WO2013035545A1 - Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products - Google Patents

Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products Download PDF

Info

Publication number
WO2013035545A1
WO2013035545A1 PCT/JP2012/071349 JP2012071349W WO2013035545A1 WO 2013035545 A1 WO2013035545 A1 WO 2013035545A1 JP 2012071349 W JP2012071349 W JP 2012071349W WO 2013035545 A1 WO2013035545 A1 WO 2013035545A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
acid
phase particles
coated
mass
Prior art date
Application number
PCT/JP2012/071349
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 智弘
有衣子 吉田
浩之 朝長
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013035545A1 publication Critical patent/WO2013035545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles

Definitions

  • the present invention relates to abrasive grains, a method for producing the same, a polishing slurry, and a method for producing a glass product.
  • polishing process in the manufacture of glass products such as magnetic disks, liquid crystal glass, semiconductor substrates or photomasks for hard disk drives, improvement of the polishing rate by various means has been studied in order to improve productivity.
  • Patent Document 1 discloses that the polishing rate can be improved by adding an additive to a polishing slurry containing ceria crystal microparticles or ceria-zirconia solid solution crystal particles, and good glass substrate surface properties can be obtained. It is shown.
  • Patent Document 2 shows that by containing cerium oxide particles produced using cerium carbonate having a primary particle diameter of 3 to 60 ⁇ m as a raw material, an abrasive capable of high-speed polishing without scratches can be obtained. Has been.
  • Patent Document 3 discloses that a polishing target composition is polished using a composite oxide containing cerium and zirconium in a polishing liquid composition, so that generation of scratches on the polishing target substrate can be suppressed and high speed can be achieved. It has been shown that smooth polishing is possible.
  • cerium oxide is mainly used in the polishing process in the manufacture of glass products such as magnetic disks for hard disk drives, glass for liquid crystals, semiconductor substrates or photomasks because of the high polishing rate.
  • cerium is difficult to supply stably because the area where it can be mined is limited, and in recent years the price has risen.
  • an object of the present invention is to provide abrasive grains and polishing slurry that can polish an object to be polished at a high polishing rate with a small amount of cerium oxide used.
  • the inventors of the present invention can polish an object to be polished at a high polishing rate with a small amount of cerium oxide used by using abrasive grains having mother phase particles coated with cerium oxide for polishing the object to be polished.
  • the present invention has been completed by finding out what can be done.
  • the present invention is as follows. 1. Polishing abrasive grains in which matrix phase particles are coated with cerium oxide. 2.
  • the mother phase particles are sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, carbonic acid.
  • the abrasive grain according to item 1 which is soluble in at least one aqueous solution selected from sodium and potassium carbonate. 3.
  • a polishing slurry comprising the polishing abrasive grain according to any one of 1 to 6 above. 8).
  • a method for producing abrasive grains in which matrix particles are coated with cerium oxide comprising the following steps (1) to (3) in sequence.
  • (1) A step of obtaining a cerium source aqueous solution by dissolving a cerium compound in water (2)
  • step (2) the cerium source aqueous solution is sprayed on the mother phase particles to obtain mother phase particles coated with the cerium source aqueous solution.
  • step (3) the cerium source aqueous solution is sprayed on the mother phase particles to obtain mother phase particles coated with the cerium source aqueous solution.
  • the cerium compound is at least one selected from the group consisting of cerium acetate, cerium nitrate, cerium hydroxide, and cerium sulfate.
  • 11. 8 A method for producing a glass product, comprising a step of polishing glass using the abrasive grains according to any one of items 1 to 6 or the polishing slurry according to item 7.
  • an object to be polished can be polished at a high polishing rate without using a large amount of cerium oxide.
  • FIG. 1 shows the X-ray profile of manganese oxide.
  • the abrasive grains of the present invention are abrasive grains in which matrix phase particles are coated with cerium oxide, and include matrix phase particles and cerium oxide covering the matrix phase particles.
  • mother phase particles examples include manganese oxide (Mn 3 O 4 , Mn 2 O 3 , MnO 2 ), zinc oxide (ZnO), iron oxide (Fe 3 O 4 , Fe 2 O 3 ), copper oxide (Cu 2 ). O, CuO), aluminum oxide (Al 2 O 3 ), silica (SiO 2 ), chromium oxide (Cr 2 O 3 , CrO 2 ) and zirconium oxide (ZrO 2 ). These mother phase particles can be those commercially available.
  • the cerium oxide coated on the mother phase particles has a drawback that it has poor adhesion after polishing because it has high adhesion to the object to be polished and cannot be easily dissolved. Therefore, from the viewpoint of improving the cleanability after polishing, among these, sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide It is preferable to use particles that are soluble in at least one aqueous solution selected from ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate as mother phase particles.
  • mother phase particles that are soluble in at least one selected aqueous solution include manganese oxide (Mn 3 O 4 , Mn 2 O 3 , MnO 2 ), zinc oxide (ZnO), and iron oxide (Fe 3 O 4). , Fe 2 O 3 ) and copper oxide (Cu 2 O, CuO).
  • manganese oxide (Mn 3 O 4 , Mn 2 O 3 , MnO 2 ) can be dissolved by hydrochloric acid, sulfuric acid, nitric acid, ascorbic acid, hydrogen peroxide, or the like.
  • Zinc oxide (ZnO) can be dissolved by hydrochloric acid, nitric acid, sulfuric acid or the like.
  • Iron oxide Fe 3 O 4 , Fe 2 O 3
  • hydrochloric acid nitric acid, sulfuric acid or the like.
  • Copper oxide (Cu 2 O, CuO) can be dissolved by hydrochloric acid, nitric acid, sulfuric acid or the like.
  • matrix particles may be used alone or in combination of two or more.
  • manganese oxide or zinc oxide is more preferable.
  • Manganese oxide or zinc oxide is highly soluble in acids, alkalis, oxidizing agents, or reducing agents, so using manganese oxide or zinc oxide for the matrix phase particles will not affect the workpiece.
  • a high cleaning effect can be obtained with a cleaning liquid containing an acid, an alkali, an oxidizing agent, or a reducing agent.
  • soluble means sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, peroxidation at room temperature for 1 hour.
  • 0.1 to 1% by mass of mother phase particles were dissolved in an aqueous solution containing 0.01 to 2 mol% of one selected from hydrogen, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. Sometimes the amount of elution is 90% by mass or more.
  • the solubility of the matrix phase particles can be tested according to the dissolution test described later in the Examples.
  • sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid formic acid, glycolic acid, acetic acid, hydrogen peroxide, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, water
  • sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid are used in a cleaning process after polishing using at least one aqueous solution selected from potassium oxide, sodium carbonate and potassium carbonate.
  • the object to be polished is cleaned with a cleaning liquid containing at least one selected from acids, formic acid, glycolic acid, acetic acid, hydrogen peroxide, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • a cleaning liquid containing at least one selected from acids, formic acid, glycolic acid, acetic acid, hydrogen peroxide, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • the coating amount of the mother phase particles with cerium oxide is preferably 0.1 to 25% by mass, more preferably 0.1 to 20% by mass, further preferably 1 to 10% by mass, in terms of cerium oxide, and 1 to 5% by mass. % Is particularly preferred.
  • the coating amount is 0.1% by mass or more, an effect of improving the polishing rate can be obtained.
  • the coating amount is 25% by mass or less, the amount of cerium used can be reduced. be able to.
  • the specific surface area of abrasive grains of the matrix phase particles were coated with the cerium oxide is preferably 0.1 ⁇ 20m 2 / g, more preferably 0.5 ⁇ 15m 2 / g, 1 ⁇ 10m 2 / g is more preferred.
  • the specific surface area of the abrasive grains is 0.1 m 2 / g or more, polishing scratches due to coarse grains can be suppressed, and when it is 20 m 2 / g or less, a sufficient polishing rate can be obtained.
  • the specific surface area of the abrasive grains is measured by the method described later in the examples.
  • the abrasive grains of the present invention can be produced by a production method that sequentially includes the following steps (1) to (3).
  • steps (1) to (3) (1) Step of dissolving cerium compound in water to obtain cerium source aqueous solution (2) Covering mother phase particles with cerium source aqueous solution obtained in step (1), and coating mother phase particles coated with cerium source aqueous solution Step of obtaining (3) Step of firing mother phase particles coated with cerium source aqueous solution obtained in step (2) to obtain mother phase particles coated with cerium oxide
  • each step will be described.
  • cerium acetate, cerium nitrate, cerium hydroxide, or cerium sulfate is preferable in terms of availability and solubility in water.
  • cerium compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the concentration of the cerium compound in the cerium source aqueous solution can be adjusted as appropriate in consideration of the amount of cerium oxide to be coated on the mother phase particles and the amount of the cerium source aqueous solution coated on the mother phase particles in step (2) described later. Good. It is preferable to set the concentration of the cerium compound in the cerium source aqueous solution to be equal to or lower than the solubility of the cerium compound because the cerium source aqueous solution can be uniformly coated on the mother phase particles in the step (2) described later.
  • the concentration of the cerium compound in the cerium source aqueous solution should be 5 to 60% by mass. It is preferably 10 to 60% by mass.
  • the concentration of the cerium compound in the cerium source aqueous solution is preferably 1 to 40% by mass. More preferably, the content is 1 to 20% by mass.
  • the concentration of the cerium compound in the cerium source aqueous solution is preferably 1 to 60% by mass. More preferably, the content is 1 to 40% by mass.
  • Step (2) is the cerium obtained in step (1)
  • the mother phase particles are coated with the source aqueous solution, and the cerium compound is precipitated on the surface of the mother phase particles using water as a medium.
  • Examples of the method of coating the mother phase particles with the cerium source aqueous solution include spraying, dipping or coating. Among these, spraying does not require a drying step and is preferable from an industrial viewpoint.
  • Specific methods include, for example, a method in which matrix particles are placed in a plastic bag and a cerium source aqueous solution is sprayed with a spray.
  • the cerium source aqueous solution may be sprayed while being thermally dried with a rotary kiln and stirring the mother phase particles with a rotary machine, which is industrially advantageous.
  • the spray amount of the aqueous cerium source solution on the mother phase particles is preferably 0.1 to 40% by mass, more preferably 5 to 30% by mass, and 10 to 25% by mass with respect to the mother phase particles. More preferably.
  • the aqueous solution reaches the entire matrix phase particles, and uniform coating is possible.
  • the amount of 40% by mass or less is preferable because it does not become paste or liquid and can be taken as it is to the firing step, so that the drying step can be omitted.
  • the spraying conditions are usually preferably 0 to 200 ° C.
  • the mother phase particles are immersed in the cerium source aqueous solution to coat the mother phase particles with the cerium source aqueous solution.
  • the amount of the mother phase particles immersed in the cerium source aqueous solution is usually preferably 1 to 60% by mass and more preferably 10 to 50% by mass with respect to the aqueous solution.
  • the amount of matrix particles immersed in the aqueous cerium source solution By setting the amount of matrix particles immersed in the aqueous cerium source solution to 1% by mass or more, the amount of water to be evaporated can be reduced, and by setting it to 60% by mass or less, the cerium compound can be uniformly coated. .
  • the immersion conditions are preferably 0.1 to 24 hours at 0 to 90 ° C.
  • the cerium compound can be deposited on the surface of the mother phase particles by coating the mother phase particles with the cerium source aqueous solution by immersion and then drying.
  • the drying conditions are usually 80 to 200 ° C. and preferably 2 to 24 hours.
  • the coating amount of the cerium compound on the mother phase particles after dipping the mother phase particles in the aqueous cerium source solution and drying is preferably 1 to 50% by mass with respect to the mother phase particles. It is more preferably 5 to 50% by mass, and further preferably 5 to 30% by mass.
  • the coating amount is 1% by mass or more, the cerium compound is distributed over the entire matrix phase, and uniform coating can be achieved. When it is 50% by mass or less, cerium oxide does not precipitate alone.
  • the cerium source aqueous solution is applied to the mother phase particles with a rolling granulator or the like, and the mother phase particles are coated with the cerium source aqueous solution.
  • the coating amount of the aqueous cerium source solution on the mother phase particles is preferably 1 to 100% by mass, more preferably 5 to 80% by mass, and more preferably 10 to 60% by mass with respect to the mother phase particles. Is more preferable.
  • the coating amount is 1% by mass or more and 100% by mass or less, the aqueous solution reaches the entire matrix phase particles, and uniform coating can be achieved.
  • the application conditions are usually preferably 0 to 90 ° C.
  • Step (3) Step of firing mother phase particles coated with cerium source aqueous solution obtained in step (2) to obtain mother phase particles coated with cerium oxide Step (3) is obtained in step (2).
  • the mother phase particles coated with the aqueous cerium source solution are fired to oxidize the cerium compound, thereby obtaining mother phase particles coated with cerium oxide.
  • the firing temperature is preferably 300 to 1000 ° C, more preferably 400 to 1000 ° C, and still more preferably 400 to 800 ° C.
  • the cerium compound can be decomposed to deposit cerium oxide, and by setting it to 1000 ° C. or lower, the generation of coarse grains due to grain growth is suppressed, and the polishing abrasive with few scratches. Grains can be made.
  • the firing atmosphere is preferably in the air from the viewpoint of cost.
  • the firing time is usually preferably 2 to 72 hours.
  • the coarse particles may be removed by classifying the fired product.
  • classification method include known methods such as a sieve or a classifier.
  • the abrasive grains in the present invention can be produced by the above steps (1) to (3), but other steps may be performed as long as they do not affect each step. Examples of other steps include the above-described drying or classification step.
  • the abrasive grains in the present invention may be produced by a method that does not have one or more of the steps (1) to (3).
  • the abrasive grains of the present invention can be dispersed in a dispersion medium such as water to form a polishing slurry.
  • the abrasive grain concentration in the polishing slurry is preferably from 0.1 to 40% by mass, more preferably from 1 to 30% by mass, and even more preferably from 1 to 20% by mass.
  • the abrasive grain concentration is 0.1% by mass or more, a sufficient polishing rate can be obtained, and when it is 40% by mass or less, polishing can be performed efficiently.
  • Examples of the dispersion medium include water and alcohol.
  • Examples of the alcohol include methanol, ethanol, 2-propanol and ethylene glycol.
  • a dispersant may be added to the slurry.
  • the dispersant known ones can be used. Examples thereof include sodium citrate, sodium polyacrylate, ammonium polyacrylate, polyacrylic acid-maleic acid copolymer, pyridinecarboxylic acid and carboxymethylcellulose. Preferably mentioned.
  • the polishing slurry may be dispersed.
  • a known method can be used for the dispersion treatment, and examples thereof include a homogenizer, an ultrasonic homogenizer, a ball mill, a bead mill, and a wet jet mill.
  • the pH of the polishing slurry is preferably 2 to 12, more preferably 5 to 12, and still more preferably 5 to 11.
  • polishing can be performed without dissolving abrasive grains, and when the pH is 12 or less, polishing can be performed without affecting the object to be polished.
  • the volume-based median diameter (D 50 ) of the polishing slurry is preferably from 0.1 to 20 ⁇ m, more preferably from 0.5 to 20 ⁇ m, still more preferably from 0.5 to 10 ⁇ m.
  • the median diameter of the polishing slurry is measured by the method described later in the examples.
  • the median diameter of the polishing slurry is 0.1 ⁇ m or more, a sufficient polishing rate can be obtained, and when it is 20 ⁇ m or less, polishing scratches can be suppressed.
  • the manufacturing method of the glass product of this invention includes the grinding
  • the polishing method in the present invention is not particularly limited.
  • the glass and the polishing cloth are brought into contact with each other, and the polishing cloth and the glass are relatively moved while supplying the polishing abrasive grains or the polishing slurry. It is preferable to grind to the shape.
  • An example of the polishing cloth is a urethane polishing pad.
  • the cleaning process should be appropriately selected depending on the glass product. For example, in manufacturing a glass substrate for a magnetic disk, the following cleaning process is exemplified.
  • the method for producing a glass product of the present invention includes sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, Including a step of cleaning the abrasive grains or polishing slurry adhering to the glass using a cleaning liquid containing at least one selected from potassium hydroxide, sodium carbonate and potassium carbonate (hereinafter also referred to as a cleaning liquid used in the present invention). Is preferred.
  • the total content of at least one selected from potassium is preferably 0.001 to 2 mol%, and more preferably 0.01 to 1 mol%.
  • the cleaning liquid used in the present invention preferably contains a cleaning auxiliary.
  • the cleaning aid include a surfactant for lowering the surface tension, and an acid having a buffering effect for stably maintaining pH.
  • surfactant examples include nonionic surfactants such as acetylene diol and anionic surfactants such as sodium polyacrylate.
  • examples of the acid having a buffering effect for stably maintaining pH include an acid having a pKa of 2 to 5 and having one or more carboxylic acids.
  • citric acid can be cited as an acid that can be expected to have a buffering effect, but many other organic acids can be used.
  • the cleaning liquid used in the present invention preferably contains water as a solvent.
  • water examples include deionized water, ultrapure water, charged ion water, hydrogen water, and ozone water. Since water has a function of controlling the fluidity of the cleaning liquid used in the present invention, its content can be appropriately set according to the target cleaning characteristics such as the cleaning speed, but usually 55 to 98 mass. % Is preferable.
  • the cleaning step it is preferable to perform cleaning by bringing the cleaning liquid into direct contact with glass.
  • the method of bringing the cleaning liquid into direct contact with the glass include, for example, dip cleaning in which the cleaning liquid is filled in a cleaning tank, and glass is placed in the cleaning tank, a method of spraying the cleaning liquid onto the glass from a nozzle, and scrub cleaning using a sponge made of polyvinyl alcohol Etc.
  • the cleaning liquid used in the present invention can be applied to any of the above methods, but dip cleaning using ultrasonic cleaning is preferred because more efficient cleaning can be performed.
  • the time for bringing the cleaning liquid into contact with the glass is preferably 30 seconds or more. By setting it to 30 seconds or more, a sufficient cleaning effect can be obtained.
  • the temperature of the washing solution may be room temperature, and may be used after being heated to about 40 to 80 ° C., but is preferably 80 ° C. or less.
  • the temperature of the cleaning liquid By setting the temperature of the cleaning liquid to 80 ° C. or lower, it is possible to prevent the acid, alkali, oxidizing agent or reducing agent contained in the cleaning liquid from causing thermal decomposition. Further, because of the configuration of the apparatus, when the cleaning liquid reaches a temperature close to 100 ° C., it becomes difficult to control pH by evaporation of water, and therefore, the temperature is preferably 80 ° C. or lower.
  • the glass product is a glass substrate for magnetic disks, a glass substrate for high-quality liquid crystal display, etc., the glass main surface of the present invention after the cleaning step, It is preferable to include a final polishing step of polishing using a slurry containing colloidal silica abrasive grains.
  • glass products manufactured by the manufacturing method of the present invention include magnetic disk substrates for hard disk drives, glass substrates such as semiconductor substrates, photomask substrates, and display substrates, lenses, blue filter glasses for CCDs, and cover glasses. Can be mentioned.
  • a magnetic disk can be manufactured by forming a magnetic recording layer on the main surface of a glass substrate for a magnetic disk manufactured by the manufacturing method of the present invention.
  • the obtained oxide was manganese oxide (Mn 2 O 3 ).
  • the X-ray profile of the obtained manganese oxide was measured by TTR-III (manufactured by Rigaku Corporation). The result is shown in FIG.
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured with MT3300EXII (manufactured by Nikkiso Co., Ltd.), and the pH is shown in Table 1.
  • Example 2 30 g of manganese oxide obtained in Example 1 was put in a plastic bag, and 6.9 g of an aqueous solution of 16.9% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Inc.) was sprayed by spraying. The spray amount was 23% by mass with respect to manganese oxide, and 2% by mass in terms of cerium oxide.
  • the obtained oxide was Mn 2 O 3 coated with CeO 2 .
  • the X-ray profile of the obtained manganese oxide coated with cerium oxide was analyzed in the same manner as in Example 1. The result is shown in FIG. As shown in FIG. 1, a peak attributed to CeO 2 was observed at 28.4 ° in addition to Mn 2 O 3 , confirming that cerium oxide was precipitated.
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • Example 3 20 g of zinc oxide (manufactured by Kokusei Kagaku Co., Ltd., reagent), 378 g of distilled water and 2 g of a dispersant (Lion Co., Ltd., Polyty A-550), which were baked at 700 ° C. for 8 hours in the atmosphere, were mixed, and a homogenizer was added for 15 minutes. A polishing slurry was obtained. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • Example 4 30 g of zinc oxide similar to Example 3 was sprayed with 5.4 g of an aqueous solution of 5.4% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Ltd., reagent) by spraying.
  • the spray amount is 18% by mass with respect to zinc oxide, and is 0.5% by mass in terms of cerium oxide.
  • it baked at 700 degreeC for 8 hours in air
  • the resulting oxide was ZnO which CeO 2 is coated.
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • Example 5 It put into the type
  • the amount of the cerium acetate monohydrate aqueous solution was 200% by mass with respect to manganese oxide, and was 10% by mass in terms of cerium oxide. Then, it baked at 700 degreeC for 8 hours in air
  • the obtained oxide was Mn 2 O 3 coated with CeO 2 .
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • Example 6 It put into the type
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • Example 7 A flask made of 50 g of zinc oxide (manufactured by High Purity Chemical Co., reagent) and 100 g of an aqueous solution of 9.7% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Ltd.) baked at 700 ° C. for 8 hours in the atmosphere. The flask was dried while rotating the flask with an evaporator. The amount of cerium acetate monohydrate aqueous solution is 200% by mass with respect to zinc oxide, and 10% by mass in terms of cerium oxide. Then, it baked at 700 degreeC for 8 hours in air
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • Example 8 A type flask comprising 50 g of zinc oxide (manufactured by High Purity Chemical Co., reagent) and 150 g of an aqueous solution of 13.0% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Ltd.) baked in the atmosphere at 700 ° C. for 8 hours.
  • the flask was dried while rotating the flask with an evaporator.
  • the amount of the cerium acetate monohydrate aqueous solution is 300% by mass with respect to zinc oxide, and is 20% by mass in terms of cerium oxide. Thereafter, it was baked at 700 ° C. for 8 hours in the atmosphere.
  • the obtained oxide was ZnO coated with CeO2.
  • the volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
  • the abrasive grains obtained by using manganese oxide or zinc oxide as mother phase particles and coating the mother phase particles with cerium oxide have higher solubility in the cleaning liquid than cerium oxide. Indicated.
  • Polishing Test A polishing test was performed using the polishing slurries of Examples 1 to 8 obtained in (1).
  • Example 1 polishing slurry of Example 2 Example 2 polishing slurry of Example 4, Comparative Example 1 of Example 1 polishing slurry, Comparative Example 2 of Example 3 polishing slurry, Example 3 of Example 5 polishing slurry, Example 4 used the polishing slurry of Example 6,
  • Example 5 used the polishing slurry of Example 7, and Example 6 used the polishing slurry of Example 8.
  • polishing pressure was 12 kPa
  • platen rotation speed was 40 rpm.
  • a 12B single-side polishing machine (manufactured by Speed Fam) was used as the polishing machine, and FX8H-101U (manufactured by Fujibow) was used as the polishing pad.
  • the polishing slurry was circulated at 100 ml / min and polished for 20 minutes.
  • the polishing rate ( ⁇ m / min) was calculated from the weight difference before and after polishing. The results are shown in Table 3.
  • the coating amount of the mother phase particles with cerium oxide is preferably 0.1 to 25% by mass in terms of cerium oxide.
  • the abrasive grains and polishing slurry of the present invention are used in the manufacture of glass products such as magnetic disk substrates for hard disk drives, glass substrates such as semiconductor substrates, photomask substrates and display substrates, lenses, and blue filter glasses and cover glasses for CCD It can be used for the polishing process.

Abstract

The purpose of the present invention is to provide abrasive grains and a polishing slurry, both of which make it possible to polish an object to be polished at a high polish rate even when the amount of cerium oxide used is reduced. The present invention pertains to abrasive grains obtained by coating base particles with cerium oxide.

