduced. A polishing slurry for CMP having the following composition was prepared. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride.
[実施例A8]
 マルトースを還元型デキストリン[松谷化学工業株式会社製、H-PDX。水分は5質量%以下である。]に変更した以外は実施例A1と同様にして、表1に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。前記還元型デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、2.0×10であった。なお、前記還元型デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。
[Example A8]
Maltose reduced dextrin [Matsuya Chemical Co., Ltd., H-PDX. The water content is 5% by mass or less. ] A polishing slurry for CMP having the composition shown in Table 1 was prepared in the same manner as in Example A1 except that the above was changed. The abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. When the weight average molecular weight of the reduced dextrin was measured by the same method as in Example A1, it was 2.0 × 10 3 . The reduced dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
[比較例A1]
 グルコース[和光純薬工業株式会社製、和光一級D(+)-グルコース。分子量:130]10質量%、2-メチルイミダゾール0.08質量%、酢酸0.06質量%及び水89.86質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水850gとを混合することにより、表2に記載される組成のCMP用研磨剤(1000g)を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、グルコースを1.0質量%含有する。
[Comparative Example A1]
Glucose [Wako Pure Chemical Industries, Ltd., Wako first grade D (+)-glucose. Molecular weight: 130] 100 g of additive solution containing 10% by mass, 0.08% by mass of 2-methylimidazole, 0.06% by mass of acetic acid and 89.86% by mass of water, and a storage solution for cerium hydroxide slurry By mixing 50 g and 850 g of water, an abrasive for CMP (1000 g) having the composition described in Table 2 was prepared. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of glucose.
[比較例A2]
 グルコース[和光純薬工業株式会社製、和光一級D(+)-グルコース。分子量:130]10質量%、2-メチルイミダゾール0.08質量%、酢酸0.06質量%及び水89.86質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとしてポリジアリルジメチルアンモニウムクロリド[センカ株式会社製、ユニセンスFPA1000L]を0.1質量%含有する水溶液30gとを混合することにより、表2に記載される組成のCMP用研磨剤(1000g)を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、グルコースを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。
[Comparative Example A2]
Glucose [Wako Pure Chemical Industries, Ltd., Wako first grade D (+)-glucose. Molecular weight: 130] 100 g of additive solution containing 10% by mass, 0.08% by mass of 2-methylimidazole, 0.06% by mass of acetic acid and 89.86% by mass of water, and a storage solution for cerium hydroxide slurry 50 g, 820 g of water, and 30 g of an aqueous solution containing 0.1% by mass of polydiallyldimethylammonium chloride [manufactured by Senka Co., Ltd., Unisense FPA1000L] as a cationic polymer, are described in Table 2. An abrasive for CMP (1000 g) was prepared. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of glucose, and 0.003% by mass of polydiallyldimethylammonium chloride.
[比較例A3]
 グルコースをデキストリン[三和澱粉工業株式会社製、サンデック#300]に変更した以外は比較例A1と同様にして、表2に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%含有する。
[Comparative Example A3]
A polishing slurry for CMP having the composition described in Table 2 was prepared in the same manner as in Comparative Example A1, except that glucose was changed to dextrin (Sandex # 300, manufactured by Sanwa Starch Co., Ltd.). The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of dextrin.
[比較例A4]
 グルコースをデキストリン[三和澱粉工業株式会社製、サンデック#180]に変更した以外は比較例A1と同様にして、表2に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%含有する。
[Comparative Example A4]
A polishing slurry for CMP having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A1, except that glucose was changed to dextrin [Sandek # 180, manufactured by Sanwa Starch Co., Ltd.]. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of dextrin.
[比較例A5]
 グルコースをデキストリン[サンエイ糖化株式会社製、NSD#700]に変更した以外は比較例A1と同様にして、表2に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%含有する。
[Comparative Example A5]
A polishing slurry for CMP having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A1 except that glucose was changed to dextrin [manufactured by Sanei Saccharification Co., Ltd., NSD # 700]. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 1.0% by mass of dextrin.
[比較例A6]
 グルコースをデキストリン[三和澱粉工業株式会社製、サンデック#30。DE値:3~7、水分:5質量%以下。いずれもメーカ公称値]に変更した以外は比較例A2と同様にして、表2に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。なお、前記デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、147×10であった。
[Comparative Example A6]
Glucose dextrin [Sandex # 30, manufactured by Sanwa Starch Co., Ltd. DE value: 3 to 7, moisture: 5% by mass or less. A CMP polishing slurry having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A2 except that all were changed to the manufacturer's nominal values. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. The weight average molecular weight of the dextrin was measured by the same method as in Example A1, and found to be 147 × 10 3 .
[比較例A7]
 グルコースをデキストリン[サンエイ糖化株式会社製、NSD#300。DE値:10~12(メーカ公称値)]に変更した以外は比較例A2と同様にして、表2に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。なお、前記デキストリンの重量平均分子量を実施例A1と同様の方法で測定したところ、20.4×10であった。
[Comparative Example A7]
Glucose was dextrin [NSD # 300, manufactured by Sanei Saccharification Co., Ltd. A polishing slurry for CMP having the composition shown in Table 2 was prepared in the same manner as in Comparative Example A2, except that the DE value was changed to 10 to 12 (manufacturer nominal value). The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride. In addition, it was 20.4 * 10 < 3 > when the weight average molecular weight of the said dextrin was measured by the method similar to Example A1.
<液状特性評価>
 前記で得られたCMP用研磨剤のpH、及び、砥粒の平均粒径を下記の条件で評価した。
<Liquid property evaluation>
The pH of the CMP polishing slurry obtained above and the average particle size of the abrasive grains were evaluated under the following conditions.
(pH)
 測定温度:25±5℃
 測定装置:電気化学計器株式会社製、型番PHL-40
 測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH6.86(25℃))を用いて2点校正した後、電極をCMP用研磨剤に入れて、2分以上経過して安定した後のpHを前記測定装置により測定した。結果を表1及び表2に示す。
(PH)
Measurement temperature: 25 ± 5 ° C
Measuring device: manufactured by Electrochemical Instrument Co., Ltd., model number PHL-40
Measurement method: After calibrating two points using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH 6.86 (25 ° C.)), The electrode was placed in a CMP abrasive and the pH after the passage of 2 minutes or more and stabilized was measured with the measuring device. The results are shown in Tables 1 and 2.
(砥粒の平均粒径)
 CMP用研磨剤を適量採取し、砥粒含有量が0.2質量%となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを1cm角のセルに約4mL入れ、ベックマンコールター社製の装置名:N5内にセルを設置した。分散媒の屈折率を1.33、粘度を0.887mPa・sに設定して、25℃において測定を行い、表示された平均粒径値を平均粒径(平均二次粒径)とした。その結果、実施例及び比較例のいずれにおいても、平均粒径は14~16nmの範囲であった。
(Average grain size of abrasive grains)
An appropriate amount of an abrasive for CMP was collected and diluted with water so that the abrasive grain content was 0.2% by mass to obtain a measurement sample (aqueous dispersion). About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was installed in a device name: N5 manufactured by Beckman Coulter. The dispersion medium was set to have a refractive index of 1.33 and a viscosity of 0.887 mPa · s, measured at 25 ° C., and the displayed average particle size value was defined as the average particle size (average secondary particle size). As a result, the average particle diameter was in the range of 14 to 16 nm in both Examples and Comparative Examples.
<CMP評価>
 前記CMP用研磨剤のそれぞれを用いて下記研磨条件で被研磨基板を研磨した。
<CMP evaluation>
The substrate to be polished was polished under the following polishing conditions using each of the CMP polishing agents.
