WO2010143579A1 - Abrasive slurry, abrasive set, and method for grinding substrate - Google Patents

Abrasive slurry, abrasive set, and method for grinding substrate Download PDF

Info

Publication number
WO2010143579A1
WO2010143579A1 PCT/JP2010/059436 JP2010059436W WO2010143579A1 WO 2010143579 A1 WO2010143579 A1 WO 2010143579A1 JP 2010059436 W JP2010059436 W JP 2010059436W WO 2010143579 A1 WO2010143579 A1 WO 2010143579A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
polishing
mass
film
polyvinyl alcohol
Prior art date
Application number
PCT/JP2010/059436
Other languages
French (fr)
Japanese (ja)
Inventor
龍崎 大介
陽介 星
茂 野部
和宏 榎本
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2011518489A priority Critical patent/JP5418590B2/en
Priority to KR1020147003705A priority patent/KR20140027561A/en
Publication of WO2010143579A1 publication Critical patent/WO2010143579A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a polishing agent used in a planarization step of a substrate surface, particularly a planarization step of an STI insulating film, a premetal insulating film, an interlayer insulating film, etc., which is a semiconductor element manufacturing technique, and polishing for storing this polishing agent.
  • the present invention relates to an agent set and a method for polishing a substrate using an abrasive.
  • CMP Chemical Mechanical Polishing
  • abrasives for CMP are abrasives containing silica (silicon oxide) abrasive grains such as fumed silica and colloidal silica.
  • Silica-based abrasives are characterized by high versatility, and a wide variety of films can be polished regardless of whether they are insulating films or conductive films by appropriately selecting the abrasive concentration, pH, additives, etc. .
  • a cerium oxide-based abrasive containing cerium oxide (ceria) particles as an abrasive grain is characterized in that it can polish a silicon oxide film at a high speed even with a lower abrasive grain concentration than a silica-based abrasive.
  • the flatness and polishing selectivity can be improved by adding an appropriate additive to the cerium oxide-based abrasive.
  • an appropriate additive for example, in a step of forming STI (shallow trench isolation), it is common to provide a silicon nitride film as a polishing stopper layer under the silicon oxide film.
  • the ratio of the polishing rate of the silicon oxide film to the silicon nitride film can be increased by appropriately selecting an additive to be added to the polishing agent.
  • Patent Document 3 abrasives using tetravalent metal hydroxide particles have been studied, and this technique is disclosed in Patent Document 3.
  • This technology takes advantage of the chemical action of tetravalent metal hydroxide particles and minimizes the mechanical action, thereby achieving both reduction of polishing scratches caused by the particles and improvement of the polishing rate. .
  • a polysilicon film is also used as a polishing stopper layer. In this case, it was necessary to improve the polishing selectivity of the silicon oxide film with respect to the polysilicon film.
  • the present invention is capable of polishing an insulating film such as a silicon oxide film at a high speed and with low polishing scratches in a CMP technique for flattening an STI insulating film, a premetal insulating film, an interlayer insulating film, and the like. It is an object to provide an abrasive having polishing selectivity. Furthermore, it aims at providing the abrasive
  • the abrasive of the present invention is characterized by containing, as an additive, abrasive grains containing tetravalent metal hydroxide particles, and polyvinyl alcohol having a saponification degree of 95 mol% or less. Thereby, a high polishing rate ratio of the insulating film to the polysilicon film can be obtained.
  • a silicon oxide film is used as the insulating film will be described as an example. With the above structure, the silicon oxide film can be polished with priority over polysilicon.
  • the present invention is (1) an abrasive containing water, abrasive grains and additives,
  • the abrasive grains contain tetravalent metal hydroxide particles,
  • the present invention relates to an abrasive in which at least one of the additives is polyvinyl alcohol having a saponification degree of 95 mol% or less.
  • the present invention also relates to (2) the abrasive according to (1) above, wherein the abrasive has an average particle size of 1 nm to 400 nm.
  • the present invention also relates to (3) the abrasive according to (1) or (2) above, wherein the pH of the abrasive is 3.0 or more and 12.0 or less.
  • the present invention provides (4) the polishing according to any one of (1) to (3), wherein the content of the abrasive grains is 0.01 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the abrasive. It relates to the agent.
  • the present invention also relates to (5) the abrasive according to any one of (1) to (4) above, wherein the zeta potential of the abrasive grains in the abrasive is ⁇ 20 mV to +20 mV.
  • the present invention also relates to (6) the abrasive according to any one of (1) to (5) above, wherein the polyvinyl alcohol content is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive.
  • the present invention also relates to (7) the abrasive according to any one of the above (1) to (6) used for polishing a surface to be polished containing at least silicon oxide on the surface.
  • the present invention also relates to (8) the abrasive according to any one of (1) to (7) above, wherein the tetravalent metal hydroxide is at least one of a rare earth metal hydroxide and zirconium hydroxide.
  • the substrate on which the film to be polished is formed is pressed against the polishing pad of the polishing platen and pressed, and the polishing agent of any of the above (1) to (8) is applied to the film to be polished and the polishing pad.
  • the substrate and the polishing surface plate are relatively moved while polishing the film to be polished.
  • the present invention also relates to (10) the method for polishing a substrate according to (9) above, wherein the Shore D hardness of the polishing pad is 70 or more.
  • the present invention is an abrasive set that is stored separately as (11) slurry and an additive solution, and is mixed immediately before polishing or at the time of polishing to be any of the above-mentioned abrasives (1) to (8).
  • the slurry includes abrasive grains and water
  • the additive liquid relates to an abrasive set including the additive and water.
  • the disclosure of the present invention relates to the subject matter described in Japanese Patent Application No. 2009-138124 filed on June 9, 2009 and Japanese Patent Application No. 2009-236488 filed on October 13, 2009. The disclosure is incorporated herein by reference.
  • the present invention provides a CMP technique for planarizing an STI insulating film, a premetal insulating film, an interlayer insulating film, and the like.
  • An insulating film such as a silicon oxide film can be polished at high speed with low polishing scratches, and the insulating film and the polysilicon film can be polished.
  • An abrasive having a high polishing rate ratio, an abrasive set for storing the abrasive, and a method for polishing a substrate using the abrasive can be provided.
  • FIG. 1 is a graph showing the relationship between the degree of saponification of polyvinyl alcohol and the selectivity of the insulating film to the polysilicon film in the examples of the present application.
  • “high selectivity of insulating film relative to polysilicon film” means that the polishing rate of the insulating film is higher than the polishing rate of the polysilicon film.
  • “Insulating film” may be omitted, and simply “high selectivity for polysilicon film”.
  • “the selectivity to a polysilicon film is excellent” means that the selectivity of the silicon oxide film to the polysilicon film is Means high.
  • the present inventors presume as follows. That is, the polyvinyl alcohol is considered to act on abrasive grains such as tetravalent metal hydroxide particles and / or a film to be polished. In particular, it is estimated that a high polishing rate ratio with respect to the polysilicon film is brought about by the difference in the degree of interaction between the silicon oxide film and polyvinyl alcohol and the interaction between the polysilicon film and polyvinyl alcohol. More specifically, it is considered that the interaction between the polysilicon film and the polyvinyl alcohol is strengthened. That is, it is presumed that the polyvinyl alcohol is effectively adsorbed on the hydrophobic polysilicon film and becomes a protective film to inhibit polishing, resulting in a difference in polishing rate.
  • polyvinyl alcohol is generally obtained by polymerizing a vinyl carboxylate monomer such as a vinyl acetate monomer to obtain vinyl carboxylate, and then (Hydrolysis).
  • polyvinyl alcohol obtained using a vinyl acetate monomer as a raw material has —OCOCH 3 as a functional group and —OH hydrolyzed in the molecule, and is a ratio of —OH.
  • -OCOCH 3 that is more hydrophobic than -OH is effectively adsorbed on the hydrophobic polysilicon film, and becomes a protective film that inhibits polishing, resulting in polishing. It is estimated that there will be a difference in speed.
  • the abrasive refers to a composition that is brought into contact with the film to be polished at the time of polishing, and specifically includes water, abrasive grains, and additives.
  • water abrasive grains, and additives.
  • polishing agent of this invention contains a tetravalent metal hydroxide particle as said abrasive grain.
  • the tetravalent metal hydroxide particles are preferable in terms of high reactivity with silicon oxide and high polishing rate compared to conventional abrasive grains such as silica and cerium oxide.
  • Examples of other abrasive grains that can be used in the abrasive of the present invention include silica, alumina, cerium oxide, and the like.
  • the content of the tetravalent metal hydroxide particles is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more based on the whole abrasive grains. Is more preferably 98% by mass or more, and particularly preferably 99% by mass or more.
  • the abrasive grains are composed of the tetravalent metal hydroxide particles in terms of easy adjustment of the abrasive and excellent polishing characteristics (100% by mass of the abrasive grains are the tetravalent metal hydroxide particles). Is most preferred.
  • the tetravalent metal hydroxide particles it is preferable to use at least one of rare earth metal hydroxide and zirconium hydroxide, but two or more kinds selected from rare earth metal hydroxide and zirconium hydroxide are used. There is no problem. Among them, it is preferable to use cerium hydroxide Ce (OH) 4 as the rare earth metal hydroxide because it has a high polishing rate.
  • a method for producing tetravalent metal hydroxide particles a method of mixing a tetravalent metal salt and an alkali solution can be used. This method is described in, for example, “Science of rare earths” (edited by Adiya Ginya, Kagaku Dojin, 1999), pages 304-305.
  • Examples of the tetravalent metal salt include M (SO 4 ) 2 , M (NH 4 ) 2 (NO 3 ) 6 , M (NH 4 ) 4 (SO 4 ) 4 (M represents a rare earth element), Zr (SO 4 ) 2 .4H 2 O and the like can be mentioned.
  • M is more preferably chemically active cerium (Ce).
  • aqueous ammonia, potassium hydroxide, sodium hydroxide and the like can be used, among which aqueous ammonia is preferable.
  • the tetravalent metal hydroxide particles synthesized by the above method can be washed to remove metal impurities.
  • a method of repeating solid-liquid separation several times by centrifugation or the like can be used.
  • the tetravalent metal hydroxide particles obtained above are aggregated, it is preferably dispersed in water by an appropriate method.
  • a method for dispersing the tetravalent metal hydroxide particles in water which is a main dispersion medium, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the dispersion treatment using a normal stirrer.
  • the dispersion method and the particle size control method for example, the method described in “The Complete Collection of Dispersion Technology” [Information Organization Co., Ltd., July 2005] Chapter 3, “Latest Development Trends and Selection Criteria of Various Dispersers” Can be used.
  • the average particle diameter of the abrasive grains in the abrasive is preferably 1 nm or more, more preferably 2 nm or more, and more preferably 10 nm or more as a lower limit in order to avoid the polishing rate becoming too low. Is more preferable.
  • the upper limit of the average grain size of the abrasive grains is preferably 400 nm or less, more preferably 300 nm or less, and further preferably 250 nm or less in that the film to be polished is less likely to be damaged. .
  • the average grain size of abrasive grains refers to Z-average Size obtained by cumulant analysis using a dynamic light scattering method.
  • a product name: Zetasizer Nano S manufactured by Malvern Co., Ltd. can be used.
  • the measurement sample is adjusted by diluting the abrasive with water so that the concentration of the abrasive grains becomes 0.1 parts by mass.
  • About 1 mL of the obtained measurement sample is placed in a 1 cm square cell, and placed on the Zetasizer Nano S.
  • the refractive index of the dispersion medium is 1.33, the viscosity is 0.887, measurement is performed at 25 ° C., and the value displayed as Z-average Size is read.
  • the specific surface area of the abrasive grains is preferably 100 m 2 / g or more from the viewpoint of increasing the chemical action with the film to be polished and improving the polishing rate.
  • the specific surface area of the particles can be measured by the BET method.
  • an abrasive is dried at 150 ° C. for 3 hours and further vacuum degassed and dried at 150 ° C. for 1 hour to obtain a measurement sample.
  • the concentration of the abrasive grains is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more with respect to 100 parts by mass of the abrasive, in that a suitable polishing rate can be obtained. More preferably, the amount is 0.05 parts by mass or more. Further, the upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, still more preferably 2 parts by mass or less, and particularly preferably 1 part by mass or less from the viewpoint that the storage stability of the abrasive can be increased.
  • polishing agent of this invention contains an additive.
  • the additive refers to a substance contained other than water and abrasive grains in order to adjust the dispersibility, polishing characteristics, storage stability and the like of the abrasive grains.
  • Polyvinyl alcohol One of the specific embodiments of the abrasive of the present invention is characterized in that it contains polyvinyl alcohol as the additive.
  • Polyvinyl alcohol has the effect of improving the stability of the abrasive.
  • aggregation can be suppressed, and changes in the particle size of the abrasive can be suppressed to improve stability.
  • polyvinyl alcohol is generally obtained by polymerizing a vinyl carboxylate monomer such as a vinyl acetate monomer. Thereafter, it is obtained by saponification (hydrolysis).
  • a vinyl carboxylate monomer such as a vinyl acetate monomer.
  • saponification hydrolysis
  • polyvinyl alcohol obtained using a vinyl acetate monomer as a raw material has —OCOCH 3 and hydrolyzed —OH as functional groups in the molecule.
  • polyvinyl alcohol is defined to include not only a homopolymer of vinyl alcohol (degree of saponification 100%) but also a copolymer of vinyl carboxylate and vinyl alcohol.
  • a polyvinyl alcohol derivative obtained by introducing a functional group into polyvinyl alcohol can also be used.
  • such a polyvinyl alcohol derivative is also defined as polyvinyl alcohol.
  • polyvinyl alcohol derivative examples include reactive polyvinyl alcohol (for example, Goseifamer (registered trademark) Z, etc., manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and cationized polyvinyl alcohol (for example, GOGO Synthetic Chemical Co., Ltd., Go Cefaimer (registered trademark) K, etc.), anionized polyvinyl alcohol (for example, Goseiran (registered trademark) L, Gosenal (registered trademark) T, etc., manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), hydrophilic group-modified polyvinyl alcohol (for example, Japan Synthetic Chemical Industry Co., Ltd., Ecomate (registered trademark), etc.).
  • reactive polyvinyl alcohol for example, Goseifamer (registered trademark) Z, etc., manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • cationized polyvinyl alcohol for example, GOGO Synthetic Chemical Co., Ltd., Go Ce
  • Each compound defined as polyvinyl alcohol in the abrasive of the present invention can be used alone or in combination of two or more for the purpose of adjusting selectivity and flatness.
  • a plurality of polyvinyl alcohols having different saponification degrees, polymerization degrees, etc., which will be described later, can also be used in combination.
  • the upper limit of the saponification degree of polyvinyl alcohol is preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 88 mol% or less, particularly preferably 85 mol% or less, and 83 mol%. % Or less is very preferable, and 80 mol% or less is very preferable.
  • the lower limit of the degree of saponification is not particularly limited, but is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% or more from the viewpoint of solubility in water.
  • the degree of saponification of polyvinyl alcohol can be measured in accordance with JIS K 6726 (Japanese Industrial Standard, polyvinyl alcohol test method).
  • the saponification degree of at least 1 sort (s) of polyvinyl alcohol should just be 95 mol% or less, and from a viewpoint which can improve selectivity, each saponification degree and It is more preferable that the average degree of saponification calculated from the blending ratio is 95 mol% or less.
  • the average degree of polymerization of polyvinyl alcohol is not particularly limited, but the upper limit is preferably 3000 or less, more preferably 2000 or less, and most preferably 1000 or less from the viewpoint of increasing the polishing rate of the silicon oxide film.
  • the lower limit is preferably 50 or more, more preferably 100 or more, and further preferably 150 or more.
  • the average degree of polymerization of polyvinyl alcohol can be measured based on the above-mentioned JIS K 6726 (polyvinyl alcohol test method).
  • the total concentration of polyvinyl alcohol having a saponification degree of 95 mol% or less used as an additive is preferably 0.001 part by mass or more with respect to 100 parts by mass of the polishing agent from the viewpoint of improving selectivity. 0.01 parts by mass or more is more preferable, and 0.1 parts by mass or more is more preferable.
  • the upper limit is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less with respect to 100 parts by mass of the abrasive.
  • the abrasive of the present invention may further contain another additive (hereinafter also referred to as “second additive”) in addition to the polyvinyl alcohol for the purpose of adjusting polishing characteristics.
  • second additive another additive
  • additives include carboxylic acids, amino acids, amphoteric surfactants, anionic surfactants, nonionic surfactants, cationic surfactants, and the like. Can be used alone or in combination of two or more. Of these, carboxylic acids, amino acids, and amphoteric surfactants are preferable from the viewpoint of the balance between abrasive dispersibility and polishing characteristics.
  • carboxylic acid has an effect of stabilizing pH, and specific examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and lactic acid.
  • Amino acids have the effect of improving the dispersibility of abrasive grains such as the tetravalent metal hydroxide particles and improving the polishing rate.
  • abrasive grains such as the tetravalent metal hydroxide particles
  • polishing rate for example, arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine Histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, alanine, ⁇ -alanine, methionine, cysteine, phenylalanine, leucine, valine, isoleucine and the like.
  • the amphoteric surfactant has the effect of improving the dispersibility of abrasive grains such as the tetravalent metal hydroxide particles and improving the polishing rate.
  • abrasive grains such as the tetravalent metal hydroxide particles
  • polishing rate for example, betaine, ⁇ -alanine betaine, lauryl
  • betaine, ⁇ -alanine betaine, and amide amidopropyl betaine are more preferable from the viewpoint of improving dispersibility stability.
  • Anionic surfactants have the effect of adjusting the flatness and in-plane uniformity of the surface to be polished after polishing.
  • lauryl sulfate triethanolamine lauryl ammonium sulfate, polyoxyethylene alkyl ether sulfate triethanolamine
  • special polycarboxylic acid type polymer dispersants for example, lauryl sulfate triethanolamine, lauryl ammonium sulfate, polyoxyethylene alkyl ether sulfate triethanolamine and special polycarboxylic acid type polymer dispersants.