Description

研磨砥粒およびその製造方法、研磨スラリー並びにガラス製品の製造方法Abrasive grains and manufacturing method thereof, polishing slurry and glass product manufacturing method
 本発明は、研磨砥粒およびその製造方法、研磨スラリー並びにガラス製品の製造方法に関する。 The present invention relates to abrasive grains, a method for producing the same, a polishing slurry, and a method for producing a glass product.
 ハードディスクドライブ向けの磁気ディスク、液晶用ガラス、半導体基板またはフォトマスクなどのガラス製品の製造における研磨工程では、生産性を向上するために、種々の手段による研磨速度の向上が検討されている。 In the polishing process in the manufacture of glass products such as magnetic disks, liquid crystal glass, semiconductor substrates or photomasks for hard disk drives, improvement of the polishing rate by various means has been studied in order to improve productivity.
 例えば、特許文献1には、セリア結晶微小粒子またはセリア-ジルコニア固溶体結晶微粒子を含む研磨スラリーに添加剤を加えることで研磨速度を向上することができ、かつ良好なガラス基板表面性状が得られることが示されている。 For example, Patent Document 1 discloses that the polishing rate can be improved by adding an additive to a polishing slurry containing ceria crystal microparticles or ceria-zirconia solid solution crystal particles, and good glass substrate surface properties can be obtained. It is shown.
 特許文献2には、一次粒子径3~60μmの炭酸セリウムを原料に用いて製造した酸化セリウム粒子を研磨剤に含有することにより、傷なく高速な研磨が可能な研磨材が得られることが示されている。 Patent Document 2 shows that by containing cerium oxide particles produced using cerium carbonate having a primary particle diameter of 3 to 60 μm as a raw material, an abrasive capable of high-speed polishing without scratches can be obtained. Has been.
 また、特許文献3には、セリウムとジルコニウムとを含む複合酸化物を研磨液組成物に用いて研磨対象基板を研磨することで、研磨対象基板におけるスクラッチの発生を抑制することができ、かつ高速な研磨が可能であることが示されている。 Patent Document 3 discloses that a polishing target composition is polished using a composite oxide containing cerium and zirconium in a polishing liquid composition, so that generation of scratches on the polishing target substrate can be suppressed and high speed can be achieved. It has been shown that smooth polishing is possible.
国際公開第2010/038617号International Publication No. 2010/038617 日本国特開第2010-30041号公報Japanese Unexamined Patent Publication No. 2010-30041 日本国特開第2010-16064号公報Japanese Unexamined Patent Publication No. 2010-16064
 前記のとおり、ハードディスクドライブ向けの磁気ディスク、液晶用ガラス、半導体基板またはフォトマスクなどのガラス製品の製造における研磨工程においては、研磨速度が高いことから主に酸化セリウムが使用されている。しかしながら、セリウムは採掘可能な地域が限られることから安定的な供給に難があり、近年価格の高騰が起きている。 As described above, cerium oxide is mainly used in the polishing process in the manufacture of glass products such as magnetic disks for hard disk drives, glass for liquid crystals, semiconductor substrates or photomasks because of the high polishing rate. However, cerium is difficult to supply stably because the area where it can be mined is limited, and in recent years the price has risen.
 したがって、本発明は、少ない酸化セリウムの使用量で、高い研磨速度で被研磨物を研磨することができる研磨砥粒および研磨スラリーを提供することを目的とする。 Therefore, an object of the present invention is to provide abrasive grains and polishing slurry that can polish an object to be polished at a high polishing rate with a small amount of cerium oxide used.
 本発明者らは、母相粒子に酸化セリウムが被覆された研磨砥粒を被研磨物の研磨に用いることにより、少ない酸化セリウムの使用量で、高い研磨速度で被研磨物を研磨することができることを見出し、本発明を完成させた。 The inventors of the present invention can polish an object to be polished at a high polishing rate with a small amount of cerium oxide used by using abrasive grains having mother phase particles coated with cerium oxide for polishing the object to be polished. The present invention has been completed by finding out what can be done.
 すなわち、本発明は以下の通りである。
1.母相粒子に酸化セリウムが被覆された研磨砥粒。
2.前記母相粒子が硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の水溶液に溶解性である前項1に記載の研磨砥粒。
3.前記母相粒子が酸化マンガンおよび酸化亜鉛からなる群より選ばれる少なくとも1種の酸化物を含む前項1または2に記載の研磨砥粒。
4.前記母相粒子に被覆された酸化セリウムが母相粒子に対して0.1質量%~25質量%である前項1~3のいずれか1に記載の研磨砥粒。
5.前記母相粒子に被覆された酸化セリウムが母相粒子に対して0.1質量%~20質量%である前項1~4のいずれか1に記載の研磨砥粒。
6.比表面積が0.1~20m/gである前項1~5のいずれか1に記載の研磨砥粒。
7.前項1~6のいずれか1に記載の研磨砥粒を含む研磨スラリー。
8.以下の(1)~(3)の工程を順次含む、母相粒子に酸化セリウムが被覆された研磨砥粒の製造方法。
(1)セリウム化合物を水に溶解させて、セリウム源水溶液を得る工程
(2)工程(1)で得られたセリウム源水溶液を母相粒子に被覆し、セリウム源水溶液により被覆された母相粒子を得る工程
(3)工程(2)で得られたセリウム源水溶液で被覆された母相粒子を焼成し、酸化セリウムにより被覆された母相粒子を得る工程
9.前記工程(2)においてセリウム源水溶液を母相粒子に噴霧し、セリウム源水溶液により被覆された母相粒子を得る前項8に記載の研磨砥粒の製造方法。
10.前記セリウム化合物が酢酸セリウム、硝酸セリウム、水酸化セリウム、硫酸セリウムからなる群より選ばれる少なくとも1種である前項8または9に記載の研磨砥粒の製造方法。
11.前項1~6のいずれか1に記載の研磨砥粒または前項7に記載の研磨スラリーを用いてガラスを研磨する工程を含むガラス製品の製造方法。
That is, the present invention is as follows.
1. Polishing abrasive grains in which matrix phase particles are coated with cerium oxide.
2. The mother phase particles are sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, carbonic acid. 2. The abrasive grain according to item 1, which is soluble in at least one aqueous solution selected from sodium and potassium carbonate.
3. 3. The abrasive grain according to item 1 or 2, wherein the matrix phase particle contains at least one oxide selected from the group consisting of manganese oxide and zinc oxide.
4). 4. The abrasive grain according to any one of items 1 to 3, wherein the cerium oxide coated on the matrix phase particles is 0.1% by mass to 25% by mass with respect to the matrix phase particles.
5. 5. The abrasive grain according to any one of items 1 to 4, wherein the cerium oxide coated on the matrix phase particles is 0.1% by mass to 20% by mass with respect to the matrix phase particles.
6). 6. The abrasive grain according to any one of items 1 to 5, wherein the specific surface area is 0.1 to 20 m 2 / g.
7). 7. A polishing slurry comprising the polishing abrasive grain according to any one of 1 to 6 above.
8). A method for producing abrasive grains in which matrix particles are coated with cerium oxide, comprising the following steps (1) to (3) in sequence.
(1) A step of obtaining a cerium source aqueous solution by dissolving a cerium compound in water (2) A mother phase particle coated with the cerium source aqueous solution obtained in step (1) and coated with the cerium source aqueous solution Step (3) Step of firing mother phase particles coated with the aqueous cerium source solution obtained in step (2) to obtain mother phase particles coated with cerium oxide 9. 9. The method for producing abrasive grains according to item 8 above, wherein in step (2), the cerium source aqueous solution is sprayed on the mother phase particles to obtain mother phase particles coated with the cerium source aqueous solution.
10. 10. The method for producing abrasive grains according to item 8 or 9, wherein the cerium compound is at least one selected from the group consisting of cerium acetate, cerium nitrate, cerium hydroxide, and cerium sulfate.
11. 8. A method for producing a glass product, comprising a step of polishing glass using the abrasive grains according to any one of items 1 to 6 or the polishing slurry according to item 7.
 本発明の研磨砥粒および研磨スラリーによれば、多量の酸化セリウムを用いることなく、高い研磨速度で被研磨物を研磨することができる。 According to the abrasive grains and the polishing slurry of the present invention, an object to be polished can be polished at a high polishing rate without using a large amount of cerium oxide.
図1は、酸化マンガンのX線プロファイルを示す。FIG. 1 shows the X-ray profile of manganese oxide.
 以下、本発明に関して詳細に説明する。 Hereinafter, the present invention will be described in detail.
〔研磨砥粒〕
 本発明の研磨砥粒は、母相粒子に酸化セリウムが被覆された研磨砥粒であり、母相粒子、および該母相粒子を被覆する酸化セリウムを含む。
[Abrasive grain]
The abrasive grains of the present invention are abrasive grains in which matrix phase particles are coated with cerium oxide, and include matrix phase particles and cerium oxide covering the matrix phase particles.
 母相粒子としては、例えば、酸化マンガン(Mn、Mn、MnO)、酸化亜鉛(ZnO)、酸化鉄(Fe、Fe)、酸化銅(CuO、CuO)、酸化アルミニウム(Al)、シリカ(SiO)、酸化クロム(Cr、CrO)および酸化ジルコニウム(ZrO)が挙げられる。これらの母相粒子は一般に市販されているものを使用することができる。 Examples of the mother phase particles include manganese oxide (Mn 3 O 4 , Mn 2 O 3 , MnO 2 ), zinc oxide (ZnO), iron oxide (Fe 3 O 4 , Fe 2 O 3 ), copper oxide (Cu 2 ). O, CuO), aluminum oxide (Al 2 O 3 ), silica (SiO 2 ), chromium oxide (Cr 2 O 3 , CrO 2 ) and zirconium oxide (ZrO 2 ). These mother phase particles can be those commercially available.
 母相粒子に被覆する酸化セリウムは、被研磨物への付着性が高く、容易に溶解させることもできないため、研磨後の洗浄性が悪いという欠点がある。したがって、研磨後の洗浄性を向上させる観点から、これらの中でも、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の水溶液に溶解性であるものを母相粒子とすることが好ましい。 The cerium oxide coated on the mother phase particles has a drawback that it has poor adhesion after polishing because it has high adhesion to the object to be polished and cannot be easily dissolved. Therefore, from the viewpoint of improving the cleanability after polishing, among these, sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide It is preferable to use particles that are soluble in at least one aqueous solution selected from ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate as mother phase particles.
 硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の水溶液に溶解性である母相粒子としては、例えば、酸化マンガン(Mn、Mn、MnO)、酸化亜鉛(ZnO)、酸化鉄(Fe、Fe)および酸化銅(CuO、CuO)が挙げられる。 From sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate Examples of mother phase particles that are soluble in at least one selected aqueous solution include manganese oxide (Mn 3 O 4 , Mn 2 O 3 , MnO 2 ), zinc oxide (ZnO), and iron oxide (Fe 3 O 4). , Fe 2 O 3 ) and copper oxide (Cu 2 O, CuO).
 より具体的には、酸化マンガン(Mn、Mn、MnO)は塩酸、硫酸、硝酸、アスコルビン酸、過酸化水素等により溶解することができる。 More specifically, manganese oxide (Mn 3 O 4 , Mn 2 O 3 , MnO 2 ) can be dissolved by hydrochloric acid, sulfuric acid, nitric acid, ascorbic acid, hydrogen peroxide, or the like.
 酸化亜鉛(ZnO)は塩酸、硝酸、硫酸等により溶解することができる。 Zinc oxide (ZnO) can be dissolved by hydrochloric acid, nitric acid, sulfuric acid or the like.
 酸化鉄(Fe、Fe)は塩酸、硝酸、硫酸等により溶解することができる。 Iron oxide (Fe 3 O 4 , Fe 2 O 3 ) can be dissolved by hydrochloric acid, nitric acid, sulfuric acid or the like.
 酸化銅(CuO、CuO)は塩酸、硝酸、硫酸等により溶解することができる。 Copper oxide (Cu 2 O, CuO) can be dissolved by hydrochloric acid, nitric acid, sulfuric acid or the like.
 これらの母相粒子は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、これらの中でも、酸化マンガンまたは酸化亜鉛がより好ましい。酸化マンガンまたは酸化亜鉛は、酸、アルカリ、酸化剤または還元剤に対して高い溶解性があるため、母相粒子に酸化マンガンまたは酸化亜鉛を用いることで、被研磨物に影響を与えることなく、酸、アルカリ、酸化剤または還元剤を含む洗浄液により高い洗浄効果を得ることができる。 These matrix particles may be used alone or in combination of two or more. Of these, manganese oxide or zinc oxide is more preferable. Manganese oxide or zinc oxide is highly soluble in acids, alkalis, oxidizing agents, or reducing agents, so using manganese oxide or zinc oxide for the matrix phase particles will not affect the workpiece. A high cleaning effect can be obtained with a cleaning liquid containing an acid, an alkali, an oxidizing agent, or a reducing agent.