(CMP条件)
 ・研磨装置:Mirra-3400(APPLIED MATERIALS社製)
 ・CMP用研磨剤流量:200mL/min
 ・被研磨基板:パターンが形成されていないブランケットウエハとして、厚さ1μm(1000nm)の酸化珪素膜をシリコン基板上にプラズマCVD法で形成した基板と、厚さ0.2μm(200nm)のポリシリコン膜をシリコン基板上にCVD法で形成した基板と、厚さ0.2μm(200nm)の窒化珪素膜をシリコン基板上にCVD法で形成した基板とを用いた。但し、ポリシリコン膜の研磨は一部の実施例及び比較例のみについて行った。
 ・研磨パッド:独立気泡を有する発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)、ショアD硬度:60
 ・研磨圧力:20kPa(3.0psi)
 ・基板と研磨定盤の回転数:基板/研磨定盤=93/87min-1(rpm)
 ・研磨時間:1min
 ・ウエハの洗浄及び乾燥:CMP処理後、PVAブラシ(ポリビニルアルコールブラシ)による洗浄を行い、続いて、スピンドライヤで乾燥させた。
(CMP conditions)
・ Polishing device: Mirra-3400 (manufactured by APPLIED MATERIALS)
・ CMP abrasive flow rate: 200 mL / min
Substrate to be polished: a blanket wafer on which a pattern is not formed, a substrate in which a silicon oxide film having a thickness of 1 μm (1000 nm) is formed on a silicon substrate by a plasma CVD method, and polysilicon having a thickness of 0.2 μm (200 nm) A substrate in which a film was formed on a silicon substrate by a CVD method and a substrate in which a silicon nitride film having a thickness of 0.2 μm (200 nm) was formed on a silicon substrate by a CVD method were used. However, the polishing of the polysilicon film was performed only for some examples and comparative examples.
Polishing pad: foamed polyurethane resin having closed cells (Rohm and Haas Japan, model number IC1010), Shore D hardness: 60
Polishing pressure: 20 kPa (3.0 psi)
・ Number of rotations of substrate and polishing surface plate: Substrate / polishing surface plate = 93/87 min −1 (rpm)
・ Polishing time: 1 min
-Cleaning and drying of wafer: After CMP treatment, cleaning with a PVA brush (polyvinyl alcohol brush) was performed, followed by drying with a spin dryer.
<研磨品評価項目>
[ブランケットウエハ研磨速度]
 前記条件で研磨及び洗浄した各被研磨膜(酸化珪素膜、窒化珪素膜及びポリシリコン膜)の研磨速度(酸化珪素膜の研磨速度:SiORR、窒化珪素膜の研磨速度:SiNRR、ポリシリコン膜の研磨速度:p-SiRR)を下記式より求めた。また、研磨選択比SiORR/SiNRR及びSiORR/p-SiRRを求めた。なお、研磨前後での各被研磨膜の膜厚差は、光干渉式膜厚装置(フィルメトリクス社製、商品名:F80)を用いて求めた。
 (研磨速度:RR)=(研磨前後での各被研磨膜の膜厚差(nm))/(研磨時間(min))
<Evaluation items for polished products>
[Blanket wafer polishing speed]
Polishing rate of each film to be polished (silicon oxide film, silicon nitride film and polysilicon film) polished and cleaned under the above conditions (silicon oxide film polishing rate: SiO 2 RR, silicon nitride film polishing rate: SiNRR, polysilicon The film polishing rate: p-SiRR) was determined from the following formula. Further, polishing selection ratios SiO 2 RR / SiNRR and SiO 2 RR / p-SiRR were determined. In addition, the film thickness difference of each to-be-polished film | membrane before and behind grinding | polishing was calculated | required using the optical interference type | formula film thickness apparatus (Filmetrics company make, brand name: F80).
(Polishing rate: RR) = (Thickness difference of each film to be polished before and after polishing (nm)) / (Polishing time (min))
 実施例A1~A8及び比較例A1~A7で得られた各測定結果を表1及び表2に示す。 Tables 1 and 2 show the measurement results obtained in Examples A1 to A8 and Comparative Examples A1 to A7.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 なお、上記表中の記号は下記の通りである。
  A1:サンマルト-S(マルトース)
  A2:サンデック#300(デキストリン)
  A3:サンデック#180(デキストリン)
  A4:サンデック#100(デキストリン)
  A5:NSD#700(デキストリン)
  A6:H-PDX(還元型デキストリン)
  A7:D(+)-グルコース
  A8:サンデック#30(デキストリン)
  A9:NSD#300(デキストリン)
  P1:ポリジアリルジメチルアンモニウムクロリド
  P2:ジシアンジアミド/ジエチレントリアミン共重合体
The symbols in the above table are as follows.
A1: San Marto-S (Maltos)
A2: Sandeck # 300 (dextrin)
A3: Sandeck # 180 (dextrin)
A4: Sandeck # 100 (dextrin)
A5: NSD # 700 (dextrin)
A6: H-PDX (reduced dextrin)
A7: D (+)-glucose A8: Sandeck # 30 (dextrin)
A9: NSD # 300 (dextrin)
P1: Polydiallyldimethylammonium chloride P2: Dicyandiamide / diethylenetriamine copolymer
 以下、表1及び表2に示す結果について詳しく説明する。 Hereinafter, the results shown in Tables 1 and 2 will be described in detail.
 実施例A1において、SiORRは478nm/min、SiNRRは1.4nm/min、p-SiRRは1.0nm/min、研磨選択比SiORR/SiNRRは341、研磨選択比SiORR/p-SiRRは478であり、窒化珪素膜及びポリシリコン膜に対する絶縁材料の研磨選択比が比較例A1~A7より高い値を示した。 In Example A1, SiO 2 RR is 478 nm / min, SiNRR is 1.4 nm / min, p-SiRR is 1.0 nm / min, polishing selectivity SiO 2 RR / SiNRR is 341, and polishing selectivity SiO 2 RR / p -SiRR was 478, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
 実施例A2において、SiORRは438nm/min、SiNRRは0.5nm/min、研磨選択比SiORR/SiNRRは876であり、研磨選択比が比較例A1~A7より高い値を示した。 In Example A2, the SiO 2 RR was 438 nm / min, the SiNRR was 0.5 nm / min, the polishing selection ratio SiO 2 RR / SiNRR was 876, and the polishing selection ratio was higher than those of Comparative Examples A1 to A7.
 実施例A3において、SiORRは355nm/min、SiNRRは0.6nm/min、p-SiRRは0.8nm/min、研磨選択比SiORR/SiNRRは592、研磨選択比SiORR/p-SiRRは444であり、窒化珪素膜及びポリシリコン膜に対する絶縁材料の研磨選択比が比較例A1~A7より高い値を示した。 In Example A3, SiO 2 RR was 355 nm / min, SiNRR was 0.6 nm / min, p-SiRR was 0.8 nm / min, polishing selectivity SiO 2 RR / SiNRR was 592, and polishing selectivity SiO 2 RR / p -SiRR was 444, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
 実施例A4において、SiORRは316nm/min、SiNRRは1.8nm/min、p-SiRRは0.5nm/min、研磨選択比SiORR/SiNRRは176、研磨選択比SiORR/p-SiRRは632であり、窒化珪素膜及びポリシリコン膜に対する絶縁材料の研磨選択比が比較例A1~A7より高い値を示した。 In Example A4, SiO 2 RR was 316 nm / min, SiNRR was 1.8 nm / min, p-SiRR was 0.5 nm / min, polishing selectivity SiO 2 RR / SiNRR was 176, polishing selectivity SiO 2 RR / p -SiRR was 632, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
 実施例A5において、SiORRは356nm/min、SiNRRは0.6nm/min、p-SiRRは0.4nm/min、研磨選択比SiORR/SiNRRは593、研磨選択比SiORR/p-SiRRは890であり、窒化珪素膜及びポリシリコン膜に対する絶縁材料の研磨選択比が比較例A1~A7より高い値を示した。 In Example A5, SiO 2 RR was 356 nm / min, SiNRR was 0.6 nm / min, p-SiRR was 0.4 nm / min, polishing selectivity SiO 2 RR / SiNRR was 593, and polishing selectivity SiO 2 RR / p -SiRR was 890, and the polishing selectivity ratio of the insulating material to the silicon nitride film and the polysilicon film was higher than those of Comparative Examples A1 to A7.
 実施例A6において、SiORRは316nm/min、SiNRRは1.2nm/min、研磨選択比SiORR/SiNRRは263であり、研磨選択比が比較例A1~A7より高い値を示した。 In Example A6, SiO 2 RR was 316 nm / min, SiNRR was 1.2 nm / min, polishing selectivity SiO 2 RR / SiNRR was 263, and the polishing selectivity was higher than those of Comparative Examples A1 to A7.
 実施例A7において、SiORRは203nm/min、SiNRRは0.8nm/min、研磨選択比SiORR/SiNRRは254であり、研磨選択比が比較例A1~A7より高い値を示した。 In Example A7, SiO 2 RR was 203 nm / min, SiNRR was 0.8 nm / min, polishing selectivity SiO 2 RR / SiNRR was 254, and the polishing selectivity was higher than those of Comparative Examples A1 to A7.