  • the nonionic surfactant has an effect of adjusting the flatness and in-plane uniformity of the surface to be polished after polishing, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan Monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, poly Oxyethylene sorbitan trioleate, polyoxyethylene sorbite tetraoleate, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alky
  • the cationic surfactant has an effect of adjusting the flatness and in-plane uniformity of the surface to be polished after completion of polishing, and examples thereof include coconut amine acetate and stearyl amine acetate.
  • the addition amount is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive in terms of obtaining the additive effect while suppressing the sedimentation of the abrasive grains.
  • the range is preferably 10 parts by mass or less.
  • the abrasive of the present invention may contain a water-soluble polymer other than polyvinyl alcohol for the purpose of adjusting the flatness and in-plane uniformity of the polishing characteristics.
  • the water-soluble polymer is defined as a polymer that dissolves 0.1 g or more with respect to 100 g of water.
  • water-soluble polymer examples include polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan, and pullulan; Polycarboxylic acids such as polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyamic acid, polyglyoxylic acid, and salts thereof; Vinyl polymers such as polyvinylpyrrolidone and polyacrolein; Acrylic polymers such as polyacrylamide and polydimethylacrylamide; Examples thereof include polyethylene glycol, polyoxypropylene, polyoxyethylene-polyoxypropylene condensate, and polyoxyethylene-polyoxypropylene block polymer of ethylenediamine.
  • the polycarboxylic acid may be a copolymer.
  • salt ammonium salt
  • the addition amount is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive because the effect of adding the water-soluble polymer is obtained while suppressing sedimentation of abrasive grains.
  • the amount is preferably 5 parts by mass or less.
  • the pH of the abrasive of the present invention is preferably in the range of 3.0 or more and 12.0 or less in terms of excellent storage stability and polishing rate of the abrasive.
  • the lower limit of the pH mainly affects the polishing rate, is preferably 3.0 or more, more preferably 4.0 or more, and further preferably 5.0 or more.
  • the upper limit mainly affects the polishing rate, is preferably 12.0 or less, more preferably 11.0 or less, and still more preferably 10.0 or less.
  • the pH can be adjusted by adding an acid component such as an inorganic acid or an organic acid, an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), or imidazole.
  • an acid component such as an inorganic acid or an organic acid
  • an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), or imidazole.
  • TMAH tetramethylammonium hydroxide
  • imidazole imidazole
  • a buffer may be added to stabilize the pH. Examples of such a buffer include acetate buffer and phthalate buffer.
  • the pH of the abrasive of the present invention can be measured with a pH meter (for example, Model PH81 manufactured by Yokogawa Electric Corporation). Specifically, for example, the pH meter is calibrated at two points using a phthalate pH buffer solution (pH 4.01) and a neutral phosphate pH buffer solution (pH 6.86) as standard buffers, and then the pH meter The value after the electrode was stabilized after 2 minutes or more had passed was measured. At this time, the liquid temperature of the standard buffer and the abrasive is both 25 ° C.
  • the zeta potential of the abrasive grains in the abrasive is preferably ⁇ 20 mV to +20 mV, more preferably 0 mV to +20 mV, from the viewpoint of enhancing the selectivity to polysilicon.
  • a product name: Zeta Sizer 3000HS manufactured by Malvern can be used.
  • the abrasive is diluted with water so that the amount of scattered light recommended for the Zeta Sizer 3000HS is measured. Can do.
  • the abrasive according to the present invention may be stored as a one-component abrasive containing the abrasive, the additive, and water, and includes at least a slurry containing abrasive and water, and at least an additive and water. You may preserve
  • the polyvinyl alcohol and the water-soluble polymer are preferably contained in the additive liquid out of the two liquids. Moreover, it is preferable that the said buffer solution is contained in an addition liquid among two liquids.
  • the abrasive set is mixed immediately before or at the time of polishing to become an abrasive.
  • the slurry may be stored as a concentrated slurry, a concentrated additive solution, or a concentrated abrasive with reduced water content, and diluted with water during polishing.
  • the polishing rate can be adjusted by arbitrarily changing the composition of these two components.
  • the method for supplying the abrasive onto the polishing surface plate includes the following methods. For example, the slurry and the additive solution are sent through separate pipes, and these pipes are joined, mixed and supplied, the concentrated slurry, the concentrated additive solution, and water are sent through separate pipes, and these are joined.
  • a method of supplying the mixture by mixing, a method of mixing and supplying the slurry and the additive liquid in advance, a method of mixing and supplying the concentrated slurry, the concentrated additive liquid, and water in advance can be used.
  • a method of supplying the abrasive onto the polishing surface plate for example, a method of supplying the abrasive directly by feeding, a concentrated abrasive, A method of feeding water through separate pipes and joining and mixing them, a method of feeding concentrated abrasives and water in advance, and the like can be used.
  • the substrate on which the film to be polished is formed is pressed against the polishing pad of the polishing platen and pressed, and the polishing agent of the present invention is supplied between the film to be polished and the polishing pad, The film to be polished is polished by relatively moving the polishing platen.
  • the substrate examples include a substrate in which a semiconductor element is manufactured, for example, a substrate in which an insulating film is formed on a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, and the like are formed.
  • the film to be polished examples include an insulating film formed on these patterns, such as a silicon oxide film and a polysilicon film.
  • the film to be polished may be a single film or a plurality of films. When a plurality of films are exposed on the substrate surface, they can be regarded as films to be polished.
  • the abrasive of the present invention is preferably used for polishing a surface to be polished containing at least silicon oxide on the surface.
  • the polishing stopper layer is preferably a polysilicon film, a silicon nitride film or the like.
  • the abrasive of the present invention can be suitably used for STI (shallow trench isolation).
  • the selectivity of the silicon oxide film to the polishing stopper layer is preferably 100 or more. This is because if the selectivity is less than 100, the difference between the silicon oxide film polishing rate and the polysilicon film polishing rate is small, and it is difficult to stop polishing at a predetermined position when performing STI. If the selectivity is 100 or more, polishing can be easily stopped, and STI is preferable.
  • premetal insulating films can also be used for polishing premetal insulating films.
  • premetal insulating film in addition to silicon oxide, for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used, and silicon oxyfluoride, fluorinated amorphous carbon, or the like can also be used.
  • polishing method will be described by taking as an example the case of a semiconductor substrate on which an insulating film is formed.
  • a polishing apparatus As a polishing apparatus, a general polishing apparatus having a holder capable of holding a substrate having a film to be polished such as a semiconductor substrate and a polishing surface plate to which a polishing pad can be attached is used. it can.
  • the motor and the like whose rotation speed can be changed are attached to the holder and the polishing surface plate, respectively.
  • a polishing apparatus model number EPO-111 manufactured by Ebara Corporation can be used.
  • polishing pad general nonwoven fabrics, foams, non-foams and the like can be used.
  • materials polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4- Polyamides such as methylpentene, cellulose, cellulose ester, nylon (trade name) and aramid, resins such as polyimide, polyimideamide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate and epoxy resin can be used.
  • foamed polyurethane and non-foamed polyurethane are preferred from the viewpoint of polishing speed and flatness.
  • the Shore D hardness of the polishing pad is preferably 70 or more, more preferably 75 or more, and still more preferably 80 or more, from the viewpoint of improving flatness.
  • Shore D hardness can be measured with a Shore D hardness meter [for example, Polymer Instruments Co., Ltd. Asker Rubber Hardness Tester Type D].
  • the polishing pad is grooved so that the abrasive is accumulated.
  • the polishing conditions are not limited, but the rotation speed of the surface plate is preferably 200 min ⁇ 1 or less so that the semiconductor substrate does not jump out, and the pressure (working load) applied to the semiconductor substrate is preferably 100 kPa or less so as not to cause polishing scratches. .
  • a polishing agent is continuously supplied to the polishing pad by a pump or the like. Although there is no restriction
  • the semiconductor substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate.
  • dilute hydrofluoric acid or aqueous ammonia may be used for cleaning, and a brush may be used in combination to increase cleaning efficiency.
  • a CVD method represented by a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, etc., or a spin coating method in which a liquid material is applied to a rotating substrate Etc.
  • the silicon oxide film formed by the low pressure CVD method is obtained, for example, by causing a thermal reaction between monosilane (SiH 4 ) and oxygen (O 2 ).
  • the silicon oxide film by the quasi-atmospheric pressure CVD method can be obtained, for example, by thermally reacting tetraethoxysilane (Si (OC 2 H 5 ) 4 ) and ozone (O 3 ).
  • a silicon oxide film can be similarly obtained even when tetraethoxysilane and oxygen are subjected to plasma reaction.
  • the silicon oxide film formed by the spin coating method can be obtained, for example, by applying a liquid raw material containing inorganic polysilazane, inorganic siloxane or the like on a substrate and performing a thermosetting reaction in a furnace body or the like.
  • Examples of the method for forming a polysilicon film include a low pressure CVD method in which monosilane is thermally reacted, a plasma CVD method in which monosilane is plasma-reacted, and the like.
  • heat treatment may be performed at a temperature of 200 to 1000 ° C. as necessary.
  • the silicon oxide film obtained by the above method may contain a small amount of boron (B), phosphorus (P), carbon (C) or the like in order to improve the embedding property.
  • the abrasive and polishing method of the present invention can also be applied to films other than insulating films such as silicon oxide films.
  • films other than insulating films such as silicon oxide films.
  • high dielectric constant films such as Hf-based, Ti-based, and Ta-based oxides
  • semiconductor films such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors, phase change films such as GeSbTe
  • phase change films such as GeSbTe
  • examples thereof include inorganic conductive films such as ITO, polyimide-based, polybenzoxazole-based, acrylic-based, epoxy-based, phenol-based polymer resin films, and the like.
  • the abrasive and polishing method of the present invention can be applied not only to film-like materials but also to various substrate materials such as glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, and plastic.
  • polishing agent and polishing method of the present invention not only the manufacture of semiconductor elements, but also image display devices such as TFT and organic EL, photomasks, lenses, prisms, optical fibers, optical components such as single crystal scintillators, optical It can be used for the manufacture of magnetic storage devices such as switching elements, optical elements such as optical waveguides, light emitting elements such as solid state lasers and blue laser LEDs, magnetic disks, and magnetic heads.
  • image display devices such as TFT and organic EL, photomasks, lenses, prisms, optical fibers, optical components such as single crystal scintillators, optical It can be used for the manufacture of magnetic storage devices such as switching elements, optical elements such as optical waveguides, light emitting elements such as solid state lasers and blue laser LEDs, magnetic disks, and magnetic heads.
  • the resulting cerium hydroxide dispersion was subjected to solid-liquid separation by centrifugation (4000 min ⁇ 1 , 5 minutes). The liquid was removed, pure water was newly added, and centrifugation was again performed under the above conditions. Such an operation was repeated 4 times for washing.
  • the specific surface area of the obtained particles was measured by the BET method, it was 200 m 2 / g.
  • the concentrated cerium hydroxide slurry was diluted with water, and the average particle size (Z-average Size) was measured using a product name Zeta Sizer Nano S manufactured by Malvern, Inc., and found to be 115 nm.
  • Z-average Size the average particle size
  • the concentration of the tetravalent metal hydroxide particles is diluted with water so as to be 0.1 part by mass, and about 1 mL is put into a 1 cm square cell and installed in the Zetasizer Nano S.
  • the refractive index of the dispersion medium was 1.33, the viscosity was 0.887, measurement was performed at 25 ° C., and the value displayed as Z-average Size was read.
  • the product was diluted with water to an appropriate concentration and then measured using a product name Zeta Sizer 3000HS manufactured by Malvern, and found to be +43 mV. The measurement was performed at 25 ° C. by diluting the concentrated cerium hydroxide slurry with water so that the amount of scattered light recommended by the Zetasizer 3000HS was obtained.
  • Example 1 5% by mass of polyvinyl alcohol [PVA-203 manufactured by Kuraray Co., Ltd., average polymerization degree 300, saponification degree 88 mol%], acetic acid 0.4% by mass, imidazole 0.66% by mass and water 93.94% by mass.
  • 100 g of the concentrated additive solution, 100 g of the concentrated cerium hydroxide slurry obtained above and 800 g of water were mixed to prepare an abrasive containing 0.1% by mass of cerium hydroxide and 0.5% by mass of polyvinyl alcohol.
  • the pH of the abrasive was 6.6, the average particle size was 140 nm, and the zeta potential was +6 mV.
  • the average particle size and zeta potential were measured in the same manner as described above.
  • Example 2 The concentration of cerium hydroxide was set to be the same as in Example 1 except that 5% by mass of PVA-403 manufactured by Kuraray Co., Ltd., an average polymerization degree of 300 and a saponification degree of 80 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 1% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
  • Example 3 A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that PVA-205 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500, and a saponification degree of 88 mol% were used as polyvinyl alcohol for the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
  • Example 4 A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-405 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500 and a saponification degree of 80 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
  • Example 5 A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-505 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500, and a saponification degree of 73 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
  • Example 6 2% by mass of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd., average degree of polymerization 1700, degree of saponification 88 mol%), 0.4% by mass of acetic acid, 0.66% by mass of imidazole and 96.94% by mass of water 100 g of the concentrated additive solution, 200 g of the concentrated cerium hydroxide slurry obtained above and 700 g of water were mixed to prepare an abrasive containing a cerium hydroxide concentration of 0.2 mass% and a polyvinyl alcohol concentration of 0.2 mass%.
  • PVA-217 manufactured by Kuraray Co., Ltd., average degree of polymerization 1700, degree of saponification 88 mol
  • acetic acid 0.4% by mass of acetic acid
  • imidazole 0.66% by mass of imidazole
  • 96.94% by mass of water
  • Example 7 Polyvinyl alcohol (Kuraray Co., Ltd. C-506, cation modification, average polymerization degree 600, saponification degree 77 mol%) 10% by mass, acetic acid 0.4% by mass, imidazole 0.66% by mass and water 88.94% by mass 100 g of the concentrated additive solution containing, 200 g of the concentrated cerium hydroxide slurry obtained above and 700 g of water were mixed to prepare an abrasive containing 0.2% by mass of cerium hydroxide and 1% by mass of polyvinyl alcohol.
  • Example 2 A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-103 manufactured by Kuraray Co., Ltd., an average degree of polymerization of 300 and a degree of saponification of 98 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
  • Example 3 A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-105 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500 and a saponification degree of 98 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
  • Comparative Example 5 Contains 2% by weight of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd., average polymerization degree 1700, saponification degree 98 mol%), acetic acid 0.4% by weight, imidazole 0.66% by weight and water 96.94% by weight. 100 g of the concentrated additive solution, 200 g of the concentrated cerium hydroxide slurry obtained above and 700 g of water were mixed to prepare an abrasive containing a cerium hydroxide concentration of 0.2 mass% and a polyvinyl alcohol concentration of 0.2 mass%.
  • the substrate holder was pressed against the polishing pad so that the silicon oxide film of the evaluation wafer 1 was in contact with the polishing pad, and the processing load was set to 30 kPa. While dropping the above-prepared abrasive on the polishing pad at a rate of 200 mL / min, the polishing platen and the substrate holder were operated at 50 min ⁇ 1 to polish the evaluation wafer for 60 seconds.
  • the polished evaluation wafer 1 was thoroughly washed with pure water and dried. Thereafter, the residual film thickness of silicon oxide was measured using an optical interference film thickness apparatus (trade name: Nanospec AFT-5100, manufactured by Nanometrics).
  • the silicon oxide polishing rate [RR (SiO 2 )] per minute was determined from (the amount of reduction of the silicon oxide film) / (polishing time).
  • an evaluation wafer 2 in which polysilicon (poly-Si) having a film thickness of 250 nm was formed on the entire surface of a silicon (Si) substrate having a diameter of 200 mm was prepared and polished for 60 seconds by the same method as described above.
  • the polished evaluation wafer 2 was thoroughly washed with pure water and dried. Thereafter, the remaining film thickness of the polysilicon was measured in the same manner as described above to determine the polysilicon polishing rate [RR (poly-Si)] per minute.
  • the selectivity between the silicon oxide film and the polysilicon was calculated from RR (SiO 2 ) / RR (poly-Si).
  • an evaluation wafer 3 in which silicon oxide (SiO 2 ) having a film thickness of 1000 nm was formed on the entire surface of a silicon (Si) substrate having a diameter of 200 mm was prepared and polished for 60 seconds by the same method as described above.
  • the polished evaluation wafer 3 was thoroughly washed with pure water, hydrofluoric acid, and aqueous ammonia, then dried, and the number of polishing flaws was counted with a scanning electron microscope type defect inspection apparatus. The relative number of polishing flaws was calculated with the number of polishing flaws of Comparative Example 4 being 1.
  • the polishing agents of Examples 1 to 6 containing cerium hydroxide and polyvinyl alcohol having a saponification degree of 95 mol% or less are excellent in the polishing rate of the silicon oxide film and the selectivity to polysilicon. Recognize.
  • the comparative examples 1 and 4 which do not contain the polyvinyl alcohol are inferior in selectivity to polysilicon.
  • the use of cerium hydroxide particles can greatly reduce polishing scratches.
  • an insulating film such as a silicon oxide film can be polished at high speed with low polishing scratches.
  • An abrasive having a high polishing rate ratio, an abrasive set for storing the abrasive, and a method for polishing a substrate using the abrasive can be provided.