 ここで、「溶解性がある」とは、室温にて1時間、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる1種を0.01~2モル%含有する水溶液に、0.1~1質量%の母相粒子を溶解させたときに、溶出量が90質量%以上となることをいう。母相粒子の溶解性については、実施例において後述する溶解試験に準じて試験することができる。 Here, “soluble” means sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, peroxidation at room temperature for 1 hour. 0.1 to 1% by mass of mother phase particles were dissolved in an aqueous solution containing 0.01 to 2 mol% of one selected from hydrogen, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. Sometimes the amount of elution is 90% by mass or more. The solubility of the matrix phase particles can be tested according to the dissolution test described later in the Examples.
 母相粒子として、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、過酸化水素、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の水溶液に溶解性であるものを用い、研磨後の洗浄工程において、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、過酸化水素、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種を含む洗浄液により被研磨物を洗浄することで、被研磨物に影響を与えることなく、高い洗浄効果を得ることができる。 As mother phase particles, sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, hydrogen peroxide, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, water In the cleaning step after polishing, sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid are used in a cleaning process after polishing using at least one aqueous solution selected from potassium oxide, sodium carbonate and potassium carbonate. The object to be polished is cleaned with a cleaning liquid containing at least one selected from acids, formic acid, glycolic acid, acetic acid, hydrogen peroxide, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. Thus, a high cleaning effect can be obtained without affecting the object to be polished.
 酸化セリウムによる母相粒子の被覆量は、酸化セリウム換算で、0.1~25質量%が好ましく、0.1~20質量%がより好ましく、1~10質量%がさらに好ましく、1~5質量%が特に好ましい。被覆量が0.1質量%以上であると研磨速度向上の効果が得られ、25質量%以下であるとセリウム使用量を減らすことができ、20質量%以下であるとセリウム使用量をより減らすことができる。 The coating amount of the mother phase particles with cerium oxide is preferably 0.1 to 25% by mass, more preferably 0.1 to 20% by mass, further preferably 1 to 10% by mass, in terms of cerium oxide, and 1 to 5% by mass. % Is particularly preferred. When the coating amount is 0.1% by mass or more, an effect of improving the polishing rate can be obtained. When the coating amount is 25% by mass or less, the amount of cerium used can be reduced. be able to.
 母相粒子を酸化セリウムにより被覆した研磨砥粒の比表面積は、0.1~20m/gが好ましく、0.5~15m/gがより好ましく、1~10m/gがさらに好ましい。研磨砥粒の比表面積が0.1m/g以上であると粗大粒による研磨傷を抑制でき、20m/g以下であると十分な研磨速度を得ることができる。研磨砥粒の比表面積は、実施例において後述する方法により測定する。 The specific surface area of abrasive grains of the matrix phase particles were coated with the cerium oxide is preferably 0.1 ~ 20m 2 / g, more preferably 0.5 ~ 15m 2 / g, 1 ~ 10m 2 / g is more preferred. When the specific surface area of the abrasive grains is 0.1 m 2 / g or more, polishing scratches due to coarse grains can be suppressed, and when it is 20 m 2 / g or less, a sufficient polishing rate can be obtained. The specific surface area of the abrasive grains is measured by the method described later in the examples.
〔研磨砥粒の製造方法〕
 本発明の研磨砥粒は、以下の(1)~(3)の工程を順次含む製造方法により製造することができる。
(1)セリウム化合物を水に溶解させてセリウム源水溶液を得る工程
(2)工程(1)で得られたセリウム源水溶液を母相粒子に被覆し、セリウム源水溶液により被覆された母相粒子を得る工程
(3)工程(2)で得られたセリウム源水溶液で被覆された母相粒子を焼成し、酸化セリウムにより被覆された母相粒子を得る工程
 以下、工程毎に説明する。
[Production method of abrasive grains]
The abrasive grains of the present invention can be produced by a production method that sequentially includes the following steps (1) to (3).
(1) Step of dissolving cerium compound in water to obtain cerium source aqueous solution (2) Covering mother phase particles with cerium source aqueous solution obtained in step (1), and coating mother phase particles coated with cerium source aqueous solution Step of obtaining (3) Step of firing mother phase particles coated with cerium source aqueous solution obtained in step (2) to obtain mother phase particles coated with cerium oxide Hereinafter, each step will be described.
(1)セリウム化合物を水に溶解させて、セリウム源水溶液を得る工程 
 セリウム化合物としては、酢酸セリウム、硝酸セリウム、水酸化セリウムまたは硫酸セリウムが、入手性および水への溶解度の点から好ましい。これらのセリウム化合物は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(1) A step of dissolving a cerium compound in water to obtain a cerium source aqueous solution
As the cerium compound, cerium acetate, cerium nitrate, cerium hydroxide, or cerium sulfate is preferable in terms of availability and solubility in water. These cerium compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 セリウム源水溶液におけるセリウム化合物の濃度は、母相粒子に被覆したい酸化セリウムの量と、後述する工程(2)において母相粒子に被覆するセリウム源水溶液の量とを勘案して、適宜調整すればよい。セリウム源水溶液におけるセリウム化合物の濃度を、セリウム化合物の溶解度以下となるように設定すると、後述する工程(2)において、セリウム源水溶液を母相粒子へ均一に被覆できるため好ましい。 The concentration of the cerium compound in the cerium source aqueous solution can be adjusted as appropriate in consideration of the amount of cerium oxide to be coated on the mother phase particles and the amount of the cerium source aqueous solution coated on the mother phase particles in step (2) described later. Good. It is preferable to set the concentration of the cerium compound in the cerium source aqueous solution to be equal to or lower than the solubility of the cerium compound because the cerium source aqueous solution can be uniformly coated on the mother phase particles in the step (2) described later.
 後述する工程(2)において、セリウム源水溶液を母相粒子に噴霧することによりセリウム源水溶液を母相粒子に被覆する場合、セリウム源水溶液におけるセリウム化合物の濃度は、5~60質量%とすることが好ましく、10~60質量%とすることがより好ましい。 In the step (2) described later, when the mother phase particles are coated with the cerium source aqueous solution by spraying the cerium source aqueous solution onto the mother phase particles, the concentration of the cerium compound in the cerium source aqueous solution should be 5 to 60% by mass. It is preferably 10 to 60% by mass.
 工程(2)において、セリウム源水溶液に母相粒子を浸漬することによりセリウム源水溶液を母相粒子に被覆する場合、セリウム源水溶液におけるセリウム化合物の濃度は、1~40質量%とすることが好ましく、1~20質量%とすることがより好ましい。 In the step (2), when the mother phase particles are coated with the mother phase particles by immersing the mother phase particles in the cerium source aqueous solution, the concentration of the cerium compound in the cerium source aqueous solution is preferably 1 to 40% by mass. More preferably, the content is 1 to 20% by mass.
 工程(2)において、セリウム源水溶液に母相粒子を塗布することによりセリウム源水溶液を母相粒子に被覆する場合、セリウム源水溶液におけるセリウム化合物の濃度は、1~60質量%とすることが好ましく、1~40質量%とすることがより好ましい。 In the step (2), when the mother phase particles are coated with the mother phase particles by applying the mother phase particles to the cerium source aqueous solution, the concentration of the cerium compound in the cerium source aqueous solution is preferably 1 to 60% by mass. More preferably, the content is 1 to 40% by mass.
(2)工程(1)で得られたセリウム源水溶液を母相粒子に被覆し、セリウム源水溶液により被覆された母相粒子を得る工程
 工程(2)は、工程(1)で得られたセリウム源水溶液により母相粒子を被覆し、水を媒体としてセリウム化合物を母相粒子の表面に析出させる工程である。
(2) Step of coating mother phase particles with cerium source aqueous solution obtained in step (1) to obtain mother phase particles coated with cerium source aqueous solution Step (2) is the cerium obtained in step (1) In this step, the mother phase particles are coated with the source aqueous solution, and the cerium compound is precipitated on the surface of the mother phase particles using water as a medium.
 セリウム源水溶液を母相粒子に被覆する方法としては、例えば、噴霧、浸漬または塗布が挙げられる。これらの中でも、噴霧は乾燥工程が不要であり、工業的な観点から好ましい。 Examples of the method of coating the mother phase particles with the cerium source aqueous solution include spraying, dipping or coating. Among these, spraying does not require a drying step and is preferable from an industrial viewpoint.
(2-1)噴霧
 噴霧による場合、例えば、霧吹き、噴霧機等により母相粒子にセリウム源水溶液を吹きつけて、母相粒子にセリウム源水溶液を被覆する。このとき、噴霧毎に母相粒子を攪拌することにより、均一にセリウム源水溶液により母相粒子を被覆することができる。
(2-1) Spraying In the case of spraying, for example, the cerium source aqueous solution is sprayed on the matrix phase particles by spraying, spraying machine, etc., and the matrix phase particles are coated with the cerium source aqueous solution. At this time, the mother phase particles can be uniformly coated with the aqueous cerium source solution by stirring the mother phase particles for each spray.
 具体的な方法としては、例えば、母相粒子をビニール袋に入れて、セリウム源水溶液を霧吹きで噴霧する方法が挙げられる。 Specific methods include, for example, a method in which matrix particles are placed in a plastic bag and a cerium source aqueous solution is sprayed with a spray.
 また、例えば、ロータリーキルンにより、熱乾燥するとともにロータリー機で母相粒子を攪拌しながらセリウム源水溶液を噴霧してもよく、工業的にも有利である。 Further, for example, the cerium source aqueous solution may be sprayed while being thermally dried with a rotary kiln and stirring the mother phase particles with a rotary machine, which is industrially advantageous.
 母相粒子へのセリウム源水溶液の噴霧量は、母相粒子に対して0.1~40質量%とするのが好ましく、5~30質量%とするのがより好ましく、10~25質量%とするのが更に好ましい。 The spray amount of the aqueous cerium source solution on the mother phase particles is preferably 0.1 to 40% by mass, more preferably 5 to 30% by mass, and 10 to 25% by mass with respect to the mother phase particles. More preferably.
 噴霧量が0.1質量%以上であると水溶液が母相粒子全体に行きわたり、均一な被覆が出来る。40質量%以下であるとペースト状または液状にならず、そのまま焼成工程に持って行けるため、乾燥工程が省略できて好ましい。 When the spray amount is 0.1% by mass or more, the aqueous solution reaches the entire matrix phase particles, and uniform coating is possible. The amount of 40% by mass or less is preferable because it does not become paste or liquid and can be taken as it is to the firing step, so that the drying step can be omitted.
 噴霧条件は、通常0~200℃とすることが好ましい。 The spraying conditions are usually preferably 0 to 200 ° C.
(2-2)浸漬
 浸漬による場合、セリウム源水溶液中に母相粒子を浸漬させてセリウム源水溶液を母相粒子に被覆する。セリウム源水溶液に浸漬させる母相粒子の量は、水溶液に対して、通常1~60質量%とすることが好ましく、10~50質量%とすることがより好ましい。
(2-2) Immersion In the case of immersion, the mother phase particles are immersed in the cerium source aqueous solution to coat the mother phase particles with the cerium source aqueous solution. The amount of the mother phase particles immersed in the cerium source aqueous solution is usually preferably 1 to 60% by mass and more preferably 10 to 50% by mass with respect to the aqueous solution.
 セリウム源水溶液に浸漬させる母相粒子の量を1質量%以上とすることにより、蒸発させる水の量を減らすことができ、60質量%以下とすることにより均一にセリウム化合物を被覆することができる。 By setting the amount of matrix particles immersed in the aqueous cerium source solution to 1% by mass or more, the amount of water to be evaporated can be reduced, and by setting it to 60% by mass or less, the cerium compound can be uniformly coated. .
 浸漬条件は、通常0~90℃において、0.1~24時間とすることが好ましい。 The immersion conditions are preferably 0.1 to 24 hours at 0 to 90 ° C.
 浸漬によりセリウム源水溶液を母相粒子に被覆した後、乾燥することにより、母相粒子の表面にセリウム化合物を析出させることができる。なお、乾燥条件は、通常80~200℃において、2~24時間とすることが好ましい。 The cerium compound can be deposited on the surface of the mother phase particles by coating the mother phase particles with the cerium source aqueous solution by immersion and then drying. The drying conditions are usually 80 to 200 ° C. and preferably 2 to 24 hours.
 浸漬により被覆する場合、セリウム源水溶液に母相粒子を浸漬させて乾燥させた後の母相粒子へのセリウム化合物の被覆量は、母相粒子に対して1~50質量%とするのが好ましく、5~50質量%とするのがより好ましく、5~30質量%とするのが更に好ましい。 In the case of coating by dipping, the coating amount of the cerium compound on the mother phase particles after dipping the mother phase particles in the aqueous cerium source solution and drying is preferably 1 to 50% by mass with respect to the mother phase particles. It is more preferably 5 to 50% by mass, and further preferably 5 to 30% by mass.
 被覆量が1質量%以上であるとセリウム化合物が母相粒子全体に行きわたり、均一な被覆が出来る。50質量%以下であると酸化セリウムが単独で析出することがない。 When the coating amount is 1% by mass or more, the cerium compound is distributed over the entire matrix phase, and uniform coating can be achieved. When it is 50% by mass or less, cerium oxide does not precipitate alone.
(2-3)塗布
 塗布による場合、例えば、転動造粒装置等により母相粒子にセリウム源水溶液を塗布して、セリウム源水溶液により母相粒子を被覆する。
(2-3) Application In the case of application, for example, the cerium source aqueous solution is applied to the mother phase particles with a rolling granulator or the like, and the mother phase particles are coated with the cerium source aqueous solution.
 母相粒子へのセリウム源水溶液の塗布量は、母相粒子に対して1~100質量%とするのが好ましく、5~80質量%とするのがより好ましく、10~60質量%とするのが更に好ましい。 The coating amount of the aqueous cerium source solution on the mother phase particles is preferably 1 to 100% by mass, more preferably 5 to 80% by mass, and more preferably 10 to 60% by mass with respect to the mother phase particles. Is more preferable.
 塗布量が1質量%以上100質量%以下であると水溶液が母相粒子全体に行きわたり、均一な被覆が出来る。 When the coating amount is 1% by mass or more and 100% by mass or less, the aqueous solution reaches the entire matrix phase particles, and uniform coating can be achieved.
 塗布条件は、通常0~90℃とすることが好ましい。 The application conditions are usually preferably 0 to 90 ° C.
(3)工程(2)で得られたセリウム源水溶液で被覆された母相粒子を焼成し、酸化セリウムにより被覆された母相粒子を得る工程
 工程(3)は、工程(2)で得られたセリウム源水溶液で被覆された母相粒子を焼成し、セリウム化合物を酸化させることにより、酸化セリウムにより被覆された母相粒子を得る工程である。
(3) Step of firing mother phase particles coated with cerium source aqueous solution obtained in step (2) to obtain mother phase particles coated with cerium oxide Step (3) is obtained in step (2). In addition, the mother phase particles coated with the aqueous cerium source solution are fired to oxidize the cerium compound, thereby obtaining mother phase particles coated with cerium oxide.
 焼成温度は、300~1000℃が好ましく、400~1000℃がより好ましく、400~800℃が更に好ましい。焼成温度を300℃以上とすることにより、セリウム化合物を分解して酸化セリウムを析出することができ、1000℃以下とすることにより粒成長による粗大粒の生成を抑制して、傷の少ない研磨砥粒を作製することができる。 The firing temperature is preferably 300 to 1000 ° C, more preferably 400 to 1000 ° C, and still more preferably 400 to 800 ° C. By setting the firing temperature to 300 ° C. or higher, the cerium compound can be decomposed to deposit cerium oxide, and by setting it to 1000 ° C. or lower, the generation of coarse grains due to grain growth is suppressed, and the polishing abrasive with few scratches. Grains can be made.
 焼成雰囲気は大気下とすることが、コストの点から好ましい。また、焼成時間は、通常2~72時間とすることが好ましい。 The firing atmosphere is preferably in the air from the viewpoint of cost. The firing time is usually preferably 2 to 72 hours.
 焼成物を分級することにより、粗大粒を除去してもよい。分級する方法としては、例えば、ふるいまたは分級機等の公知の方法が挙げられる。 The coarse particles may be removed by classifying the fired product. Examples of the classification method include known methods such as a sieve or a classifier.
 本発明における研磨砥粒は前記(1)~(3)の工程により製造することができるが、各工程への影響を及ぼさない限り、他の工程を行ってもよい。他の工程としては、例えば、前記した乾燥または分級工程等が挙げられる。なお、本発明における研磨砥粒は前記(1)~(3)の工程の1または2以上を有さない方法で製造してもよい。 The abrasive grains in the present invention can be produced by the above steps (1) to (3), but other steps may be performed as long as they do not affect each step. Examples of other steps include the above-described drying or classification step. The abrasive grains in the present invention may be produced by a method that does not have one or more of the steps (1) to (3).
(研磨スラリー)
 本発明の研磨砥粒を、例えば、水等の分散媒に分散させて、研磨スラリーとすることができる。研磨スラリーにおける研磨砥粒濃度は0.1~40質量%が好ましく、1~30質量%がより好ましく、1~20質量%が更に好ましい。研磨砥粒濃度が0.1質量%以上であると十分な研磨速度を出すことができ、40質量%以下であることで効率よく研磨をすることができる。
(Polishing slurry)
For example, the abrasive grains of the present invention can be dispersed in a dispersion medium such as water to form a polishing slurry. The abrasive grain concentration in the polishing slurry is preferably from 0.1 to 40% by mass, more preferably from 1 to 30% by mass, and even more preferably from 1 to 20% by mass. When the abrasive grain concentration is 0.1% by mass or more, a sufficient polishing rate can be obtained, and when it is 40% by mass or less, polishing can be performed efficiently.
 分散媒としては、例えば、水およびアルコールが挙げられる。アルコールとしては、例えばメタノール、エタノール、2-プロパノールおよびエチレングリコール等が挙げられる。 Examples of the dispersion medium include water and alcohol. Examples of the alcohol include methanol, ethanol, 2-propanol and ethylene glycol.
 スラリーには分散剤を添加してもよい。分散剤としては、公知のものを使用することができるが、例えば、クエン酸ソーダ、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、ポリアクリル酸-マレイン酸共重合体、ピリジンカルボン酸およびカルボキシメチルセルロース等が好適に挙げられる。 A dispersant may be added to the slurry. As the dispersant, known ones can be used. Examples thereof include sodium citrate, sodium polyacrylate, ammonium polyacrylate, polyacrylic acid-maleic acid copolymer, pyridinecarboxylic acid and carboxymethylcellulose. Preferably mentioned.
 研磨スラリーは分散処理をしてもよい。分散処理には公知の方法を使用することができ、例えば、ホモジナイザー、超音波ホモジナイザー、ボールミル、ビーズミルおよび湿式ジェットミル等が挙げられる。 The polishing slurry may be dispersed. A known method can be used for the dispersion treatment, and examples thereof include a homogenizer, an ultrasonic homogenizer, a ball mill, a bead mill, and a wet jet mill.
 研磨スラリーのpHは2~12が好ましく、5~12がより好ましく、5~11が更に好ましい。pHが2以上であることで、砥粒を溶解させることなく研磨することができ、12以下であることで被研磨物に影響を与えることなく研磨することができる。 The pH of the polishing slurry is preferably 2 to 12, more preferably 5 to 12, and still more preferably 5 to 11. When the pH is 2 or more, polishing can be performed without dissolving abrasive grains, and when the pH is 12 or less, polishing can be performed without affecting the object to be polished.
 研磨スラリーの体積基準メディアン径(D50)は、0.1~20μmが好ましく、0.5~20μmがより好ましく、0.5~10μmが更に好ましい。研磨スラリーのメディアン径は実施例において後述する方法により測定する。 The volume-based median diameter (D 50 ) of the polishing slurry is preferably from 0.1 to 20 μm, more preferably from 0.5 to 20 μm, still more preferably from 0.5 to 10 μm. The median diameter of the polishing slurry is measured by the method described later in the examples.
 研磨スラリーのメディアン径が0.1μm以上であることで十分な研磨速度を出すことができ、20μm以下であることで研磨傷を抑制することができる。 When the median diameter of the polishing slurry is 0.1 μm or more, a sufficient polishing rate can be obtained, and when it is 20 μm or less, polishing scratches can be suppressed.
〔ガラス製品の製造方法〕
(研磨工程)
 本発明のガラス製品の製造方法は、母相粒子に酸化セリウムが被覆された研磨砥粒または該研磨砥粒を含む研磨スラリーを用いてガラスを研磨する研磨工程を含む。
[Production method of glass products]
(Polishing process)
The manufacturing method of the glass product of this invention includes the grinding | polishing process which grind | polishes glass using the grinding | polishing abrasive | polishing particle | grains by which the mother phase particle | grains coat | covered the cerium oxide, or the grinding | polishing slurry containing this grinding | polishing abrasive grain.
 本発明における研磨の方法は特に限定されないが、例えば、ガラスと研磨布とを接触させ、研磨砥粒または研磨スラリーを供給しながら、研磨布とガラスとを相対的に移動させて、ガラスを鏡面状に研磨することが好ましい。研磨布としては、例えば、ウレタン製研磨パッドが挙げられる。 The polishing method in the present invention is not particularly limited. For example, the glass and the polishing cloth are brought into contact with each other, and the polishing cloth and the glass are relatively moved while supplying the polishing abrasive grains or the polishing slurry. It is preferable to grind to the shape. An example of the polishing cloth is a urethane polishing pad.
(洗浄工程)
 洗浄工程はガラス製品によって適切に選択されるべきであるが、例えば、磁気ディスク用ガラス基板の製造においては以下のような洗浄工程が例示される。
(Washing process)
The cleaning process should be appropriately selected depending on the glass product. For example, in manufacturing a glass substrate for a magnetic disk, the following cleaning process is exemplified.
 本発明のガラス製品の製造方法は、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種を含む洗浄液(以下、本発明に用いる洗浄液ともいう)を用いて、ガラスに付着した研磨砥粒または研磨スラリーを洗浄する工程を含むことが好ましい。 The method for producing a glass product of the present invention includes sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, Including a step of cleaning the abrasive grains or polishing slurry adhering to the glass using a cleaning liquid containing at least one selected from potassium hydroxide, sodium carbonate and potassium carbonate (hereinafter also referred to as a cleaning liquid used in the present invention). Is preferred.
 前記研磨工程において、研磨砥粒の母相粒子として、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の水溶液に溶解性であるものを用いた場合、硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種を含む洗浄液によりガラスを洗浄することで、ガラスに影響を与えることなく、優れた洗浄効果を得ることができる。 In the polishing step, as mother phase particles of abrasive grains, sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, When one that is soluble in at least one aqueous solution selected from sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate is used, sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid By washing the glass with a cleaning solution containing at least one selected from acids, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, An excellent cleaning effect can be obtained without influencing.
 本発明に用いる洗浄液における硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1の含有量は合計で、0.001~2モル%であることが好ましく、0.01~1モル%であることがより好ましい。 Sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and carbonic acid in the cleaning solution used in the present invention The total content of at least one selected from potassium is preferably 0.001 to 2 mol%, and more preferably 0.01 to 1 mol%.
 洗浄液における硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の含有量を合計で0.001モル%以上とすることにより、溶出量を維持しやすい。また、2モル%以下とすることにより、ガラスへの影響を抑えることができる。 Sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate and carbonic acid By setting the content of at least one selected from potassium to 0.001 mol% or more in total, it is easy to maintain the elution amount. Moreover, the influence on glass can be suppressed by setting it as 2 mol% or less.
 本発明に用いる洗浄液は、洗浄補助剤を含むことが好ましい。洗浄補助剤としては、例えば、表面張力を下げるための界面活性剤、およびpHを安定的に保持する為の緩衝効果のある酸が挙げられる。 The cleaning liquid used in the present invention preferably contains a cleaning auxiliary. Examples of the cleaning aid include a surfactant for lowering the surface tension, and an acid having a buffering effect for stably maintaining pH.
 界面活性剤としては、例えば、アセチレンジオールなどのノニオン性界面活性剤およびポリアクリル酸ナトリウムなどのアニオン界面活性剤などが挙げられる。 Examples of the surfactant include nonionic surfactants such as acetylene diol and anionic surfactants such as sodium polyacrylate.
 また、pHを安定的に保持する為の緩衝効果のある酸としては、例えば、pKaが2~5にあり、1つ以上のカルボン酸を有する酸が挙げられる。具体的には、例えば、緩衝効果が期待できる酸としてクエン酸が挙げられるが、それ以外にも数多くの有機酸が使用可能である。 Further, examples of the acid having a buffering effect for stably maintaining pH include an acid having a pKa of 2 to 5 and having one or more carboxylic acids. Specifically, for example, citric acid can be cited as an acid that can be expected to have a buffering effect, but many other organic acids can be used.
 本発明に用いる洗浄液は、溶媒として水を含むことが好ましい。水としては、例えば、脱イオン水、超純水、電荷イオン水、水素水およびオゾン水などが挙げられる。なお、水は、本発明に用いる洗浄液の流動性を制御する機能を有するので、その含有量は洗浄速度等の目標とする洗浄特性に合わせて適宜設定することができるが、通常55~98質量%とすることが好ましい。 The cleaning liquid used in the present invention preferably contains water as a solvent. Examples of water include deionized water, ultrapure water, charged ion water, hydrogen water, and ozone water. Since water has a function of controlling the fluidity of the cleaning liquid used in the present invention, its content can be appropriately set according to the target cleaning characteristics such as the cleaning speed, but usually 55 to 98 mass. % Is preferable.
 洗浄工程では、前記洗浄液をガラスに直接接触させて洗浄することが好ましい。洗浄液をガラスに直接接触させる方法としては、例えば、洗浄液を洗浄槽に満たし、その中にガラスを入れるディップ式洗浄、ノズルからガラスに洗浄液を噴射する方法、およびポリビニルアルコール製のスポンジを用いるスクラブ洗浄などが挙げられる。本発明に用いる洗浄液は上記のいずれの方法にも適応できるが、より効率的な洗浄ができることから、超音波洗浄を併用したディップ式洗浄が好ましい。 In the cleaning step, it is preferable to perform cleaning by bringing the cleaning liquid into direct contact with glass. Examples of the method of bringing the cleaning liquid into direct contact with the glass include, for example, dip cleaning in which the cleaning liquid is filled in a cleaning tank, and glass is placed in the cleaning tank, a method of spraying the cleaning liquid onto the glass from a nozzle, and scrub cleaning using a sponge made of polyvinyl alcohol Etc. The cleaning liquid used in the present invention can be applied to any of the above methods, but dip cleaning using ultrasonic cleaning is preferred because more efficient cleaning can be performed.
 洗浄工程において、洗浄液とガラスとを接触させる時間は、30秒間以上であることが好ましい。30秒間以上とすることにより、十分な洗浄効果を得ることができる。 In the cleaning step, the time for bringing the cleaning liquid into contact with the glass is preferably 30 seconds or more. By setting it to 30 seconds or more, a sufficient cleaning effect can be obtained.
 洗浄工程において、洗浄液の温度は室温でもよく、40~80℃程度に加温して使用してもよいが、80℃以下とすることが好ましい。洗浄液の温度を80℃以下とすることにより、洗浄液に含まれる酸、アルカリ、酸化剤または還元剤が熱分解を起こすのを防ぐことができる。また、装置の構成上、洗浄液が100℃に近い温度になると、水の蒸発によるpHコントロールが難しくなることから、80℃以下とすることが好ましい。 In the washing step, the temperature of the washing solution may be room temperature, and may be used after being heated to about 40 to 80 ° C., but is preferably 80 ° C. or less. By setting the temperature of the cleaning liquid to 80 ° C. or lower, it is possible to prevent the acid, alkali, oxidizing agent or reducing agent contained in the cleaning liquid from causing thermal decomposition. Further, because of the configuration of the apparatus, when the cleaning liquid reaches a temperature close to 100 ° C., it becomes difficult to control pH by evaporation of water, and therefore, the temperature is preferably 80 ° C. or lower.
 前記洗浄工程後に、水またはアルカリ洗剤を用いた洗浄を行うと、より効果的である。また、前記洗浄工程の前に水を用いた洗浄を組み合わせてもよい。 It is more effective to perform washing with water or an alkaline detergent after the washing step. Moreover, you may combine the washing | cleaning using water before the said washing | cleaning process.
(その他の工程)
 本発明のガラス製品の製造方法は、ガラス製品が磁気ディスク用ガラス基板、高品質な液晶ディスプレイ用ガラス基板である場合などにはその他の工程として、前記洗浄工程の後に、ガラスの主表面を、コロイダルシリカ砥粒を含むスラリーを用いて研磨する仕上げ研磨工程を含むことが好ましい。
(Other processes)
When the glass product is a glass substrate for magnetic disks, a glass substrate for high-quality liquid crystal display, etc., the glass main surface of the present invention after the cleaning step, It is preferable to include a final polishing step of polishing using a slurry containing colloidal silica abrasive grains.
 本発明の製造方法により製造されるガラス製品としては、例えば、ハードディスクドライブ向けの磁気ディスク基板、半導体基板、フォトマスク基板およびディスプレイ基板などのガラス基板、レンズ並びにCCD向けブルーフィルタガラスおよびカバーガラスなどが挙げられる。本発明の製造方法により製造される磁気ディスク用ガラス基板の主表面に磁気記録層を形成することにより磁気ディスクを製造することができる。 Examples of glass products manufactured by the manufacturing method of the present invention include magnetic disk substrates for hard disk drives, glass substrates such as semiconductor substrates, photomask substrates, and display substrates, lenses, blue filter glasses for CCDs, and cover glasses. Can be mentioned. A magnetic disk can be manufactured by forming a magnetic recording layer on the main surface of a glass substrate for a magnetic disk manufactured by the manufacturing method of the present invention.
 以下、本発明を実施例によって説明するが、本発明はこれらにより限定されるものではない。 Hereinafter, although an example explains the present invention, the present invention is not limited to these.
(1)研磨砥粒および研磨スラリーの調製
[例1]
 ガラス製タンクに蒸留水2L、グリシン(関東化学社製、試薬)37.5gを溶解させ、攪拌しながら投げ込みヒーターで水温を50℃に保った。そこへ、マンガン(関東化学社製、試薬)200gをゆっくり投入し、目開き150μmのふるいによりろ過した。得られた溶液を80℃で一晩乾燥し、大気下で700℃、8時間焼成して酸化物を得た。
(1) Preparation of abrasive grains and polishing slurry [Example 1]
2 L of distilled water and 37.5 g of glycine (manufactured by Kanto Chemical Co., Inc., reagent) were dissolved in a glass tank, and the water temperature was kept at 50 ° C. with a throwing heater while stirring. Thereto, 200 g of manganese (manufactured by Kanto Chemical Co., Ltd., reagent) was slowly added, and filtered through a sieve having an opening of 150 μm. The obtained solution was dried at 80 ° C. overnight and calcined at 700 ° C. for 8 hours in the air to obtain an oxide.
 得られた酸化物は酸化マンガン(Mn)であった。得られた酸化マンガンのX線プロファイルを、TTR-III(リガク社製)により測定した。その結果を図1に示す。 The obtained oxide was manganese oxide (Mn 2 O 3 ). The X-ray profile of the obtained manganese oxide was measured by TTR-III (manufactured by Rigaku Corporation). The result is shown in FIG.
 また、得られた酸化マンガンの比表面積を、ASAP2020(島津社製)により測定した。その結果を表1に示す。 Further, the specific surface area of the obtained manganese oxide was measured by ASAP2020 (manufactured by Shimadzu Corporation). The results are shown in Table 1.
 得られた酸化マンガン20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of the obtained manganese oxide, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polity A-550) were mixed, and a homogenizer was used for 15 minutes to form a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)をMT3300EXII(日機装社製)により測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured with MT3300EXII (manufactured by Nikkiso Co., Ltd.), and the pH is shown in Table 1.
[例2]
 例1で得られた酸化マンガン30gをビニール袋の中に入れ、16.9質量%の酢酸セリウム一水和物(関東化学社製、試薬)水溶液6.9gを霧吹きにより噴霧した。噴霧量は酸化マンガンに対して23質量%であり、酸化セリウム換算で2質量%とした。
[Example 2]
30 g of manganese oxide obtained in Example 1 was put in a plastic bag, and 6.9 g of an aqueous solution of 16.9% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Inc.) was sprayed by spraying. The spray amount was 23% by mass with respect to manganese oxide, and 2% by mass in terms of cerium oxide.
 その後、大気下で700℃、8時間焼成した。得られた酸化物はCeOが被覆されたMnであった。得られた酸化セリウムが被覆された酸化マンガンのX線プロファイルを例1と同様に解析した。その結果を図1に示す。図1に示すように、Mn以外に28.4°にCeOに帰属されるピークが見られ、酸化セリウムが析出していることが確認された。 Then, it baked at 700 degreeC for 8 hours in air | atmosphere. The obtained oxide was Mn 2 O 3 coated with CeO 2 . The X-ray profile of the obtained manganese oxide coated with cerium oxide was analyzed in the same manner as in Example 1. The result is shown in FIG. As shown in FIG. 1, a peak attributed to CeO 2 was observed at 28.4 ° in addition to Mn 2 O 3 , confirming that cerium oxide was precipitated.
 また、得られた酸化セリウムが被覆された酸化マンガンの比表面積を例1と同様に測定した。その結果を表1に示す。 Further, the specific surface area of the obtained manganese oxide coated with cerium oxide was measured in the same manner as in Example 1. The results are shown in Table 1.
 得られた酸化セリウムで被覆された酸化マンガン20g、蒸留水378gおよび分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of manganese oxide coated with cerium oxide thus obtained, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polity A-550) were mixed, and a homogenizer was used for 15 minutes to form a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
[例3]
 大気下で700℃、8時間焼成した酸化亜鉛(高純度化学社製、試薬)20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。
[Example 3]
20 g of zinc oxide (manufactured by Kokusei Kagaku Co., Ltd., reagent), 378 g of distilled water and 2 g of a dispersant (Lion Co., Ltd., Polyty A-550), which were baked at 700 ° C. for 8 hours in the atmosphere, were mixed, and a homogenizer was added for 15 minutes. A polishing slurry was obtained. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
[例4]
 例3と同様の酸化亜鉛30gを5.4質量%の酢酸セリウム一水和物(関東化学社製、試薬)水溶液5.4gを霧吹きにより噴霧した。噴霧量は酸化亜鉛に対して18質量%であり、酸化セリウム換算で0.5質量%となる。その後、大気下で700℃、8時間焼成した。得られた酸化物はCeOが被覆されたZnOであった。
[Example 4]
30 g of zinc oxide similar to Example 3 was sprayed with 5.4 g of an aqueous solution of 5.4% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Ltd., reagent) by spraying. The spray amount is 18% by mass with respect to zinc oxide, and is 0.5% by mass in terms of cerium oxide. Then, it baked at 700 degreeC for 8 hours in air | atmosphere. The resulting oxide was ZnO which CeO 2 is coated.
 得られた酸化セリウムで被覆された酸化亜鉛20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of zinc oxide coated with cerium oxide obtained, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polity A-550) were mixed, and a homogenizer was used for 15 minutes to obtain a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
[例5]
 例1で得られた酸化マンガン50gと9.7質量%の酢酸セリウム一水和物(関東化学社製、試薬)水溶液100gとをなす型フラスコに入れ、エバポレーターによりフラスコを回転させながら乾燥した。酢酸セリウム一水和物水溶液量は酸化マンガンに対して200質量%であり、酸化セリウム換算で10質量%とした。その後、大気下で700℃、8時間焼成した。得られた酸化物はCeOが被覆されたMnであった。
[Example 5]
It put into the type | mold flask which makes 50 g of manganese oxides obtained in Example 1 and 100 g of 9.7 mass% cerium acetate monohydrate (Kanto Chemical Co., Ltd. reagent) aqueous solution, and dried, rotating a flask with an evaporator. The amount of the cerium acetate monohydrate aqueous solution was 200% by mass with respect to manganese oxide, and was 10% by mass in terms of cerium oxide. Then, it baked at 700 degreeC for 8 hours in air | atmosphere. The obtained oxide was Mn 2 O 3 coated with CeO 2 .
 得られた酸化セリウムで被覆された酸化マンガン20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of manganese oxide coated with cerium oxide thus obtained, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polyty A-550) were mixed, and a homogenizer was used for 15 minutes to obtain a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
[例6]
 例1で得られた酸化マンガン50gと13.0質量%の酢酸セリウム一水和物(関東化学社製、試薬)水溶液150gとをなす型フラスコに入れ、エバポレーターによりフラスコを回転させながら乾燥した。酢酸セリウム一水和物水溶液量は酸化マンガンに対して300質量%であり、酸化セリウム換算で20質量%とした。その後、大気下で700℃、8時間焼成した。得られた酸化物はCeOが被覆されたMnであった。
[Example 6]
It put into the type | mold flask which makes 50 g of manganese oxides obtained in Example 1, and 150 g of 13.0 mass% cerium acetate monohydrate (product made from Kanto Chemical Co., Inc.) aqueous solution, It dried, rotating a flask with an evaporator. The amount of the cerium acetate monohydrate aqueous solution was 300% by mass with respect to manganese oxide, and was 20% by mass in terms of cerium oxide. Then, it baked at 700 degreeC for 8 hours in air | atmosphere. The obtained oxide was Mn 2 O 3 coated with CeO 2 .
 得られた酸化セリウムで被覆された酸化マンガン20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of manganese oxide coated with cerium oxide thus obtained, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polyty A-550) were mixed, and a homogenizer was used for 15 minutes to obtain a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
[例7]
 大気下で700℃、8時間焼成した酸化亜鉛(高純度化学社製、試薬)50gと9.7質量%の酢酸セリウム一水和物(関東化学社製、試薬)水溶液100gとをなす型フラスコに入れエバポレーターによりフラスコを回転させながら乾燥した。酢酸セリウム一水和物水溶液量は酸化亜鉛に対して200質量%であり、酸化セリウム換算で10質量%となる。その後、大気下で700℃、8時間焼成した。得られた酸化物はCeOが被覆されたZnOであった。
[Example 7]
A flask made of 50 g of zinc oxide (manufactured by High Purity Chemical Co., reagent) and 100 g of an aqueous solution of 9.7% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Ltd.) baked at 700 ° C. for 8 hours in the atmosphere. The flask was dried while rotating the flask with an evaporator. The amount of cerium acetate monohydrate aqueous solution is 200% by mass with respect to zinc oxide, and 10% by mass in terms of cerium oxide. Then, it baked at 700 degreeC for 8 hours in air | atmosphere. The resulting oxide was ZnO which CeO 2 is coated.
 得られた酸化セリウムで被覆された酸化亜鉛20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of zinc oxide coated with cerium oxide obtained, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polity A-550) were mixed, and a homogenizer was used for 15 minutes to obtain a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
[例8]
 大気下で700℃、8時間焼成した酸化亜鉛(高純度化学社製、試薬)50gと13.0質量%の酢酸セリウム一水和物(関東化学社製、試薬)水溶液150gとをなす型フラスコに入れエバポレーターによりフラスコを回転させながら乾燥した。酢酸セリウム一水和物水溶液量は酸化亜鉛に対して300質量%であり、酸化セリウム換算で20質量%となる。その後、大気下で700℃、8時間焼成した。得られた酸化物はCeO2が被覆されたZnOであった。
[Example 8]
A type flask comprising 50 g of zinc oxide (manufactured by High Purity Chemical Co., reagent) and 150 g of an aqueous solution of 13.0% by mass of cerium acetate monohydrate (manufactured by Kanto Chemical Co., Ltd.) baked in the atmosphere at 700 ° C. for 8 hours. The flask was dried while rotating the flask with an evaporator. The amount of the cerium acetate monohydrate aqueous solution is 300% by mass with respect to zinc oxide, and is 20% by mass in terms of cerium oxide. Thereafter, it was baked at 700 ° C. for 8 hours in the atmosphere. The obtained oxide was ZnO coated with CeO2.
 得られた酸化セリウムで被覆された酸化亜鉛20gと蒸留水378gと分散剤(ライオン社製、ポリティA-550)2gを混合し、ホモジナイザーを15分間かけて、研磨スラリーとした。研磨スラリーにおける砥粒濃度は5質量%とし、分散剤濃度は0.5質量%とした。 20 g of zinc oxide coated with cerium oxide obtained, 378 g of distilled water and 2 g of a dispersant (manufactured by Lion Corporation, Polity A-550) were mixed, and a homogenizer was used for 15 minutes to obtain a polishing slurry. The abrasive grain concentration in the polishing slurry was 5% by mass, and the dispersant concentration was 0.5% by mass.
 得られた研磨スラリーの体積基準メディアン径(D50)を例1と同様に測定した結果、およびpHを表1に示す。 The volume-based median diameter (D 50 ) of the obtained polishing slurry was measured in the same manner as in Example 1, and the pH is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)溶解試験
 1モル/Lの硫酸30mLと過酸化水素0.3gと、(1)の例2で得られた酸化セリウムで被覆された酸化マンガン、例4で得られた酸化セリウムで被覆された酸化亜鉛、または酸化セリウム(製品名A10、昭和電工社製)を30mgとを遠沈管に投入し、室温にて1時間回転架台で撹拌した。
(2) Dissolution test 30 mL of 1 mol / L sulfuric acid and 0.3 g of hydrogen peroxide, manganese oxide coated with cerium oxide obtained in Example 2 of (1), and coated with cerium oxide obtained in Example 4 30 mg of the prepared zinc oxide or cerium oxide (product name A10, Showa Denko KK) was put into a centrifuge tube, and stirred at room temperature for 1 hour on a rotating stand.
 撹拌後、遠心分離機(装置名:5220、久保田商事社製)を用いて、3500rpmで10分間遠心分離し、上澄みを除去、さらに蒸留水を投入して同じように遠心分離、上澄みの除去をおこなった。その後、80℃の恒温槽で3時間乾燥させた。乾燥後、各研磨砥粒の残留量を測定した。この値から、水溶液に溶解した研磨砥粒の割合(溶出量)を求めた。 After stirring, use a centrifuge (device name: 5220, manufactured by Kubota Shoji Co., Ltd.), centrifuge at 3500 rpm for 10 minutes, remove the supernatant, add distilled water, centrifuge and remove the supernatant in the same way. I did it. Then, it was dried in a constant temperature bath at 80 ° C. for 3 hours. After drying, the residual amount of each abrasive grain was measured. From this value, the ratio (elution amount) of abrasive grains dissolved in the aqueous solution was determined.
 すなわち、研磨砥粒の各種水溶液への溶出量は、研磨砥粒の各水溶液への添加量から、残留量を引いた値とし、百分率(%)にて表記した。その結果を表2に示す。 That is, the amount of polishing abrasive grains dissolved in various aqueous solutions was expressed as a percentage (%), with the amount of polishing abrasive grains added to each aqueous solution minus the residual amount. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、酸化マンガンまたは酸化亜鉛を母相粒子とし、該母相粒子を酸化セリウムで被覆して得られた研磨砥粒は、酸化セリウムと比較して、洗浄液に対する高い溶解性を示した。 As shown in Table 2, the abrasive grains obtained by using manganese oxide or zinc oxide as mother phase particles and coating the mother phase particles with cerium oxide have higher solubility in the cleaning liquid than cerium oxide. Indicated.
 この結果から、酸、アルカリ、酸化剤または還元剤を含む洗浄液に対して高い溶解性を示す酸化マンガン、酸化亜鉛を母相粒子とし、該母相粒子を酸化セリウムで被覆した研磨砥粒は、洗浄液による洗浄効果が高いことが示唆された。 From this result, the abrasive grains in which manganese oxide and zinc oxide showing high solubility in a cleaning solution containing acid, alkali, oxidizing agent or reducing agent are used as mother phase particles, and the mother phase particles are coated with cerium oxide, It was suggested that the cleaning effect by the cleaning solution is high.
(3)研磨試験
 (1)で得られた例1~8の研磨スラリーを用いて研磨試験を行った。実施例1では例2の研磨スラリー、実施例2では例4の研磨スラリー、比較例1では例1の研磨スラリー、比較例2では例3の研磨スラリー、実施例3では例5の研磨スラリー、実施例4では例6の研磨スラリー、実施例5では例7の研磨スラリー、実施例6では例8の研磨スラリーを用いた。
(3) Polishing Test A polishing test was performed using the polishing slurries of Examples 1 to 8 obtained in (1). Example 1 polishing slurry of Example 2, Example 2 polishing slurry of Example 4, Comparative Example 1 of Example 1 polishing slurry, Comparative Example 2 of Example 3 polishing slurry, Example 3 of Example 5 polishing slurry, Example 4 used the polishing slurry of Example 6, Example 5 used the polishing slurry of Example 7, and Example 6 used the polishing slurry of Example 8.
 被研磨物にはガラスを用い、研磨圧は12kPaとし、定盤回転数は40rpmとした。研磨機として12B片面研磨機(スピードファム社製)を用い、研磨パッドとしてFX8H-101U(フジボウ社製)を用いた。 Glass was used for the object to be polished, the polishing pressure was 12 kPa, and the platen rotation speed was 40 rpm. A 12B single-side polishing machine (manufactured by Speed Fam) was used as the polishing machine, and FX8H-101U (manufactured by Fujibow) was used as the polishing pad.
 研磨スラリーは100ml/分間で循環させ、20分間の研磨を行った。研磨前後の重量差から研磨速度(μm/分間)を算出した。その結果を表3に示す。 The polishing slurry was circulated at 100 ml / min and polished for 20 minutes. The polishing rate (μm / min) was calculated from the weight difference before and after polishing. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、酸化セリウムで母相粒子を被覆した研磨砥粒を含む研磨スラリーによりガラスを研磨した場合、母相粒子のみからなる研磨砥粒を含む研磨スラリーと比較して、研磨速度が高くなることが分かった。 As shown in Table 3, when glass is polished with a polishing slurry containing abrasive grains coated with matrix particles with cerium oxide, the polishing rate is compared with a polishing slurry containing abrasive grains consisting only of matrix particles. Was found to be high.
 また、酸化セリウムによる母相粒子の被覆量は酸化セリウム換算で0.1~25質量%とすることが好ましいことが分かった。 It was also found that the coating amount of the mother phase particles with cerium oxide is preferably 0.1 to 25% by mass in terms of cerium oxide.
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2011年9月9日付で出願された日本特許出願(特願2011-197379)に基づいており、その全体が引用により援用される。 Although the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. Note that this application is based on a Japanese patent application filed on September 9, 2011 (Japanese Patent Application No. 2011-197379), which is incorporated by reference in its entirety.
 本発明の研磨砥粒および研磨スラリーは、ハードディスクドライブ向けの磁気ディスク基板、半導体基板、フォトマスク基板およびディスプレイ基板などのガラス基板、レンズ並びにCCD向けブルーフィルタガラスおよびカバーガラスなどのガラス製品の製造における研磨工程に利用することができる。 The abrasive grains and polishing slurry of the present invention are used in the manufacture of glass products such as magnetic disk substrates for hard disk drives, glass substrates such as semiconductor substrates, photomask substrates and display substrates, lenses, and blue filter glasses and cover glasses for CCD It can be used for the polishing process.

Claims (11)

  1.  母相粒子に酸化セリウムが被覆された研磨砥粒。 Polishing abrasive grains in which matrix phase particles are coated with cerium oxide.
  2.  前記母相粒子が硫酸、塩酸、硝酸、スルファミン酸、リン酸、シュウ酸、酒石酸、クエン酸、ギ酸、グリコール酸、酢酸、アスコルビン酸、過酸化水素、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムおよび炭酸カリウムから選ばれる少なくとも1種の水溶液に溶解性である請求項1に記載の研磨砥粒。 The mother phase particles are sulfuric acid, hydrochloric acid, nitric acid, sulfamic acid, phosphoric acid, oxalic acid, tartaric acid, citric acid, formic acid, glycolic acid, acetic acid, ascorbic acid, hydrogen peroxide, ammonia, sodium hydroxide, potassium hydroxide, carbonic acid The abrasive grain according to claim 1, which is soluble in at least one aqueous solution selected from sodium and potassium carbonate.
  3.  前記母相粒子が酸化マンガンおよび酸化亜鉛からなる群より選ばれる少なくとも1種の酸化物を含む請求項1または2に記載の研磨砥粒。 The abrasive grain according to claim 1 or 2, wherein the matrix phase particles contain at least one oxide selected from the group consisting of manganese oxide and zinc oxide.
  4.  前記母相粒子に被覆された酸化セリウムが母相粒子に対して0.1質量%~25質量%である請求項1~3のいずれか1項に記載の研磨砥粒。 The abrasive grain according to any one of claims 1 to 3, wherein the cerium oxide coated on the matrix phase particles is 0.1 mass% to 25 mass% with respect to the matrix phase particles.
  5.  前記母相粒子に被覆された酸化セリウムが母相粒子に対して0.1質量%~20質量%である請求項1~4のいずれか1項に記載の研磨砥粒。 The polishing abrasive grain according to any one of claims 1 to 4, wherein the cerium oxide coated on the matrix phase particles is 0.1 mass% to 20 mass% with respect to the matrix phase particles.
  6.  比表面積が0.1~20m/gである請求項1~5のいずれか1項に記載の研磨砥粒。 The abrasive grain according to any one of claims 1 to 5, having a specific surface area of 0.1 to 20 m 2 / g.
  7.  請求項1~6のいずれか1項に記載の研磨砥粒を含む研磨スラリー。 A polishing slurry comprising the abrasive grains according to any one of claims 1 to 6.
  8.  以下の(1)~(3)の工程を順次含む、母相粒子に酸化セリウムが被覆された研磨砥粒の製造方法。
    (1)セリウム化合物を水に溶解させて、セリウム源水溶液を得る工程
    (2)工程(1)で得られたセリウム源水溶液を母相粒子に被覆し、セリウム源水溶液により被覆された母相粒子を得る工程
    (3)工程(2)で得られたセリウム源水溶液で被覆された母相粒子を焼成し、酸化セリウムにより被覆された母相粒子を得る工程
    A method for producing abrasive grains in which matrix particles are coated with cerium oxide, comprising the following steps (1) to (3) in sequence.
    (1) A step of obtaining a cerium source aqueous solution by dissolving a cerium compound in water (2) A mother phase particle coated with the cerium source aqueous solution obtained in step (1) and coated with the cerium source aqueous solution (3) A step of firing mother phase particles coated with the aqueous cerium source solution obtained in step (2) to obtain mother phase particles coated with cerium oxide
  9.  前記工程(2)においてセリウム源水溶液を母相粒子に噴霧し、セリウム源水溶液により被覆された母相粒子を得る請求項8に記載の研磨砥粒の製造方法。 The method for producing abrasive grains according to claim 8, wherein in the step (2), the cerium source aqueous solution is sprayed on the mother phase particles to obtain mother phase particles coated with the cerium source aqueous solution.
  10.  前記セリウム化合物が酢酸セリウム、硝酸セリウム、水酸化セリウム、硫酸セリウムからなる群より選ばれる少なくとも1種である請求項8または9に記載の研磨砥粒の製造方法。 The method for producing abrasive grains according to claim 8 or 9, wherein the cerium compound is at least one selected from the group consisting of cerium acetate, cerium nitrate, cerium hydroxide, and cerium sulfate.
  11.  請求項1~6のいずれか1項に記載の研磨砥粒または請求項7に記載の研磨スラリーを用いてガラスを研磨する工程を含むガラス製品の製造方法。 A method for producing a glass product, comprising a step of polishing glass using the abrasive grains according to any one of claims 1 to 6 or the polishing slurry according to claim 7.
PCT/JP2012/071349 2011-09-09 2012-08-23 Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products WO2013035545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-197379 2011-09-09
JP2011197379 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035545A1 true WO2013035545A1 (en) 2013-03-14

Family

ID=47831995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071349 WO2013035545A1 (en) 2011-09-09 2012-08-23 Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products

Country Status (3)

Country Link
JP (1) JPWO2013035545A1 (en)
TW (1) TW201321492A (en)
WO (1) WO2013035545A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049942A1 (en) * 2013-10-03 2015-04-09 三井金属鉱業株式会社 Abrasive material, method for producing same, and abrasive slurry containing same
WO2015098945A1 (en) * 2013-12-24 2015-07-02 堺化学工業株式会社 Cerium-oxide-coated zinc oxide particles, method for producing same, ultraviolet ray shielding agent, and cosmetic
JP2015155139A (en) * 2014-01-20 2015-08-27 信越化学工業株式会社 Manufacturing method of synthetic quartz glass substrate
JPWO2014034746A1 (en) * 2012-08-28 2016-08-08 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
WO2016158328A1 (en) * 2015-04-01 2016-10-06 三井金属鉱業株式会社 Abrasive, and abrasive slurry
US10696563B2 (en) 2014-02-07 2020-06-30 Sakai Chemical Industry Co., Ltd. Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170110174A (en) * 2013-06-28 2017-10-10 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Nickel coated diamond particles and method of making said particles
CN104673101A (en) * 2015-02-12 2015-06-03 柳州豪祥特科技有限公司 Preparation process of rare-earth polishing powder
WO2020021680A1 (en) * 2018-07-26 2020-01-30 日立化成株式会社 Slurry and polishing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206737A (en) * 1999-11-18 2001-07-31 Nippon Sheet Glass Co Ltd Glass substrate and its cleaning method
JP2003528447A (en) * 1999-11-23 2003-09-24 コーニング インコーポレイテッド Semiconductor treated silica soot polishing slurry method for integrated circuit microelectronics
JP2003297781A (en) * 2002-02-05 2003-10-17 Degussa Ag Aqueous dispersion liquid, its producing method and its use
WO2010139603A1 (en) * 2009-06-05 2010-12-09 Basf Se RASPBERRY-TYPE METAL OXIDE NANOSTRUCTURES COATED WITH CeO2 NANOPARTICLES FOR CHEMICAL MECHANICAL PLANARIZATION (CMP)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206737A (en) * 1999-11-18 2001-07-31 Nippon Sheet Glass Co Ltd Glass substrate and its cleaning method
JP2003528447A (en) * 1999-11-23 2003-09-24 コーニング インコーポレイテッド Semiconductor treated silica soot polishing slurry method for integrated circuit microelectronics
JP2003297781A (en) * 2002-02-05 2003-10-17 Degussa Ag Aqueous dispersion liquid, its producing method and its use
WO2010139603A1 (en) * 2009-06-05 2010-12-09 Basf Se RASPBERRY-TYPE METAL OXIDE NANOSTRUCTURES COATED WITH CeO2 NANOPARTICLES FOR CHEMICAL MECHANICAL PLANARIZATION (CMP)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014034746A1 (en) * 2012-08-28 2016-08-08 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
WO2015049942A1 (en) * 2013-10-03 2015-04-09 三井金属鉱業株式会社 Abrasive material, method for producing same, and abrasive slurry containing same
JP2015071715A (en) * 2013-10-03 2015-04-16 三井金属鉱業株式会社 Abradant, production method thereof, and abrasive slurry including the abradant
EP3053980A1 (en) * 2013-10-03 2016-08-10 Mitsui Mining & Smelting Co., Ltd Abrasive material, method for producing same, and abrasive slurry containing same
EP3053980A4 (en) * 2013-10-03 2017-05-17 Mitsui Mining & Smelting Co., Ltd Abrasive material, method for producing same, and abrasive slurry containing same
US9873824B2 (en) 2013-10-03 2018-01-23 Mitsui Mining & Smelting Co., Ltd. Abrasive material, method for producing same, and abrasive slurry containing same
WO2015098945A1 (en) * 2013-12-24 2015-07-02 堺化学工業株式会社 Cerium-oxide-coated zinc oxide particles, method for producing same, ultraviolet ray shielding agent, and cosmetic
JPWO2015098945A1 (en) * 2013-12-24 2017-03-23 堺化学工業株式会社 Cerium oxide-coated zinc oxide particles, method for producing the same, ultraviolet shielding agent, and cosmetics
JP2015155139A (en) * 2014-01-20 2015-08-27 信越化学工業株式会社 Manufacturing method of synthetic quartz glass substrate
US10696563B2 (en) 2014-02-07 2020-06-30 Sakai Chemical Industry Co., Ltd. Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same
WO2016158328A1 (en) * 2015-04-01 2016-10-06 三井金属鉱業株式会社 Abrasive, and abrasive slurry
JPWO2016158328A1 (en) * 2015-04-01 2017-09-14 三井金属鉱業株式会社 Abrasives and abrasive slurries

Also Published As

Publication number Publication date
TW201321492A (en) 2013-06-01
JPWO2013035545A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
WO2013035545A1 (en) Abrasive grains, manufacturing process therefor, polishing slurry and process for manufacturing glass products
KR101760529B1 (en) RASPBERRY-TYPE METAL OXIDE NANOSTRUCTURES COATED WITH CeO2 NANOPARTICLES FOR CHEMICAL MECHANICAL PLANARIZATION (CMP)
JP2001089749A (en) Composition for polishing
JP5441578B2 (en) Polishing liquid composition
JP2008527728A (en) Polishing slurry and method for chemical mechanical polishing
TWI576420B (en) A polishing composition, a polishing method, and a method for producing a sapphire substrate
KR20170099842A (en) Polishing composition, polishing method, and method for manufacturing ceramic component
TW201708492A (en) Composition for grinding, and method for grinding silicon substrate
JP6560155B2 (en) Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP2016088940A (en) Polishing agent particle and production method therefor, polishing agent slurry and polishing work method
WO2013161877A1 (en) Cleaning agent for alloy material, and method for producing alloy material
JP2016124915A (en) Polishing composition, polishing method and method for producing ceramic parts
JP6646062B2 (en) Polishing agent for synthetic quartz glass substrate, method for producing the same, and method for polishing synthetic quartz glass substrate
JP6936183B2 (en) Abrasives for synthetic quartz glass substrates and their manufacturing methods, and methods for polishing synthetic quartz glass substrates
JP6694653B2 (en) Polishing agent for synthetic quartz glass substrate, manufacturing method thereof, and polishing method for synthetic quartz glass substrate
JP2002180034A (en) Abrasive slurry and abrasive fine powder
JPH10172936A (en) Composition for polishing
JP2012219006A (en) Method for producing glass product
JPH10172934A (en) Composition for polishing
JP2001107028A (en) Abrasive material and abrasion process
JP2014118468A (en) Polishing abrasive grain and its manufacturing method, manufacturing method of polishing slurry and glass substrate
WO2013008639A1 (en) Process for producing glass product
KR102660018B1 (en) Abrasive for synthetic quartz glass substrate, manufacturing method thereof, and polishing method for synthetic quartz glass substrate
JP7074644B2 (en) A method for manufacturing abrasive particles for polishing a synthetic quartz glass substrate, and a method for polishing a synthetic quartz glass substrate.
JP6916192B2 (en) Polishing composition, polishing method using it, and manufacturing method of semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829531

Country of ref document: EP

Kind code of ref document: A1