 実施例A8において、SiORRは383nm/min、SiNRRは0.5nm/min、研磨選択比SiORR/SiNRRは766であり、研磨選択比が比較例A1~A7より高い値を示した。 In Example A8, SiO 2 RR was 383 nm / min, SiNRR was 0.5 nm / min, polishing selectivity SiO 2 RR / SiNRR was 766, and the polishing selectivity was higher than those of Comparative Examples A1 to A7.
 比較例A1において、SiORRは11nm/min、SiNRRは77nm/min、研磨選択比SiORR/SiNRRは0.1であった。 In Comparative Example A1, the SiO 2 RR was 11 nm / min, the SiNRR was 77 nm / min, and the polishing selection ratio SiO 2 RR / SiNRR was 0.1.
 比較例A2において、SiORRは429nm/min、SiNRRは45nm/min、p-SiRRは2.1nm/min、研磨選択比SiORR/SiNRRは10、研磨選択比SiORR/p-SiRRは204であった。 In Comparative Example A2, SiO 2 RR was 429 nm / min, SiNRR was 45 nm / min, p-SiRR was 2.1 nm / min, polishing selectivity SiO 2 RR / SiNRR was 10, and polishing selectivity SiO 2 RR / p-SiRR. Was 204.
 比較例A3において、SiORRは128nm/min、SiNRRは33nm/min、研磨選択比SiORR/SiNRRは3.9であった。 In Comparative Example A3, SiO 2 RR was 128 nm / min, SiNRR was 33 nm / min, and polishing selectivity SiO 2 RR / SiNRR was 3.9.
 比較例A4において、SiORRは159nm/min、SiNRRは17nm/min、研磨選択比SiORR/SiNRRは9.4であった。 In Comparative Example A4, the SiO 2 RR was 159 nm / min, the SiNRR was 17 nm / min, and the polishing selectivity ratio SiO 2 RR / SiNRR was 9.4.
 比較例A5において、SiORRは119nm/min、SiNRRは14nm/min、p-SiRRは4.0nm/min、研磨選択比SiORR/SiNRRは8.5、研磨選択比SiORR/p-SiRRは30であった。 In Comparative Example A5, SiO 2 RR was 119 nm / min, SiNRR was 14 nm / min, p-SiRR was 4.0 nm / min, polishing selectivity SiO 2 RR / SiNRR was 8.5, and polishing selectivity SiO 2 RR / p -SiRR was 30.
 比較例A6において、SiORRは3.9nm/min、SiNRRは1.4nm/min、研磨選択比SiORR/SiNRRは2.8であった。 In Comparative Example A6, SiO 2 RR was 3.9 nm / min, SiNRR was 1.4 nm / min, and polishing selectivity SiO 2 RR / SiNRR was 2.8.
 比較例A7において、SiORRは2.1nm/min、SiNRRは0.8nm/min、研磨選択比SiORR/SiNRRは2.6であった。 In Comparative Example A7, the SiO 2 RR was 2.1 nm / min, the SiNRR was 0.8 nm / min, and the polishing selectivity ratio SiO 2 RR / SiNRR was 2.6.
(3)実験B
<CMP用研磨剤の調製>
[実施例B1]
 還元型デキストリン[松谷化学工業株式会社製、H-PDX。水分は5質量%以下である。]10質量%、2-メチルイミダゾール0.18質量%、酢酸0.06質量%及び水89.76質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水830gと、陽イオン性ポリマとしてポリジアリルジメチルアンモニウムクロリド[センカ株式会社製、ユニセンスFPA1000L]を0.15質量%含有すると共にアミノ基含有スルホン酸化合物としてスルファニル酸を1.0質量%含有する水溶液20gとを混合することにより、表3に記載される組成のCMP用研磨剤(1000g)を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.02質量%含有する。前記還元型デキストリンの重量平均分子量を下記条件で測定したところ、2.0×10であった。なお、前記還元型デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。
(3) Experiment B
<Preparation of abrasive for CMP>
[Example B1]
Reduced dextrin [Matsuya Chemical Co., Ltd., H-PDX. The water content is 5% by mass or less. A storage solution for additive solution containing 10% by mass, 0.18% by mass of 2-methylimidazole, 0.06% by mass of acetic acid and 89.76% by mass of water, 50g of a storage solution for cerium hydroxide slurry, Aqueous solution containing 830 g of water and 0.15% by mass of polydiallyldimethylammonium chloride [manufactured by Senka Co., Ltd., Unisense FPA1000L] as a cationic polymer and 1.0% by mass of sulfanilic acid as an amino group-containing sulfonic acid compound By mixing 20 g, an abrasive for CMP (1000 g) having the composition shown in Table 3 was prepared. The abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.02% of sulfanilic acid. Contains by mass%. It was 2.0 * 10 < 3 > when the weight average molecular weight of the said reduced dextrin was measured on condition of the following. The reduced dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB).
(条件)
 使用機器:LC-20AD(株式会社島津製作所製)
 カラム:Gelpack GL-W540+550
 溶離液:0.1M NaCl水溶液
 測定温度:40℃
 カラムサイズ:10.7mmI.D.×300mm
 流量:1.0mL/min
 試料濃度:0.2質量%
 検出器:RID-10A(株式会社島津製作所製)
(conditions)
Equipment used: LC-20AD (manufactured by Shimadzu Corporation)
Column: Gelpack GL-W540 + 550
Eluent: 0.1M NaCl aqueous solution Measurement temperature: 40 ° C
Column size: 10.7 mmI. D. × 300mm
Flow rate: 1.0 mL / min
Sample concentration: 0.2% by mass
Detector: RID-10A (manufactured by Shimadzu Corporation)
[実施例B2]
 スルファニル酸の含有量を0.03質量%に変更し、2-メチルイミダゾールの含有量を0.02質量%に変更し、酢酸の含有量を0.005質量%に変更した以外は実施例B1と同様にして、表3に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.03質量%含有する。
[Example B2]
Example B1 except that the content of sulfanilic acid was changed to 0.03% by mass, the content of 2-methylimidazole was changed to 0.02% by mass, and the content of acetic acid was changed to 0.005% by mass In the same manner as above, an abrasive for CMP having the composition shown in Table 3 was prepared. The abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.03% of sulfanilic acid. Contains by mass%.
[実施例B3]
 還元型デキストリンを難消化性デキストリン[株式会社宮源製、ファイバーソル2H。水分:5質量%以下。メーカ公称値]に変更し、スルファニル酸の含有量を0.01質量%に変更し、2-メチルイミダゾールの含有量を0.012質量%に変更し、酢酸の含有量を0.005質量%に変更した以外は実施例B1と同様にして、表3に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、難消化性デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.01質量%含有する。前記難消化性デキストリンは、式(I-A)で表される構造単位、及び、式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有している。なお、前記難消化性デキストリンの重量平均分子量を実施例B1と同様の方法で測定したところ、2.5×10であった。
[Example B3]
Reduced dextrin is resistant to digestion [Miyagen Co., Ltd., Fiber Sol 2H. Moisture: 5% by mass or less. Manufacturer's nominal value], sulfanilic acid content changed to 0.01 mass%, 2-methylimidazole content changed to 0.012 mass%, and acetic acid content changed to 0.005 mass% A polishing slurry for CMP having the composition shown in Table 3 was prepared in the same manner as in Example B1 except that the above was changed. The CMP polishing slurry was 0.05% by weight of abrasive grains containing cerium hydroxide, 1.0% by weight of indigestible dextrin, 0.003% by weight of polydiallyldimethylammonium chloride, and 0.02% of sulfanilic acid. Contains 01% by mass. The indigestible dextrin has at least one selected from the group consisting of a structural unit represented by the formula (IA) and a structural unit represented by the formula (IB). In addition, it was 2.5 * 10 < 3 > when the weight average molecular weight of the said indigestible dextrin was measured by the method similar to Example B1.
[実施例B4]
 スルファニル酸の含有量を0.02質量%に変更し、2-メチルイミダゾールの含有量を0.018質量%に変更した以外は実施例B3と同様にして、表3に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、難消化性デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.02質量%含有する。
[Example B4]
CMP of the composition described in Table 3 was carried out in the same manner as in Example B3 except that the content of sulfanilic acid was changed to 0.02% by mass and the content of 2-methylimidazole was changed to 0.018% by mass. A polishing slurry was prepared. The CMP polishing slurry was 0.05% by weight of abrasive grains containing cerium hydroxide, 1.0% by weight of indigestible dextrin, 0.003% by weight of polydiallyldimethylammonium chloride, and 0.02% of sulfanilic acid. Contains 02% by mass.