Abstract

Provided is an abrasive slurry comprising water, abrasive grains, and one or more additives, wherein the abrasive grains comprise particles of the hydroxide of a tetravalent metal and at least one of the additives is polyvinyl alcohol having a degree of saponification of 95 mol% or lower. Also provided are: an abrasive set that comprises portions of the abrasive slurry, one of which is a slurry containing particles and the other of which is an additive liquid containing an additive, the portions being separately stored; and a method for grinding a substrate, wherein a film to be ground is ground using the abrasive slurry. With the abrasive slurry, the abrasive set, and the substrate-grinding method, it is possible to rapidly grind an insulating film, e.g., a silicon oxide film, while minimizing scratches, in the CMP technique for making STI dielectric films, pre-metal dielectric films, interlayer dielectrics, etc. planar. The abrasive slurry has a high insulating film/polysilicon film grinding rate ratio.

Description

研磨剤、研磨剤セット及び基板の研磨方法Abrasive, abrasive set and substrate polishing method
 本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、STI絶縁膜、プリメタル絶縁膜、層間絶縁膜等の平坦化工程において使用される研磨剤、この研磨剤を保管する研磨剤セット並びに研磨剤を用いた基板の研磨方法に関する。 The present invention relates to a polishing agent used in a planarization step of a substrate surface, particularly a planarization step of an STI insulating film, a premetal insulating film, an interlayer insulating film, etc., which is a semiconductor element manufacturing technique, and polishing for storing this polishing agent. The present invention relates to an agent set and a method for polishing a substrate using an abrasive.
 近年の半導体素子製造工程では、高密度化・微細化のための加工技術の重要性がますます増している。その一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、シャロー・トレンチ・アイソレーションの形成、プリメタル絶縁膜や層間絶縁膜の平坦化、プラグ及び埋め込み金属配線の形成に必須の技術となっている。 In recent semiconductor element manufacturing processes, the importance of processing technology for higher density and miniaturization is increasing. CMP (Chemical Mechanical Polishing) technology, which is one of them, is the formation of shallow trench isolation, planarization of premetal insulating films and interlayer insulating films, plugs and embeddings in the manufacturing process of semiconductor devices. This technology is essential for forming metal wiring.
 CMP用の研磨剤として最も多用されているのは、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)砥粒を含む研磨剤である。シリカ系研磨剤は汎用性が高いことが特徴であり、砥粒濃度、pH、添加剤等を適切に選択することで、絶縁膜や導電膜を問わず幅広い種類の膜を研磨することができる。 The most frequently used abrasives for CMP are abrasives containing silica (silicon oxide) abrasive grains such as fumed silica and colloidal silica. Silica-based abrasives are characterized by high versatility, and a wide variety of films can be polished regardless of whether they are insulating films or conductive films by appropriately selecting the abrasive concentration, pH, additives, etc. .
 一方で、主に酸化珪素膜等の絶縁膜を対象とした、セリウム化合物砥粒を含む研磨剤の需要も拡大している。例えば、酸化セリウム(セリア)粒子を砥粒として含む酸化セリウム系研磨剤は、シリカ系研磨剤よりも低い砥粒濃度でも高速に酸化珪素膜を研磨できるのが特徴である。 On the other hand, the demand for abrasives containing cerium compound abrasive grains, mainly for insulating films such as silicon oxide films, is also expanding. For example, a cerium oxide-based abrasive containing cerium oxide (ceria) particles as an abrasive grain is characterized in that it can polish a silicon oxide film at a high speed even with a lower abrasive grain concentration than a silica-based abrasive.
 また、酸化セリウム系研磨剤に適当な添加剤を加えることで、平坦性や研磨選択性を改善できることが知られている。例えば、STI(シャロー・トレンチ・アイソレーション)を形成する工程では、酸化珪素膜の下層に、研磨停止層としての窒化珪素膜を備えるのが一般的である。ここで、酸化珪素膜を研磨する際に、研磨剤に添加する添加剤を適当に選択することで、酸化珪素膜の窒化珪素膜に対する研磨速度の比(研磨選択性)を高めることができる。 Also, it is known that the flatness and polishing selectivity can be improved by adding an appropriate additive to the cerium oxide-based abrasive. For example, in a step of forming STI (shallow trench isolation), it is common to provide a silicon nitride film as a polishing stopper layer under the silicon oxide film. Here, when the silicon oxide film is polished, the ratio of the polishing rate of the silicon oxide film to the silicon nitride film (polishing selectivity) can be increased by appropriately selecting an additive to be added to the polishing agent.
 その結果、窒化珪素膜が露出したときに研磨を停止するのが容易になり、研磨が過剰に進行するのを防止することができる。CMP工程に用いる酸化セリウム系研磨剤は、例えば、特許文献1や特許文献2に開示されている。 As a result, it becomes easy to stop the polishing when the silicon nitride film is exposed, and it is possible to prevent the polishing from proceeding excessively. The cerium oxide type abrasive | polishing agent used for a CMP process is disclosed by patent document 1 and patent document 2, for example.
 近年、半導体素子製造工程は更に微細化が進行しており、研磨時に発生する研磨傷に対する要求がより厳格となってきた。この課題に対し、前記のような酸化セリウムを用いた研磨剤の、酸化セリウム粒子の平均粒径を小さくする試みがなされている。しかし、平均粒径を小さくすると機械的作用が低下するため、研磨速度が低下してしまう問題がある。 In recent years, the semiconductor element manufacturing process has been further miniaturized, and the demand for polishing scratches generated during polishing has become stricter. In response to this problem, attempts have been made to reduce the average particle diameter of the cerium oxide particles of the abrasive using cerium oxide as described above. However, when the average particle size is reduced, the mechanical action is lowered, and therefore there is a problem that the polishing rate is lowered.
 この問題に対し、4価の金属水酸化物粒子を用いた研磨剤が検討されており、この技術は特許文献3に開示されている。この技術は、4価の金属水酸化物粒子の化学的作用を活かし、かつ機械的作用を極力小さくし、それによって粒子による研磨傷の低減と、研磨速度の向上とを両立させたものである。 For this problem, abrasives using tetravalent metal hydroxide particles have been studied, and this technique is disclosed in Patent Document 3. This technology takes advantage of the chemical action of tetravalent metal hydroxide particles and minimizes the mechanical action, thereby achieving both reduction of polishing scratches caused by the particles and improvement of the polishing rate. .
日本国特開平10-106994号公報Japanese Unexamined Patent Publication No. 10-106994 日本国特開平08-022970号公報Japanese Unexamined Patent Publication No. 08-022970 国際公開第02/067309号International Publication No. 02/067309
 近年、例えば、STIを形成する工程において、研磨停止層としてポリシリコン膜の利用もなされている。この場合、酸化珪素膜のポリシリコン膜に対する研磨選択性を高める必要があった。 In recent years, for example, in the step of forming STI, a polysilicon film is also used as a polishing stopper layer. In this case, it was necessary to improve the polishing selectivity of the silicon oxide film with respect to the polysilicon film.
 本発明は、STI絶縁膜、プリメタル絶縁膜、層間絶縁膜等を平坦化するCMP技術において、酸化珪素膜等の絶縁膜を高速かつ低研磨傷で研磨でき、前記絶縁膜のポリシリコン膜に対する高い研磨選択性を有する研磨剤を提供することを目的とする。更に、この研磨剤を保管する研磨剤セット及びこの研磨剤を用いた基板の研磨方法を提供することを目的とする。 The present invention is capable of polishing an insulating film such as a silicon oxide film at a high speed and with low polishing scratches in a CMP technique for flattening an STI insulating film, a premetal insulating film, an interlayer insulating film, and the like. It is an object to provide an abrasive having polishing selectivity. Furthermore, it aims at providing the abrasive | polishing agent set which stores this abrasive | polishing agent, and the grinding | polishing method of the board | substrate using this abrasive | polishing agent.
 本発明の研磨剤は、4価の金属水酸化物粒子を含有する砥粒、及び添加剤として、ケン化度95モル%以下のポリビニルアルコールを含むことを特徴とする。これにより絶縁膜の、ポリシリコン膜に対する高い研磨速度比を得ることができる。前記絶縁膜として酸化珪素膜を用いる場合を例に説明すると、前記構成を取ることによって、酸化珪素膜をポリシリコンより優先して研磨することができる。 The abrasive of the present invention is characterized by containing, as an additive, abrasive grains containing tetravalent metal hydroxide particles, and polyvinyl alcohol having a saponification degree of 95 mol% or less. Thereby, a high polishing rate ratio of the insulating film to the polysilicon film can be obtained. The case where a silicon oxide film is used as the insulating film will be described as an example. With the above structure, the silicon oxide film can be polished with priority over polysilicon.
 本発明は、(1) 水、砥粒及び添加剤を含有する研磨剤であって、
前記砥粒は、4価の金属水酸化物粒子を含有してなり、
前記添加剤のうちの少なくとも1成分が、ケン化度95モル%以下のポリビニルアルコールである研磨剤に関する。
The present invention is (1) an abrasive containing water, abrasive grains and additives,
The abrasive grains contain tetravalent metal hydroxide particles,
The present invention relates to an abrasive in which at least one of the additives is polyvinyl alcohol having a saponification degree of 95 mol% or less.
 また、本発明は、(2) 前記砥粒の平均粒径が、1nm以上400nm以下である上記(1)の研磨剤に関する。 The present invention also relates to (2) the abrasive according to (1) above, wherein the abrasive has an average particle size of 1 nm to 400 nm.
 また、本発明は、(3) 研磨剤のpHが3.0以上12.0以下である上記(1)又は(2)の研磨剤に関する。 The present invention also relates to (3) the abrasive according to (1) or (2) above, wherein the pH of the abrasive is 3.0 or more and 12.0 or less.
 また、本発明は、(4) 前記砥粒の含有量が、研磨剤100質量部に対して0.01質量部以上5質量部以下である上記(1)~(3)のいずれかの研磨剤に関する。 Further, the present invention provides (4) the polishing according to any one of (1) to (3), wherein the content of the abrasive grains is 0.01 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the abrasive. It relates to the agent.
 また、本発明は、(5) 前記砥粒の研磨剤中でのゼータ電位が、-20mV以上+20mV以下である上記(1)~(4)のいずれかの研磨剤に関する。 The present invention also relates to (5) the abrasive according to any one of (1) to (4) above, wherein the zeta potential of the abrasive grains in the abrasive is −20 mV to +20 mV.
 また、本発明は、(6) 前記ポリビニルアルコールの含有量が、研磨剤100質量部に対して0.01質量部以上である上記(1)~(5)のいずれかの研磨剤に関する。 The present invention also relates to (6) the abrasive according to any one of (1) to (5) above, wherein the polyvinyl alcohol content is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive.
 また、本発明は、(7) 少なくとも表面に酸化珪素を含む被研磨面を研磨するために使用される上記(1)~(6)のいずれかの研磨剤に関する。 The present invention also relates to (7) the abrasive according to any one of the above (1) to (6) used for polishing a surface to be polished containing at least silicon oxide on the surface.
 また、本発明は、(8) 4価の金属水酸化物が、希土類金属水酸化物及び水酸化ジルコニウムの少なくとも一方である上記(1)~(7)のいずれかの研磨剤に関する。 The present invention also relates to (8) the abrasive according to any one of (1) to (7) above, wherein the tetravalent metal hydroxide is at least one of a rare earth metal hydroxide and zirconium hydroxide.
 また、本発明は、(9) 被研磨膜を形成した基板を研磨定盤の研磨パッドに押しあて加圧し、上記(1)~(8)のいずれかの研磨剤を被研磨膜と研磨パッドとの間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する基板の研磨方法に関する。 In the present invention, (9) the substrate on which the film to be polished is formed is pressed against the polishing pad of the polishing platen and pressed, and the polishing agent of any of the above (1) to (8) is applied to the film to be polished and the polishing pad. The substrate and the polishing surface plate are relatively moved while polishing the film to be polished.
 また、本発明は、(10) 研磨パッドのショアD硬度が、70以上である上記(9)の基板の研磨方法に関する。 The present invention also relates to (10) the method for polishing a substrate according to (9) above, wherein the Shore D hardness of the polishing pad is 70 or more.
 さらに、本発明は、(11) スラリと、添加液とに分けて保存され、研磨直前又は研磨時に混合されて上記(1)~(8)のいずれかの研磨剤とされる研磨剤セットであって、スラリは砥粒と水を含み、添加液は添加剤と水を含む研磨剤セットに関する。 Furthermore, the present invention is an abrasive set that is stored separately as (11) slurry and an additive solution, and is mixed immediately before polishing or at the time of polishing to be any of the above-mentioned abrasives (1) to (8). The slurry includes abrasive grains and water, and the additive liquid relates to an abrasive set including the additive and water.
 本発明の開示は、2009年6月9日に出願された特願2009-138124、及び2009年10月13日に出願された特願2009-236488に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。 The disclosure of the present invention relates to the subject matter described in Japanese Patent Application No. 2009-138124 filed on June 9, 2009 and Japanese Patent Application No. 2009-236488 filed on October 13, 2009. The disclosure is incorporated herein by reference.
 本発明は、STI絶縁膜、プリメタル絶縁膜、層間絶縁膜等を平坦化するCMP技術において、酸化珪素膜等の絶縁膜を高速かつ低研磨傷で研磨でき、前記絶縁膜とポリシリコン膜との高い研磨速度比を有する研磨剤、この研磨剤を保管する研磨剤セット及びこの研磨剤を用いた基板の研磨方法を提供することができる。 The present invention provides a CMP technique for planarizing an STI insulating film, a premetal insulating film, an interlayer insulating film, and the like. An insulating film such as a silicon oxide film can be polished at high speed with low polishing scratches, and the insulating film and the polysilicon film can be polished. An abrasive having a high polishing rate ratio, an abrasive set for storing the abrasive, and a method for polishing a substrate using the abrasive can be provided.
図1は、本願の実施例におけるポリビニルアルコールのケン化度と、絶縁膜のポリシリコン膜に対する研磨選択性との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the degree of saponification of polyvinyl alcohol and the selectivity of the insulating film to the polysilicon film in the examples of the present application.
 本発明において、「絶縁膜のポリシリコン膜に対する高い選択性」とは、絶縁膜の研磨速度が、ポリシリコン膜の研磨速度と比較して高いことを意味する。「絶縁膜の」を省略し、単に「ポリシリコン膜に対する高い選択性」ということもある。以下、特に断りがない限り、絶縁膜として酸化珪素膜を適用した場合を例にとって説明し、例えば、「ポリシリコン膜に対する選択性が優れる」とは、酸化珪素膜のポリシリコン膜に対する選択性が高いことを意味する。 In the present invention, “high selectivity of insulating film relative to polysilicon film” means that the polishing rate of the insulating film is higher than the polishing rate of the polysilicon film. “Insulating film” may be omitted, and simply “high selectivity for polysilicon film”. Hereinafter, unless otherwise specified, a case where a silicon oxide film is applied as an insulating film will be described as an example. For example, “the selectivity to a polysilicon film is excellent” means that the selectivity of the silicon oxide film to the polysilicon film is Means high.
 このような効果が得られることの作用機構は必ずしも明確ではないが、本発明者らは次のように推定している。すなわち、前記ポリビニルアルコールは、4価の金属水酸化物粒子等の砥粒及び被研磨膜、又はいずれか一方に作用するものと考えられる。特に、酸化珪素膜-ポリビニルアルコール間の相互作用と、ポリシリコン膜-ポリビニルアルコールとの相互作用の程度の差により、ポリシリコン膜に対する高い研磨速度比をもたらすものと推定される。より具体的には、ポリシリコン膜-ポリビニルアルコールとの相互作用が強まるものと考えられる。すなわち、ポリビニルアルコールが、疎水性のポリシリコン膜に効果的に吸着し、保護膜となって研磨を阻害するため、結果として研磨速度に差が生じるものと推測される。 Although the mechanism of action for obtaining such an effect is not necessarily clear, the present inventors presume as follows. That is, the polyvinyl alcohol is considered to act on abrasive grains such as tetravalent metal hydroxide particles and / or a film to be polished. In particular, it is estimated that a high polishing rate ratio with respect to the polysilicon film is brought about by the difference in the degree of interaction between the silicon oxide film and polyvinyl alcohol and the interaction between the polysilicon film and polyvinyl alcohol. More specifically, it is considered that the interaction between the polysilicon film and the polyvinyl alcohol is strengthened. That is, it is presumed that the polyvinyl alcohol is effectively adsorbed on the hydrophobic polysilicon film and becomes a protective film to inhibit polishing, resulting in a difference in polishing rate.
 この理由は、次のように考えられる。すなわち、ビニルアルコールのモノマーは理論的に合成することができないため、ポリビニルアルコールは、一般的に、酢酸ビニルモノマー等のカルボン酸ビニルモノマーを重合してポリカルボン酸ビニルを得た後、これをケン化(加水分解)して得られている。 This reason is considered as follows. That is, since a vinyl alcohol monomer cannot be theoretically synthesized, polyvinyl alcohol is generally obtained by polymerizing a vinyl carboxylate monomer such as a vinyl acetate monomer to obtain vinyl carboxylate, and then (Hydrolysis).
 従って、例えば、原料として酢酸ビニルモノマーを使用して得られたポリビニルアルコールは、分子中に官能基として-OCOCHと加水分解された-OHとを有しており、-OHとなっている割合をケン化度として定義される。ケン化度が95モル%以下となることで-OHよりも疎水性の-OCOCHが効果的に疎水性のポリシリコン膜に吸着し、保護膜となって研磨を阻害するため、結果として研磨速度に差が生じるものと推測される。 Therefore, for example, polyvinyl alcohol obtained using a vinyl acetate monomer as a raw material has —OCOCH 3 as a functional group and —OH hydrolyzed in the molecule, and is a ratio of —OH. Is defined as the degree of saponification. When the degree of saponification is 95 mol% or less, -OCOCH 3 that is more hydrophobic than -OH is effectively adsorbed on the hydrophobic polysilicon film, and becomes a protective film that inhibits polishing, resulting in polishing. It is estimated that there will be a difference in speed.
 本発明において研磨剤とは、研磨時に被研磨膜に触れさせる組成物のことであり、具体的態様としては、水、砥粒及び添加剤を含有する。以下、各成分及び任意に添加できる成分について、順に説明する。 In the present invention, the abrasive refers to a composition that is brought into contact with the film to be polished at the time of polishing, and specifically includes water, abrasive grains, and additives. Hereafter, each component and the component which can be added arbitrarily are demonstrated in order.
(砥粒)
 本発明の研磨剤の具体的態様の一つは、前記砥粒として4価の金属水酸化物粒子を含むものである。前記4価の金属水酸化物粒子は、シリカ、酸化セリウム等の従来の砥粒と比較して、酸化珪素との反応性が高く、高研磨速度である点で好ましい。本発明の研磨剤において用いることのできる他の砥粒としては、例えば、シリカ、アルミナ、酸化セリウム等を挙げることができる。
(Abrasive grains)
One of the specific aspects of the abrasive | polishing agent of this invention contains a tetravalent metal hydroxide particle as said abrasive grain. The tetravalent metal hydroxide particles are preferable in terms of high reactivity with silicon oxide and high polishing rate compared to conventional abrasive grains such as silica and cerium oxide. Examples of other abrasive grains that can be used in the abrasive of the present invention include silica, alumina, cerium oxide, and the like.
 前記砥粒において、前記4価の金属水酸化物粒子の含有量は、砥粒全体を基準として80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましく、98質量%以上であることが特に好ましく、99質量%以上であることが極めて好ましい。研磨剤の調整が容易で、研磨特性にも優れる点で、前記砥粒が前記4価の金属水酸化物粒子からなる(砥粒の100質量%が前記4価の金属水酸化物粒子である)ことが最も好ましい。 In the abrasive grains, the content of the tetravalent metal hydroxide particles is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more based on the whole abrasive grains. Is more preferably 98% by mass or more, and particularly preferably 99% by mass or more. The abrasive grains are composed of the tetravalent metal hydroxide particles in terms of easy adjustment of the abrasive and excellent polishing characteristics (100% by mass of the abrasive grains are the tetravalent metal hydroxide particles). Is most preferred.
