JP2012186339A - Polishing liquid and polishing method of substrate using the same - Google Patents

Polishing liquid and polishing method of substrate using the same Download PDF

Info

Publication number
JP2012186339A
JP2012186339A JP2011048864A JP2011048864A JP2012186339A JP 2012186339 A JP2012186339 A JP 2012186339A JP 2011048864 A JP2011048864 A JP 2011048864A JP 2011048864 A JP2011048864 A JP 2011048864A JP 2012186339 A JP2012186339 A JP 2012186339A
Authority
JP
Japan
Prior art keywords
polishing
film
polishing liquid
substrate
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011048864A
Other languages
Japanese (ja)
Inventor
Toshio Takizawa
寿夫 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011048864A priority Critical patent/JP2012186339A/en
Publication of JP2012186339A publication Critical patent/JP2012186339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid which can enhance the polishing speed ratio of silicon oxide and silicon nitride of a polished film in the CMP technology for polishing the polished film formed on the surface of a substrate, and to provide a polishing method of a substrate using the polishing liquid.SOLUTION: The polishing liquid contains cerium oxide particles, a hydroxy acid compound and/or its salt, and water. In a state where a polished film formed on a substrate is pressed against the polishing cloth of a polishing surface plate, the substrate and the polishing surface plate are moved relatively while supplying the polishing liquid containing cerium oxide particles, a hydroxy acid compound and/or its salt, and water between the polished film and the polishing cloth thus polishing the polished film.

Description

本発明は、研磨液及びこの研磨液を用いた基板の研磨方法に関する。より詳細には、本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、層間絶縁膜、BPSG膜(ボロン、リンをドープした二酸化珪素膜)の平坦化工程、シャロートレンチ分離(以下、「STI」という。)の形成工程等において使用される、研磨液及びこの研磨液を用いた基板の研磨方法に関する。   The present invention relates to a polishing liquid and a method for polishing a substrate using the polishing liquid. More specifically, the present invention is a semiconductor element manufacturing technique, a planarization process of a substrate surface, in particular, a planarization process of an interlayer insulating film and a BPSG film (boron, phosphorus-doped silicon dioxide film), shallow trench isolation. The present invention relates to a polishing liquid and a substrate polishing method using the polishing liquid, which are used in the forming process (hereinafter referred to as “STI”).

現在のULSI半導体素子製造工程では、半導体素子の高密度・微細化のための加工技術が研究開発されている。その加工技術の一つであるCMP(ケミカルメカニカルポリッシング:化学機械研磨)技術は、半導体素子製造工程において、層間絶縁膜の平坦化、STI形成、プラグ及び埋め込み金属配線形成等を行う際に、必須の技術となってきている。   In the current ULSI semiconductor device manufacturing process, processing technology for high density and miniaturization of semiconductor devices has been researched and developed. CMP (Chemical Mechanical Polishing) technology, which is one of the processing technologies, is indispensable when performing planarization of interlayer insulation films, STI formation, plugs and buried metal wiring formation, etc. in the semiconductor device manufacturing process. Has become a technology.

従来、半導体素子製造工程において、酸化珪素膜等の無機絶縁膜はプラズマ−CVD(化学気相成長)、低圧−CVD(化学気相成長)等の方法で形成されている。この無機絶縁膜を平坦化するための化学機械研磨液として、フュームドシリカ系の研磨液を用いることが一般的に検討されている。フュームドシリカ系の研磨液は、四塩化珪素を熱分解する等の方法で粒成長させて得られた粒子が配合されたスラリのpHを調整することによって製造される。但し、この様なフュームドシリカ系の研磨液は、研磨速度が低いという技術課題がある。   Conventionally, in a semiconductor device manufacturing process, an inorganic insulating film such as a silicon oxide film is formed by a method such as plasma-CVD (chemical vapor deposition) or low-pressure CVD (chemical vapor deposition). As a chemical mechanical polishing liquid for planarizing the inorganic insulating film, it has been generally studied to use a fumed silica-based polishing liquid. The fumed silica-based polishing liquid is produced by adjusting the pH of a slurry containing particles obtained by grain growth by a method such as thermal decomposition of silicon tetrachloride. However, such a fumed silica-based polishing liquid has a technical problem that the polishing rate is low.

また、デザインルール0.25μm以降の世代では、集積回路内の素子分離にSTIが用いられている。STIでは、基板上に成膜した余分な酸化珪素膜を取り除くためにCMP技術が使用される。この場合、任意の深さにて研磨を停止させるために、酸化珪素膜の下に研磨速度の低いストッパ膜が形成される。ストッパ膜には、窒化珪素膜等が使用される。余分な酸化珪素膜を効率的に取り除くとともに、その後の研磨の進行を充分に抑制するには、酸化珪素膜とストッパ膜との研磨速度比が大きいことが望ましい。しかし、従来のコロイダルシリカ系の研磨液は、酸化珪素膜とストッパ膜との研磨速度比が3程度と小さく、STI用としては実用に耐える特性を有していない。   In the generations after the design rule 0.25 μm, STI is used for element isolation in the integrated circuit. In STI, CMP technology is used to remove an excess silicon oxide film formed on a substrate. In this case, in order to stop the polishing at an arbitrary depth, a stopper film having a low polishing rate is formed under the silicon oxide film. A silicon nitride film or the like is used for the stopper film. It is desirable that the polishing rate ratio between the silicon oxide film and the stopper film is large in order to efficiently remove the excess silicon oxide film and sufficiently suppress the subsequent polishing. However, the conventional colloidal silica-based polishing liquid has a polishing rate ratio between the silicon oxide film and the stopper film as small as about 3, and does not have a characteristic that can be practically used for STI.

一方、フォトマスクやレンズ等のガラス表面に対する研磨液として、酸化セリウム粒子を含む酸化セリウム研磨液が用いられている。酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低く、研磨に際し研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また、酸化セリウム研磨液は、フュームドシリカ系やコロイダルシリカ系等のシリカ研磨液に比べ、研磨速度が速い利点がある。   On the other hand, a cerium oxide polishing liquid containing cerium oxide particles is used as a polishing liquid for glass surfaces such as photomasks and lenses. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are difficult to scratch on the polished surface during polishing, and thus are useful for finish mirror polishing. Further, the cerium oxide polishing liquid has an advantage that the polishing rate is faster than the silica polishing liquid such as fumed silica type or colloidal silica type.

酸化セリウム研磨液として、下記特許文献1には、高純度酸化セリウム砥粒を用いた半導体用CMP研磨液が記載されている。また、下記特許文献2には、酸化セリウム研磨液の研磨速度を制御し、グローバルな平坦性を向上させるために添加剤を加える技術が記載されている。   As a cerium oxide polishing liquid, the following Patent Document 1 describes a semiconductor CMP polishing liquid using high-purity cerium oxide abrasive grains. Patent Document 2 below describes a technique of adding an additive to control the polishing rate of a cerium oxide polishing liquid and improve global flatness.

特開平10−106994号公報Japanese Patent Laid-Open No. 10-106994 特許第3278532号公報Japanese Patent No. 3278532

しかしながら、配線やSTIのデザインルールの微細化の進展に伴い、上記のような酸化セリウム研磨液に対して更なる平坦性の向上が求められている。そのためには、酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を大きくすることが求められている。   However, with the progress of miniaturization of design rules for wiring and STI, further improvement in flatness is required for the cerium oxide polishing liquid as described above. For this purpose, it is required to increase the polishing rate difference between the silicon oxide film and the silicon nitride film as the stopper film.

本発明は、上記実情に鑑みてなされたものであり、基板の表面に形成された被研磨膜を研磨するCMP技術において、被研磨膜である酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を大きく向上させることが可能な研磨液を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a CMP technique for polishing a film to be polished formed on the surface of a substrate, polishing of a silicon oxide film as a film to be polished and a silicon nitride film as a stopper film An object is to provide a polishing liquid capable of greatly improving the speed difference.

本発明は、酸化セリウム粒子と、ヒドロキシ酸化合物及びヒドロキシ酸化合物の塩からなる群より選ばれる少なくとも一種の添加剤と、水とを含有してなる研磨液を提供する。   The present invention provides a polishing liquid comprising cerium oxide particles, at least one additive selected from the group consisting of hydroxy acid compounds and salts of hydroxy acid compounds, and water.

本発明の研磨液によれば、基板の表面に形成された被研磨膜(STI膜)を研磨するCMP技術において、被研磨膜である酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を向上させることができる。   According to the polishing liquid of the present invention, in a CMP technique for polishing a film to be polished (STI film) formed on the surface of a substrate, a polishing rate difference between a silicon oxide film as a film to be polished and a silicon nitride film as a stopper film. Can be improved.

本発明の研磨液は、ヒドロキシ酸化合物としてリンゴ酸、クエン酸、乳酸、グリコール酸、グリセリン酸、酒石酸、サリチル酸からなる群より選ばれる少なくとも一種を含有することが好ましい。この場合、被研磨膜である酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を更に向上させることができる。   The polishing liquid of the present invention preferably contains at least one selected from the group consisting of malic acid, citric acid, lactic acid, glycolic acid, glyceric acid, tartaric acid, and salicylic acid as the hydroxy acid compound. In this case, the polishing rate difference between the silicon oxide film as the film to be polished and the silicon nitride film as the stopper film can be further improved.

なお、前記ヒドロキシ酸におけるヒドロキシル基は、フェノール性のヒドロキシル基ではないことが好ましい。   The hydroxyl group in the hydroxy acid is preferably not a phenolic hydroxyl group.

ヒドロキシ酸化合物の含有量は、研磨液全質量基準で0.0001〜5質量%であることが好ましい。   The content of the hydroxy acid compound is preferably 0.0001 to 5% by mass based on the total mass of the polishing liquid.

また、本発明の研磨液は、アルコール化合物を含有しないことが好ましい。   Moreover, it is preferable that the polishing liquid of the present invention does not contain an alcohol compound.

本発明の研磨液は、酸化セリウム粒子及び水を含む第1の液と、添加剤及び水を含む第2の液とに構成成分を分けた二液式研磨液として保存してもよい。   The polishing liquid of the present invention may be stored as a two-part polishing liquid in which constituent components are divided into a first liquid containing cerium oxide particles and water and a second liquid containing an additive and water.

また、本発明は、被研磨膜が形成された基板の該被研磨膜を研磨定盤の研磨布に押圧した状態で、本発明の研磨液を被研磨膜と研磨布との間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する、基板の研磨方法を提供する。   Further, the present invention provides the polishing liquid of the present invention between the film to be polished and the polishing cloth in a state where the film to be polished of the substrate on which the film to be polished is pressed against the polishing cloth of the polishing platen. Accordingly, a substrate polishing method is provided in which a film to be polished is polished by relatively moving a substrate and a polishing surface plate.

本発明の基板の研磨方法によれば、本発明の研磨液を用いることにより、基板の表面に形成された被研磨膜(例えばSTI膜)を研磨するCMP技術において、被研磨膜である酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を向上させることができる。   According to the substrate polishing method of the present invention, in the CMP technique for polishing a film to be polished (for example, an STI film) formed on the surface of the substrate by using the polishing liquid of the present invention, silicon oxide that is the film to be polished The polishing rate difference between the film and the silicon nitride film as the stopper film can be improved.

本発明によれば、基板の表面に形成された被研磨膜(例えばSTI膜)を研磨するCMP技術において、被研磨膜である酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を向上させることが可能な研磨液及びこの研磨液を用いた基板の研磨方法を提供することができる。   According to the present invention, in a CMP technique for polishing a film to be polished (for example, an STI film) formed on the surface of a substrate, the polishing rate difference between a silicon oxide film as a film to be polished and a silicon nitride film as a stopper film is improved. And a polishing method for a substrate using the polishing liquid.

以下、本発明の実施形態について詳細に説明する。本発明に係る研磨液は、酸化セリウム粒子と、添加剤と、水とを含有する。以下、本発明に係る研磨液に含まれる各成分について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail. The polishing liquid according to the present invention contains cerium oxide particles, an additive, and water. Hereinafter, each component contained in the polishing liquid according to the present invention will be described in detail.

(酸化セリウム粒子)
酸化セリウム粒子としては、特に制限はなく、公知のものを使用することができる。一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩等のセリウム化合物を酸化することによって得られる。酸化セリウム粒子を作製する方法としては、焼成又は過酸化水素等による酸化法が挙げられる。
(Cerium oxide particles)
There is no restriction | limiting in particular as a cerium oxide particle, A well-known thing can be used. In general, cerium oxide is obtained by oxidizing a cerium compound such as carbonate, nitrate, sulfate, or oxalate. Examples of the method for producing the cerium oxide particles include firing or oxidation using hydrogen peroxide.

テトラエトキシシラン(以下、「TEOS」という。)をSi源に用いるTEOS−CVD法等で形成される酸化珪素膜の研磨に酸化セリウム粒子を使用する場合、酸化セリウム粒子の結晶子径(結晶子の直径)が大きく、かつ結晶歪みが少ない程、即ち結晶性が良い程、高速研磨が可能であるが、被研磨膜に研磨傷が入りやすい傾向がある。このような観点から、酸化セリウム粒子は、2個以上の結晶子から構成され、結晶粒界を有する粒子が好ましく、結晶子径が5〜300nmである粒子がより好ましい。   When cerium oxide particles are used for polishing a silicon oxide film formed by TEOS-CVD using tetraethoxysilane (hereinafter referred to as “TEOS”) as a Si source, the crystallite diameter (crystallite) of the cerium oxide particles The larger the diameter) and the smaller the crystal distortion, that is, the better the crystallinity, the faster the polishing is possible, but there is a tendency that polishing scratches are likely to enter the film to be polished. From this point of view, the cerium oxide particles are preferably composed of two or more crystallites, particles having a crystal grain boundary, and more preferably particles having a crystallite diameter of 5 to 300 nm.

酸化セリウム粒子中のアルカリ金属及びハロゲン類の含有率は、半導体素子の製造に係る研磨に好適に用いられることから、10ppm以下であることが好ましい。   The content of alkali metal and halogens in the cerium oxide particles is preferably 10 ppm or less because it is suitably used for polishing in the manufacture of semiconductor elements.

酸化セリウム粒子の平均粒径は、1〜500nmであることが好ましく、1〜400nmであることがより好ましく、1〜300nmであることが更に好ましい。酸化セリウム粒子の平均粒径が1nm以上であれば、良好な研磨速度が得られる傾向があり、500nm以下であれば、被研磨膜に傷がつきにくくなる傾向がある。   The average particle diameter of the cerium oxide particles is preferably 1 to 500 nm, more preferably 1 to 400 nm, and still more preferably 1 to 300 nm. When the average particle size of the cerium oxide particles is 1 nm or more, a good polishing rate tends to be obtained, and when the average particle size is 500 nm or less, the film to be polished tends not to be damaged.

ここで、酸化セリウム粒子の平均粒径は、レーザ回折式粒度分布計(例えばMalvern社製、商品名:Master Sizer Microplus、屈折率:1.93、光源:He−Neレーザ、吸収0)で測定したD50の値(体積分布のメジアン径、累積中央値)を意味する。平均粒径の測定には、適切な濃度(例えば、He−Neレーザに対する測定時透過率(H)が60〜70%となる濃度)に研磨液を希釈したサンプルを用いる。また、酸化セリウム研磨液が、後述するように酸化セリウム粒子を水に分散させた酸化セリウムスラリと、添加剤を水に溶解させた添加液とに分けて保存されている場合は、酸化セリウムスラリを適切な濃度に希釈して測定することができる。   Here, the average particle diameter of the cerium oxide particles is measured with a laser diffraction particle size distribution analyzer (for example, manufactured by Malvern, trade name: Master Sizer Microplus, refractive index: 1.93, light source: He—Ne laser, absorption 0). Means the value of D50 (median diameter of volume distribution, cumulative median value). For the measurement of the average particle diameter, a sample in which the polishing liquid is diluted to an appropriate concentration (for example, a concentration at which the measurement transmittance (H) with respect to the He—Ne laser is 60 to 70%) is used. In addition, when the cerium oxide polishing liquid is stored separately as a cerium oxide slurry in which cerium oxide particles are dispersed in water and an additive solution in which an additive is dissolved in water, as will be described later, Can be diluted to an appropriate concentration and measured.

酸化セリウム粒子の含有量は、研磨液全質量基準で0.1〜20質量%が好ましく、0.1〜5質量%がより好ましく、0.5〜1.5質量%が更に好ましい。酸化セリウム粒子の含有量が0.1質量%以上であれば、良好な研磨速度が得られる傾向があり、20質量%以下であれば、粒子の凝集が抑制されて被研磨膜に傷がつきにくくなる傾向がある。   The content of the cerium oxide particles is preferably 0.1 to 20% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.5 to 1.5% by mass based on the total mass of the polishing liquid. If the content of the cerium oxide particles is 0.1% by mass or more, a good polishing rate tends to be obtained. If the content is 20% by mass or less, the aggregation of the particles is suppressed and the film to be polished is damaged. There is a tendency to become difficult.

(添加剤)
[ヒドロキシ酸化合物]
本発明に係る研磨液は、添加剤としてヒドロキシ酸化合物及び/又はその塩を含有する。これにより、被研磨膜である酸化珪素膜とストッパ膜である窒化珪素膜の研磨速度差を向上させることができる。この効果は、ヒドロキシ酸化合物と酸化セリウム粒子とを併用することにより、より効率的に得られる。
(Additive)
[Hydroxy acid compound]
The polishing liquid according to the present invention contains a hydroxy acid compound and / or a salt thereof as an additive. As a result, the polishing rate difference between the silicon oxide film as the film to be polished and the silicon nitride film as the stopper film can be improved. This effect can be obtained more efficiently by using a hydroxy acid compound and cerium oxide particles in combination.

ヒドロキシ酸化合物とは、アルコール性水酸基とカルボキシル基をいずれも少なくとも1個有する化合物である。このような化合物としては、リンゴ酸、クエン酸、乳酸、グリコール酸、グリセリン酸、酒石酸、サリチル酸からなる群より選ばれる少なくとも一種が好ましい。これらは1種類を単独で又は2種類以上を組み合わせて使用することができる。   A hydroxy acid compound is a compound having at least one alcoholic hydroxyl group and carboxyl group. Such a compound is preferably at least one selected from the group consisting of malic acid, citric acid, lactic acid, glycolic acid, glyceric acid, tartaric acid, and salicylic acid. These can be used alone or in combination of two or more.

ヒドロキシ酸化合物及び/又はその塩の含有量は、研磨液全質量基準で0.0001〜5質量%が好ましく、0.001〜2質量%がより好ましい。ヒドロキシ酸化合物の含有量が0.0001質量%以上であれば、酸化珪素膜と窒化珪素膜研磨速度差を容易に向上できる傾向があり、5質量%以下であれば、被研磨膜の研磨速度差が更に向上する傾向がある。   The content of the hydroxy acid compound and / or salt thereof is preferably 0.0001 to 5% by mass, more preferably 0.001 to 2% by mass based on the total mass of the polishing liquid. If the content of the hydroxy acid compound is 0.0001% by mass or more, the difference in polishing rate between the silicon oxide film and the silicon nitride film tends to be easily improved, and if it is 5% by mass or less, the polishing rate of the film to be polished The difference tends to improve further.

[その他の添加剤]
本発明に係る研磨液には、ヒドロキシ酸化合物及びその塩とは別の添加剤として水溶性高分子を使用することができる。このような水溶性高分子としては、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマー等が挙げられる。
[Other additives]
In the polishing liquid according to the present invention, a water-soluble polymer can be used as an additive different from the hydroxy acid compound and its salt. Examples of such water-soluble polymers include polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, polyamic acid ammonium salt And polycarboxylic acids such as polyamic acid sodium salt and polyglyoxylic acid and salts thereof; and vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyacrolein.

これら水溶性高分子の重量平均分子量は、500以上が好ましい。なお、重量平均分子量は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)で測定し、標準ポリオキシエチレン換算した値である。また、これら水溶性高分子の含有量は、研磨液全質量基準で0.01〜5質量%が好ましい。   These water-soluble polymers preferably have a weight average molecular weight of 500 or more. The weight average molecular weight is a value obtained by measuring with GPC (Gel Permeation Chromatography) and converting to standard polyoxyethylene. Further, the content of these water-soluble polymers is preferably 0.01 to 5% by mass based on the total mass of the polishing liquid.

(水)
水としては、特に制限されないが、脱イオン水、イオン交換水、超純水等が好ましい。水の含有量は、上記各含有成分の含有量の残部でよく、研磨液中に含有されていれば特に限定されない。なお、研磨液は、必要に応じて水以外の溶媒、例えばエタノール、酢酸、アセトン等の極性溶媒等を更に含有してもよい。
(water)
Although it does not restrict | limit especially as water, Deionized water, ion-exchange water, ultrapure water, etc. are preferable. The water content is not particularly limited as long as it is the remainder of the content of each of the above-described components and is contained in the polishing liquid. Note that the polishing liquid may further contain a solvent other than water, for example, a polar solvent such as ethanol, acetic acid, and acetone, if necessary.

(分散剤)
本発明に係る研磨液には、酸化セリウム粒子を分散させるための分散剤を用いることができる。分散剤としては、例えば、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、水溶性両性分散剤等が挙げられ、中でも、水溶性陰イオン性分散剤が好ましい。これらは、一種類を単独で又は二種類以上を組み合わせて使用することができる。
(Dispersant)
In the polishing liquid according to the present invention, a dispersant for dispersing cerium oxide particles can be used. Examples of the dispersant include a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, a water-soluble amphoteric dispersant, and the like, among others, a water-soluble anionic dispersant. Is preferred. These can be used individually by 1 type or in combination of 2 or more types.

水溶性陰イオン性分散剤としては、共重合成分としてアクリル酸を含む高分子及びその塩が好ましく、当該高分子の塩がより好ましい。共重合成分としてアクリル酸を含む高分子及びその塩としては、例えば、ポリアクリル酸及びそのアンモニウム塩、アクリル酸とメタクリル酸との共重合体及びそのアンモニウム塩、並びに、アクリル酸アミドとアクリル酸との共重合体及びそのアンモニウム塩等が挙げられる。   As the water-soluble anionic dispersant, a polymer containing acrylic acid as a copolymerization component and a salt thereof are preferable, and a salt of the polymer is more preferable. Polymers containing acrylic acid as a copolymerization component and salts thereof include, for example, polyacrylic acid and ammonium salts thereof, copolymers of acrylic acid and methacrylic acid and ammonium salts thereof, and acrylic amides and acrylic acids. And copolymers thereof and ammonium salts thereof.