[実施例B5]
 0.01質量%のスルファニル酸を0.02質量%の2-アミノエタンスルホン酸(タウリン)に変更し、2-メチルイミダゾールの含有量を0.08質量%に変更した以外は実施例B3と同様にして、表3に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、難消化性デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、2-アミノエタンスルホン酸を0.02質量%含有する。
[Example B5]
Example B3 except that 0.01% by mass of sulfanilic acid was changed to 0.02% by mass of 2-aminoethanesulfonic acid (taurine) and the content of 2-methylimidazole was changed to 0.08% by mass. Similarly, an abrasive for CMP having the composition shown in Table 3 was prepared. The abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of indigestible dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, 2-aminoethanesulfone. Contains 0.02% by weight of acid.
[実施例B6]
 砥粒の含有量を0.02質量%に変更し、スルファニル酸の含有量を0.06質量%に変更し、2-メチルイミダゾールの含有量を0.033質量%に変更し、酢酸の含有量を0.005質量%に変更した以外は実施例B1と同様にして、表3に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.02質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.06質量%含有する。
[Example B6]
The abrasive content was changed to 0.02 mass%, the sulfanilic acid content was changed to 0.06 mass%, the 2-methylimidazole content was changed to 0.033 mass%, and the acetic acid content was changed. A polishing slurry for CMP having the composition shown in Table 3 was prepared in the same manner as in Example B1, except that the amount was changed to 0.005% by mass. The abrasive for CMP is 0.02% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.06% of sulfanilic acid. Contains by mass%.
[比較例B1]
 グルコース[和光純薬工業株式会社製、和光一級D(+)-グルコース。分子量:130]10質量%、2-メチルイミダゾール0.08質量%、酢酸0.06質量%及び水89.86質量%を含有する添加液用貯蔵液100gと、セリウム水酸化物スラリ用貯蔵液50gと、水820gと、陽イオン性ポリマとしてポリジアリルジメチルアンモニウムクロリド[センカ株式会社製、ユニセンスFPA1000L]を0.1質量%含有する水溶液30gとを混合することにより、表4に記載される組成のCMP用研磨剤(1000g)を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、D(+)-グルコースを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。
[Comparative Example B1]
Glucose [Wako Pure Chemical Industries, Ltd., Wako first grade D (+)-glucose. Molecular weight: 130] 100 g of additive solution containing 10% by mass, 0.08% by mass of 2-methylimidazole, 0.06% by mass of acetic acid and 89.86% by mass of water, and a storage solution for cerium hydroxide slurry By mixing 50 g, 820 g of water, and 30 g of an aqueous solution containing 0.1% by mass of polydiallyldimethylammonium chloride [manufactured by Senka Co., Ltd., Unisense FPA1000L] as a cationic polymer, the composition described in Table 4 An abrasive for CMP (1000 g) was prepared. The abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of D (+)-glucose, and 0.003% by mass of polydiallyldimethylammonium chloride.
[実施例B7]
 スルファニル酸を2-アクリルアミド-2-メチルプロパンスルホン酸に変更し、酢酸の含有量を0.005質量%に変更した以外は実施例B1と同様にして、表4に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、2-アクリルアミド-2-メチルプロパンスルホン酸を0.02質量%含有する。
[Example B7]
For CMP having the composition shown in Table 4 in the same manner as in Example B1, except that sulfanilic acid was changed to 2-acrylamido-2-methylpropanesulfonic acid and the acetic acid content was changed to 0.005% by mass. An abrasive was prepared. The CMP abrasive is 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, 2-acrylamido-2- It contains 0.02% by mass of methylpropanesulfonic acid.
[実施例B8]
 2-メチルイミダゾールの含有量を0.08質量%に変更し、酢酸の含有量を0.005質量%に変更し、スルファニル酸を用いることなくCMP用研磨剤を調製した以外は実施例B1と同様にして、表4に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。
[Example B8]
Example B1 except that the content of 2-methylimidazole was changed to 0.08% by mass, the content of acetic acid was changed to 0.005% by mass, and an abrasive for CMP was prepared without using sulfanilic acid. Similarly, an abrasive for CMP having the composition shown in Table 4 was prepared. The abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, and 0.003% by mass of polydiallyldimethylammonium chloride.
[比較例B2]
 還元型デキストリンをポリオキシエチレンスチレン化フェニルエーテル[第一工業製薬株式会社製、ノイゲンEA207D]に変更した以外は実施例B8と同様にして、表4に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、ポリオキシエチレンスチレン化フェニルエーテルを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。
[Comparative Example B2]
A polishing slurry for CMP having the composition shown in Table 4 was prepared in the same manner as in Example B8 except that the reduced dextrin was changed to polyoxyethylene styrenated phenyl ether [Daiichi Kogyo Seiyaku Co., Ltd., Neugen EA207D]. did. The abrasive for CMP contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of polyoxyethylene styrenated phenyl ether, and 0.003% by mass of polydiallyldimethylammonium chloride.
[比較例B3]
 陽イオン性ポリマを用いることなく、スルファニル酸の含有量を0.01質量%に変更し、酢酸の含有量を0.005質量%に変更し、2-メチルイミダゾールの含有量を0.013質量%に変更した以外は実施例B1と同様にして、表4に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、スルファニル酸を0.01質量%含有する。
[Comparative Example B3]
Without using a cationic polymer, the sulfanilic acid content was changed to 0.01% by mass, the acetic acid content was changed to 0.005% by mass, and the 2-methylimidazole content was 0.013% by mass. A polishing slurry for CMP having the composition shown in Table 4 was prepared in the same manner as in Example B1, except that the percentage was changed to%. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, and 0.01% by mass of sulfanilic acid.
[比較例B4]
 還元型デキストリン及び陽イオン性ポリマを用いることなく、酢酸の含有量を0.005質量%に変更した以外は実施例B1と同様にして、表5に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、スルファニル酸を0.02質量%含有する。
[Comparative Example B4]
A polishing slurry for CMP having the composition shown in Table 5 was prepared in the same manner as in Example B1, except that the content of acetic acid was changed to 0.005% by mass without using reduced dextrin and cationic polymer. did. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 0.02% by mass of sulfanilic acid.
[比較例B5]
 還元型デキストリンを用いることなくCMP用研磨剤を調製した以外は実施例B8と同様にして、表5に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%含有する。
[Comparative Example B5]
A CMP abrasive having the composition shown in Table 5 was prepared in the same manner as in Example B8 except that the abrasive for CMP was prepared without using reduced dextrin. The CMP abrasive contains 0.05% by mass of abrasive grains containing cerium hydroxide and 0.003% by mass of polydiallyldimethylammonium chloride.
[比較例B6]
 2-メチルイミダゾールの含有量を0.017質量%に変更し、0.02質量%のスルファニル酸を添加した以外は比較例B2と同様にして、表5に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、ポリオキシエチレンスチレン化フェニルエーテルを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.02質量%含有する。
[Comparative Example B6]
A polishing slurry for CMP having the composition shown in Table 5 in the same manner as in Comparative Example B2, except that the content of 2-methylimidazole was changed to 0.017% by mass and 0.02% by mass of sulfanilic acid was added. Was prepared. The abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of polyoxyethylene styrenated phenyl ether, 0.003% by mass of polydiallyldimethylammonium chloride, sulfanilic acid Is contained in an amount of 0.02% by mass.
[実施例B9]
 0.02質量%のp-トルエンスルホン酸を添加し、2-メチルイミダゾールの含有量を0.017質量%に変更した以外は実施例B8と同様にして、表5に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、p-トルエンスルホン酸を0.02質量%含有する。
[Example B9]
CMP of the composition described in Table 5 was performed in the same manner as in Example B8 except that 0.02% by mass of p-toluenesulfonic acid was added and the content of 2-methylimidazole was changed to 0.017% by mass. A polishing slurry was prepared. The CMP polishing slurry comprises 0.05% by weight abrasive grains containing cerium hydroxide, 1.0% by weight reduced dextrin, 0.003% by weight polydiallyldimethylammonium chloride, and p-toluenesulfonic acid. Contains 0.02% by mass.