 4価の金属水酸化物粒子としては、希土類金属水酸化物及び水酸化ジルコニウムの少なくとも一方を使用するのが好ましいが、希土類金属水酸化物及び水酸化ジルコニウムから二種以上を選択して使用しても差し支えない。中でも、希土類金属水酸化物として、水酸化セリウムCe(OH)を使用することが、高研磨速度である点で好ましい。 As the tetravalent metal hydroxide particles, it is preferable to use at least one of rare earth metal hydroxide and zirconium hydroxide, but two or more kinds selected from rare earth metal hydroxide and zirconium hydroxide are used. There is no problem. Among them, it is preferable to use cerium hydroxide Ce (OH) 4 as the rare earth metal hydroxide because it has a high polishing rate.
 4価の金属水酸化物粒子を作製する方法として、4価の金属塩とアルカリ液とを混合する手法が使用できる。この方法は、例えば、「希土類の科学」〔足立吟也編、株式会社化学同人、1999年〕304~305頁に説明されている。 As a method for producing tetravalent metal hydroxide particles, a method of mixing a tetravalent metal salt and an alkali solution can be used. This method is described in, for example, “Science of rare earths” (edited by Adiya Ginya, Kagaku Dojin, 1999), pages 304-305.
 4価の金属塩としては、例えば、M(SO、M(NH(NO、M(NH(SO(Mは希土類元素を示す。)、Zr(SO・4HO等を挙げることができる。前記のように、Mとしては、化学的に活性なセリウム(Ce)がより好ましい。 Examples of the tetravalent metal salt include M (SO 4 ) 2 , M (NH 4 ) 2 (NO 3 ) 6 , M (NH 4 ) 4 (SO 4 ) 4 (M represents a rare earth element), Zr (SO 4 ) 2 .4H 2 O and the like can be mentioned. As mentioned above, M is more preferably chemically active cerium (Ce).
 前記アルカリ液としては、例えば、アンモニア水、水酸化カリウム、水酸化ナトリウム等が使用でき、中でもアンモニア水が好ましい。前記方法で合成された4価の金属水酸化物粒子は、洗浄して金属不純物を除去できる。金属水酸化物の洗浄は、遠心分離等で固液分離を数回繰り返す方法などが使用できる。 As the alkaline solution, for example, aqueous ammonia, potassium hydroxide, sodium hydroxide and the like can be used, among which aqueous ammonia is preferable. The tetravalent metal hydroxide particles synthesized by the above method can be washed to remove metal impurities. For washing the metal hydroxide, a method of repeating solid-liquid separation several times by centrifugation or the like can be used.
 前記で得られた4価の金属水酸化物粒子が凝集している場合、適切な方法で水中に分散させることが好ましい。4価の金属水酸化物粒子を主な分散媒である水に分散させる方法としては、通常の攪拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等を用いることができる。分散方法、粒径制御方法については、例えば、「分散技術大全集」〔株式会社情報機構、2005年7月〕第3章「各種分散機の最新開発動向と選定基準」に記述されている方法を用いることができる。 When the tetravalent metal hydroxide particles obtained above are aggregated, it is preferably dispersed in water by an appropriate method. As a method for dispersing the tetravalent metal hydroxide particles in water, which is a main dispersion medium, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the dispersion treatment using a normal stirrer. Regarding the dispersion method and the particle size control method, for example, the method described in “The Complete Collection of Dispersion Technology” [Information Organization Co., Ltd., July 2005] Chapter 3, “Latest Development Trends and Selection Criteria of Various Dispersers” Can be used.
 研磨剤中の砥粒の平均粒径は、研磨速度が低くなりすぎることを避ける点で、下限としては、1nm以上であることが好ましく、2nm以上であることがより好ましく、10nm以上であることが更に好ましい。 The average particle diameter of the abrasive grains in the abrasive is preferably 1 nm or more, more preferably 2 nm or more, and more preferably 10 nm or more as a lower limit in order to avoid the polishing rate becoming too low. Is more preferable.
 また、砥粒の平均粒径の上限としては、研磨する膜に傷がつきにくくなる点で、400nm以下であることが好ましく、300nm以下であることがより好ましく、250nm以下であることが更に好ましい。 Further, the upper limit of the average grain size of the abrasive grains is preferably 400 nm or less, more preferably 300 nm or less, and further preferably 250 nm or less in that the film to be polished is less likely to be damaged. .
 本発明において、砥粒の平均粒径とは、動的光散乱法を用い、キュムラント解析で得られるZ-average Sizeをいう。測定には、例えば、マルバーン社製、商品名:ゼータサイザーナノSを使用できる。 In the present invention, the average grain size of abrasive grains refers to Z-average Size obtained by cumulant analysis using a dynamic light scattering method. For example, a product name: Zetasizer Nano S manufactured by Malvern Co., Ltd. can be used.
 より具体的な例としては、砥粒の濃度が0.1質量部となるように、研磨剤を水で希釈して測定サンプルを調整する。得られた測定サンプルを、1cm角のセルに約1mL入れ、ゼータサイザーナノSに設置する。分散媒の屈折率を1.33、粘度を0.887とし、25℃において測定を行い、Z-average Sizeとして表示される値を読み取る。 As a more specific example, the measurement sample is adjusted by diluting the abrasive with water so that the concentration of the abrasive grains becomes 0.1 parts by mass. About 1 mL of the obtained measurement sample is placed in a 1 cm square cell, and placed on the Zetasizer Nano S. The refractive index of the dispersion medium is 1.33, the viscosity is 0.887, measurement is performed at 25 ° C., and the value displayed as Z-average Size is read.
 また、前記砥粒の比表面積は、被研磨膜と化学的作用を増大させて研磨速度を向上させる観点から、100m/g以上であることが好ましい。粒子の比表面積はBET法によって測定できる。 The specific surface area of the abrasive grains is preferably 100 m 2 / g or more from the viewpoint of increasing the chemical action with the film to be polished and improving the polishing rate. The specific surface area of the particles can be measured by the BET method.
 前記BET法による比表面積の測定方法としては、例えば、研磨剤を150℃で3時間乾燥して、さらに150℃で1時間真空脱気乾燥して、測定サンプルを得る。これを、QUANTACHROME社製ガス吸着量測定装置AUTOSORB-1MP型を用いて、窒素吸着法(相対圧に対する吸着量を測定し、そのデータを多分子吸着理論に基づくBET法で解析、相対圧0.1と0.2と0.3とのデータを用いるBET3点法)により求めることができる。 As a method for measuring the specific surface area by the BET method, for example, an abrasive is dried at 150 ° C. for 3 hours and further vacuum degassed and dried at 150 ° C. for 1 hour to obtain a measurement sample. This was measured by using a gas adsorption amount measuring device AUTOSORB-1MP type manufactured by QUANTACHROME, and measuring the adsorption amount relative to the relative pressure and analyzing the data by the BET method based on the multimolecular adsorption theory. (BET three-point method using data of 1, 0.2 and 0.3).
 砥粒の濃度は、好適な研磨速度を得ることができる点で、下限としては、研磨剤100質量部に対して0.01質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.05質量部以上であることが更に好ましい。また、上限としては、研磨剤の保存安定性を高くできる点で、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下が更に好ましく、1質量部以下が特に好ましい。 The concentration of the abrasive grains is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more with respect to 100 parts by mass of the abrasive, in that a suitable polishing rate can be obtained. More preferably, the amount is 0.05 parts by mass or more. Further, the upper limit is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, still more preferably 2 parts by mass or less, and particularly preferably 1 part by mass or less from the viewpoint that the storage stability of the abrasive can be increased.
(添加剤)
 本発明の研磨剤は、添加剤を含む。ここで添加剤とは、砥粒の分散性、研磨特性、保存安定性等を調整するために、水、砥粒以外に含まれる物質を指す。
(Additive)
The abrasive | polishing agent of this invention contains an additive. Here, the additive refers to a substance contained other than water and abrasive grains in order to adjust the dispersibility, polishing characteristics, storage stability and the like of the abrasive grains.
(ポリビニルアルコール)
 本発明の研磨剤の具体的態様の一つは、前記添加剤として、ポリビニルアルコールを含むことを特徴とする。ポリビニルアルコールは、研磨剤の安定性を向上させる効果がある。ポリビニルアルコールの水酸基が砥粒と相互作用することにより、凝集を抑制し、研磨剤の粒径変化を抑制して安定性を向上できる。
(Polyvinyl alcohol)
One of the specific embodiments of the abrasive of the present invention is characterized in that it contains polyvinyl alcohol as the additive. Polyvinyl alcohol has the effect of improving the stability of the abrasive. When the hydroxyl group of polyvinyl alcohol interacts with the abrasive grains, aggregation can be suppressed, and changes in the particle size of the abrasive can be suppressed to improve stability.
 これまで述べたように、ビニルアルコールのモノマーは理論的に合成することができないため、ポリビニルアルコールは、一般的に、酢酸ビニルモノマー等のカルボン酸ビニルモノマーを重合してポリカルボン酸ビニルを得た後、これをケン化(加水分解)して得られている。従って、例えば、原料として酢酸ビニルモノマーを使用して得られたポリビニルアルコールは、分子中に官能基として-OCOCHと加水分解された-OHとを有している。本発明において、ポリビニルアルコールとは、ビニルアルコールのホモポリマ(ケン化度100%)だけではなく、カルボン酸ビニルとビニルアルコールの共重合体も含むものと定義される。 As described above, since a vinyl alcohol monomer cannot be theoretically synthesized, polyvinyl alcohol is generally obtained by polymerizing a vinyl carboxylate monomer such as a vinyl acetate monomer. Thereafter, it is obtained by saponification (hydrolysis). Thus, for example, polyvinyl alcohol obtained using a vinyl acetate monomer as a raw material has —OCOCH 3 and hydrolyzed —OH as functional groups in the molecule. In the present invention, polyvinyl alcohol is defined to include not only a homopolymer of vinyl alcohol (degree of saponification 100%) but also a copolymer of vinyl carboxylate and vinyl alcohol.
 また、ポリビニルアルコールに官能基を導入した、ポリビニルアルコール誘導体も利用することができ、本発明において、このようなポリビニルアルコール誘導体もポリビニルアルコールとして定義する。 In addition, a polyvinyl alcohol derivative obtained by introducing a functional group into polyvinyl alcohol can also be used. In the present invention, such a polyvinyl alcohol derivative is also defined as polyvinyl alcohol.
 ポリビニルアルコール誘導体としては、例えば、反応型ポリビニルアルコール(例えば、日本合成化学工業株式会社製、ゴーセファイマー(登録商標)Z等)、カチオン化ポリビニルアルコール(例えば、日本合成化学工業株式会社製、ゴーセファイマー(登録商標)K等)、アニオン化ポリビニルアルコール(例えば、日本合成化学工業株式会社製、ゴーセラン(登録商標)L、ゴーセナール(登録商標)T等)、親水基変性ポリビニルアルコール(例えば、日本合成化学工業株式会社製、エコマティ(登録商標)等)などが挙げられる。 Examples of the polyvinyl alcohol derivative include reactive polyvinyl alcohol (for example, Goseifamer (registered trademark) Z, etc., manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and cationized polyvinyl alcohol (for example, GOGO Synthetic Chemical Co., Ltd., Go Cefaimer (registered trademark) K, etc.), anionized polyvinyl alcohol (for example, Goseiran (registered trademark) L, Gosenal (registered trademark) T, etc., manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), hydrophilic group-modified polyvinyl alcohol (for example, Japan Synthetic Chemical Industry Co., Ltd., Ecomate (registered trademark), etc.).
 本発明の研磨剤においてポリビニルアルコールとして定義される前記の各化合物は、選択性や平坦性を調整する目的で、それぞれ単独で又は二種類以上を組み合わせて使用することができる。また後述するケン化度、重合度等が異なる、複数のポリビニルアルコールを組み合わせて使用することもできる。 Each compound defined as polyvinyl alcohol in the abrasive of the present invention can be used alone or in combination of two or more for the purpose of adjusting selectivity and flatness. A plurality of polyvinyl alcohols having different saponification degrees, polymerization degrees, etc., which will be described later, can also be used in combination.
(ケン化度)
 これまで述べたように、一般的に、ポリビニルアルコールは、分子中に官能基として-OCOCHと加水分解された-OHとを有しており、-OHとなっている割合をケン化度として定義される。ケン化度が所定の値以下となることで、-OHよりも疎水性の-OCOCHが効果的に疎水性のポリシリコン膜に吸着し、保護膜となって研磨を阻害するため、結果として研磨速度に差が生じるものと推測される。これにより、酸化珪素膜のポリシリコン膜に対する研磨速度比(以下、選択性ともいう)が高められる傾向がある。この観点で、ポリビニルアルコールのケン化度としては、上限値は、95モル%以下が好ましく、90モル%以下がより好ましく、88モル%以下が更に好ましく、85モル%以下が特に好ましく、83モル%以下が非常に好ましく、80モル%以下が極めて好ましい。
(Saponification degree)
As described above, in general, polyvinyl alcohol has —OCOCH 3 and hydrolyzed —OH as functional groups in the molecule, and the ratio of —OH is defined as the degree of saponification. Defined. When the saponification degree is not more than a predetermined value, -OCOCH 3 that is more hydrophobic than -OH is effectively adsorbed on the hydrophobic polysilicon film and becomes a protective film, which hinders polishing. It is estimated that a difference occurs in the polishing rate. This tends to increase the polishing rate ratio (hereinafter also referred to as selectivity) of the silicon oxide film to the polysilicon film. In this respect, the upper limit of the saponification degree of polyvinyl alcohol is preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 88 mol% or less, particularly preferably 85 mol% or less, and 83 mol%. % Or less is very preferable, and 80 mol% or less is very preferable.
 また、ケン化度の下限値に特に制限はないが、水への溶解性の観点から、50モル%以上が好ましく、60モル%以上がより好ましく、70モル%以上が更に好ましい。なお、ポリビニルアルコールのケン化度は、JIS K 6726(日本工業規格、ポリビニルアルコール試験方法)に準拠して測定することができる。 The lower limit of the degree of saponification is not particularly limited, but is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% or more from the viewpoint of solubility in water. The degree of saponification of polyvinyl alcohol can be measured in accordance with JIS K 6726 (Japanese Industrial Standard, polyvinyl alcohol test method).
 また、ケン化度が異なる複数のポリビニルアルコールを使用する場合、少なくとも1種のポリビニルアルコールのケン化度が95モル%以下であればよく、選択性を向上できる観点から、それぞれのケン化度及び配合比から算出した平均のケン化度が95モル%以下であればより好ましい。 Moreover, when using several polyvinyl alcohol from which a saponification degree differs, the saponification degree of at least 1 sort (s) of polyvinyl alcohol should just be 95 mol% or less, and from a viewpoint which can improve selectivity, each saponification degree and It is more preferable that the average degree of saponification calculated from the blending ratio is 95 mol% or less.
(重合度)
 また、ポリビニルアルコールの平均重合度は、特に制限はないが、上限としては、酸化珪素膜の研磨速度が高められる観点から、3000以下が好ましく、2000以下がより好ましく、1000以下が最も好ましい。
(Degree of polymerization)
The average degree of polymerization of polyvinyl alcohol is not particularly limited, but the upper limit is preferably 3000 or less, more preferably 2000 or less, and most preferably 1000 or less from the viewpoint of increasing the polishing rate of the silicon oxide film.
 また、選択性が高められる観点から、下限としては、50以上が好ましく、100以上がより好ましく、150以上が更に好ましい。なお、ポリビニルアルコールの平均重合度は、上述のJIS K 6726(ポリビニルアルコール試験方法)に準拠して測定することができる。 Further, from the viewpoint of enhancing the selectivity, the lower limit is preferably 50 or more, more preferably 100 or more, and further preferably 150 or more. In addition, the average degree of polymerization of polyvinyl alcohol can be measured based on the above-mentioned JIS K 6726 (polyvinyl alcohol test method).
 添加剤として用いる、ケン化度95モル%以下のポリビニルアルコールの合計濃度は、選択性を向上できる観点から、下限としては、研磨剤100質量部に対して0.001質量部以上が好ましく、0.01質量部以上がより好ましく、0.1質量部以上が更に好ましい。 The total concentration of polyvinyl alcohol having a saponification degree of 95 mol% or less used as an additive is preferably 0.001 part by mass or more with respect to 100 parts by mass of the polishing agent from the viewpoint of improving selectivity. 0.01 parts by mass or more is more preferable, and 0.1 parts by mass or more is more preferable.
 また、酸化珪素膜の研磨速度が高められる観点から、上限としては、研磨剤100質量部に対して10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下が更に好ましい。 Also, from the viewpoint of increasing the polishing rate of the silicon oxide film, the upper limit is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less with respect to 100 parts by mass of the abrasive.
(第二の添加剤)
 本発明の研磨剤は、研磨特性を調整する目的で、前記ポリビニルアルコールの他に、更に別の添加剤(以下、「第二の添加剤」ともいう)を含んでいてもよい。このような添加剤としては、具体的には例えば、カルボン酸、アミノ酸、両性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤等が挙げられ、これらは単独で又は二種類以上組み合わせて使用することができる。中でも、砥粒の分散性と研磨特性のバランスの観点から、カルボン酸、アミノ酸及び両性界面活性剤が好ましい。
(Second additive)
The abrasive of the present invention may further contain another additive (hereinafter also referred to as “second additive”) in addition to the polyvinyl alcohol for the purpose of adjusting polishing characteristics. Specific examples of such additives include carboxylic acids, amino acids, amphoteric surfactants, anionic surfactants, nonionic surfactants, cationic surfactants, and the like. Can be used alone or in combination of two or more. Of these, carboxylic acids, amino acids, and amphoteric surfactants are preferable from the viewpoint of the balance between abrasive dispersibility and polishing characteristics.
 前記のうち、カルボン酸は、pHを安定化させる効果があり、具体的には、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、乳酸等が挙げられる。 Among the above, carboxylic acid has an effect of stabilizing pH, and specific examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and lactic acid.
 アミノ酸は、前記4価の金属水酸化物粒子等の砥粒の分散性を向上させ、研磨速度を向上させる効果があり、具体的には例えば、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、トレオニン、グリシン、アラニン、β-アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等が挙げられる。 Amino acids have the effect of improving the dispersibility of abrasive grains such as the tetravalent metal hydroxide particles and improving the polishing rate. Specifically, for example, arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine Histidine, proline, tyrosine, tryptophan, serine, threonine, glycine, alanine, β-alanine, methionine, cysteine, phenylalanine, leucine, valine, isoleucine and the like.
 両性界面活性剤は、前記4価の金属水酸化物粒子等の砥粒の分散性を向上させ、研磨速度を向上させる効果があり、具体的には、例えば、ベタイン、β-アラニンベタイン、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタイン、ヤシ油脂肪酸アミドプロピルベタイン、ラウリルヒドロキシスルホベタイン等が挙げられる。中でも、分散性安定性が向上する観点から、ベタイン、β-アラニンベタイン、ラウリン酸アミドプロピルベタインが更に好ましい。 The amphoteric surfactant has the effect of improving the dispersibility of abrasive grains such as the tetravalent metal hydroxide particles and improving the polishing rate. Specifically, for example, betaine, β-alanine betaine, lauryl Examples include betaine, stearyl betaine, lauryl dimethylamine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine, lauric acid amidopropyl betaine, coconut oil fatty acid amidopropyl betaine, and lauryl hydroxysulfobetaine. Of these, betaine, β-alanine betaine, and amide amidopropyl betaine are more preferable from the viewpoint of improving dispersibility stability.
 陰イオン性界面活性剤は、研磨終了後における被研磨面の平坦性や面内均一性を調整する効果があり、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、特殊ポリカルボン酸型高分子分散剤等が挙げられる。 Anionic surfactants have the effect of adjusting the flatness and in-plane uniformity of the surface to be polished after polishing. For example, lauryl sulfate triethanolamine, lauryl ammonium sulfate, polyoxyethylene alkyl ether sulfate triethanolamine And special polycarboxylic acid type polymer dispersants.
 非イオン性界面活性剤は、研磨終了後における被研磨面の平坦性や面内均一性を調整する効果があり、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2-ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。 The nonionic surfactant has an effect of adjusting the flatness and in-plane uniformity of the surface to be polished after polishing, for example, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan Monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, poly Oxyethylene sorbitan trioleate, polyoxyethylene sorbite tetraoleate, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil , 2-hydroxyethyl methacrylate, alkyl alkanolamides and the like.