その他の水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、特殊ポリカルボン酸型高分子分散剤等が挙げられる。   Examples of other water-soluble anionic dispersants include lauryl sulfate triethanolamine, lauryl ammonium sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and special polycarboxylic acid type polymer dispersants.

また、水溶性非イオン性分散剤としては、例えば、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2−ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。   Examples of the water-soluble nonionic dispersant include polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, and polyoxyethylene hydrogenated castor oil. , 2-hydroxyethyl methacrylate, alkyl alkanolamide and the like.

水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンアセテート、ステアリルアミンアセテート等が挙げられる。   Examples of the water-soluble cationic dispersant include polyvinyl pyrrolidone, coconut amine acetate, stearyl amine acetate and the like.

水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。   Examples of the water-soluble amphoteric dispersant include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine and the like.

分散剤の含有量は、酸化セリウム粒子の分散性を向上させて沈降を抑制し、被研磨膜の研磨傷を更に減らす観点から、研磨液全質量基準で0.01〜10質量%の範囲が好ましい。   From the viewpoint of improving the dispersibility of the cerium oxide particles to suppress sedimentation and further reducing the polishing scratches on the film to be polished, the content of the dispersant is in the range of 0.01 to 10% by mass based on the total mass of the polishing liquid. preferable.

分散剤の重量平均分子量は、特に制限はないが、100〜150000が好ましく、1000〜20000がより好ましい。分散剤の分子量が100以上であれば、酸化珪素膜又は窒化珪素膜等の被研磨膜を研磨するときに、良好な研磨速度が得られやすい傾向がある。分散剤の重量平均分子量が150000以下であれば、研磨液の保存安定性が低下しにくい傾向がある。なお、重量平均分子量は、GPCで測定し、標準ポリオキシエチレン換算した値である。   Although the weight average molecular weight of a dispersing agent does not have a restriction | limiting in particular, 100-150,000 are preferable and 1000-20000 are more preferable. When the molecular weight of the dispersant is 100 or more, a good polishing rate tends to be easily obtained when a film to be polished such as a silicon oxide film or a silicon nitride film is polished. If the weight average molecular weight of the dispersant is 150,000 or less, the storage stability of the polishing liquid tends to be difficult to decrease. The weight average molecular weight is a value measured by GPC and converted to standard polyoxyethylene.

本発明に係る研磨液を半導体素子の製造における研磨に使用する場合には、分散剤中のナトリウムイオン等のアルカリ金属、及びハロゲン、イオウの含有率は、10ppm以下であることが好ましい。   When the polishing liquid according to the present invention is used for polishing in the production of semiconductor elements, the content of alkali metals such as sodium ions, halogen, and sulfur in the dispersant is preferably 10 ppm or less.

(研磨液の調製・保存・研磨方法)
本発明に係る研磨液は、例えば、酸化セリウム粒子と水とを配合して粒子を分散させ、更にヒドロキシ酸化合物を添加することによって得られる。本発明に係る研磨液は、酸化セリウム粒子、ヒドロキシ酸化合物、水、及び、任意に水溶性高分子を含む一液式研磨液として保存してもよく、酸化セリウム粒子及び水を含む酸化セリウムスラリ(第1の液)と、ヒドロキシ酸化合物及び水を含む添加液(第2の液)とに構成成分を分けた二液式研磨液として保存してもよい。
(Preparation / storage / polishing method of polishing liquid)
The polishing liquid according to the present invention can be obtained, for example, by blending cerium oxide particles and water to disperse the particles, and further adding a hydroxy acid compound. The polishing liquid according to the present invention may be stored as a one-part polishing liquid containing cerium oxide particles, a hydroxy acid compound, water, and optionally a water-soluble polymer, and a cerium oxide slurry containing cerium oxide particles and water. You may preserve | save as a 2 component type polishing liquid which divided | segmented the structural component into (1st liquid) and the addition liquid (2nd liquid) containing a hydroxy acid compound and water.

なお、二液式研磨液の場合は、分散剤は酸化セリウムスラリに含まれることが好ましい。ヒドロキシ酸化合物以外の添加剤は、酸化セリウムスラリと添加液のいずれに含まれてもよいが、酸化セリウム粒子の分散安定性に影響がない点で、添加液に含まれることが好ましい。   In the case of a two-component polishing liquid, the dispersant is preferably contained in the cerium oxide slurry. Additives other than the hydroxy acid compound may be included in either the cerium oxide slurry or the additive liquid, but are preferably included in the additive liquid in that the dispersion stability of the cerium oxide particles is not affected.

酸化セリウムスラリと添加液とを分けた二液式研磨液として保存する場合、これら二液の配合を任意に変えることにより平坦化特性と研磨速度の調整が可能となる。二液式研磨液を用いて研磨する場合、酸化セリウムスラリ及び添加液をそれぞれ別の配管で送液し、これらの配管を供給配管出口の直前で合流させて両液を混合して研磨定盤上に供給する方法や、研磨直前に酸化セリウムスラリと添加液とを混合する方法を用いることができる。   When storing as a two-component polishing liquid in which the cerium oxide slurry and the additive liquid are separated, the planarization characteristics and the polishing rate can be adjusted by arbitrarily changing the combination of these two liquids. When polishing with a two-part polishing liquid, the cerium oxide slurry and additive liquid are sent through separate pipes, and these pipes are joined just before the outlet of the supply pipe to mix both liquids. A method of supplying the cerium oxide slurry and an additive solution immediately before polishing can be used.

本発明に係る研磨液は、所望のpHに調整して研磨に供することができる。pH調整剤としては特に制限はないが、アルカリ金属類、アンモニア水、酸成分が挙げられる。研磨液が半導体研磨に使用される場合には、アルカリ金属類よりも、アンモニア水、酸成分が好適に使用される。pH調整剤としては、予めアンモニアで部分的に中和された水溶性高分子のアンモニウム塩を使用することができる。   The polishing liquid according to the present invention can be adjusted to a desired pH and used for polishing. Although there is no restriction | limiting in particular as a pH adjuster, Alkali metals, ammonia water, and an acid component are mentioned. When the polishing liquid is used for semiconductor polishing, ammonia water and an acid component are preferably used rather than alkali metals. As the pH adjuster, an ammonium salt of a water-soluble polymer that has been partially neutralized with ammonia in advance can be used.

本発明の研磨液のpHは3〜12の範囲であることが好ましい。上記範囲であることにより研磨液の保存安定性が向上する傾向があり、被研磨膜の傷の発生数が減少する傾向がある。このような観点で、pHとしては4以上であることがより好ましく、5以上であることが更に好ましく、5.5以上であることが特に好ましく、6以上であることが極めて好ましい。また、同様の観点でpHとしては、11以下であることがより好ましく、10以下であることが更に好ましく、9以下であることが特に好ましく、8以下であることが極めて好ましい。研磨液のpHは、pHメータ(例えば、横河電機株式会社製、商品名:Model PH81)で測定することができる。例えば、標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性りん酸塩pH緩衝液pH:6.86(25℃))を用いて2点校正した後、電極を研磨液に入れて、2分以上経過して安定した後の値を測定する。   The pH of the polishing liquid of the present invention is preferably in the range of 3-12. By being in the above range, the storage stability of the polishing liquid tends to be improved, and the number of scratches on the film to be polished tends to decrease. From this point of view, the pH is more preferably 4 or more, further preferably 5 or more, particularly preferably 5.5 or more, and extremely preferably 6 or more. From the same viewpoint, the pH is more preferably 11 or less, still more preferably 10 or less, particularly preferably 9 or less, and extremely preferably 8 or less. The pH of the polishing liquid can be measured with a pH meter (for example, Yokogawa Electric Corporation, trade name: Model PH81). For example, after calibrating two points using a standard buffer solution (phthalate pH buffer solution pH: 4.21 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.)), the electrode Is measured in the polishing liquid after 2 minutes or more has elapsed and stabilized.

本発明に係る基板の研磨方法は、被研磨膜が形成された基板の被研磨膜を研磨定盤の研磨布に押圧した状態で、上記研磨液を被研磨膜と研磨布との間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する。   In the method for polishing a substrate according to the present invention, the polishing liquid is supplied between the film to be polished and the polishing cloth in a state where the film to be polished of the substrate on which the film to be polished is pressed against the polishing cloth of the polishing surface plate. Meanwhile, the film to be polished is polished by relatively moving the substrate and the polishing surface plate.

基板としては、半導体素子製造に係る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に無機絶縁が形成された基板が挙げられる。そして、被研磨膜としては、例えば酸化珪素膜、あるいは窒化珪素膜及び酸化珪素膜の複合膜等の無機絶縁膜が挙げられる。このような半導体基板上に形成された無機絶縁膜を、本発明に係る研磨液で研磨することによって、無機絶縁膜表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。また、本発明に係る研磨液は、シャロートレンチ分離にも使用できる。   As the substrate, a substrate related to semiconductor element manufacture, for example, a semiconductor substrate in which a circuit element and a wiring pattern are formed, a substrate in which inorganic insulation is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element is formed, and the like. Can be mentioned. Examples of the film to be polished include an inorganic insulating film such as a silicon oxide film or a composite film of a silicon nitride film and a silicon oxide film. By polishing the inorganic insulating film formed on such a semiconductor substrate with the polishing liquid according to the present invention, unevenness on the surface of the inorganic insulating film can be eliminated, and the entire surface of the semiconductor substrate can be made smooth. The polishing liquid according to the present invention can also be used for shallow trench isolation.

以下、無機絶縁膜が形成された半導体基板の場合を例に挙げて、基板の研磨方法を更に詳細に説明する。   Hereinafter, the method for polishing a substrate will be described in more detail by taking the case of a semiconductor substrate on which an inorganic insulating film is formed as an example.

研磨装置としては、半導体基板等の被研磨膜を有する基板を保持するホルダーと、回転数が変更可能なモータ等が取り付けてあり、研磨布(パッド)を貼り付け可能な研磨定盤と、を有する一般的な研磨装置が使用できる。研磨装置としては、例えば、株式会社荏原製作所製、商品名:EPO−111等を使用できる。   As a polishing apparatus, a holder for holding a substrate having a film to be polished such as a semiconductor substrate, a polishing platen to which a motor capable of changing the number of rotations and the like, and a polishing cloth (pad) can be attached, A general polishing apparatus can be used. As a polishing apparatus, for example, trade name: EPO-111 manufactured by Ebara Corporation can be used.

研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等を特に制限なく使用できる。また、研磨布には、研磨液が溜まるような溝加工が施されていることが好ましい。   As the polishing cloth, a general nonwoven fabric, foamed polyurethane, porous fluororesin and the like can be used without particular limitation. Moreover, it is preferable that the polishing cloth is subjected to groove processing so that the polishing liquid is accumulated.

研磨条件に制限はないが、定盤の回転速度は、半導体基板が飛び出さないように200回転/分以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は、研磨後に傷が発生しないように100kPa以下が好ましい。研磨している間は、研磨布に研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。   The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rotations / minute or less so that the semiconductor substrate does not pop out, and the pressure (working load) applied to the semiconductor substrate is scratched after polishing. 100 kPa or less is preferable. During polishing, the polishing liquid is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落として、乾燥させることが好ましい。   The semiconductor substrate after polishing is preferably washed in running water, and then dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.

このように被研磨膜である無機絶縁膜を研磨液で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面が得られる。平坦化されたシャロートレンチを形成した後は、無機絶縁膜の上にアルミニウム配線を形成し、その配線間及び配線上に再度無機絶縁膜を形成後、研磨液を用いて当該無機絶縁膜を研磨して平滑な面を得る。この工程を所定数繰り返すことにより、所望の層数を有する半導体基板を製造することができる。   By polishing the inorganic insulating film, which is the film to be polished, with the polishing liquid in this way, surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate. After the planarized shallow trench is formed, an aluminum wiring is formed on the inorganic insulating film, an inorganic insulating film is formed again between the wirings and on the wiring, and then the inorganic insulating film is polished with a polishing liquid. To obtain a smooth surface. By repeating this step a predetermined number of times, a semiconductor substrate having a desired number of layers can be manufactured.

本発明に係る研磨液により研磨される無機絶縁膜としては、例えば酸化珪素膜、窒化珪素膜が挙げられる。酸化珪素膜は、リン、ホウ素等の元素がドープされていても良い。無機絶縁膜の作製方法としては、低圧CVD法、プラズマCVD法等が挙げられる。   Examples of the inorganic insulating film polished by the polishing liquid according to the present invention include a silicon oxide film and a silicon nitride film. The silicon oxide film may be doped with an element such as phosphorus or boron. As a method for manufacturing the inorganic insulating film, a low pressure CVD method, a plasma CVD method, or the like can be given.

低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を、400℃以下の低温で行うことにより酸化珪素膜が得られる。場合によっては、CVDにより得られた酸化珪素膜は、1000℃又はそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るために、酸化珪素膜にリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。 The silicon oxide film formation by the low pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. A silicon oxide film can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C. or lower. In some cases, the silicon oxide film obtained by CVD is heat-treated at a temperature of 1000 ° C. or lower. In order to planarize the surface by high-temperature reflow, when doping silicon: P with phosphorus: P, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas.

プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いるTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は、250〜400℃、反応圧力は、67〜400Paが好ましい。 The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. As the reaction gas, a TEOS-O-based gas (TEOS-plasma CVD) using SiH 4 -N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source and tetraethoxysilane (TEOS) as a Si source. Law). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa.

低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiHCl、窒素源としてアンモニア:NHを用いる。このSiHCl−NH系酸化反応を、900℃の高温で行わせることにより得られる。プラズマCVD法による窒化珪素膜形成は、反応ガスとしては、Si源としてSiH、窒素源としてNHを用いるSiH−NH系ガスが挙げられる。基板温度は、300〜400℃が好ましい。 Silicon nitride film formation by the low pressure CVD method uses dichlorosilane: SiH 2 Cl 2 as a Si source and ammonia: NH 3 as a nitrogen source. This SiH 2 Cl 2 —NH 3 -based oxidation reaction can be obtained by carrying out at a high temperature of 900 ° C. Silicon nitride film formed by plasma CVD method, as the reaction gas, SiH 4 as an Si source, SiH 4 -NH 3 series gas using NH 3 and the like as a nitrogen source. The substrate temperature is preferably 300 to 400 ° C.

本発明に係る研磨液及び基板の研磨方法は、半導体基板に形成された無機絶縁膜だけでなく、各種半導体装置の製造プロセス等にも適用することができる。本発明に係る研磨液及び基板の研磨方法は、例えば、所定の配線を有する配線板に形成される酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する膜、フォトマスク、レンズ、プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路、光スイッチング素子、光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨することにも適用することができる。   The polishing liquid and substrate polishing method according to the present invention can be applied not only to an inorganic insulating film formed on a semiconductor substrate but also to manufacturing processes of various semiconductor devices. The polishing liquid and the substrate polishing method according to the present invention include, for example, a silicon oxide film formed on a wiring board having predetermined wiring, an inorganic insulating film such as glass and silicon nitride, polysilicon, Al, Cu, Ti, and TiN. , W, Ta, TaN, etc., optical glass such as photomask, lens, prism, etc., inorganic conductive film such as ITO, optical integrated circuit composed of glass and crystalline material, optical switching element, optical waveguide Polishing optical fiber end faces, scintillator and other optical single crystals, solid state laser single crystals, blue laser LED sapphire substrates, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, etc. Can also be applied.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these Examples.

(酸化セリウム粉末の作製)
市販の炭酸セリウム水和物:40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法で行ったところ、酸化セリウムであることを確認した。得られた酸化セリウム粉末:20kgを、ジェットミルを用いて乾式粉砕し、粉末状の酸化セリウムを得た。
(Production of cerium oxide powder)
Commercially available cerium carbonate hydrate: 40 kg was placed in an alumina container and baked in air at 830 ° C. for 2 hours to obtain 20 kg of yellowish white powder. When the phase of this powder was identified by the X-ray diffraction method, it was confirmed to be cerium oxide. The obtained cerium oxide powder: 20 kg was dry pulverized using a jet mill to obtain powdered cerium oxide.

(酸化セリウムスラリの作製)
前記で作製した酸化セリウム:200gと、脱イオン水:795gとを混合し、ポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%)を5g添加して、攪拌しながら超音波分散を行い、酸化セリウム分散液を得た。超音波分散は、超音波周波数:400kHz、分散時間:20分で行った。
(Production of cerium oxide slurry)
200 g of the cerium oxide prepared above and 795 g of deionized water are mixed, 5 g of an aqueous solution of ammonium polyacrylate (weight average molecular weight: 8000, 40% by mass) is added, and ultrasonic dispersion is performed with stirring. A cerium oxide dispersion was obtained. The ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 20 minutes.

その後、1リットル容器(高さ:170mm)に1kgの酸化セリウム分散液を入れて静置し、沈降分級を行なった。分級時間:15時間後、容器底からの高さ:10mm以上の上澄みをポンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、次いで固形分濃度が5質量%になるように、脱イオン水で希釈して酸化セリウムスラリを得た。   Thereafter, 1 kg of a cerium oxide dispersion was placed in a 1 liter container (height: 170 mm) and allowed to stand to perform sedimentation classification. Classification time: After 15 hours, the height from the bottom of the container: 10 mm or more of the supernatant was pumped up. The obtained supernatant cerium oxide dispersion was then diluted with deionized water to obtain a cerium oxide slurry so that the solid content concentration was 5% by mass.

酸化セリウムスラリ中における酸化セリウムの平均粒径(D50)を測定するため、He−Neレーザに対する測定時透過率(H)が60〜70%になるように前記スラリを希釈して、測定サンプルとした。この測定サンプルをレーザ回折式粒度分布計(Malvern社製、商品名:Master Sizer Microplus)を用い、屈折率:1.93、吸収:0として測定したところ、D50の値は200nmであった。   In order to measure the average particle diameter (D50) of cerium oxide in the cerium oxide slurry, the slurry was diluted so that the transmittance (H) at the time of measurement with respect to the He—Ne laser was 60 to 70%. did. When this measurement sample was measured using a laser diffraction particle size distribution analyzer (trade name: Master Sizer Microplus, manufactured by Malvern) as a refractive index of 1.93 and an absorption of 0, the value of D50 was 200 nm.

(実施例1)
ヒドロキシ酸化合物としてリンゴ酸:30gと、脱イオン水:250gとを混合し、アンモニア水(25質量%)を20g加えてpH:6.5に調整した。なお、pHは、pHメータ(横河電機株式会社製、商品名:Model PH81)を用いて、標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性りん酸塩pH緩衝液pH:6.86(25℃))を用いて2点校正した後、電極を測定対象に入れて、2分以上経過して安定した後の値を測定した。更に脱イオン水を加えて2700gのリンゴ酸添加液とした。
Example 1
As a hydroxy acid compound, 30 g of malic acid and 250 g of deionized water were mixed, and 20 g of aqueous ammonia (25% by mass) was added to adjust the pH to 6.5. The pH was measured using a pH meter (trade name: Model PH81, manufactured by Yokogawa Electric Corporation), standard buffer solution (phthalate pH buffer solution pH: 4.21 (25 ° C.), neutral phosphate. After calibrating two points using a pH buffer solution (pH: 6.86 (25 ° C.)), the electrode was placed in the measurement object, and the value after 2 minutes had passed and stabilized was measured. Further, deionized water was added to obtain 2700 g of malic acid additive solution.

ここに、前記の酸化セリウムスラリを300g添加して3000gの酸化セリウム研磨液(砥粒濃度:0.5質量%、ヒドロキシ酸化合物:1質量%)を作製した。   Here, 300 g of the cerium oxide slurry was added to prepare 3000 g of a cerium oxide polishing liquid (abrasive grain concentration: 0.5 mass%, hydroxy acid compound: 1 mass%).

また、前記と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は200nmであった。また、前記と同様にpHを測定したところ、pHは7.3であった。   In addition, a measurement sample was prepared in the same manner as described above, and the average particle size of the particles in the polishing liquid was measured with a laser diffraction particle size distribution meter. As a result, the value of D50 was 200 nm. Moreover, when pH was measured like the above, pH was 7.3.

(絶縁膜の研磨)
研磨試験ウエハとして、シリコン基板上に酸化珪素が形成された酸化珪素のブランケットウエハとシリコン基板上に窒化珪素が形成された窒化珪素膜ブランケットウエハ(直径:200mm)を用いた。
(Insulating film polishing)
As a polishing test wafer, a silicon oxide blanket wafer in which silicon oxide was formed on a silicon substrate and a silicon nitride film blanket wafer (diameter: 200 mm) in which silicon nitride was formed on a silicon substrate were used.

このような研磨試験ウエハの研磨には研磨装置(株式会社荏原製作所製、商品名:EPO−111)を用いた。基板取り付け用の吸着パッドを貼り付けたホルダーに研磨試験ウエハをセットした。研磨装置の直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨布(溝形状=パーフォレートタイプ:Rohm and Haas社製、商品名:IC1000)を貼り付けた。更に、前記の各ブランケットウエハを、被研磨膜である酸化珪素被膜面又は窒化珪素被膜面を下にして前記ホルダーを研磨定盤上に載せ、加工荷重を350gf/cm(34.3kPa)に設定した。 A polishing apparatus (trade name: EPO-111, manufactured by Ebara Corporation) was used for polishing the polishing test wafer. A polishing test wafer was set in a holder on which a suction pad for mounting the substrate was attached. A polishing cloth made of porous urethane resin (groove shape = perforate type: manufactured by Rohm and Haas, trade name: IC1000) was attached to a polishing surface plate having a diameter of 600 mm of a polishing apparatus. Further, each of the blanket wafers is placed on the polishing platen with the silicon oxide film surface or silicon nitride film surface as the film to be polished facing down, and the processing load is set to 350 gf / cm 2 (34.3 kPa). Set.

前記研磨定盤上に前記酸化セリウム研磨液を200ミリリットル/分の速度で滴下しながら、研磨定盤と研磨試験ウエハとをそれぞれ50回転/分で作動させて、60秒間研磨試験ウエハを研磨した。研磨後の研磨試験ウエハは、純水で良く洗浄後、乾燥した。   While dropping the cerium oxide polishing liquid on the polishing platen at a rate of 200 ml / min, the polishing platen and the polishing test wafer were each operated at 50 rpm to polish the polishing test wafer for 60 seconds. . The polished test wafer after polishing was thoroughly washed with pure water and then dried.

研磨後の研磨試験ウエハのそれぞれについて、酸化珪素膜及び窒化珪素膜の残膜厚を干渉式膜厚測定装置(ナノメトリクス社製、商品名:ナノスペック/AFT5100)を用いて測定した所、酸化珪素膜の研磨速度が3200Å/分、窒化珪素膜の研磨速度が32Å/分となり、酸化珪素膜と窒化珪素膜の研磨速度比は100と大きく、良好な結果が得られた。   For each polished test wafer after polishing, the residual film thickness of the silicon oxide film and the silicon nitride film was measured using an interference film thickness measuring apparatus (trade name: Nanospec / AFT5100, manufactured by Nanometrics Co., Ltd.). The polishing rate of the silicon film was 3200 分 / min, the polishing rate of the silicon nitride film was 32 Å / min, and the polishing rate ratio between the silicon oxide film and the silicon nitride film was as large as 100, and good results were obtained.

(実施例2)
ヒドロキシ酸化合物としてクエン酸:30gと、脱イオン水:243gを混合し、アンモニア水(25質量%)を27g加えてpH:6.5に調整し、更に脱イオン水を1100g加えてクエン酸添加液を作製した。
(Example 2)
As a hydroxy acid compound, 30 g of citric acid and 243 g of deionized water are mixed, 27 g of ammonia water (25% by mass) is added to adjust the pH to 6.5, and 1100 g of deionized water is further added to add citric acid. A liquid was prepared.

また、実施例1にて作製した酸化セリウムスラリ(固形分:5質量%):300gに脱イオン水を1200g添加して希釈し、酸化セリウム固形分濃度が1質量%の酸化セリウムスラリを作製した。実施例1と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は200nmであった。また、前記と同様にpHを測定したところ、pHは7.3であった。   Moreover, the cerium oxide slurry produced in Example 1 (solid content: 5 mass%): It diluted by adding 1200 g of deionized water to 300 g, and produced the cerium oxide slurry whose cerium oxide solid content concentration is 1 mass%. . A measurement sample was prepared in the same manner as in Example 1, and the average particle size of the particles in the polishing liquid was measured with a laser diffraction particle size distribution analyzer. As a result, the value of D50 was 200 nm. Moreover, when pH was measured like the above, pH was 7.3.

(絶縁膜の研磨)
上記で作製した1質量%の酸化セリウムスラリ:1000gとヒドロキシ酸添加液:1000gとを研磨直前に混合して酸化セリウム研磨液(固形分:0.5質量%)を得たこと以外は実施例1と同様にして、研磨試験ウエハの研磨を行った。酸化珪素膜の研磨速度が3340Å/分、窒化珪素膜の研磨速度が35Å/分となり、酸化珪素膜と窒化珪素膜の研磨速度比は95と大きく、良好な結果を得られた。
(Insulating film polishing)
Example except that 1% by mass of the cerium oxide slurry prepared above: 1000 g and hydroxy acid addition liquid: 1000 g were mixed immediately before polishing to obtain a cerium oxide polishing liquid (solid content: 0.5% by mass). In the same manner as in Example 1, the polishing test wafer was polished. The polishing rate of the silicon oxide film was 3340 Å / min, the polishing rate of the silicon nitride film was 35 Å / min, and the polishing rate ratio between the silicon oxide film and the silicon nitride film was as large as 95, and good results were obtained.

(比較例1)
ヒドロキシ酸化合物としてリンゴ酸の代わりにプロピオン酸:30gを用いた以外は実施例1と同様にして酸化セリウム研磨液を作製した。実施例1と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は200nmであった。また、前記と同様にpHを測定したところ、pHは7.3であった。実施例1と同様にして、研磨試験ウエハの研磨を行った。酸化珪素膜の研磨速度が1552Å/分、窒化珪素膜の研磨速度が120Å/分となり、酸化珪素膜と窒化珪素膜の研磨速度比は13と、ヒドロキシ酸化合物を含有する場合より小さかった。
(Comparative Example 1)
A cerium oxide polishing liquid was prepared in the same manner as in Example 1 except that 30 g of propionic acid was used in place of malic acid as the hydroxy acid compound. A measurement sample was prepared in the same manner as in Example 1, and the average particle size of the particles in the polishing liquid was measured with a laser diffraction particle size distribution analyzer. As a result, the value of D50 was 200 nm. Moreover, when pH was measured like the above, pH was 7.3. The polishing test wafer was polished in the same manner as in Example 1. The polishing rate of the silicon oxide film was 1552 Å / min, the polishing rate of the silicon nitride film was 120 Å / min, and the polishing rate ratio between the silicon oxide film and the silicon nitride film was 13, which was smaller than that containing the hydroxy acid compound.

(比較例2)
ポリアクリル酸アンモニウム水溶液(質量平均分子量:8000、40質量%):23gと、脱イオン水:2673gを混合し、アンモニア水(25質量%)を4g加えてpH:4.8に調整した。更に、実施例1にて作製した酸化セリウムスラリ(固形分:5質量%)を300g添加して、酸化セリウム研磨液(固形分:0.5質量%)を作製した。実施例1と同様に測定サンプルを調製して、研磨液中の粒子の平均粒径をレーザ回折式粒度分布計で測定した結果、D50の値は200nmであった。また、前記と同様にpHを測定したところ、pHは5.1であった。
(Comparative Example 2)
Ammonium polyacrylate aqueous solution (mass average molecular weight: 8000, 40% by mass): 23 g and deionized water: 2673 g were mixed, and 4 g of aqueous ammonia (25% by mass) was added to adjust the pH to 4.8. Furthermore, 300 g of the cerium oxide slurry prepared in Example 1 (solid content: 5% by mass) was added to prepare a cerium oxide polishing liquid (solid content: 0.5% by mass). A measurement sample was prepared in the same manner as in Example 1, and the average particle size of the particles in the polishing liquid was measured with a laser diffraction particle size distribution analyzer. As a result, the value of D50 was 200 nm. Moreover, when pH was measured similarly to the above, it was 5.1.

(絶縁膜の研磨)
上記で作製した研磨液を用いた以外は実施例1と同様にして研磨試験ウエハの研磨を行った。酸化珪素膜の研磨速度が2700Å/分、窒化珪素膜の研磨速度が68Å/分となり、酸化珪素膜と窒化珪素膜の研磨速度比は40とヒドロキシ酸化合物を含有する場合より小さかった。
(Insulating film polishing)
The polishing test wafer was polished in the same manner as in Example 1 except that the polishing liquid prepared above was used. The polishing rate of the silicon oxide film was 2700 Å / min, the polishing rate of the silicon nitride film was 68 Å / min, and the polishing rate ratio between the silicon oxide film and the silicon nitride film was 40, which was smaller than that containing the hydroxy acid compound.

Claims (6)

酸化セリウム粒子と、ヒドロキシ酸化合物及びヒドロキシ酸化合物の塩からなる群より選ばれる少なくとも一種の添加剤と、水とを含有してなる研磨液。   A polishing liquid comprising cerium oxide particles, at least one additive selected from the group consisting of hydroxy acid compounds and salts of hydroxy acid compounds, and water. 前記ヒドロキシ酸化合物が、リンゴ酸、クエン酸、乳酸、グリコール酸、グリセリン酸、酒石酸、サリチル酸からなる群より選ばれる少なくとも一種である請求項1に記載の研磨液。   The polishing liquid according to claim 1, wherein the hydroxy acid compound is at least one selected from the group consisting of malic acid, citric acid, lactic acid, glycolic acid, glyceric acid, tartaric acid, and salicylic acid. 前記添加剤の含有量が、研磨液全質量基準で0.0001〜5質量%である、請求項1又は2に記載の研磨液。   The polishing liquid according to claim 1 or 2, wherein the content of the additive is 0.0001 to 5% by mass based on the total mass of the polishing liquid. アルコール化合物を含有しない請求項1〜3のいずれかに記載の研磨液。   The polishing liquid according to claim 1, which does not contain an alcohol compound. 前記酸化セリウム粒子及び水を含む第1の液と、前記添加剤及び水を含む第2の液とに構成成分を分けた二液式研磨液として保存される、請求項1〜4のいずれかに記載の研磨液。   Any one of Claims 1-4 preserve | saved as a 2 component type polishing liquid which divided the component into the 1st liquid containing the said cerium oxide particle and water, and the 2nd liquid containing the said additive and water. The polishing liquid described in 1. 被研磨膜が形成された基板の該被研磨膜を研磨定盤の研磨布に押圧した状態で、請求項1〜5のいずれかに記載の研磨液を前記被研磨膜と前記研磨布との間に供給しながら、前記基板と前記研磨定盤とを相対的に動かして前記被研磨膜を研磨する、基板の研磨方法。   The polishing liquid according to any one of claims 1 to 5 is applied between the film to be polished and the polishing cloth in a state where the film to be polished of the substrate on which the film to be polished is formed is pressed against a polishing cloth of a polishing platen. A method for polishing a substrate, wherein the film to be polished is polished by relatively moving the substrate and the polishing surface plate while supplying the substrate.
JP2011048864A 2011-03-07 2011-03-07 Polishing liquid and polishing method of substrate using the same Pending JP2012186339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048864A JP2012186339A (en) 2011-03-07 2011-03-07 Polishing liquid and polishing method of substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048864A JP2012186339A (en) 2011-03-07 2011-03-07 Polishing liquid and polishing method of substrate using the same

Publications (1)

Publication Number Publication Date
JP2012186339A true JP2012186339A (en) 2012-09-27

Family

ID=47016129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048864A Pending JP2012186339A (en) 2011-03-07 2011-03-07 Polishing liquid and polishing method of substrate using the same

Country Status (1)

Country Link
JP (1) JP2012186339A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180887A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
WO2019181013A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
WO2019182061A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
US11492526B2 (en) 2018-07-26 2022-11-08 Showa Denko Materials Co., Ltd. Slurry, method for producing polishing liquid, and polishing method
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method
US11773291B2 (en) 2017-03-27 2023-10-03 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272601A (en) * 2008-04-09 2009-11-19 Hitachi Chem Co Ltd Abrasive, substrate polishing method using same, and solution and slurry for use in this method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272601A (en) * 2008-04-09 2009-11-19 Hitachi Chem Co Ltd Abrasive, substrate polishing method using same, and solution and slurry for use in this method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566150B2 (en) 2017-03-27 2023-01-31 Showa Denko Materials Co., Ltd. Slurry and polishing method
US11814548B2 (en) 2017-03-27 2023-11-14 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
US11773291B2 (en) 2017-03-27 2023-10-03 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
CN111868202B (en) * 2018-03-22 2021-12-21 昭和电工材料株式会社 Polishing liquid, polishing liquid set and polishing method
JP7067614B2 (en) 2018-03-22 2022-05-16 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
WO2019181016A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
CN111868202A (en) * 2018-03-22 2020-10-30 日立化成株式会社 Polishing liquid, polishing liquid set and polishing method
KR20200128742A (en) * 2018-03-22 2020-11-16 쇼와덴코머티리얼즈가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
KR20200128741A (en) * 2018-03-22 2020-11-16 쇼와덴코머티리얼즈가부시끼가이샤 Polishing liquid, polishing liquid set and polishing method
JPWO2019181013A1 (en) * 2018-03-22 2021-02-04 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
JPWO2019182063A1 (en) * 2018-03-22 2021-02-25 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
JPWO2019182061A1 (en) * 2018-03-22 2021-03-11 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
WO2019180887A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
JP7056728B2 (en) 2018-03-22 2022-04-19 昭和電工マテリアルズ株式会社 Polishing liquid, polishing liquid set and polishing method
WO2019181014A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
US11352523B2 (en) 2018-03-22 2022-06-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set and polishing method
WO2019181013A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
KR102589079B1 (en) 2018-03-22 2023-10-12 가부시끼가이샤 레조낙 Polishing liquid, polishing liquid set and polishing method
WO2019182061A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Polishing liquid, polishing liquid set, and polishing method
US11767448B2 (en) 2018-03-22 2023-09-26 Resonac Corporation Polishing liquid, polishing liquid set, and polishing method
WO2019182063A1 (en) * 2018-03-22 2019-09-26 日立化成株式会社 Slurry, slurry set and polishing method
US11572490B2 (en) 2018-03-22 2023-02-07 Showa Denko Materials Co., Ltd. Polishing liquid, polishing liquid set, and polishing method
KR102520409B1 (en) * 2018-03-22 2023-04-11 가부시끼가이샤 레조낙 Polishing fluid, polishing fluid set and polishing method
US11518920B2 (en) 2018-07-26 2022-12-06 Showa Denko Materials Co., Ltd. Slurry, and polishing method
US11505731B2 (en) 2018-07-26 2022-11-22 Showa Denko Materials Co., Ltd. Slurry and polishing method
US11499078B2 (en) 2018-07-26 2022-11-15 Showa Denko Materials Co., Ltd. Slurry, polishing solution production method, and polishing method
US11492526B2 (en) 2018-07-26 2022-11-08 Showa Denko Materials Co., Ltd. Slurry, method for producing polishing liquid, and polishing method

Similar Documents

Publication Publication Date Title
JP5510574B2 (en) Polishing liquid and substrate polishing method using the polishing liquid
JP4983603B2 (en) Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same
KR101419156B1 (en) Polishing liquid for cmp and polishing method using the same
JP5655879B2 (en) CMP polishing agent and substrate polishing method
JP2012186339A (en) Polishing liquid and polishing method of substrate using the same
JP2010095650A (en) Abrasives composition and method for polishing substrates using the same
JP2010272733A (en) Abrasive and polishing method of substrate using the abrasive
JP2015137350A (en) Polishing liquid and polishing method using the same
JP2014027146A (en) Polishing solution and substrate polishing method using polishing solution
JP4491857B2 (en) CMP polishing agent and substrate polishing method
JP6620590B2 (en) Polishing liquid and polishing method
JP2005286160A (en) Cmp polishing agent and polishing method of substrate
JP2011243789A (en) Polishing solution for cmp, and polishing method using the same
WO2018100686A1 (en) Slurry, polishing liquid, method for producing said slurry, method for producing said polishing liquid, and method for polishing substrate
JP2017152577A (en) Polishing liquid and polishing method
JP2002134444A (en) Cmp abrasive and method of polishing substrate
JP2011233748A (en) Substrate polishing method
JP2006041034A (en) Cmp abrasive and polishing method of substrate
JP2003347245A (en) Cmp polishing agent for semiconductor insulating film and method of polishing substrate
JP2002203819A (en) Cmp abrasive and method for polishing substrate
JP2006036963A (en) Cmp abrasive and polishing process of substrate
JP2006041033A (en) Cmp abrasive and polishing method of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150806