[実施例B10]
 p-トルエンスルホン酸をグリシンに変更(含有量は変更せず0.02質量%である)し、2-メチルイミダゾールの含有量を0.008質量%に変更した以外は実施例B9と同様にして、表5に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、還元型デキストリンを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、グリシンを0.02質量%含有する。
[Example B10]
The same procedure as in Example B9 except that p-toluenesulfonic acid was changed to glycine (the content was not changed and was 0.02% by mass), and the content of 2-methylimidazole was changed to 0.008% by mass. Thus, an abrasive for CMP having the composition shown in Table 5 was prepared. The CMP abrasive is 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of reduced dextrin, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.02% by mass of glycine. %contains.
[実施例B11]
 還元型デキストリンをマルトース[三和澱粉工業株式会社製、サンマルト-S]に変更(含有量は変更せず1.0質量%である)した以外は実施例B2と同様にして、表5に記載される組成のCMP用研磨剤を調製した。当該CMP用研磨剤は、セリウム水酸化物を含む砥粒を0.05質量%、マルトースを1.0質量%、ポリジアリルジメチルアンモニウムクロリドを0.003質量%、スルファニル酸を0.03質量%含有する。なお、マルトースの分子量の理論値は342.30であるが、前記マルトースの重量平均分子量を実施例B1と同様の方法で測定したところ、259であった。
[Example B11]
Table 5 shows the same as in Example B2, except that the reduced dextrin was changed to maltose [Sanmalto-S, manufactured by Sanwa Starch Co., Ltd.] (content is 1.0% by mass without change). An abrasive for CMP having the composition described above was prepared. The abrasive for CMP includes 0.05% by mass of abrasive grains containing cerium hydroxide, 1.0% by mass of maltose, 0.003% by mass of polydiallyldimethylammonium chloride, and 0.03% by mass of sulfanilic acid. contains. In addition, although the theoretical value of the molecular weight of maltose is 342.30, it was 259 when the weight average molecular weight of the said maltose was measured by the method similar to Example B1.
<液状特性評価>
 前記で得られたCMP用研磨剤のpH、及び、砥粒の平均粒径を下記の条件で評価した。
<Liquid property evaluation>
The pH of the CMP polishing slurry obtained above and the average particle size of the abrasive grains were evaluated under the following conditions.
(pH)
 測定温度:25±5℃
 測定装置:電気化学計器株式会社製、型番PHL-40
 測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH6.86(25℃))を用いて2点校正した後、電極をCMP用研磨剤に入れて、2分以上経過して安定した後のpHを前記測定装置により測定した。結果を表3~5に示す。
(PH)
Measurement temperature: 25 ± 5 ° C
Measuring device: manufactured by Electrochemical Instrument Co., Ltd., model number PHL-40
Measurement method: After calibrating two points using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH 6.86 (25 ° C.)), The electrode was placed in a CMP abrasive and the pH after the passage of 2 minutes or more and stabilized was measured with the measuring device. The results are shown in Tables 3-5.
(砥粒の平均粒径)
 CMP用研磨剤を適量採取し、砥粒含有量が0.2質量%となるように水で希釈して測定サンプル(水分散液)を得た。測定サンプルを1cm角のセルに約4mL入れ、ベックマンコールター社製の装置名:N5内にセルを設置した。分散媒の屈折率を1.33、粘度を0.887mPa・sに設定して、25℃において測定を行い、表示された平均粒径値を平均粒径(平均二次粒径)とした。その結果、実施例及び比較例のいずれにおいても、平均粒径は10~30nmの範囲であった。
(Average grain size of abrasive grains)
An appropriate amount of an abrasive for CMP was collected and diluted with water so that the abrasive grain content was 0.2% by mass to obtain a measurement sample (aqueous dispersion). About 4 mL of the measurement sample was placed in a 1 cm square cell, and the cell was installed in a device name: N5 manufactured by Beckman Coulter. The dispersion medium was set to have a refractive index of 1.33 and a viscosity of 0.887 mPa · s, measured at 25 ° C., and the displayed average particle size value was defined as the average particle size (average secondary particle size). As a result, in both the examples and the comparative examples, the average particle size was in the range of 10 to 30 nm.
<CMP評価>
[ブランケットウエハ評価]
 前記CMP用研磨剤のそれぞれを用いて下記研磨条件で被研磨基板を研磨した。
<CMP evaluation>
[Blanket wafer evaluation]
The substrate to be polished was polished under the following polishing conditions using each of the CMP polishing agents.
(CMP条件)
 ・研磨装置:実施例B6では、Reflexion LK(APPLIED MATERIALS社製)を使用し、それ以外の実施例と、比較例とでは、F REX-300(株式会社荏原製作所製)を使用した。
 ・CMP用研磨剤流量:200mL/min
 ・被研磨基板:パターンが形成されていないブランケットウエハとして、厚さ1μm(1000nm)の酸化珪素膜をシリコン基板上にプラズマCVD法で形成した基板と、厚さ0.2μm(200nm)の窒化珪素膜をシリコン基板上にCVD法で形成した基板とを用いた。
 ・研磨パッド:独立気泡を有する発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)、ショアD硬度:60
 ・研磨圧力:20kPa(3.0psi)
 ・基板と研磨定盤の回転数:基板/研磨定盤=93/87min-1(rpm)
 ・研磨時間:1min
 ・ウエハの洗浄及び乾燥:CMP処理後、PVAブラシによる洗浄を行い、続いて、スピンドライヤで乾燥させた。
(CMP conditions)
Polishing apparatus: In Example B6, Reflexion LK (manufactured by APPLIED MATERIALS) was used, and in other examples and comparative examples, FREX-300 (manufactured by Ebara Corporation) was used.
・ CMP abrasive flow rate: 200 mL / min
Substrate to be polished: a blanket wafer on which a pattern is not formed, a substrate in which a silicon oxide film having a thickness of 1 μm (1000 nm) is formed on a silicon substrate by a plasma CVD method, and a silicon nitride having a thickness of 0.2 μm (200 nm) A substrate in which a film was formed on a silicon substrate by a CVD method was used.
Polishing pad: foamed polyurethane resin having closed cells (Rohm and Haas Japan, model number IC1010), Shore D hardness: 60
Polishing pressure: 20 kPa (3.0 psi)
・ Number of rotations of substrate and polishing surface plate: Substrate / polishing surface plate = 93/87 min −1 (rpm)
・ Polishing time: 1 min
-Cleaning and drying of wafer: After CMP treatment, cleaning with a PVA brush was performed, followed by drying with a spin dryer.
(ブランケットウエハ研磨速度)
 前記条件で研磨及び洗浄した各被研磨膜(酸化珪素膜、窒化珪素膜)の研磨速度(酸化珪素膜の研磨速度:SiORR、窒化珪素膜の研磨速度:SiNRR)を下記式より求めた。また、研磨選択比SiORR/SiNRRを求めた。なお、研磨前後での各被研磨膜の膜厚差は、光干渉式膜厚装置(フィルメトリクス社製、商品名:F80)を用いて求めた。
 (研磨速度:RR)=(研磨前後での各被研磨膜の膜厚差(nm))/(研磨時間(min))
(Blanket wafer polishing speed)
The polishing rate (silicon oxide film polishing rate: SiO 2 RR, silicon nitride film polishing rate: SiNRR) of each film to be polished (silicon oxide film, silicon nitride film) polished and cleaned under the above conditions was obtained from the following formula. . Further, the polishing selection ratio SiO 2 RR / SiNRR was determined. In addition, the film thickness difference of each to-be-polished film | membrane before and behind grinding | polishing was calculated | required using the optical interference type | formula film thickness apparatus (Filmetrics company make, brand name: F80).
(Polishing rate: RR) = (Thickness difference of each film to be polished before and after polishing (nm)) / (Polishing time (min))
[パターンウエハ評価1]
 CMP用研磨剤を用いて下記研磨条件で被研磨基板を研磨した。但し、比較例B2~B6については、ブランケットウエハでの研磨選択比SiORR/SiNRRが低いことからパターンウエハの研磨を行わなかった。
[Pattern wafer evaluation 1]
The substrate to be polished was polished under the following polishing conditions using a CMP abrasive. However, in Comparative Examples B2 to B6, the pattern wafer was not polished because the polishing selection ratio SiO 2 RR / SiNRR on the blanket wafer was low.