 陽イオン性界面活性剤は、研磨終了後における被研磨面の平坦性や面内均一性を調整する効果があり、例えば、ココナットアミンアセテート、ステアリルアミンアセテート等が挙げられる。 The cationic surfactant has an effect of adjusting the flatness and in-plane uniformity of the surface to be polished after completion of polishing, and examples thereof include coconut amine acetate and stearyl amine acetate.
 これら第二の添加剤を使用する場合、その添加量は、砥粒の沈降を抑制しつつ添加剤の添加効果が得られる点で、研磨剤100質量部に対して、0.01質量部以上、10質量部以下の範囲であることが好ましい。 When using these second additives, the addition amount is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive in terms of obtaining the additive effect while suppressing the sedimentation of the abrasive grains. The range is preferably 10 parts by mass or less.
(水溶性高分子)
 また、本発明の研磨剤は、研磨特性の平坦性や面内均一性を調整する目的で、ポリビニルアルコール以外の水溶性高分子を含んでいてもよい。ここで水溶性高分子とは、水100gに対して、0.1g以上溶解する高分子として定義する。
(Water-soluble polymer)
The abrasive of the present invention may contain a water-soluble polymer other than polyvinyl alcohol for the purpose of adjusting the flatness and in-plane uniformity of the polishing characteristics. Here, the water-soluble polymer is defined as a polymer that dissolves 0.1 g or more with respect to 100 g of water.
 前記水溶性高分子の具体例としては、特に制限はなく、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン、プルラン等の多糖類;
ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、ポリアミド酸、ポリグリオキシル酸等のポリカルボン酸及びその塩;
ポリビニルピロリドン、ポリアクロレイン等のビニル系ポリマ;
ポリアクリルアミド、ポリジメチルアクリルアミド等のアクリル系ポリマ;
ポリエチレングリコール、ポリオキシプロピレン、ポリオキシエチレン-ポリオキシプロピレン縮合物、エチレンジアミンのポリオキシエチレン-ポリオキシプロピレンブロックポリマーなどが挙げられる。前記ポリカルボン酸は共重合体でもよい。またその塩としては、例えば、アンモニウム塩、ナトリウム塩等が挙げられる。
Specific examples of the water-soluble polymer are not particularly limited. For example, polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan, and pullulan;
Polycarboxylic acids such as polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyamic acid, polyglyoxylic acid, and salts thereof;
Vinyl polymers such as polyvinylpyrrolidone and polyacrolein;
Acrylic polymers such as polyacrylamide and polydimethylacrylamide;
Examples thereof include polyethylene glycol, polyoxypropylene, polyoxyethylene-polyoxypropylene condensate, and polyoxyethylene-polyoxypropylene block polymer of ethylenediamine. The polycarboxylic acid may be a copolymer. Moreover, as the salt, ammonium salt, sodium salt, etc. are mentioned, for example.
 これら水溶性高分子を使用する場合、砥粒の沈降を抑制しつつ水溶性高分子の添加効果が得られる点で、添加量は、研磨剤100質量部に対して、0.01質量部以上5質量部以下であることが好ましい。 When these water-soluble polymers are used, the addition amount is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive because the effect of adding the water-soluble polymer is obtained while suppressing sedimentation of abrasive grains. The amount is preferably 5 parts by mass or less.
(研磨剤の特性)
(pH)
 本発明の研磨剤のpHは、研磨剤の保存安定性や研磨速度に優れる点で3.0以上、12.0以下の範囲にあることが好ましい。pHの下限は主に研磨速度に影響し、3.0以上であることが好ましく、4.0以上であることがより好ましく、5.0以上であることが更に好ましい。また、上限も主に研磨速度に影響し、12.0以下であることが好ましく、11.0以下であることがより好ましく、10.0以下であることが更に好ましい。
(Abrasive properties)
(PH)
The pH of the abrasive of the present invention is preferably in the range of 3.0 or more and 12.0 or less in terms of excellent storage stability and polishing rate of the abrasive. The lower limit of the pH mainly affects the polishing rate, is preferably 3.0 or more, more preferably 4.0 or more, and further preferably 5.0 or more. Further, the upper limit mainly affects the polishing rate, is preferably 12.0 or less, more preferably 11.0 or less, and still more preferably 10.0 or less.
 pHは、無機酸、有機酸等の酸成分、アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール等のアルカリ成分などの添加によって調整可能である。また、pHを安定化させるため、緩衝液を添加してもよい。このような緩衝液としては、例えば、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。 The pH can be adjusted by adding an acid component such as an inorganic acid or an organic acid, an alkali component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), or imidazole. A buffer may be added to stabilize the pH. Examples of such a buffer include acetate buffer and phthalate buffer.
 本発明の研磨剤のpHは、pHメータ(例えば、横河電機株式会社製のModel PH81)で測定することができる。具体的には、例えば、フタル酸塩pH緩衝液(pH4.01)と中性リン酸塩pH緩衝液(pH6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨剤に入れて、2分以上経過して安定した後の値を測定する。このとき、標準緩衝液と研磨剤の液温は共に25℃とする。 The pH of the abrasive of the present invention can be measured with a pH meter (for example, Model PH81 manufactured by Yokogawa Electric Corporation). Specifically, for example, the pH meter is calibrated at two points using a phthalate pH buffer solution (pH 4.01) and a neutral phosphate pH buffer solution (pH 6.86) as standard buffers, and then the pH meter The value after the electrode was stabilized after 2 minutes or more had passed was measured. At this time, the liquid temperature of the standard buffer and the abrasive is both 25 ° C.
(ゼータ電位)
 研磨剤中の砥粒のゼータ電位は、ポリシリコンに対する選択性を高められる観点から、-20mV~+20mVであることが好ましく、0mV~+20mVがより好ましい。なお、ゼータ電位測定には、例えば、マルバーン社製、商品名:ゼータサイザー3000HSが使用でき、例えば、研磨剤をゼータサイザー3000HSの推奨される散乱光量となるように水で希釈して測定することができる。
(Zeta potential)
The zeta potential of the abrasive grains in the abrasive is preferably −20 mV to +20 mV, more preferably 0 mV to +20 mV, from the viewpoint of enhancing the selectivity to polysilicon. For the zeta potential measurement, for example, a product name: Zeta Sizer 3000HS manufactured by Malvern can be used. For example, the abrasive is diluted with water so that the amount of scattered light recommended for the Zeta Sizer 3000HS is measured. Can do.
 本発明の研磨剤は、前記砥粒と、前記添加剤と、水とを含む一液式研磨剤として保存してもよく、少なくとも砥粒と水を含むスラリと、少なくとも添加剤と水を含む添加液とを分けた二液式の研磨剤セットとして保存してもよい。 The abrasive according to the present invention may be stored as a one-component abrasive containing the abrasive, the additive, and water, and includes at least a slurry containing abrasive and water, and at least an additive and water. You may preserve | save as a two-pack type abrasive | polishing agent set which separated the additive liquid.
 前記ポリビニルアルコール及び水溶性高分子は、二液のうち添加液に含まれるのが好ましい。また、前記緩衝液は二液のうち、添加液に含まれるのが好ましい。 The polyvinyl alcohol and the water-soluble polymer are preferably contained in the additive liquid out of the two liquids. Moreover, it is preferable that the said buffer solution is contained in an addition liquid among two liquids.
 前記研磨剤セットは、研磨直前又は研磨時に混合されて研磨剤とされる。また、いずれの場合においても、水の含有量を減じた濃縮スラリ、濃縮添加液、濃縮研磨剤として保存し、研磨時に水で希釈して用いてもよい。 The abrasive set is mixed immediately before or at the time of polishing to become an abrasive. In either case, the slurry may be stored as a concentrated slurry, a concentrated additive solution, or a concentrated abrasive with reduced water content, and diluted with water during polishing.
 スラリと添加液とを分けた二液式研磨剤として保存する場合、これら二液の配合を任意に変えられることにより研磨速度の調整が可能となる。二液式研磨剤で研磨する場合、研磨定盤上への研磨剤の供給方法としては、下記に示す方法がある。例えば、スラリと添加液とを別々の配管で送液し、これらの配管を合流、混合させて供給する方法、濃縮スラリ、濃縮添加液、水を別々の配管で送液し、これらを合流、混合させて供給する方法、あらかじめスラリ、添加液を混合しておき供給する方法、あらかじめ濃縮スラリ、濃縮添加液、水を混合しておき供給する方法等を用いることができる。 When storing the slurry and the additive solution as a two-component abrasive, the polishing rate can be adjusted by arbitrarily changing the composition of these two components. In the case of polishing with a two-pack type abrasive, the method for supplying the abrasive onto the polishing surface plate includes the following methods. For example, the slurry and the additive solution are sent through separate pipes, and these pipes are joined, mixed and supplied, the concentrated slurry, the concentrated additive solution, and water are sent through separate pipes, and these are joined. A method of supplying the mixture by mixing, a method of mixing and supplying the slurry and the additive liquid in advance, a method of mixing and supplying the concentrated slurry, the concentrated additive liquid, and water in advance can be used.
 砥粒、添加剤、水を含んだ一液式研磨剤の場合、研磨定盤上への研磨剤の供給方法としては、例えば、研磨剤を直接送液して供給する方法、濃縮研磨剤、水を別々の配管で送液し、これらを合流、混合させて供給する方法、あらかじめ濃縮研磨剤、水を混合しておき供給する方法等を用いることができる。 In the case of a one-part abrasive containing abrasive grains, additives, and water, as a method of supplying the abrasive onto the polishing surface plate, for example, a method of supplying the abrasive directly by feeding, a concentrated abrasive, A method of feeding water through separate pipes and joining and mixing them, a method of feeding concentrated abrasives and water in advance, and the like can be used.
 本発明の研磨方法は、被研磨膜を形成した基板を研磨定盤の研磨パッドに押し当て加圧し、前記本発明の研磨剤を被研磨膜と研磨パッドとの間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨することを特徴とする。 In the polishing method of the present invention, the substrate on which the film to be polished is formed is pressed against the polishing pad of the polishing platen and pressed, and the polishing agent of the present invention is supplied between the film to be polished and the polishing pad, The film to be polished is polished by relatively moving the polishing platen.
 基板として、半導体素子製造に係る基板、例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板上に絶縁膜が形成された基板が挙げられる。そして、被研磨膜は、これらのパターンの上に形成された絶縁膜、例えば、酸化珪素膜、ポリシリコン膜等が挙げられる。本発明において、被研磨膜は単一の膜であっても良く、複数の膜であっても良い。複数の膜が基板表面に露出している場合、それらを被研磨膜と見なすことができる。 Examples of the substrate include a substrate in which a semiconductor element is manufactured, for example, a substrate in which an insulating film is formed on a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, and the like are formed. Examples of the film to be polished include an insulating film formed on these patterns, such as a silicon oxide film and a polysilicon film. In the present invention, the film to be polished may be a single film or a plurality of films. When a plurality of films are exposed on the substrate surface, they can be regarded as films to be polished.
 このような半導体基板上に形成された酸化珪素膜やポリシリコン膜を前記研磨剤で研磨することによって、酸化珪素膜層表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。このように、本発明の研磨剤は、少なくとも表面に酸化珪素を含む被研磨面を研磨するために使用されるのが好ましい。 By polishing a silicon oxide film or a polysilicon film formed on such a semiconductor substrate with the above-described abrasive, unevenness on the surface of the silicon oxide film layer can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate. . Thus, the abrasive of the present invention is preferably used for polishing a surface to be polished containing at least silicon oxide on the surface.
 被研磨膜の少なくとも表面に酸化珪素を含み、更にその下層に研磨停止層が備えられている場合、研磨停止層は、ポリシリコン膜、窒化珪素膜等であるのが好ましい。酸化珪素よりも研磨速度が低い研磨停止層が露出した時に研磨が停止することにより、被研磨膜である酸化珪素膜が過剰に研磨されることを防止でき、被研磨膜の研磨後の平坦性を向上させることができる。 When at least the surface of the film to be polished contains silicon oxide and further provided with a polishing stopper layer below it, the polishing stopper layer is preferably a polysilicon film, a silicon nitride film or the like. By stopping polishing when a polishing stopper layer having a lower polishing rate than silicon oxide is exposed, it is possible to prevent excessive polishing of the silicon oxide film as the film to be polished, and the flatness after polishing of the film to be polished Can be improved.
 また、本発明の研磨剤は、STI(シャロー・トレンチ・アイソレーション)にも好適に使用できる。STIに使用するためには、酸化珪素膜の前記研磨停止層に対する選択性が100以上であることが好ましい。前記選択性が100未満では、酸化珪素膜研磨速度とポリシリコン膜研磨速度の差が小さく、STIをする際、所定の位置で研磨を停止しにくくなるためである。前記選択性が100以上であれば研磨の停止が容易になり、STIにより好適である。 Also, the abrasive of the present invention can be suitably used for STI (shallow trench isolation). For use in STI, the selectivity of the silicon oxide film to the polishing stopper layer is preferably 100 or more. This is because if the selectivity is less than 100, the difference between the silicon oxide film polishing rate and the polysilicon film polishing rate is small, and it is difficult to stop polishing at a predetermined position when performing STI. If the selectivity is 100 or more, polishing can be easily stopped, and STI is preferable.
 更に、プリメタル絶縁膜の研磨にも使用できる。プリメタル絶縁膜として、酸化珪素の他、例えば、リン-シリケートガラスやボロン-リン-シリケートガラスが使用され、更に、シリコンオキシフロリド、フッ化アモルファスカーボン等も使用できる。 Furthermore, it can also be used for polishing premetal insulating films. As the premetal insulating film, in addition to silicon oxide, for example, phosphorus-silicate glass or boron-phosphorus-silicate glass is used, and silicon oxyfluoride, fluorinated amorphous carbon, or the like can also be used.
 以下、絶縁膜が形成された半導体基板の場合を例に挙げて研磨方法を説明する。 Hereinafter, the polishing method will be described by taking as an example the case of a semiconductor substrate on which an insulating film is formed.
 本発明の研磨方法において、研磨する装置としては、半導体基板等の被研磨膜を有する基板を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置が使用できる。 In the polishing method of the present invention, as a polishing apparatus, a general polishing apparatus having a holder capable of holding a substrate having a film to be polished such as a semiconductor substrate and a polishing surface plate to which a polishing pad can be attached is used. it can.
 前記ホルダーと前記研磨定盤には、それぞれに回転数が変更可能なモータ等が取り付けてある。例えば、株式会社荏原製作所製の研磨装置:型番EPO-111が使用できる。 The motor and the like whose rotation speed can be changed are attached to the holder and the polishing surface plate, respectively. For example, a polishing apparatus: model number EPO-111 manufactured by Ebara Corporation can be used.
 前記研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用でき、材質としてはポリウレタン、アクリル、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ナイロン(商標名)、アラミド等のポリアミド、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂などの樹脂が使用できる。 As the polishing pad, general nonwoven fabrics, foams, non-foams and the like can be used. As materials, polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4- Polyamides such as methylpentene, cellulose, cellulose ester, nylon (trade name) and aramid, resins such as polyimide, polyimideamide, polysiloxane copolymer, oxirane compound, phenol resin, polystyrene, polycarbonate and epoxy resin can be used.
 特に、研磨速度や平坦性の観点から、発泡ポリウレタン、非発泡ポリウレタンが好ましい。 In particular, foamed polyurethane and non-foamed polyurethane are preferred from the viewpoint of polishing speed and flatness.
 また、研磨パッドのショアD硬度は、平坦性を向上させる観点から、70以上が好ましく、75以上がより好ましく、80以上が更に好ましい。ショアD硬度はショアD硬度計〔例えば高分子計器株式会社アスカーゴム硬度計 形式D〕で測定できる。 The Shore D hardness of the polishing pad is preferably 70 or more, more preferably 75 or more, and still more preferably 80 or more, from the viewpoint of improving flatness. Shore D hardness can be measured with a Shore D hardness meter [for example, Polymer Instruments Co., Ltd. Asker Rubber Hardness Tester Type D].
 また、研磨パッドには研磨剤がたまるような溝加工を施すことが好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さないように200min-1以下が好ましく、半導体基板にかける圧力(加工荷重)は研磨傷が発生しないように100kPa以下が好ましい。研磨している間、研磨パッドには研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨剤で覆われていることが好ましい。 Further, it is preferable that the polishing pad is grooved so that the abrasive is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably 200 min −1 or less so that the semiconductor substrate does not jump out, and the pressure (working load) applied to the semiconductor substrate is preferably 100 kPa or less so as not to cause polishing scratches. . During polishing, a polishing agent is continuously supplied to the polishing pad by a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with the abrasive | polishing agent.
 研磨終了後の半導体基板は、流水中で良く洗浄して基板に付着した粒子を除去することが好ましい。洗浄には純水以外に希フッ酸やアンモニア水を併用してもよく、洗浄効率を高めるためにブラシを併用してもよい。 The semiconductor substrate after polishing is preferably washed well under running water to remove particles adhering to the substrate. In addition to pure water, dilute hydrofluoric acid or aqueous ammonia may be used for cleaning, and a brush may be used in combination to increase cleaning efficiency.
 また、洗浄後はスピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。 Further, after washing, it is preferable to dry after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.
 本発明の研磨剤が使用される絶縁膜の作製方法として、低圧CVD法、準常圧CVD法、プラズマCVD法等に代表されるCVD法や、回転する基板に液体原料を塗布する回転塗布法などが挙げられる。 As a method for producing an insulating film using the abrasive of the present invention, a CVD method represented by a low pressure CVD method, a quasi-atmospheric pressure CVD method, a plasma CVD method, etc., or a spin coating method in which a liquid material is applied to a rotating substrate Etc.
 低圧CVD法による酸化珪素膜は、例えば、モノシラン(SiH)と酸素(O)を熱反応させることにより得られる。 The silicon oxide film formed by the low pressure CVD method is obtained, for example, by causing a thermal reaction between monosilane (SiH 4 ) and oxygen (O 2 ).
 また、準常圧CVD法による酸化珪素膜は、例えば、テトラエトキシシラン(Si(OC)とオゾン(O)を熱反応させることにより得られる。 Moreover, the silicon oxide film by the quasi-atmospheric pressure CVD method can be obtained, for example, by thermally reacting tetraethoxysilane (Si (OC 2 H 5 ) 4 ) and ozone (O 3 ).
 その他の例として、テトラエトキシシランと酸素をプラズマ反応させても同様に酸化珪素膜が得られる。 As another example, a silicon oxide film can be similarly obtained even when tetraethoxysilane and oxygen are subjected to plasma reaction.
 回転塗布法による酸化珪素膜は、例えば、無機ポリシラザン、無機シロキサン等を含む液体原料を基板上に塗布し、炉体等で熱硬化反応させることにより得られる。 The silicon oxide film formed by the spin coating method can be obtained, for example, by applying a liquid raw material containing inorganic polysilazane, inorganic siloxane or the like on a substrate and performing a thermosetting reaction in a furnace body or the like.
 ポリシリコン膜の製膜方法としては、例えば、モノシランを熱反応させる低圧CVD法、モノシランをプラズマ反応させるプラズマCVD法等が挙げられる。 Examples of the method for forming a polysilicon film include a low pressure CVD method in which monosilane is thermally reacted, a plasma CVD method in which monosilane is plasma-reacted, and the like.
 以上のような方法で得られた酸化珪素膜、ポリシリコン膜等の膜質を安定化させるために、必要に応じて200~1000℃の温度で熱処理をしてもよい。 In order to stabilize the film quality of the silicon oxide film, polysilicon film, etc. obtained by the above method, heat treatment may be performed at a temperature of 200 to 1000 ° C. as necessary.