(CMP条件)
 研磨装置:前記ブランケットウエハ研磨速度の研磨と同様の研磨装置を用いた。
 パターンウエハ:模擬パターンが形成されたパターンウエハとして、SEMATECH社製、764ウエハ(商品名、直径:300mm)を用いた。当該パターンウエハは、ストッパとして窒化珪素膜をシリコン基板上に積層後、露光工程においてトレンチを形成し、窒化珪素膜及びトレンチを埋めるようにシリコン基板及び窒化珪素膜の上に絶縁膜として酸化珪素膜(SiO膜)を積層することにより得られたウエハであった。酸化珪素膜は、HDP(High Density Plasma)法により成膜されたものであった。
 ・研磨パッド:独立気泡を有する発泡ポリウレタン樹脂(ローム・アンド・ハース・ジャパン株式会社製、型番IC1010)、ショアD硬度:60
 ・研磨圧力:14kPa(2.0psi)
 ・基板と研磨定盤の回転数:基板/研磨定盤=100/107min-1(rpm)
 ・研磨時間:ストッパである窒化珪素膜が露出するまで研磨を行った。また、窒化珪素膜が露出するまでにかかった研磨時間と同じ時間更に研磨を行う(100%オーバー研磨を行う)ことにより、ディッシングの進行度合いの確認を行った。
 ・ウエハの洗浄及び乾燥:CMP処理後、PVAブラシによる洗浄を行い、続いて、スピンドライヤで乾燥させた。
(CMP conditions)
Polishing apparatus: The same polishing apparatus as that used for polishing the blanket wafer was used.
Pattern wafer: As a pattern wafer on which a simulated pattern was formed, a 764 wafer (trade name, diameter: 300 mm) manufactured by SEMATECH was used. In the patterned wafer, a silicon nitride film is stacked on a silicon substrate as a stopper, a trench is formed in an exposure process, and a silicon oxide film is formed as an insulating film on the silicon substrate and the silicon nitride film so as to fill the silicon nitride film and the trench. It was a wafer obtained by laminating (SiO 2 film). The silicon oxide film was formed by the HDP (High Density Plasma) method.
Polishing pad: foamed polyurethane resin having closed cells (Rohm and Haas Japan, model number IC1010), Shore D hardness: 60
Polishing pressure: 14 kPa (2.0 psi)
・ Number of rotations of substrate and polishing platen: substrate / polishing platen = 100/107 min −1 (rpm)
Polishing time: Polishing was performed until the silicon nitride film as a stopper was exposed. Further, the progress of dishing was confirmed by performing further polishing (performing 100% overpolishing) for the same time as the polishing time required until the silicon nitride film was exposed.
-Cleaning and drying of wafer: After CMP treatment, cleaning with a PVA brush was performed, followed by drying with a spin dryer.
 前記パターンウエハは、ライン(凸部)&スペース(凹部)幅が1000μmピッチ、200μmピッチ、100μmピッチであり且つ凸部パターン密度が50%である部分を有している。ライン&スペースとは、模擬的なパターンであり、凸部である窒化珪素膜でマスクされたActive部と、凹部である溝が形成されたTrench部とが、交互に並んだパターンである。例えば、「ライン&スペースが100μmピッチ」とは、ライン部とスペ-ス部との幅の合計が100μmであることを意味する。また、例えば、「ライン&スペースが100μmピッチで、凸部パターン密度が50%」とは、凸部幅:50μmと、凹部幅:50μmとが、交互に並んだパターンを意味する。 The pattern wafer has a line (convex portion) & space (concave portion) width of 1000 μm pitch, 200 μm pitch, 100 μm pitch, and a convex pattern density of 50%. The line and space is a simulated pattern in which an active portion masked with a silicon nitride film that is a convex portion and a trench portion in which a groove that is a concave portion is formed are alternately arranged. For example, “the line and space has a pitch of 100 μm” means that the total width of the line portion and the space portion is 100 μm. For example, “the line and space is 100 μm pitch and the convex pattern density is 50%” means a pattern in which convex widths: 50 μm and concave widths: 50 μm are alternately arranged.
 パターンウエハにおいて、酸化珪素膜の膜厚は、シリコン基板及び窒化珪素膜のいずれの上においても600nmであった。具体的には、シリコン基板上の窒化珪素膜の膜厚は150nmであり、酸化珪素膜の凸部の膜厚は600nmであり、酸化珪素膜の凹部の膜厚は600nmであり、酸化珪素膜の凹部深さは500nm(トレンチ深さ350nm+窒化珪素膜の膜厚150nm)であった。 In the pattern wafer, the thickness of the silicon oxide film was 600 nm on both the silicon substrate and the silicon nitride film. Specifically, the thickness of the silicon nitride film on the silicon substrate is 150 nm, the thickness of the convex portion of the silicon oxide film is 600 nm, the thickness of the concave portion of the silicon oxide film is 600 nm, and the silicon oxide film The recess depth was 500 nm (trench depth 350 nm + silicon nitride film thickness 150 nm).
 パターンウエハの研磨評価に際しては、セルフストップ性(模擬パターンの残段差が小さくなると研磨速度が低下する)を有する公知のCMP用研磨剤を用いて前記ウエハを研磨することにより残段差が100nm以下の状態となったウエハを用いた。具体的には、日立化成株式会社製HS-8005-D4と、日立化成株式会社製HS-7303GPと、水とを2:1.2:6.8の比率で配合した研磨剤を用いて、1000μmピッチ50%密度パターンにおける凸部の酸化珪素膜の膜厚を130nmまで研磨した状態のウエハを用いた。 When polishing a pattern wafer, the remaining step is 100 nm or less by polishing the wafer using a known CMP abrasive having self-stopping properties (the polishing rate decreases when the remaining step of the simulated pattern decreases). The wafer in a state was used. Specifically, using an abrasive in which HS-8005-D4 manufactured by Hitachi Chemical Co., Ltd., HS-7303GP manufactured by Hitachi Chemical Co., Ltd., and water are mixed at a ratio of 2: 1.2: 6.8, A wafer in which the film thickness of the convex silicon oxide film in a 1000 μm pitch 50% density pattern was polished to 130 nm was used.
 前記条件で研磨及び洗浄したパターンウエハの凸部の窒化珪素膜又は酸化珪素膜の残膜厚、及び、凹部の酸化珪素膜の残膜厚を測定して残段差量(ディッシング)を次式より求めた。なお、研磨前後での被研磨膜の膜厚は、光干渉式膜厚装置(ナノメトリクス社製、商品名:Nanospec AFT-5100)を用いて求めた。
 残段差(ディッシング)=(350nm+窒化珪素膜の膜厚(nm))-(凹部の酸化珪素膜の残膜厚(nm))
By measuring the remaining film thickness of the silicon nitride film or silicon oxide film on the convex part of the patterned wafer polished and cleaned under the above conditions and the residual film thickness of the silicon oxide film in the concave part, the amount of residual step (dishing) is obtained from the following equation: Asked. The film thickness of the film to be polished before and after polishing was determined using an optical interference film thickness apparatus (manufactured by Nanometrics, trade name: Nanospec AFT-5100).
Remaining step (dishing) = (350 nm + silicon nitride film thickness (nm)) − (recessed silicon oxide film remaining film thickness (nm))
 実施例B1~B11及び比較例B1~B6で得られた各測定結果を表3~5に示す。 Tables 3 to 5 show the measurement results obtained in Examples B1 to B11 and Comparative Examples B1 to B6.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 なお、上記表中の記号は下記の通りである。
  B1:H-PDX(還元型デキストリン)
  B2:ファイバーソル2H(難消化性デキストリン)
  B3:D(+)-グルコース
  B4:ノイゲンEA207D(ポリオキシエチレンスチレン化フェニルエーテル)
  B5:サンマルト-S(マルトース)
  P1:ポリジアリルジメチルアンモニウムクロリド
  S1:2-アクリルアミド-2-メチルプロパンスルホン酸
The symbols in the above table are as follows.
B1: H-PDX (reduced dextrin)
B2: Fibersol 2H (digestible dextrin)
B3: D (+)-glucose B4: Neugen EA207D (polyoxyethylene styrenated phenyl ether)
B5: San Marto-S (Maltos)
P1: polydiallyldimethylammonium chloride S1: 2-acrylamido-2-methylpropanesulfonic acid
 以下、表3~5に示す結果について詳しく説明する。 Hereinafter, the results shown in Tables 3 to 5 will be described in detail.
 実施例B1において、SiORRは478nm/min、SiNRRは0.9nm/min、研磨選択比SiORR/SiNRRは531であり、SiNRRが比較例より小さい値を示し、研磨選択比が比較例より高い値を示した。パターンウエハ評価では、窒化珪素膜が露出した時点(研磨時間13秒)の残段差は、それぞれ11nm、4nm、1nm(1000μmピッチ、200μmピッチ、100μmピッチ)であった。また、13秒更に研磨しても(100%オーバー研磨しても)、残段差がそれぞれ16nm、9nm、2nmであった。これにより、高い研磨選択比を示しつつ、オーバー研磨の前後いずれにおいても残段差が小さくディッシングの進行が抑制されている結果が得られることが確認された。また、実施例B2~B6においても、同様に良好な結果が得られることが確認された。 In Example B1, the SiO 2 RR is 478 nm / min, the SiNRR is 0.9 nm / min, the polishing selectivity ratio SiO 2 RR / SiNRR is 531, SiNRR is smaller than the comparative example, and the polishing selectivity ratio is the comparative example. It showed a higher value. In the pattern wafer evaluation, the remaining steps when the silicon nitride film was exposed (polishing time 13 seconds) were 11 nm, 4 nm, and 1 nm (1000 μm pitch, 200 μm pitch, and 100 μm pitch), respectively. Further, even if the polishing was further continued for 13 seconds (100% overpolishing), the remaining steps were 16 nm, 9 nm, and 2 nm, respectively. As a result, it was confirmed that the result was that the remaining step was small and the progress of dishing was suppressed both before and after over-polishing while showing a high polishing selectivity. Also, it was confirmed that good results were obtained in Examples B2 to B6 as well.
 比較例B1では、α-グルコース重合物を用いていないため、研磨選択比が低いことが確認された。また、比較例B1では、アミノ基含有スルホン酸化合物を用いていないため、ディッシングの進行が抑制されていないことが確認された。
 実施例B7~B10では、アミノ基含有スルホン酸化合物を用いていないため、ディッシングの進行が抑制されていないものの、研磨選択比が比較例より高い値を示すことが確認された。
 比較例B2及びB5では、α-グルコース重合物を用いていないため、研磨選択比が低いことが確認された。
 比較例B3では、陽イオン性ポリマを用いていないため、研磨選択比が低いことが確認された。
 比較例B4では、α-グルコース重合物及び陽イオン性ポリマを用いていないため、研磨選択比が低いことが確認された。
 比較例B6では、α-グルコース重合物を用いていないため、研磨選択比が低いことが確認された。
 実施例B11では、α-グルコースの重合度が3以上のα-グルコース重合物を用いていないため、ディッシングの進行が抑制されていないものの、研磨選択比が比較例より高い値を示すことが確認された。
In Comparative Example B1, since the α-glucose polymer was not used, it was confirmed that the polishing selectivity was low. Moreover, in comparative example B1, since the amino group containing sulfonic acid compound was not used, it was confirmed that the progress of dishing is not suppressed.
In Examples B7 to B10, since the amino group-containing sulfonic acid compound was not used, the progress of dishing was not suppressed, but it was confirmed that the polishing selectivity was higher than that of the comparative example.
In Comparative Examples B2 and B5, it was confirmed that the polishing selectivity was low because no α-glucose polymer was used.
In Comparative Example B3, since no cationic polymer was used, it was confirmed that the polishing selection ratio was low.
In Comparative Example B4, it was confirmed that the polishing selectivity was low because α-glucose polymer and cationic polymer were not used.
In Comparative Example B6, it was confirmed that the polishing selectivity was low because no α-glucose polymer was used.
In Example B11, since α-glucose polymer having a degree of polymerization of α-glucose of 3 or more was not used, it was confirmed that although the progress of dishing was not suppressed, the polishing selectivity was higher than that of the comparative example. It was done.
[パターンウエハ評価2]
 窒化珪素膜の代わりにポリシリコン膜が形成されていること以外は前記パターンウエハ評価1と同様のパターンウエハを用意した。実施例B1~B6に記載の研磨剤を用いて、前記パターンウエハ評価1と同様の条件で研磨を行ったところ、オーバー研磨の前後いずれにおいても残段差が小さくディッシングの進行が抑制される結果が得られることが確認された。これより、ストッパ材料がポリシリコンである場合にも、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できることが確認された。
[Pattern wafer evaluation 2]
A pattern wafer similar to the pattern wafer evaluation 1 was prepared except that a polysilicon film was formed instead of the silicon nitride film. When polishing was performed using the polishing agent described in Examples B1 to B6 under the same conditions as in the pattern wafer evaluation 1, the remaining step was small before and after overpolishing, and the progress of dishing was suppressed. It was confirmed that it was obtained. From this, it was confirmed that even when the stopper material is polysilicon, the polishing selectivity of the insulating material with respect to the stopper material can be improved and the progress of dishing can be suppressed.
 本発明によれば、ストッパを用いた絶縁材料の研磨において、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供できる。また、本発明によれば、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパを用いて絶縁材料を研磨するに際し、ストッパ材料に対する絶縁材料の研磨選択性を向上させることが可能な研磨剤、研磨剤セット及び研磨方法を提供できる。 According to the present invention, it is possible to provide a polishing agent, a polishing agent set, and a polishing method capable of improving the polishing selectivity of the insulating material with respect to the stopper material in polishing of the insulating material using the stopper. In addition, according to the present invention, in CMP technology for flattening an STI insulating material, a pre-metal insulating material, an interlayer insulating material, etc., when the insulating material is polished using a stopper, the polishing selectivity of the insulating material with respect to the stopper material is improved. A polishing agent, a polishing agent set and a polishing method that can be provided.
 本発明の一態様によれば、ストッパを用いた絶縁材料の研磨において、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる研磨剤、研磨剤セット及び研磨方法を提供できる。また、本発明の一態様によれば、STI絶縁材料、プリメタル絶縁材料、層間絶縁材料等を平坦化するCMP技術において、ストッパを用いて絶縁材料を研磨するに際し、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる研磨剤、研磨剤セット及び研磨方法を提供できる。 According to one embodiment of the present invention, it is possible to provide a polishing agent, a polishing agent set, and a polishing method capable of improving the polishing selectivity of the insulating material with respect to the stopper material and suppressing the progress of dishing in polishing of the insulating material using the stopper. . Further, according to one embodiment of the present invention, when polishing an insulating material using a stopper in CMP technology for planarizing an STI insulating material, a premetal insulating material, an interlayer insulating material, and the like, polishing selection of the insulating material with respect to the stopper material It is possible to provide a polishing agent, a polishing agent set and a polishing method capable of improving the performance and suppressing the progress of dishing.
 ストッパ材料としては、窒化珪素以外にポリシリコンを用いたプロセスも増えてきているが、本発明の一態様によれば、ストッパ材料として窒化珪素及びポリシリコンのいずれを用いても、ストッパ材料に対する絶縁材料の研磨選択性を向上させると共にディッシングの進行を抑制できる。 As a stopper material, a process using polysilicon in addition to silicon nitride is also increasing. However, according to one embodiment of the present invention, even if either silicon nitride or polysilicon is used as a stopper material, insulation against the stopper material is achieved. The polishing selectivity of the material can be improved and the progress of dishing can be suppressed.

Claims (10)

  1.  水と、4価金属元素の水酸化物を含む砥粒と、α-グルコース重合物と、陽イオン性ポリマと、を含有し、
     前記α-グルコース重合物の重量平均分子量が20.0×10以下である、研磨剤。
    Containing water, abrasive grains containing a hydroxide of a tetravalent metal element, an α-glucose polymer, and a cationic polymer,
    A polishing agent, wherein the α-glucose polymer has a weight average molecular weight of 20.0 × 10 3 or less.
  2.  アミノ基含有スルホン酸化合物を更に含有し、
     前記α-グルコース重合物におけるα-グルコースの重合度が3以上である、請求項1に記載の研磨剤。
    Further containing an amino group-containing sulfonic acid compound,
    The abrasive according to claim 1, wherein the degree of polymerization of α-glucose in the α-glucose polymer is 3 or more.
  3.  前記α-グルコース重合物が、下記式(I-A)で表される構造単位、及び、下記式(I-B)で表される構造単位からなる群より選ばれる少なくとも一種を有する、請求項1又は2に記載の研磨剤。
    Figure JPOXMLDOC01-appb-C000001
    The α-glucose polymer has at least one selected from the group consisting of a structural unit represented by the following formula (IA) and a structural unit represented by the following formula (IB). The abrasive | polishing agent of 1 or 2.
    Figure JPOXMLDOC01-appb-C000001
  4.  前記4価金属元素の水酸化物がセリウムの水酸化物を含む、請求項1~3のいずれか一項に記載の研磨剤。 The abrasive according to any one of claims 1 to 3, wherein the hydroxide of the tetravalent metal element contains a hydroxide of cerium.