 また、以上のような方法で得られた酸化珪素膜には、埋込み性を高めるために微量のホウ素(B)、リン(P)、炭素(C)等が含まれていてもよい。 In addition, the silicon oxide film obtained by the above method may contain a small amount of boron (B), phosphorus (P), carbon (C) or the like in order to improve the embedding property.
 本発明の研磨剤及び研磨方法は、酸化珪素膜のような絶縁膜以外の膜にも適用できる。例えば、Hf系、Ti系、Ta系酸化物等の高誘電率膜、シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体膜、GeSbTe等の相変化膜、ITO等の無機導電膜、ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂膜などが挙げられる。 The abrasive and polishing method of the present invention can also be applied to films other than insulating films such as silicon oxide films. For example, high dielectric constant films such as Hf-based, Ti-based, and Ta-based oxides, semiconductor films such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors, phase change films such as GeSbTe, Examples thereof include inorganic conductive films such as ITO, polyimide-based, polybenzoxazole-based, acrylic-based, epoxy-based, phenol-based polymer resin films, and the like.
 また、本発明の研磨剤及び研磨方法は、膜状の材料だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等の各種基板材料にも適用できる。 Further, the abrasive and polishing method of the present invention can be applied not only to film-like materials but also to various substrate materials such as glass, silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, sapphire, and plastic.
 更に、本発明の研磨剤及び研磨方法によれば、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置、フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品、光スイッチング素子、光導波路等の光学素子、固体レーザ、青色レーザLED等の発光素子、磁気ディスク、磁気ヘッド等の磁気記憶装置の製造に用いることができる。 Furthermore, according to the polishing agent and polishing method of the present invention, not only the manufacture of semiconductor elements, but also image display devices such as TFT and organic EL, photomasks, lenses, prisms, optical fibers, optical components such as single crystal scintillators, optical It can be used for the manufacture of magnetic storage devices such as switching elements, optical elements such as optical waveguides, light emitting elements such as solid state lasers and blue laser LEDs, magnetic disks, and magnetic heads.
(4価の金属水酸化物の合成)
 430gのCe(NH(NOを7300gの純水に溶解し、次いで、この溶液を攪拌しながら、240gのアンモニア水(25質量%水溶液)を滴下して、160gの水酸化セリウムを含む分散液(黄白色)を得た。
(Synthesis of tetravalent metal hydroxide)
430 g of Ce (NH 4 ) 2 (NO 3 ) 6 was dissolved in 7300 g of pure water. Then, while stirring this solution, 240 g of ammonia water (25% by mass aqueous solution) was added dropwise to add 160 g of hydroxylated water. A dispersion (yellowish white) containing cerium was obtained.
 得られた水酸化セリウムの分散液を遠心分離(4000min-1、5分間)によって、固液分離を施した。液体を除去し、新たに純水を加えて、再び前記条件で遠心分離を行った。このような操作を4回繰り返し、洗浄を行った。得られた粒子を前記BET法によって比表面積を測定したところ、200m/gであった。 The resulting cerium hydroxide dispersion was subjected to solid-liquid separation by centrifugation (4000 min −1 , 5 minutes). The liquid was removed, pure water was newly added, and centrifugation was again performed under the above conditions. Such an operation was repeated 4 times for washing. When the specific surface area of the obtained particles was measured by the BET method, it was 200 m 2 / g.
 また、得られた粒子10gと水990gを混合し、超音波洗浄機を用いて分散させ、濃縮水酸化セリウムスラリ(水酸化セリウム濃度1質量%)を調製した。 Further, 10 g of the obtained particles and 990 g of water were mixed and dispersed using an ultrasonic cleaner to prepare concentrated cerium hydroxide slurry (cerium hydroxide concentration 1 mass%).
 この濃縮水酸化セリウムスラリを水で希釈し、マルバーン社製、商品名ゼータサイザーナノSを用いて平均粒径(Z-average Size)を測定したところ、115nmであった。測定法としては、4価の金属水酸化物粒子の濃度を、0.1質量部となるように水で希釈し、1cm角のセルに約1mL入れ、ゼータサイザーナノSに設置する。分散媒の屈折率を1.33、粘度を0.887とし、25℃において測定を行い、Z-average Sizeとして表示される値を読み取った。 The concentrated cerium hydroxide slurry was diluted with water, and the average particle size (Z-average Size) was measured using a product name Zeta Sizer Nano S manufactured by Malvern, Inc., and found to be 115 nm. As a measuring method, the concentration of the tetravalent metal hydroxide particles is diluted with water so as to be 0.1 part by mass, and about 1 mL is put into a 1 cm square cell and installed in the Zetasizer Nano S. The refractive index of the dispersion medium was 1.33, the viscosity was 0.887, measurement was performed at 25 ° C., and the value displayed as Z-average Size was read.
 また、濃縮水酸化セリウムスラリ中の粒子のゼータ電位を測定するため、適当な濃度に水で希釈した後、マルバーン社製、商品名ゼータサイザー3000HSを用いて測定したところ、+43mVであった。なお、測定は濃縮水酸化セリウムスラリをゼータサイザー3000HSの推奨される散乱光量となるように水で希釈して、25℃で行った。 In addition, in order to measure the zeta potential of the particles in the concentrated cerium hydroxide slurry, the product was diluted with water to an appropriate concentration and then measured using a product name Zeta Sizer 3000HS manufactured by Malvern, and found to be +43 mV. The measurement was performed at 25 ° C. by diluting the concentrated cerium hydroxide slurry with water so that the amount of scattered light recommended by the Zetasizer 3000HS was obtained.
(実施例1)
 ポリビニルアルコール〔株式会社クラレ製PVA-203、平均重合度300、ケン化度88モル%〕5質量%、酢酸0.4質量%、イミダゾール0.66質量%及び水93.94質量%を含有する濃縮添加液100g、前記で得た濃縮水酸化セリウムスラリ100g並びに水800gを混合し、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。研磨剤のpHは6.6、平均粒径は140nm、ゼータ電位は+6mVであった。なお、平均粒径及びゼータ電位は、前記と同様に測定した。
Example 1
5% by mass of polyvinyl alcohol [PVA-203 manufactured by Kuraray Co., Ltd., average polymerization degree 300, saponification degree 88 mol%], acetic acid 0.4% by mass, imidazole 0.66% by mass and water 93.94% by mass. 100 g of the concentrated additive solution, 100 g of the concentrated cerium hydroxide slurry obtained above and 800 g of water were mixed to prepare an abrasive containing 0.1% by mass of cerium hydroxide and 0.5% by mass of polyvinyl alcohol. The pH of the abrasive was 6.6, the average particle size was 140 nm, and the zeta potential was +6 mV. The average particle size and zeta potential were measured in the same manner as described above.
(実施例2)
 濃縮添加液に用いるポリビニルアルコールとして株式会社クラレ製PVA-403、平均重合度300、ケン化度80モル%を5質量%用いた以外は、実施例1と同様にして、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。
(Example 2)
The concentration of cerium hydroxide was set to be the same as in Example 1 except that 5% by mass of PVA-403 manufactured by Kuraray Co., Ltd., an average polymerization degree of 300 and a saponification degree of 80 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 1% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
(実施例3)
 濃縮添加液に用いるポリビニルアルコールとして株式会社クラレ製PVA-205、平均重合度500、ケン化度88モル%を5質量%用いた以外は実施例1と同様にして、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。
(Example 3)
A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that PVA-205 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500, and a saponification degree of 88 mol% were used as polyvinyl alcohol for the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
(実施例4)
 濃縮添加液に用いるポリビニルアルコールとして株式会社クラレ製PVA-405、平均重合度500、ケン化度80モル%を5質量%用いた以外は実施例1と同様にして、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。
Example 4
A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-405 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500 and a saponification degree of 80 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
(実施例5)
 濃縮添加液に用いるポリビニルアルコールとして株式会社クラレ製PVA-505、平均重合度500、ケン化度73モル%を5質量%用いた以外は実施例1と同様にして、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。
(Example 5)
A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-505 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500, and a saponification degree of 73 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
(実施例6)
 ポリビニルアルコール(株式会社クラレ製PVA-217、平均重合度1700、ケン化度88モル%)2質量%、酢酸0.4質量%、イミダゾール0.66質量%及び水96.94質量%を含有する濃縮添加液100g、前記で得た濃縮水酸化セリウムスラリ200g並びに水700gを混合し、水酸化セリウム濃度0.2質量%、ポリビニルアルコール濃度0.2質量%を含む研磨剤を調製した。
(Example 6)
2% by mass of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd., average degree of polymerization 1700, degree of saponification 88 mol%), 0.4% by mass of acetic acid, 0.66% by mass of imidazole and 96.94% by mass of water 100 g of the concentrated additive solution, 200 g of the concentrated cerium hydroxide slurry obtained above and 700 g of water were mixed to prepare an abrasive containing a cerium hydroxide concentration of 0.2 mass% and a polyvinyl alcohol concentration of 0.2 mass%.
(実施例7)
 ポリビニルアルコール(株式会社クラレ製C-506、カチオン変性、平均重合度600、ケン化度77モル%)10質量%、酢酸0.4質量%、イミダゾール0.66質量%及び水88.94質量%を含有する濃縮添加液100g、前記で得た濃縮水酸化セリウムスラリ200g並びに水700gを混合し、水酸化セリウム濃度0.2質量%、ポリビニルアルコール濃度1質量%を含む研磨剤を調製した。
(Example 7)
Polyvinyl alcohol (Kuraray Co., Ltd. C-506, cation modification, average polymerization degree 600, saponification degree 77 mol%) 10% by mass, acetic acid 0.4% by mass, imidazole 0.66% by mass and water 88.94% by mass 100 g of the concentrated additive solution containing, 200 g of the concentrated cerium hydroxide slurry obtained above and 700 g of water were mixed to prepare an abrasive containing 0.2% by mass of cerium hydroxide and 1% by mass of polyvinyl alcohol.
(比較例1)
 前記濃縮水酸化セリウムスラリ100gと水900gを混合し、5質量%のイミダゾール水溶液を、pHが6.6になるまで加えて研磨剤を調製した。
(Comparative Example 1)
100 g of the concentrated cerium hydroxide slurry and 900 g of water were mixed, and a 5 mass% imidazole aqueous solution was added until the pH reached 6.6 to prepare an abrasive.
(比較例2)
 濃縮添加液に用いるポリビニルアルコールとして株式会社クラレ製PVA-103、平均重合度300、ケン化度98モル%を5質量%用いた以外は実施例1と同様にして、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。
(Comparative Example 2)
A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-103 manufactured by Kuraray Co., Ltd., an average degree of polymerization of 300 and a degree of saponification of 98 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
(比較例3)
 濃縮添加液に用いるポリビニルアルコールとして株式会社クラレ製PVA-105、平均重合度500、ケン化度98モル%を5質量%用いた以外は実施例1と同様にして、水酸化セリウム濃度0.1質量%及びポリビニルアルコール濃度0.5質量%を含む研磨剤を調製した。
(Comparative Example 3)
A cerium hydroxide concentration of 0.1 was used in the same manner as in Example 1 except that 5% by mass of PVA-105 manufactured by Kuraray Co., Ltd., an average polymerization degree of 500 and a saponification degree of 98 mol% was used as the polyvinyl alcohol used in the concentrated additive solution. An abrasive containing 5% by mass and a polyvinyl alcohol concentration of 0.5% by mass was prepared.
(比較例4)
 酸化セリウム粒子1kg、市販のポリアクリル酸アンモニウム塩水溶液(40質量%)23g及び脱イオン水8977gを混合し、攪拌しながら超音波分散を行った。
(Comparative Example 4)
1 kg of cerium oxide particles, 23 g of a commercially available ammonium polyacrylate salt solution (40% by mass) and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion while stirring.
 1ミクロンフィルターでろ過をし、更に脱イオン水を加えることにより酸化セリウム5質量%の濃縮酸化セリウムスラリを得た。 After filtration through a 1 micron filter, deionized water was further added to obtain a concentrated cerium oxide slurry having 5% by mass of cerium oxide.
 前記の濃縮酸化セリウムスラリ100gと水900gを混合し、pHが4.2になるまで1N硝酸を加え、研磨剤(酸化セリウム粒子濃度:0.5質量%)を調製した。 100 g of the concentrated cerium oxide slurry and 900 g of water were mixed, and 1N nitric acid was added until the pH reached 4.2 to prepare an abrasive (cerium oxide particle concentration: 0.5 mass%).
(比較例5)
 ポリビニルアルコール(株式会社クラレ製PVA-117、平均重合度1700、ケン化度98モル%)2質量%、酢酸0.4質量%、イミダゾール0.66質量%及び水96.94質量%を含有する濃縮添加液100g、前記で得た濃縮水酸化セリウムスラリ200g並びに水700gを混合し、水酸化セリウム濃度0.2質量%、ポリビニルアルコール濃度0.2質量%を含む研磨剤を調製した。
(Comparative Example 5)
Contains 2% by weight of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd., average polymerization degree 1700, saponification degree 98 mol%), acetic acid 0.4% by weight, imidazole 0.66% by weight and water 96.94% by weight. 100 g of the concentrated additive solution, 200 g of the concentrated cerium hydroxide slurry obtained above and 700 g of water were mixed to prepare an abrasive containing a cerium hydroxide concentration of 0.2 mass% and a polyvinyl alcohol concentration of 0.2 mass%.
 実施例2~6及び比較例1~5の各研磨剤のpH、平均粒径及びゼータ電位を実施例1と同様に測定した。 The pH, average particle diameter, and zeta potential of each of the abrasives of Examples 2 to 6 and Comparative Examples 1 to 5 were measured in the same manner as in Example 1.
(絶縁膜の研磨)
 研磨装置〔株式会社荏原製作所製の型番EPO-111〕の基板ホルダーに、直径200mmのシリコン(Si)基板上に膜厚1000nmの酸化珪素(SiO)を全面に形成した評価用ウエハ1を固定した。また、直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨パッドIC-1000(ロデール社製型番、溝形状:パーフォレート)を貼り付けた。
(Insulating film polishing)
An evaluation wafer 1 in which silicon oxide (SiO 2 ) having a film thickness of 1000 nm is formed on a silicon (Si) substrate having a diameter of 200 mm is fixed to a substrate holder of a polishing apparatus (model number EPO-111 manufactured by Ebara Corporation). did. Further, a polishing pad IC-1000 made of porous urethane resin (model number, groove shape: perforate manufactured by Rodel) was attached to a polishing surface plate having a diameter of 600 mm.
 前記評価用ウエハ1の酸化珪素膜が研磨パッドと接するように、研磨パッドに基板ホルダーを押し付け、加工荷重を30kPaに設定した。研磨パッド上に前記で調製した研磨剤を200mL/分の速度で滴下しながら、研磨定盤と基板ホルダーとをそれぞれ50min-1で作動させて評価用ウエハを60秒間研磨した。 The substrate holder was pressed against the polishing pad so that the silicon oxide film of the evaluation wafer 1 was in contact with the polishing pad, and the processing load was set to 30 kPa. While dropping the above-prepared abrasive on the polishing pad at a rate of 200 mL / min, the polishing platen and the substrate holder were operated at 50 min −1 to polish the evaluation wafer for 60 seconds.
 研磨後の評価用ウエハ1を、純水で良く洗浄し、乾燥した。その後、光干渉式膜厚装置(ナノメトリクス社製、商品名:Nanospec AFT-5100)を用いて、酸化珪素の残膜厚を測定した。ここで、(酸化珪素膜の減少量)/(研磨時間)より、1分あたりの酸化珪素研磨速度〔RR(SiO)〕を求めた。 The polished evaluation wafer 1 was thoroughly washed with pure water and dried. Thereafter, the residual film thickness of silicon oxide was measured using an optical interference film thickness apparatus (trade name: Nanospec AFT-5100, manufactured by Nanometrics). Here, the silicon oxide polishing rate [RR (SiO 2 )] per minute was determined from (the amount of reduction of the silicon oxide film) / (polishing time).
 また、直径200mmのシリコン(Si)基板上に膜厚250nmのポリシリコン(poly-Si)を全面に形成した評価用ウエハ2を用意し、前記と同様の方法で60秒間研磨した。研磨後の評価用ウエハ2を、純水で良く洗浄し、乾燥した。その後、前記と同様にポリシリコンの残膜厚を測定して、1分あたりのポリシリコン研磨速度〔RR(poly-Si)〕を求めた。 Further, an evaluation wafer 2 in which polysilicon (poly-Si) having a film thickness of 250 nm was formed on the entire surface of a silicon (Si) substrate having a diameter of 200 mm was prepared and polished for 60 seconds by the same method as described above. The polished evaluation wafer 2 was thoroughly washed with pure water and dried. Thereafter, the remaining film thickness of the polysilicon was measured in the same manner as described above to determine the polysilicon polishing rate [RR (poly-Si)] per minute.
 得られた値から、酸化珪素膜とポリシリコンの選択性を、RR(SiO)/RR(poly-Si)より算出した。 From the obtained value, the selectivity between the silicon oxide film and the polysilicon was calculated from RR (SiO 2 ) / RR (poly-Si).
 また、直径200mmのシリコン(Si)基板上に膜厚1000nmの酸化珪素(SiO)を全面に形成した評価用ウエハ3を用意し、前記と同様の方法で60秒間研磨した。研磨後の評価用ウエハ3を、純水、フッ酸、アンモニア水で良く洗浄した後、乾燥し、走査型電子顕微鏡式欠陥検査装置で研磨傷数をカウントした。比較例4の研磨傷数を1として相対研磨傷数を算出した。 Further, an evaluation wafer 3 in which silicon oxide (SiO 2 ) having a film thickness of 1000 nm was formed on the entire surface of a silicon (Si) substrate having a diameter of 200 mm was prepared and polished for 60 seconds by the same method as described above. The polished evaluation wafer 3 was thoroughly washed with pure water, hydrofluoric acid, and aqueous ammonia, then dried, and the number of polishing flaws was counted with a scanning electron microscope type defect inspection apparatus. The relative number of polishing flaws was calculated with the number of polishing flaws of Comparative Example 4 being 1.
 前記の各実施例及び各比較例の結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 summarizes the results of the above Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、水酸化セリウムとケン化度95モル%以下のポリビニルアルコールを含む実施例1~6の研磨剤は、酸化珪素膜の研磨速度、ポリシリコンに対する選択性に優れることがわかる。前記ポリビニルアルコールを含まない比較例1及び4は、ポリシリコンに対する選択性に劣る。また比較例4との対比で明らかなように、水酸化セリウム粒子を使用することで、研磨傷を大きく減らすことが可能となる。 As is apparent from Table 1, the polishing agents of Examples 1 to 6 containing cerium hydroxide and polyvinyl alcohol having a saponification degree of 95 mol% or less are excellent in the polishing rate of the silicon oxide film and the selectivity to polysilicon. Recognize. The comparative examples 1 and 4 which do not contain the polyvinyl alcohol are inferior in selectivity to polysilicon. As is clear from comparison with Comparative Example 4, the use of cerium hydroxide particles can greatly reduce polishing scratches.
 また、各実施例及び比較例2、3、5におけるポリビニルアルコールのケン化度を横軸に、選択性を縦軸にとったグラフを図1に示す。この図から、ポリビニルアルコールのケン化度が小さくなるにしたがって、選択性が上昇する傾向にあることも読み取ることができ、ポリビニルアルコールのケン化度が選択性に重要な因子であることがわかる。 Further, a graph in which the saponification degree of polyvinyl alcohol in each Example and Comparative Examples 2, 3, and 5 is plotted on the horizontal axis and the selectivity on the vertical axis is shown in FIG. From this figure, it can be read that the selectivity tends to increase as the saponification degree of polyvinyl alcohol decreases, and it can be seen that the saponification degree of polyvinyl alcohol is an important factor for the selectivity.
産業上の利用の可能性Industrial applicability
 本発明は、STI絶縁膜、プリメタル絶縁膜、層間絶縁膜等を平坦化するCMP技術において、酸化珪素膜等の絶縁膜を高速かつ低研磨傷で研磨でき、前記絶縁膜とポリシリコン膜との高い研磨速度比を有する研磨剤、この研磨剤を保管する研磨剤セット及びこの研磨剤を用いた基板の研磨方法を提供することができる。 According to the present invention, in a CMP technique for planarizing an STI insulating film, a premetal insulating film, an interlayer insulating film, etc., an insulating film such as a silicon oxide film can be polished at high speed with low polishing scratches. An abrasive having a high polishing rate ratio, an abrasive set for storing the abrasive, and a method for polishing a substrate using the abrasive can be provided.

Claims (11)

  1.  水、砥粒及び添加剤を含有する研磨剤であって、
     前記砥粒は、4価の金属水酸化物粒子を含有してなり、
     前記添加剤のうちの少なくとも1成分が、ケン化度95モル%以下のポリビニルアルコールである研磨剤。
    An abrasive containing water, abrasive grains and additives,
    The abrasive grains contain tetravalent metal hydroxide particles,
    An abrasive in which at least one of the additives is polyvinyl alcohol having a saponification degree of 95 mol% or less.
  2.  前記砥粒の平均粒径が、1nm以上400nm以下である請求項1記載の研磨剤。 The abrasive according to claim 1, wherein the abrasive has an average particle size of 1 nm to 400 nm.
  3.  研磨剤のpHが3.0以上12.0以下である請求項1又は2記載の研磨剤。 The polishing agent according to claim 1 or 2, wherein the polishing agent has a pH of 3.0 or more and 12.0 or less.
  4.  前記砥粒の含有量が、研磨剤100質量部に対して0.01質量部以上5質量部以下である請求項1~3のいずれかに記載の研磨剤。 The abrasive according to any one of claims 1 to 3, wherein a content of the abrasive grains is 0.01 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the abrasive.
  5.  前記砥粒の研磨剤中でのゼータ電位が、-20mV以上+20mV以下である請求項1~4のいずれかに記載の研磨剤。 The abrasive according to any one of claims 1 to 4, wherein a zeta potential of the abrasive grains in the abrasive is -20 mV or more and +20 mV or less.
  6.  前記ポリビニルアルコールの含有量が、研磨剤100質量部に対して0.01質量部以上である請求項1~5のいずれかに記載の研磨剤。 The abrasive according to any one of claims 1 to 5, wherein a content of the polyvinyl alcohol is 0.01 parts by mass or more with respect to 100 parts by mass of the abrasive.
  7.  少なくとも表面に酸化珪素を含む被研磨面を研磨するために使用される請求項1~6のいずれかに記載の研磨剤。 The abrasive according to any one of claims 1 to 6, which is used for polishing a surface to be polished containing at least silicon oxide on the surface.
  8.  4価の金属水酸化物が、希土類金属水酸化物及び水酸化ジルコニウムの少なくとも一方である請求項1~7のいずれかに記載の研磨剤。 The abrasive according to any one of claims 1 to 7, wherein the tetravalent metal hydroxide is at least one of a rare earth metal hydroxide and zirconium hydroxide.
  9.  被研磨膜を形成した基板を研磨定盤の研磨パッドに押しあて加圧し、請求項1~8のいずれかに記載の研磨剤を被研磨膜と研磨パッドとの間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する基板の研磨方法。 A substrate on which a film to be polished is formed is pressed against a polishing pad of a polishing platen and pressurized, and the polishing agent according to any one of claims 1 to 8 is supplied between the film to be polished and the polishing pad, A substrate polishing method for polishing a film to be polished by relatively moving a polishing platen.
  10.  研磨パッドのショアD硬度が、70以上である請求項9記載の基板の研磨方法。 The method for polishing a substrate according to claim 9, wherein the Shore D hardness of the polishing pad is 70 or more.
  11.  スラリと、添加液とに分けて保存され、研磨直前又は研磨時に混合されて請求項1~8のいずれかに記載の研磨剤とされる研磨剤セットであって、スラリは砥粒と水を含み、添加液は添加剤と水を含む研磨剤セット。 9. An abrasive set which is stored separately as a slurry and an additive solution and is mixed immediately before or during polishing to form the abrasive according to any one of claims 1 to 8, wherein the slurry contains abrasive grains and water. A polishing agent set containing an additive and water.
PCT/JP2010/059436 2009-06-09 2010-06-03 Abrasive slurry, abrasive set, and method for grinding substrate WO2010143579A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011518489A JP5418590B2 (en) 2009-06-09 2010-06-03 Abrasive, abrasive set and substrate polishing method
KR1020147003705A KR20140027561A (en) 2009-06-09 2010-06-03 Abrasive slurry, abrasive set, and method for polishing substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-138124 2009-06-09
JP2009138124 2009-06-09
JP2009236488 2009-10-13
JP2009-236488 2009-10-13

Publications (1)

Publication Number Publication Date
WO2010143579A1 true WO2010143579A1 (en) 2010-12-16

Family

ID=43308834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059436 WO2010143579A1 (en) 2009-06-09 2010-06-03 Abrasive slurry, abrasive set, and method for grinding substrate

Country Status (4)

Country Link
JP (1) JP5418590B2 (en)
KR (2) KR20140027561A (en)
TW (1) TW201105784A (en)
WO (1) WO2010143579A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034358A1 (en) * 2012-08-30 2014-03-06 日立化成株式会社 Polishing agent, polishing agent set and method for polishing base
KR20140039143A (en) * 2010-12-24 2014-04-01 히타치가세이가부시끼가이샤 Polishing liquid and method for polishing substrate using the polishing liquid
WO2014148399A1 (en) 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and kit for preparing polishing composition
KR20140129092A (en) 2012-02-21 2014-11-06 히타치가세이가부시끼가이샤 Polishing agent, polishing agent set, and substrate polishing method
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
JP2016510357A (en) * 2013-01-30 2016-04-07 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing composition comprising zirconia and a metal oxidant
JP2016128576A (en) * 2016-02-01 2016-07-14 株式会社フジミインコーポレーテッド Composition for polishing and method for producing substrate using the same
CN108010878A (en) * 2016-10-27 2018-05-08 三星显示有限公司 The manufacture method of transistor display panel and the ground slurry for being used in this method
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
JP2019131641A (en) * 2018-01-29 2019-08-08 ニッタ・ハース株式会社 Polishing composition
KR20190122224A (en) 2017-03-27 2019-10-29 히타치가세이가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
WO2020021730A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry, method for producing polishing liquid, and polishing method
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
CN111149193A (en) * 2017-09-29 2020-05-12 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
US10703947B2 (en) 2010-03-12 2020-07-07 Hitachi Chemical Company, Ltd. Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
US10825687B2 (en) 2010-11-22 2020-11-03 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US11352523B2 (en) 2018-03-22 2022-06-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set and polishing method
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221479B2 (en) * 2018-08-31 2023-02-14 日化精工株式会社 Formulation for dicing processing and processing liquid
CN115284162B (en) * 2022-07-19 2024-03-19 华虹半导体(无锡)有限公司 Method for monitoring physical properties of dielectric layer and semiconductor chip performance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327954A (en) * 2002-05-13 2003-11-19 Sumitomo Bakelite Co Ltd Polishing composition
JP2005167271A (en) * 1998-12-25 2005-06-23 Hitachi Chem Co Ltd Additive liquid for cmp polishing agent
JP2008053414A (en) * 2006-08-24 2008-03-06 Fujimi Inc Polishing composition and polishing method
JP2008085058A (en) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component
JP2009010402A (en) * 2001-02-20 2009-01-15 Hitachi Chem Co Ltd Polishing compound and polishing method for substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167271A (en) * 1998-12-25 2005-06-23 Hitachi Chem Co Ltd Additive liquid for cmp polishing agent
JP2009010402A (en) * 2001-02-20 2009-01-15 Hitachi Chem Co Ltd Polishing compound and polishing method for substrate
JP2003327954A (en) * 2002-05-13 2003-11-19 Sumitomo Bakelite Co Ltd Polishing composition
JP2008053414A (en) * 2006-08-24 2008-03-06 Fujimi Inc Polishing composition and polishing method
JP2008085058A (en) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd Additive for cmp abrasive, cmp abrasive, and substrate polishing method, and electronic component

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703947B2 (en) 2010-03-12 2020-07-07 Hitachi Chemical Company, Ltd. Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US10825687B2 (en) 2010-11-22 2020-11-03 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
KR20140039143A (en) * 2010-12-24 2014-04-01 히타치가세이가부시끼가이샤 Polishing liquid and method for polishing substrate using the polishing liquid
KR101886464B1 (en) * 2010-12-24 2018-08-07 히타치가세이가부시끼가이샤 Polishing liquid and method for polishing substrate using the polishing liquid
KR20140129092A (en) 2012-02-21 2014-11-06 히타치가세이가부시끼가이샤 Polishing agent, polishing agent set, and substrate polishing method
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
CN104582899A (en) * 2012-08-30 2015-04-29 日立化成株式会社 Polishing agent, polishing agent set and method for polishing base
WO2014034358A1 (en) * 2012-08-30 2014-03-06 日立化成株式会社 Polishing agent, polishing agent set and method for polishing base
JPWO2014034358A1 (en) * 2012-08-30 2016-08-08 日立化成株式会社 Abrasive, abrasive set, and substrate polishing method
US9163162B2 (en) 2012-08-30 2015-10-20 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set and method for polishing base
KR20150048790A (en) 2012-08-30 2015-05-07 히타치가세이가부시끼가이샤 Polishing agent, polishing agent set and method for polishing base
JP2016510357A (en) * 2013-01-30 2016-04-07 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing composition comprising zirconia and a metal oxidant
JP2016135882A (en) * 2013-03-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition and kit for preparing polishing composition
JP5900913B2 (en) * 2013-03-19 2016-04-06 株式会社フジミインコーポレーテッド Polishing composition, polishing composition manufacturing method and polishing composition preparation kit
US10351732B2 (en) 2013-03-19 2019-07-16 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
JP7246235B2 (en) 2013-03-19 2023-03-27 株式会社フジミインコーポレーテッド Polishing composition, polishing composition manufacturing method, and polishing composition preparation kit
WO2014148399A1 (en) 2013-03-19 2014-09-25 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and kit for preparing polishing composition
US10717899B2 (en) 2013-03-19 2020-07-21 Fujimi Incorporated Polishing composition, method for producing polishing composition and polishing composition preparation kit
KR20150133694A (en) 2013-03-19 2015-11-30 가부시키가이샤 후지미인코퍼레이티드 Polishing composition, method for producing polishing composition, and kit for preparing polishing composition
JP2016166343A (en) * 2013-03-19 2016-09-15 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method of polishing composition and kit for manufacturing polishing composition
EP3967736A1 (en) 2013-03-19 2022-03-16 Fujimi Incorporated Polishing composition, method for producing polishing composition, and kit for preparing polishing composition
US10155886B2 (en) 2013-06-12 2018-12-18 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, and polishing method
JP2016128576A (en) * 2016-02-01 2016-07-14 株式会社フジミインコーポレーテッド Composition for polishing and method for producing substrate using the same
CN108010878A (en) * 2016-10-27 2018-05-08 三星显示有限公司 The manufacture method of transistor display panel and the ground slurry for being used in this method
US11773291B2 (en) 2017-03-27 2023-10-03 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
KR20190122224A (en) 2017-03-27 2019-10-29 히타치가세이가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
US11814548B2 (en) 2017-03-27 2023-11-14 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method
CN111149193A (en) * 2017-09-29 2020-05-12 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
CN111149193B (en) * 2017-09-29 2023-09-08 株式会社力森诺科 Polishing liquid, polishing liquid set and polishing method
JP7002354B2 (en) 2018-01-29 2022-02-04 ニッタ・デュポン株式会社 Polishing composition
JP2019131641A (en) * 2018-01-29 2019-08-08 ニッタ・ハース株式会社 Polishing composition
US11572490B2 (en) 2018-03-22 2023-02-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set, and polishing method
US11767448B2 (en) 2018-03-22 2023-09-26 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11352523B2 (en) 2018-03-22 2022-06-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set and polishing method
US11505731B2 (en) 2018-07-26 2022-11-22 Showa Denko Materials Co., Ltd. Slurry and polishing method
JPWO2020021732A1 (en) * 2018-07-26 2021-08-05 昭和電工マテリアルズ株式会社 Slurry and polishing method
US11518920B2 (en) 2018-07-26 2022-12-06 Showa Denko Materials Co., Ltd. Slurry, and polishing method
JPWO2020021730A1 (en) * 2018-07-26 2021-08-02 昭和電工マテリアルズ株式会社 Slurry, polishing liquid manufacturing method, and polishing method
TWI804660B (en) * 2018-07-26 2023-06-11 日商力森諾科股份有限公司 Slurry, manufacturing method of polishing liquid, and polishing method
TWI804659B (en) * 2018-07-26 2023-06-11 日商力森諾科股份有限公司 Slurry and grinding method
TWI804661B (en) * 2018-07-26 2023-06-11 日商力森諾科股份有限公司 Slurry, manufacturing method of polishing liquid, and polishing method
WO2020021732A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry and polishing method
US11499078B2 (en) 2018-07-26 2022-11-15 Showa Denko Materials Co., Ltd. Slurry, polishing solution production method, and polishing method
WO2020021730A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry, method for producing polishing liquid, and polishing method
US11492526B2 (en) 2018-07-26 2022-11-08 Showa Denko Materials Co., Ltd. Slurry, method for producing polishing liquid, and polishing method

Also Published As

Publication number Publication date
KR20140027561A (en) 2014-03-06
KR20120023043A (en) 2012-03-12
TW201105784A (en) 2011-02-16
JPWO2010143579A1 (en) 2012-11-22
JP5418590B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5418590B2 (en) Abrasive, abrasive set and substrate polishing method
JP5953762B2 (en) CMP polishing liquid, manufacturing method thereof, and substrate polishing method
JP5569575B2 (en) Abrasive and substrate polishing method using the abrasive
JP5287174B2 (en) Abrasive and polishing method
JP4894981B2 (en) Abrasive, concentrated one-part abrasive, two-part abrasive and substrate polishing method
US11767448B2 (en) Polishing liquid, polishing liquid set, and polishing method
JP6375623B2 (en) Abrasive, abrasive set, and substrate polishing method
WO2013125446A1 (en) Polishing agent, polishing agent set, and substrate polishing method
JP2015088495A (en) Polishing material, polishing material set, and method for polishing base material
JP2010141288A (en) Slurry and polishing solution set, substrate, substrate polishing method using chemical mechanical polishing solution (cmp) obtained from the polishing solution set
WO2014034379A1 (en) Polishing agent, polishing agent set and method for polishing base
JP2010028086A (en) Cmp abrasive, and polishing method using the same
JP2009272601A (en) Abrasive, substrate polishing method using same, and solution and slurry for use in this method
JPWO2019182061A1 (en) Polishing liquid, polishing liquid set and polishing method
JP2014187268A (en) Cmp polishing agent, and method for polishing substrate
JP2009260236A (en) Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
WO2018179062A1 (en) Polishing liquid, polishing liquid set, additive liquid, and polishing method
WO2019180887A1 (en) Polishing liquid, polishing liquid set, and polishing method
JP2016023224A (en) Polisher, polisher set and substrate polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518489

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117028631

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786110

Country of ref document: EP

Kind code of ref document: A1