  5.  pHが3.0以上7.0以下である、請求項1~4のいずれか一項に記載の研磨剤。 The abrasive according to any one of claims 1 to 4, having a pH of 3.0 or more and 7.0 or less.
  6.  酸化珪素を含む被研磨面を研磨するために使用される、請求項1~5のいずれか一項に記載の研磨剤。 The abrasive according to any one of claims 1 to 5, which is used for polishing a surface to be polished containing silicon oxide.
  7.  請求項1~6のいずれか一項に記載の研磨剤の構成成分が第一の液と第二の液とに分けて保存され、前記第一の液が前記砥粒及び水を含み、前記第二の液が前記α-グルコース重合物、前記陽イオン性ポリマ及び水を含む、研磨剤セット。 The constituents of the abrasive according to any one of claims 1 to 6 are stored separately in a first liquid and a second liquid, and the first liquid contains the abrasive grains and water, An abrasive set, wherein a second liquid comprises the α-glucose polymer, the cationic polymer, and water.
  8.  前記第二の液がアミノ基含有スルホン酸化合物を含む、請求項7に記載の研磨剤セット。 The abrasive set according to claim 7, wherein the second liquid contains an amino group-containing sulfonic acid compound.
  9.  請求項1~6のいずれか一項に記載の研磨剤を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。 A substrate polishing method comprising a step of polishing a surface to be polished of the substrate using the abrasive according to any one of claims 1 to 6.
  10.  請求項7又は8に記載の研磨剤セットにおける前記第一の液と前記第二の液とを混合して得られる研磨剤を用いて基体の被研磨面を研磨する工程を備える、基体の研磨方法。
     
    Polishing a substrate, comprising a step of polishing a surface to be polished of the substrate using an abrasive obtained by mixing the first liquid and the second liquid in the abrasive set according to claim 7 or 8. Method.
PCT/JP2014/071232 2013-10-10 2014-08-11 Polishing agent, polishing agent set and method for polishing base WO2015052988A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-213008 2013-10-10
JP2013213008 2013-10-10
JP2014097065 2014-05-08
JP2014097066 2014-05-08
JP2014-097065 2014-05-08
JP2014-097066 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015052988A1 true WO2015052988A1 (en) 2015-04-16

Family

ID=52812808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071232 WO2015052988A1 (en) 2013-10-10 2014-08-11 Polishing agent, polishing agent set and method for polishing base

Country Status (2)

Country Link
TW (1) TW201518489A (en)
WO (1) WO2015052988A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057156A1 (en) * 2015-09-30 2017-04-06 株式会社フジミインコーポレーテッド Polishing method
JP2018059054A (en) * 2016-09-29 2018-04-12 花王株式会社 Polishing liquid composition
WO2018179787A1 (en) * 2017-03-27 2018-10-04 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
KR20190055112A (en) 2016-09-29 2019-05-22 카오카부시키가이샤 Abrasive liquid composition
WO2019181014A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
WO2019182057A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Slurry, slurry set and polishing method
WO2019181015A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
US11492526B2 (en) 2018-07-26 2022-11-08 Showa Denko Materials Co., Ltd. Slurry, method for producing polishing liquid, and polishing method
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103410A (en) * 2009-11-11 2011-05-26 Kuraray Co Ltd Slurry for chemical mechanical polishing
WO2012123839A1 (en) * 2011-03-11 2012-09-20 Basf Se Method for forming through-base wafer vias
JP2013145877A (en) * 2011-12-15 2013-07-25 Jsr Corp Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
WO2013125446A1 (en) * 2012-02-21 2013-08-29 日立化成株式会社 Polishing agent, polishing agent set, and substrate polishing method
WO2013125441A1 (en) * 2012-02-21 2013-08-29 日立化成株式会社 Abrasive, abrasive set, and method for abrading substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103410A (en) * 2009-11-11 2011-05-26 Kuraray Co Ltd Slurry for chemical mechanical polishing
WO2012123839A1 (en) * 2011-03-11 2012-09-20 Basf Se Method for forming through-base wafer vias
JP2013145877A (en) * 2011-12-15 2013-07-25 Jsr Corp Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
WO2013125446A1 (en) * 2012-02-21 2013-08-29 日立化成株式会社 Polishing agent, polishing agent set, and substrate polishing method
WO2013125441A1 (en) * 2012-02-21 2013-08-29 日立化成株式会社 Abrasive, abrasive set, and method for abrading substrate

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057156A1 (en) * 2015-09-30 2017-04-06 株式会社フジミインコーポレーテッド Polishing method
US10478939B2 (en) 2015-09-30 2019-11-19 Fujimi Incorporated Polishing method
JP2018059054A (en) * 2016-09-29 2018-04-12 花王株式会社 Polishing liquid composition
KR20190052026A (en) 2016-09-29 2019-05-15 카오카부시키가이샤 Abrasive liquid composition
KR20190055112A (en) 2016-09-29 2019-05-22 카오카부시키가이샤 Abrasive liquid composition
WO2018179787A1 (en) * 2017-03-27 2018-10-04 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
US11814548B2 (en) 2017-03-27 2023-11-14 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11773291B2 (en) 2017-03-27 2023-10-03 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method
KR102278256B1 (en) * 2017-03-27 2021-07-15 쇼와덴코머티리얼즈가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
KR20190122224A (en) * 2017-03-27 2019-10-29 히타치가세이가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
JPWO2018179787A1 (en) * 2017-03-27 2019-12-19 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
KR20200128741A (en) * 2018-03-22 2020-11-16 쇼와덴코머티리얼즈가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
US11572490B2 (en) 2018-03-22 2023-02-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set, and polishing method
WO2019181015A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
JP7067614B2 (en) 2018-03-22 2022-05-16 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
US11352523B2 (en) 2018-03-22 2022-06-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set and polishing method
WO2019181014A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
WO2019182057A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Slurry, slurry set and polishing method
US11767448B2 (en) 2018-03-22 2023-09-26 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
KR102520409B1 (en) * 2018-03-22 2023-04-11 가부시끼가이샤 레조낙 Polishing fluid, polishing fluid set and polishing method
WO2019182063A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Slurry, slurry set and polishing method
JPWO2019182063A1 (en) * 2018-03-22 2021-02-25 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
US11518920B2 (en) 2018-07-26 2022-12-06 Showa Denko Materials Co., Ltd. Slurry, and polishing method
US11505731B2 (en) 2018-07-26 2022-11-22 Showa Denko Materials Co., Ltd. Slurry and polishing method
US11499078B2 (en) 2018-07-26 2022-11-15 Showa Denko Materials Co., Ltd. Slurry, polishing solution production method, and polishing method
US11492526B2 (en) 2018-07-26 2022-11-08 Showa Denko Materials Co., Ltd. Slurry, method for producing polishing liquid, and polishing method

Also Published As

Publication number Publication date
TW201518489A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
WO2015052988A1 (en) Polishing agent, polishing agent set and method for polishing base
TWI550045B (en) Abrasive agent, abrasive agent set and method for polishing substrate
KR101172647B1 (en) Polishing agent, concentrated one-pack type polishing agent, two-pack type polishing agent and method for polishing substrate
JP6107826B2 (en) Abrasive, abrasive set, and substrate polishing method
JP5569575B2 (en) Abrasive and substrate polishing method using the abrasive
JP6256482B2 (en) Abrasive, abrasive set, and substrate polishing method
WO2017043139A1 (en) Polishing liquid, polishing liquid set, and substrate polishing method
WO2019182063A1 (en) Slurry, slurry set and polishing method
JP6790790B2 (en) Polishing liquid, polishing liquid set and substrate polishing method
JP2017149798A (en) Polishing liquid, polishing liquid set and method for polishing substrate
JP6569191B2 (en) Abrasive, abrasive set, and substrate polishing method
JP2016003278A (en) Polishing liquid, polishing liquid set, and method for polishing substrate
JPWO2019064524A1 (en) Polishing liquid, polishing liquid set and polishing method
JP6724573B2 (en) Polishing liquid, polishing liquid set, and polishing method for substrate
JP2016017150A (en) Abrasive and substrate polishing method
JP7216880B2 (en) Polishing liquid and polishing method
JP6728939B2 (en) Abrasive, abrasive set, and method for polishing substrate
JP2016023224A (en) Polisher, polisher set and substrate polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP