JPWO2019182061A1 - Polishing liquid, polishing liquid set and polishing method - Google Patents

Polishing liquid, polishing liquid set and polishing method Download PDF

Info

Publication number
JPWO2019182061A1
JPWO2019182061A1 JP2020507899A JP2020507899A JPWO2019182061A1 JP WO2019182061 A1 JPWO2019182061 A1 JP WO2019182061A1 JP 2020507899 A JP2020507899 A JP 2020507899A JP 2020507899 A JP2020507899 A JP 2020507899A JP WO2019182061 A1 JPWO2019182061 A1 JP WO2019182061A1
Authority
JP
Japan
Prior art keywords
polishing
mass
liquid
abrasive grains
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020507899A
Other languages
Japanese (ja)
Other versions
JP7056728B2 (en
Inventor
貴彬 松本
貴彬 松本
友洋 岩野
友洋 岩野
智康 長谷川
智康 長谷川
友美 久木田
友美 久木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/011464 external-priority patent/WO2019180887A1/en
Priority claimed from PCT/JP2018/028105 external-priority patent/WO2020021680A1/en
Priority claimed from PCT/JP2018/035480 external-priority patent/WO2019181016A1/en
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2019182061A1 publication Critical patent/JPWO2019182061A1/en
Application granted granted Critical
Publication of JP7056728B2 publication Critical patent/JP7056728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Abstract

砥粒と、ヒドロキシ酸と、水酸基及びアミド基からなる群より選ばれる少なくとも一種を有する高分子化合物と、液状媒体と、を含有し、前記砥粒のゼータ電位が正であり、前記高分子化合物の重量平均分子量が3000以上である、研磨液。 The polymer compound contains an abrasive grain, a hydroxy acid, a polymer compound having at least one selected from the group consisting of a hydroxyl group and an amide group, and a liquid medium, and the zeta potential of the abrasive grains is positive. A polishing liquid having a weight average molecular weight of 3000 or more.

Description

本発明は、研磨液、研磨液セット及び研磨方法に関する。 The present invention relates to a polishing liquid, a polishing liquid set, and a polishing method.

近年の半導体素子の製造工程では、高密度化及び微細化のための加工技術の重要性がますます高まっている。加工技術の一つであるCMP(ケミカル・メカニカル・ポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、シャロートレンチ分離(シャロー・トレンチ・アイソレーション。以下「STI」という。)の形成、プリメタル絶縁材料又は層間絶縁材料の平坦化、プラグ又は埋め込み金属配線の形成等に必須の技術となっている。 In recent years, in the manufacturing process of semiconductor devices, the importance of processing technology for high density and miniaturization is increasing. CMP (Chemical Mechanical Polishing) technology, which is one of the processing technologies, is the formation of shallow trench isolation (shallow trench isolation, hereinafter referred to as "STI") in the manufacturing process of semiconductor devices. It is an indispensable technology for flattening pre-metal insulating materials or interlayer isolation materials, and for forming plugs or embedded metal wiring.

最も多用されている研磨液としては、例えば、砥粒として、ヒュームドシリカ、コロイダルシリカ等のシリカ(酸化珪素)粒子を含むシリカ系研磨液が挙げられる。シリカ系研磨液は、汎用性が高いことが特徴であり、砥粒含有量、pH、添加剤等を適切に選択することで、絶縁材料及び導電材料を問わず幅広い種類の材料を研磨できる。 Examples of the most frequently used polishing liquid include silica-based polishing liquid containing silica (silicon oxide) particles such as fumed silica and colloidal silica as abrasive grains. The silica-based polishing liquid is characterized by high versatility, and a wide variety of materials can be polished regardless of the insulating material and the conductive material by appropriately selecting the abrasive grain content, pH, additives and the like.

一方で、主に酸化珪素等の絶縁材料を対象とした研磨液として、セリウム化合物粒子を砥粒として含む研磨液の需要も拡大している。例えば、セリウム酸化物粒子を砥粒として含むセリウム酸化物系研磨液は、シリカ系研磨液よりも低い砥粒含有量でも高速に酸化珪素を研磨できる(例えば、下記特許文献1及び2参照)。 On the other hand, as a polishing liquid mainly for insulating materials such as silicon oxide, there is an increasing demand for a polishing liquid containing cerium compound particles as abrasive grains. For example, a cerium oxide-based polishing solution containing cerium oxide particles as abrasive grains can polish silicon oxide at a higher speed even with a lower abrasive grain content than a silica-based polishing solution (see, for example, Patent Documents 1 and 2 below).

特開平10−106994号公報Japanese Unexamined Patent Publication No. 10-106994 特開平08−022970号公報Japanese Unexamined Patent Publication No. 08-022970

近年、半導体素子の製造工程では、研磨時に発生する研磨傷が問題となっている。研磨傷を減らす方法としては、研磨時の砥粒の含有量を少なくする方法、砥粒の大きさを小さくする方法(例えば、1μm以上の粗大粒子を少なくする方法)、研磨時の荷重を下げる方法等が挙げられる。しかしながら、これらの方法では、研磨時の機械的作用が小さくなることから絶縁材料の研磨速度が低下してしまうという問題がある。 In recent years, polishing scratches generated during polishing have become a problem in the manufacturing process of semiconductor devices. Methods for reducing polishing scratches include a method of reducing the content of abrasive grains during polishing, a method of reducing the size of abrasive grains (for example, a method of reducing coarse particles of 1 μm or more), and a method of reducing the load during polishing. The method and the like can be mentioned. However, these methods have a problem that the polishing speed of the insulating material is lowered because the mechanical action at the time of polishing is reduced.

そのため、近年では、砥粒と絶縁材料との反応性を高めて研磨速度を向上させるために、正のゼータ電位を有する砥粒(陽イオン性砥粒)が使用され始めている。同等の大きさを有する砥粒の比較において、正のゼータ電位を有する砥粒は、負のゼータ電位を有する砥粒と比較して絶縁材料の高い研磨速度を有する傾向がある。しかしながら、正のゼータ電位を有する砥粒を用いた場合、砥粒が研磨後の被研磨面に残りやすいことから洗浄性に劣るという問題がある。研磨後に被研磨面に残った砥粒は、研磨傷と同様にデバイスの歩留まりを低下させる原因の1つとなる。そのため、正のゼータ電位を有する砥粒を含有する研磨液に対しては、研磨後の被研磨面の洗浄性に優れることが求められる。 Therefore, in recent years, abrasive grains having a positive zeta potential (cationic abrasive grains) have begun to be used in order to increase the reactivity between the abrasive grains and the insulating material and improve the polishing rate. In comparison of abrasive grains having the same size, abrasive grains having a positive zeta potential tend to have a higher polishing rate of the insulating material than abrasive grains having a negative zeta potential. However, when abrasive grains having a positive zeta potential are used, there is a problem that the abrasive grains tend to remain on the surface to be polished after polishing, resulting in poor detergency. Abrasive grains remaining on the surface to be polished after polishing are one of the causes of lowering the yield of the device as well as polishing scratches. Therefore, for a polishing liquid containing abrasive grains having a positive zeta potential, it is required to have excellent cleanability of the surface to be polished after polishing.

本発明は、前記課題を解決しようとするものであり、研磨後の被研磨面の洗浄性に優れる研磨液、研磨液セット及び研磨方法を提供することを目的とする。 The present invention is intended to solve the above problems, and an object of the present invention is to provide a polishing liquid, a polishing liquid set, and a polishing method having excellent cleanability of the surface to be polished after polishing.

本発明の一側面に係る研磨液は、砥粒と、ヒドロキシ酸と、水酸基及びアミド基からなる群より選ばれる少なくとも一種を有する高分子化合物と、液状媒体と、を含有し、前記砥粒のゼータ電位が正であり、前記高分子化合物の重量平均分子量が3000以上である。 The polishing liquid according to one aspect of the present invention contains abrasive grains, hydroxyic acid, a polymer compound having at least one selected from the group consisting of hydroxyl groups and amide groups, and a liquid medium. The zeta potential is positive, and the weight average molecular weight of the polymer compound is 3000 or more.

このような研磨液によれば、砥粒が研磨後の被研磨面に残ることを抑制することが可能であり、研磨後の被研磨面の洗浄性に優れる。このような研磨液によれば、研磨後の砥粒残りを低減させることによりデバイスの歩留まりを向上させることができる。 With such a polishing liquid, it is possible to prevent the abrasive grains from remaining on the surface to be polished after polishing, and the surface to be polished after polishing is excellent in cleanability. According to such a polishing liquid, the yield of the device can be improved by reducing the residual abrasive grains after polishing.

本発明の他の一側面に係る研磨液セットは、上述の研磨液の構成成分が第1の液と第2の液とに分けて保存され、前記第1の液が、前記砥粒と、液状媒体と、を含み、前記第2の液が、前記ヒドロキシ酸と、前記高分子化合物と、液状媒体と、を含む。このような研磨液セットによれば、上述の研磨液と同様の効果を得ることができる。 In the polishing liquid set according to the other aspect of the present invention, the constituent components of the above-mentioned polishing liquid are separately stored as a first liquid and a second liquid, and the first liquid is the abrasive grains and the abrasive grains. It contains a liquid medium, and the second liquid contains the hydroxy acid, the polymer compound, and the liquid medium. According to such a polishing liquid set, the same effect as the above-mentioned polishing liquid can be obtained.

本発明の他の一側面に係る研磨方法は、上述の研磨液、又は、上述の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて被研磨面を研磨する研磨工程を備える。このような研磨方法によれば、上述の研磨液と同様の効果を得ることができる。 The polishing method according to another aspect of the present invention uses the above-mentioned polishing liquid or a polishing liquid obtained by mixing the first liquid and the second liquid in the above-mentioned polishing liquid set. It is provided with a polishing process for polishing the polished surface. According to such a polishing method, the same effect as the above-mentioned polishing liquid can be obtained.

本発明によれば、研磨後の被研磨面の洗浄性に優れる研磨液を提供することができる。本発明によれば、前記研磨液を得るための研磨液セットを提供することができる。本発明によれば、前記研磨液又は前記研磨液セットを用いた研磨方法を提供することができる。 According to the present invention, it is possible to provide a polishing liquid having excellent cleanability of the surface to be polished after polishing. According to the present invention, it is possible to provide a polishing liquid set for obtaining the polishing liquid. According to the present invention, it is possible to provide a polishing method using the polishing liquid or the polishing liquid set.

本発明によれば、基体表面の平坦化工程への研磨液又は研磨液セットの使用を提供することができる。本発明によれば、STI絶縁材料、プリメタル絶縁材料又は層間絶縁材料の平坦化工程への研磨液又は研磨液セットの使用を提供することができる。 According to the present invention, it is possible to provide the use of a polishing liquid or a polishing liquid set for a process of flattening a surface of a substrate. According to the present invention, it is possible to provide the use of a polishing liquid or a polishing liquid set for a flattening step of an STI insulating material, a premetal insulating material or an interlayer insulating material.

以下、本発明の実施形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

<定義>
本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
<Definition>
In the present specification, the numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. "A or B" may include either A or B, or both. Unless otherwise specified, the materials exemplified in the present specification may be used alone or in combination of two or more. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means. The term "process" is included in this term not only in an independent process but also in the case where the desired action of the process is achieved even if it cannot be clearly distinguished from other processes.

本明細書において、「研磨液」(polishing liquid、abrasive)とは、研磨時に被研磨面に触れる組成物として定義される。「研磨液」という語句自体は、研磨液に含有される成分を何ら限定しない。後述するように、本実施形態に係る研磨液は砥粒(abrasive grain)を含有する。砥粒は、「研磨粒子」(abrasive particle)ともいわれるが、本明細書では「砥粒」という。砥粒は、一般的には固体粒子であって、研磨時に、砥粒が有する機械的作用(物理的作用)、及び、砥粒(主に砥粒の表面)の化学的作用によって、除去対象物が除去(remove)されると考えられるが、これに限定されない。 As used herein, a "polishing liquid" (abrasive) is defined as a composition that comes into contact with the surface to be polished during polishing. The phrase "polishing liquid" itself does not limit the components contained in the polishing liquid. As will be described later, the polishing liquid according to this embodiment contains abrasive grains. Abrasive particles are also referred to as "abrasive particles", but are referred to as "abrasive particles" in the present specification. Abrasive particles are generally solid particles, and are to be removed by the mechanical action (physical action) of the abrasive grains and the chemical action of the abrasive grains (mainly the surface of the abrasive grains) during polishing. It is believed that the object will be removed, but not limited to this.

<研磨液及び研磨液セット>
本実施形態に係る研磨液は、例えばCMP用研磨液である。本実施形態に係る研磨液は、砥粒と、ヒドロキシ酸と、水酸基(ヒドロキシル基)及びアミド基からなる群より選ばれる少なくとも一種を含む高分子化合物(以下、「高分子化合物A」という)と、液状媒体と、を含有し、前記砥粒のゼータ電位が正であり、前記高分子化合物Aの重量平均分子量が3000以上である。
<Abrasive liquid and polishing liquid set>
The polishing liquid according to this embodiment is, for example, a polishing liquid for CMP. The polishing liquid according to the present embodiment contains abrasive grains, a hydroxy acid, and a polymer compound containing at least one selected from the group consisting of a hydroxyl group (hydroxyl group) and an amide group (hereinafter referred to as “polymer compound A”). , The liquid medium, the zeta potential of the abrasive grains is positive, and the weight average molecular weight of the polymer compound A is 3000 or more.

本実施形態によれば、砥粒が研磨後の被研磨面に残ることを抑制することが可能であり、研磨後の被研磨面の洗浄性(以下、場合により、単に「洗浄性」という)に優れる。本実施形態によれば、研磨後の砥粒残りを低減させることによりデバイスの歩留まりを向上させることができる。本実施形態によれば、研磨後の被研磨面から砥粒を除去するためにフッ酸等の毒物を使用することなく、アンモニア等のアルカリ液を用いて砥粒を除去することができる。このように優れた洗浄性が得られる理由としては、例えば、下記の理由が挙げられる。但し、理由は下記に限定されない。 According to the present embodiment, it is possible to prevent the abrasive grains from remaining on the surface to be polished after polishing, and the cleanability of the surface to be polished after polishing (hereinafter, in some cases, simply referred to as "cleanability"). Excellent for. According to this embodiment, the yield of the device can be improved by reducing the residual abrasive grains after polishing. According to this embodiment, the abrasive grains can be removed by using an alkaline solution such as ammonia without using a toxic substance such as hydrofluoric acid to remove the abrasive grains from the surface to be polished after polishing. Reasons for obtaining such excellent detergency include, for example, the following reasons. However, the reason is not limited to the following.

すなわち、水酸基及びアミド基からなる群より選ばれる少なくとも一種を含む高分子化合物Aが、正のゼータ電位を有する砥粒に接触することでゼータ電位の値が小さくなる。そして、高分子化合物Aの重量平均分子量が3000以上であると、高分子化合物Aが砥粒を覆いやすいことからゼータ電位の値が小さくなりやすい。この場合、負の電荷を有する傾向のある絶縁材料に対する砥粒の吸着性(反応性)が下がりやすい。
また、高分子化合物Aを用いることによって、洗浄工程で使用される洗浄液に対する被研磨面のぬれ性が向上する。さらに、ヒドロキシ酸を用いると、ヒドロキシ酸が砥粒に吸着することで親水性が向上することによって、砥粒と洗浄液との親和性が向上する。
以上により、本実施形態によれば、研磨後の洗浄工程で砥粒が除去されやすいことから優れた洗浄性が得られると推察される。
That is, when the polymer compound A containing at least one selected from the group consisting of hydroxyl groups and amide groups comes into contact with abrasive grains having a positive zeta potential, the value of the zeta potential becomes small. When the weight average molecular weight of the polymer compound A is 3000 or more, the zeta potential value tends to be small because the polymer compound A easily covers the abrasive grains. In this case, the adsorptivity (reactivity) of the abrasive grains to the insulating material which tends to have a negative charge tends to decrease.
Further, by using the polymer compound A, the wettability of the surface to be polished with respect to the cleaning liquid used in the cleaning step is improved. Further, when a hydroxy acid is used, the hydrophilic acid is adsorbed on the abrasive grains to improve the hydrophilicity, so that the affinity between the abrasive grains and the cleaning liquid is improved.
Based on the above, it is presumed that according to the present embodiment, excellent cleaning properties can be obtained because the abrasive grains are easily removed in the cleaning step after polishing.

また、本実施形態によれば、高分子化合物Aを用いることによって、研磨液に対する研磨パッド及び被研磨面のぬれ性が向上する。これにより、研磨液が研磨パッド及び被研磨面の間に留まりにくいことから、高分子化合物Aを用いない場合と比較して研磨終了後に残存する砥粒の量を少なくすることもできる。 Further, according to the present embodiment, the wettability of the polishing pad and the surface to be polished with respect to the polishing liquid is improved by using the polymer compound A. As a result, the polishing liquid does not easily stay between the polishing pad and the surface to be polished, so that the amount of abrasive grains remaining after the completion of polishing can be reduced as compared with the case where the polymer compound A is not used.

本実施形態によれば、優れた研磨速度を得つつ、優れた洗浄性を得ることができる。さらに、本実施形態によれば、研磨傷を減らす方法として、研磨時の砥粒の含有量を少なくする方法、砥粒の大きさを小さくする方法(例えば、1μm以上の粗大粒子を少なくする方法)、研磨時の荷重を下げる方法等を用いた場合であっても、研磨傷を低減すると共に優れた研磨速度を得つつ、優れた洗浄性を得ることができる。 According to this embodiment, it is possible to obtain excellent detergency while obtaining an excellent polishing rate. Further, according to the present embodiment, as a method of reducing polishing scratches, a method of reducing the content of abrasive grains during polishing and a method of reducing the size of abrasive grains (for example, a method of reducing coarse particles of 1 μm or more). ), Even when a method of reducing the load during polishing is used, excellent cleanability can be obtained while reducing polishing scratches and obtaining an excellent polishing rate.

(砥粒)
本実施形態に係る研磨液は、研磨液中において正のゼータ電位を有する砥粒を含有する。砥粒は、絶縁材料を高い研磨速度で研磨しやすい観点から、セリウム酸化物(例えば、セリア(酸化セリウム(IV)))、シリカ、アルミナ、ジルコニア、イットリア及び4価金属元素の水酸化物からなる群より選択される少なくとも一種を含むことが好ましく、セリウム酸化物を含むことがより好ましい。砥粒は、一種を単独で又は二種以上を組み合わせて使用することができる。
(Abrasive grain)
The polishing liquid according to the present embodiment contains abrasive grains having a positive zeta potential in the polishing liquid. Abrasive grains are made from cerium oxide (for example, cerium (cerium oxide (IV))), silica, alumina, zirconia, yttria, and hydroxides of tetravalent metal elements from the viewpoint of easy polishing of insulating materials at high polishing rates. It is preferable to contain at least one selected from the above group, and it is more preferable to contain cerium oxide. The abrasive grains may be used alone or in combination of two or more.

「4価金属元素の水酸化物」とは、4価の金属(M4+)と、少なくとも1つの水酸化物イオン(OH)とを含む化合物である。4価金属元素の水酸化物は、水酸化物イオン以外の陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2−)を含んでいてもよい。例えば、4価金属元素の水酸化物は、4価金属元素に結合した陰イオン(例えば、硝酸イオンNO 及び硫酸イオンSO 2−)を含んでいてもよい。4価金属元素の水酸化物は、4価金属元素の塩(金属塩)とアルカリ源(塩基)とを反応させることにより作製できる。The "hydroxide of a tetravalent metal element" is a compound containing a tetravalent metal (M 4+ ) and at least one hydroxide ion (OH −). Hydroxides of tetravalent metal elements, anions other than hydroxide ion (e.g., nitrate ion NO 3 - and sulfate ions SO 4 2-) may contain. For example, hydroxides of tetravalent metal elements, tetravalent metallic element bound anions (e.g., nitrate ion NO 3 - and sulfate ions SO 4 2-) may contain. A hydroxide of a tetravalent metal element can be produced by reacting a salt (metal salt) of the tetravalent metal element with an alkali source (base).

4価金属元素の水酸化物は、絶縁材料の研磨速度を向上させやすい観点から、セリウム水酸化物(4価セリウムの水酸化物)を含むことが好ましい。セリウム水酸化物は、セリウム塩とアルカリ源(塩基)とを反応させることにより作製できる。セリウム水酸化物は、セリウム塩とアルカリ液(例えばアルカリ水溶液)とを混合することにより作製されることが好ましい。これにより、粒径が極めて細かい粒子を得ることができ、優れた研磨傷の低減効果を得やすい。セリウム水酸化物は、セリウム塩溶液(例えばセリウム塩水溶液)とアルカリ液とを混合することにより得ることができる。セリウム塩としては、Ce(NO、Ce(SO、Ce(NH(NO、Ce(NH(SO等が挙げられる。The hydroxide of the tetravalent metal element preferably contains cerium hydroxide (hydroxide of tetravalent cerium) from the viewpoint of easily improving the polishing rate of the insulating material. Cerium hydroxide can be produced by reacting a cerium salt with an alkali source (base). The cerium hydroxide is preferably prepared by mixing a cerium salt and an alkaline solution (for example, an alkaline aqueous solution). As a result, particles having an extremely fine particle size can be obtained, and an excellent effect of reducing polishing scratches can be easily obtained. The cerium hydroxide can be obtained by mixing a cerium salt solution (for example, a cerium salt aqueous solution) and an alkaline solution. Examples of the cerium salt include Ce (NO 3 ) 4 , Ce (SO 4 ) 2 , Ce (NH 4 ) 2 (NO 3 ) 6 , Ce (NH 4 ) 4 (SO 4 ) 4, and the like.

セリウム水酸化物の製造条件等に応じて、4価セリウム(Ce4+)、1〜3個の水酸化物イオン(OH)及び1〜3個の陰イオン(Xc−)からなるCe(OH)(式中、a+b×c=4である)を含む粒子が生成すると考えられる(なお、このような粒子もセリウム水酸化物である)。Ce(OH)では、電子吸引性の陰イオン(Xc−)が作用して水酸化物イオンの反応性が向上しており、Ce(OH)の存在量が増加するに伴い研磨速度が向上すると考えられる。陰イオン(Xc−)としては、例えば、NO 及びSO 2−が挙げられる。セリウム水酸化物を含む粒子は、Ce(OH)だけでなく、Ce(OH)、CeO等も含み得ると考えられる。 Ce (Ce 4+ ) consisting of tetravalent cerium (Ce 4+), 1 to 3 hydroxide ions (OH ) and 1 to 3 anions (X c −), depending on the production conditions of cerium hydroxide. OH) It is considered that particles containing a X b (in the formula, a + b × c = 4) are produced (note that such particles are also cerium hydroxides). In Ce (OH) a X b , electron-withdrawing anions (X c- ) act to improve the reactivity of hydroxide ions, and the abundance of Ce (OH) a X b increases. It is considered that the polishing speed is improved accordingly. The anion (X c-), for example, NO 3 - and SO 4 2-and the like. It is considered that the particles containing cerium hydroxide may contain not only Ce (OH) a X b but also Ce (OH) 4 , CeO 2, and the like.

セリウム水酸化物を含む粒子がCe(OH)を含むことは、粒子を純水でよく洗浄した後に、FT−IR ATR法(Fourier transform Infra Red Spectrometer Attenuated Total Reflection法、フーリエ変換赤外分光光度計全反射測定法)で、陰イオン(Xc−)に該当するピークを検出する方法により確認できる。XPS法(X−ray Photoelectron Spectroscopy、X線光電子分光法)により、陰イオン(Xc−)の存在を確認することもできる。The fact that the particles containing cerium hydroxide contain Ce (OH) a X b means that the particles are thoroughly washed with pure water, and then the FT-IR ATR method (Fourier transform InfraRed Spectrometriated Total Reflection method, Fourier transform infrared) is used. It can be confirmed by a method of detecting a peak corresponding to an anion (Xc- ) by a spectrophotometer total reflection measurement method). The XPS method (X-ray Photoelectron Spectroscopy, X-ray photoelectron spectroscopy), it is also possible to confirm the presence of an anion (X c-).

砥粒がセリウム酸化物を含む場合、セリウム酸化物の含有量の下限は、絶縁材料の研磨速度を更に向上させる観点から、砥粒全体(研磨液に含まれる砥粒全体。以下同様)を基準として、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、80質量%以上が極めて好ましく、90質量%以上が非常に好ましく、95質量%以上がより一層好ましく、98質量%以上がより好ましく、99質量%以上が更に好ましい。砥粒が後述の複合粒子を含まない態様においてこれらの数値範囲が満たされていてよい。 When the abrasive grains contain cerium oxide, the lower limit of the content of cerium oxide is based on the entire abrasive grains (the entire abrasive grains contained in the polishing liquid; the same applies hereinafter) from the viewpoint of further improving the polishing rate of the insulating material. It is preferably 50% by mass or more, more preferably more than 50% by mass, further preferably 60% by mass or more, particularly preferably 70% by mass or more, extremely preferably 80% by mass or more, and very preferably 90% by mass or more. Preferably, 95% by mass or more is more preferable, 98% by mass or more is more preferable, and 99% by mass or more is further preferable. These numerical ranges may be satisfied in an embodiment in which the abrasive grains do not contain composite particles described later.

研磨液、又は、後述する研磨液セットにおけるスラリ中の砥粒の平均粒径の下限は、絶縁材料の研磨速度を向上させやすい観点から、16nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、50nmを超えることが非常に好ましく、100nm以上がより一層好ましく、120nm以上がより好ましく、140nm以上が更に好ましい。砥粒の平均粒径の上限は、被研磨面に傷がつくことを抑制しやすい観点から、1050nm以下が好ましく、1000nm以下がより好ましく、800nm以下が更に好ましく、600nm以下が特に好ましく、500nm以下が極めて好ましく、400nm以下が非常に好ましく、300nm以下がより一層好ましく、200nm以下がより好ましく、160nm以下が更に好ましく、155nm以下が特に好ましい。これらの観点から、砥粒の平均粒径は、16〜1050nmであることがより好ましく、20〜1000nmであることが更に好ましい。 The lower limit of the average particle size of the abrasive grains in the polishing liquid or the polishing liquid set described later is preferably 16 nm or more, more preferably 20 nm or more, and more preferably 30 nm or more from the viewpoint of easily improving the polishing speed of the insulating material. More preferably, 40 nm or more is particularly preferable, 50 nm or more is extremely preferable, 50 nm or more is very preferable, 100 nm or more is even more preferable, 120 nm or more is more preferable, and 140 nm or more is further preferable. The upper limit of the average particle size of the abrasive grains is preferably 1050 nm or less, more preferably 1000 nm or less, further preferably 800 nm or less, particularly preferably 600 nm or less, and particularly preferably 500 nm or less, from the viewpoint of easily suppressing damage to the surface to be polished. Is extremely preferable, 400 nm or less is very preferable, 300 nm or less is further preferable, 200 nm or less is more preferable, 160 nm or less is further preferable, and 155 nm or less is particularly preferable. From these viewpoints, the average particle size of the abrasive grains is more preferably 16 to 50 nm, and further preferably 20 to 1000 nm.

平均粒径は、例えば、光回折散乱式粒度分布計(例えば、ベックマン・コールター株式会社製、商品名:N5、又は、マイクロトラック・ベル株式会社製、商品名:マイクロトラックMT3300EXII)を用いて測定することができる。 The average particle size is measured using, for example, a light diffraction / scattering type particle size distribution meter (for example, manufactured by Beckman Coulter Co., Ltd., trade name: N5, or manufactured by Microtrack Bell Co., Ltd., trade name: Microtrack MT3300EXII). can do.

研磨液中における砥粒のゼータ電位(表面電位)は、研磨後の被研磨面の洗浄性に優れる(砥粒が研磨後の被研磨面に残ることが抑制される)観点から、正である(ゼータ電位が0mVを超える)。砥粒のゼータ電位の下限は、優れた洗浄性が得られやすい観点から、10mV以上が好ましく、20mV以上がより好ましく、25mV以上が更に好ましく、30mV以上が特に好ましく、40mV以上が極めて好ましく、50mV以上が非常に好ましい。砥粒のゼータ電位の上限は、特に限定されないが、200mV以下が好ましい。これらの観点から、砥粒のゼータ電位は、10〜200mVがより好ましい。 The zeta potential (surface potential) of the abrasive grains in the polishing liquid is positive from the viewpoint of excellent cleanability of the surface to be polished after polishing (the abrasive grains are suppressed from remaining on the surface to be polished after polishing). (Zeta potential exceeds 0 mV). The lower limit of the zeta potential of the abrasive grains is preferably 10 mV or more, more preferably 20 mV or more, further preferably 25 mV or more, particularly preferably 30 mV or more, extremely preferably 40 mV or more, and extremely preferably 50 mV from the viewpoint that excellent detergency can be easily obtained. The above is very preferable. The upper limit of the zeta potential of the abrasive grains is not particularly limited, but is preferably 200 mV or less. From these viewpoints, the zeta potential of the abrasive grains is more preferably 10 to 200 mV.

砥粒のゼータ電位は、例えば、動的光散乱式ゼータ電位測定装置(例えば、ベックマン・コールター株式会社製、商品名:DelsaNano C)を用いて測定することができる。砥粒のゼータ電位は、添加剤を用いて調整できる。例えば、セリウム酸化物を含有する砥粒にモノカルボン酸(例えば酢酸)を接触させることにより、正のゼータ電位を有する砥粒を得ることができる。また、セリウム酸化物を含有する砥粒に、リン酸二水素アンモニウム、カルボキシル基を有する材料(例えばポリアクリル酸)等を接触させることにより、負のゼータ電位を有する砥粒を得ることができる。 The zeta potential of the abrasive grains can be measured using, for example, a dynamic light scattering type zeta potential measuring device (for example, manufactured by Beckman Coulter, Inc., trade name: DelsaNano C). The zeta potential of the abrasive grains can be adjusted with an additive. For example, by bringing a monocarboxylic acid (for example, acetic acid) into contact with abrasive grains containing cerium oxide, abrasive grains having a positive zeta potential can be obtained. Further, by bringing ammonium dihydrogen phosphate, a material having a carboxyl group (for example, polyacrylic acid), or the like into contact with the abrasive grains containing cerium oxide, abrasive grains having a negative zeta potential can be obtained.

砥粒の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、研磨液の全質量を基準として、0.005質量%以上が好ましく、0.005質量%を超えることがより好ましく、0.01質量%以上が更に好ましく、0.02質量%以上が特に好ましく、0.03質量%以上が極めて好ましく、0.04質量%以上が非常に好ましく、0.05質量%以上がより一層好ましく、0.07質量%以上がより好ましく、0.1質量%以上が更に好ましい。砥粒の含有量の上限は、優れた洗浄性が得られやすい観点から、研磨液の全質量を基準として、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、5質量%以下が特に好ましく、4質量%以下が極めて好ましく、3質量%以下が非常に好ましく、1質量%以下がより一層好ましく、0.5質量%以下がより好ましく、0.3質量%以下が更に好ましく、0.2質量%以下が特に好ましい。これらの観点から、砥粒の含有量は、研磨液の全質量を基準として0.005〜20質量%であることがより好ましい。 The lower limit of the content of abrasive grains is preferably 0.005% by mass or more, and more preferably more than 0.005% by mass, based on the total mass of the polishing liquid, from the viewpoint of easily improving the polishing speed of the insulating material. , 0.01% by mass or more is more preferable, 0.02% by mass or more is particularly preferable, 0.03% by mass or more is extremely preferable, 0.04% by mass or more is very preferable, and 0.05% by mass or more is more. More preferably, 0.07% by mass or more is more preferable, and 0.1% by mass or more is further preferable. The upper limit of the content of abrasive grains is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less, based on the total mass of the polishing liquid, from the viewpoint that excellent detergency can be easily obtained. Preferably, 5% by mass or less is particularly preferable, 4% by mass or less is extremely preferable, 3% by mass or less is very preferable, 1% by mass or less is further preferable, 0.5% by mass or less is more preferable, and 0.3% by mass is preferable. % Or less is more preferable, and 0.2% by mass or less is particularly preferable. From these viewpoints, the content of abrasive grains is more preferably 0.005 to 20% by mass based on the total mass of the polishing liquid.

砥粒は、互いに接触した複数の粒子から構成される複合粒子を含んでいてよい。例えば、砥粒は、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含む複合粒子を含んでいてよく、複合粒子と遊離粒子(例えば、第1の粒子と接触していない第2の粒子)とを含んでいてよい。 The abrasive grains may include composite particles composed of a plurality of particles in contact with each other. For example, the abrasive grains may include composite particles containing a first particle and a second particle in contact with the first particle, and the composite particle and free particles (eg, contact with the first particle). It may contain a second particle) which is not.

砥粒は、複合粒子を含む態様として、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、第2の粒子の粒径が第1の粒子の粒径よりも小さく、第1の粒子がセリウム酸化物を含有し、第2の粒子がセリウム化合物を含有する態様であってよい。このような砥粒を用いることにより絶縁材料(例えば酸化珪素)の研磨速度を向上させやすい。このように絶縁材料の研磨速度が向上する理由としては、例えば、下記の理由が挙げられる。但し、理由は下記に限定されない。 The abrasive grains include, as an embodiment containing composite particles, a first particle and a second particle in contact with the first particle, and the particle size of the second particle is larger than the particle size of the first particle. The first particle may contain a cerium oxide, and the second particle may contain a cerium compound. By using such abrasive grains, it is easy to improve the polishing speed of the insulating material (for example, silicon oxide). Reasons for improving the polishing speed of the insulating material in this way include, for example, the following reasons. However, the reason is not limited to the following.

すなわち、セリウム酸化物を含有すると共に、第2の粒子よりも大きい粒径を有する第1の粒子は、第2の粒子と比較して、絶縁材料に対する機械的作用(メカニカル性)が強い。一方、セリウム化合物を含有すると共に、第1の粒子よりも小さい粒径を有する第2の粒子は、第1の粒子と比較して、絶縁材料に対する機械的作用は小さいものの、粒子全体における比表面積(単位質量当たりの表面積)が大きいため、絶縁材料に対する化学的作用(ケミカル性)が強い。このように、機械的作用が強い第1の粒子と、化学的作用が強い第2の粒子と、を併用することにより研磨速度向上の相乗効果が得られやすい。 That is, the first particle containing cerium oxide and having a particle size larger than that of the second particle has a stronger mechanical action (mechanical property) on the insulating material than the second particle. On the other hand, the second particle, which contains a cerium compound and has a particle size smaller than that of the first particle, has a smaller mechanical action on the insulating material than the first particle, but has a specific surface area of the entire particle. Since (surface area per unit mass) is large, it has a strong chemical action (chemical property) on the insulating material. As described above, the synergistic effect of improving the polishing speed can be easily obtained by using the first particle having a strong mechanical action and the second particle having a strong chemical action in combination.

第2の粒子のセリウム化合物としては、セリウム水酸化物、セリウム酸化物等が挙げられる。第2の粒子のセリウム化合物としては、セリウム酸化物とは異なる化合物を用いることができる。セリウム化合物は、絶縁材料の研磨速度を向上させやすい観点から、セリウム水酸化物を含むことが好ましい。 Examples of the cerium compound of the second particle include cerium hydroxide and cerium oxide. As the cerium compound of the second particle, a compound different from the cerium oxide can be used. The cerium compound preferably contains a cerium hydroxide from the viewpoint of easily improving the polishing rate of the insulating material.

第2の粒子の粒径は、第1の粒子の粒径よりも小さいことが好ましい。第1の粒子及び第2の粒子の粒径の大小関係は、複合粒子のSEM画像等から判別することができる。一般的に、粒径が小さい粒子では、粒径が大きい粒子に比べて単位質量当たりの表面積が大きいことから反応活性が高い。一方、粒径が小さい粒子の機械的作用(機械的研磨力)は、粒径が大きい粒子に比べて小さい。しかしながら、本実施形態においては、第2の粒子の粒径が第1の粒子の粒径より小さい場合であっても、第1の粒子及び第2の粒子の相乗効果を発現させることが可能であり、優れた反応活性及び機械的作用を容易に両立することができる。 The particle size of the second particle is preferably smaller than the particle size of the first particle. The magnitude relationship between the particle sizes of the first particles and the second particles can be determined from the SEM image of the composite particles and the like. In general, particles having a small particle size have a higher surface area per unit mass than particles having a large particle size, and therefore have higher reaction activity. On the other hand, the mechanical action (mechanical polishing force) of the particles having a small particle size is smaller than that of the particles having a large particle size. However, in the present embodiment, even when the particle size of the second particle is smaller than the particle size of the first particle, it is possible to exhibit the synergistic effect of the first particle and the second particle. Therefore, excellent reaction activity and mechanical action can be easily compatible with each other.

第1の粒子の粒径の下限は、絶縁材料の研磨速度を向上させやすい観点から、15nm以上が好ましく、25nm以上がより好ましく、35nm以上が更に好ましく、40nm以上が特に好ましく、50nm以上が極めて好ましく、80nm以上が非常に好ましく、100nm以上がより一層好ましい。第1の粒子の粒径の上限は、優れた洗浄性が得られやすい観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、1000nm以下が好ましく、800nm以下がより好ましく、600nm以下が更に好ましく、400nm以下が特に好ましく、300nm以下が極めて好ましく、200nm以下が非常に好ましく、150nm以下がより一層好ましい。これらの観点から、第1の粒子の粒径は、15〜1000nmであることがより好ましい。第1の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。 The lower limit of the particle size of the first particles is preferably 15 nm or more, more preferably 25 nm or more, further preferably 35 nm or more, particularly preferably 40 nm or more, and extremely preferably 50 nm or more from the viewpoint of easily improving the polishing rate of the insulating material. Preferably, 80 nm or more is very preferable, and 100 nm or more is even more preferable. The upper limit of the particle size of the first particle is preferably 1000 nm or less, more preferably 800 nm or less, and more preferably 600 nm from the viewpoint of easily obtaining excellent detergency and easily suppressing damage to the surface to be polished. The following is further preferable, 400 nm or less is particularly preferable, 300 nm or less is extremely preferable, 200 nm or less is very preferable, and 150 nm or less is even more preferable. From these viewpoints, the particle size of the first particles is more preferably 15 to 1000 nm. The average particle size (average secondary particle size) of the first particles may be in the above range.

第2の粒子の粒径の下限は、絶縁材料の研磨速度を向上させやすい観点から、1nm以上が好ましく、2nm以上がより好ましく、3nm以上が更に好ましい。第2の粒子の粒径の上限は、優れた洗浄性が得られやすい観点、及び、被研磨面に傷がつくことが抑制されやすい観点から、50nm以下が好ましく、30nm以下がより好ましく、25nm以下が更に好ましく、20nm以下が特に好ましく、15nm以下が極めて好ましく、10nm以下が非常に好ましい。これらの観点から、第2の粒子の粒径は、1〜50nmであることがより好ましい。第2の粒子の平均粒径(平均二次粒径)が上述の範囲であってもよい。 The lower limit of the particle size of the second particles is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 3 nm or more, from the viewpoint of easily improving the polishing rate of the insulating material. The upper limit of the particle size of the second particle is preferably 50 nm or less, more preferably 30 nm or less, and more preferably 25 nm from the viewpoint of easily obtaining excellent detergency and easily suppressing damage to the surface to be polished. The following is more preferable, 20 nm or less is particularly preferable, 15 nm or less is extremely preferable, and 10 nm or less is very preferable. From these viewpoints, the particle size of the second particle is more preferably 1 to 50 nm. The average particle size (average secondary particle size) of the second particles may be in the above range.

第1の粒子は、負のゼータ電位を有することができる。第2の粒子は、正のゼータ電位を有することができる。 The first particle can have a negative zeta potential. The second particle can have a positive zeta potential.

砥粒は、上述の複合粒子と遊離粒子とを含む態様として、当該砥粒の含有量を1.0質量%に調整した水分散液(砥粒及び水からなる混合物)を遠心加速度5.8×10Gで5分間遠心分離したときに、波長380nmの光に対する吸光度が0を超える液相(上澄み液)を与えることが好ましい。この場合、絶縁材料(例えば酸化珪素)の研磨速度を向上させやすい。As the abrasive grains, in an embodiment containing the above-mentioned composite particles and free particles, a water dispersion (a mixture of abrasive grains and water) in which the content of the abrasive grains is adjusted to 1.0% by mass is centrifuged at 5.8. It is preferable to provide a liquid phase (supernatant) having an absorbance of more than 0 for light having a wavelength of 380 nm when centrifuged at × 10 4 G for 5 minutes. In this case, it is easy to improve the polishing rate of the insulating material (for example, silicon oxide).

このように研磨速度が向上する理由としては、例えば、下記の理由が挙げられる。但し、理由は下記に限定されない。
すなわち、水分散液を遠心分離したときに得られる液相における波長380nmの光に対する吸光度が0を超える場合、このような遠心分離では、複合粒子が選択的に除去されやすく、遊離粒子を固形分として含有する液相を得ることが可能であり、吸光度が0を超える場合、砥粒は、複合粒子に加えて遊離粒子を含む。遊離粒子は複合粒子と比較して粒径が小さいため、拡散速度が高く、絶縁材料の表面に優先的に吸着して当該表面を被覆する。この場合、複合粒子は、絶縁材料に直接的に作用するだけでなく、絶縁材料に吸着した遊離粒子にも作用して間接的にも絶縁材料に作用することができる(例えば、絶縁材料に吸着した遊離粒子を介して物理的作用を絶縁材料へ伝達することができる)。これにより、絶縁材料の研磨速度を向上させやすいと推察される。
Reasons for improving the polishing speed in this way include, for example, the following reasons. However, the reason is not limited to the following.
That is, when the absorbance of the liquid phase obtained by centrifuging the aqueous dispersion with respect to light having a wavelength of 380 nm exceeds 0, the composite particles are easily selectively removed by such centrifugation, and the free particles are separated into solids. When it is possible to obtain a liquid phase containing as, and the absorbance exceeds 0, the abrasive grains include free particles in addition to the composite particles. Since the free particles have a smaller particle size than the composite particles, they have a high diffusion rate and preferentially adsorb to the surface of the insulating material to cover the surface. In this case, the composite particles can act not only directly on the insulating material but also on the free particles adsorbed on the insulating material and indirectly act on the insulating material (for example, adsorbed on the insulating material). Physical action can be transmitted to the insulating material through the free particles). It is presumed that this makes it easier to improve the polishing speed of the insulating material.

波長380nmの光に対する上述の吸光度は、下記の範囲が好ましい。前記吸光度の下限は、絶縁材料の研磨速度を更に向上させやすい観点から、0.001以上が好ましく、0.0015以上がより好ましく、0.002以上が更に好ましい。遊離粒子の含有量が多い場合には、絶縁材料に対する遊離粒子の吸着量が増加することから、絶縁材料の研磨速度を更に向上させやすいと推察される。前記吸光度の上限は、絶縁材料の研磨速度を更に向上させやすい観点から、0.5以下が好ましく、0.4以下がより好ましく、0.3以下が更に好ましく、0.25以下が特に好ましく、0.2以下が極めて好ましい。前記観点から、前記吸光度は、0を超え0.5以下であることがより好ましい。砥粒における遊離粒子の含有量を調整することにより前記吸光度を調整できる。例えば、第2の粒子が接触する第1の粒子の表面積を増加させること、第1の粒子と第2の粒子とを接触させる際に不充分な分散状態に調整すること(分散時間を減少させること、第1の粒子及び第2の粒子を含む液の撹拌における回転数を減少させること、粒子間に生じる静電反発力を弱める等)などによって前記吸光度を減少させることができる。 The above-mentioned absorbance with respect to light having a wavelength of 380 nm is preferably in the following range. The lower limit of the absorbance is preferably 0.001 or more, more preferably 0.0015 or more, still more preferably 0.002 or more, from the viewpoint of further improving the polishing rate of the insulating material. When the content of free particles is high, the amount of free particles adsorbed on the insulating material increases, so it is presumed that the polishing rate of the insulating material can be further improved. The upper limit of the absorbance is preferably 0.5 or less, more preferably 0.4 or less, further preferably 0.3 or less, and particularly preferably 0.25 or less, from the viewpoint of further improving the polishing rate of the insulating material. 0.2 or less is extremely preferable. From the above viewpoint, the absorbance is more preferably more than 0 and 0.5 or less. The absorbance can be adjusted by adjusting the content of free particles in the abrasive grains. For example, increasing the surface area of the first particle that the second particle comes into contact with, or adjusting the dispersion state to be insufficient when the first particle and the second particle are brought into contact with each other (decreasing the dispersion time). The absorbance can be reduced by reducing the number of rotations in stirring the liquid containing the first particles and the second particles, weakening the electrostatic repulsive force generated between the particles, and the like.

本実施形態では、上述の波長380nmの光に対する吸光度が0である砥粒を用いてもよい。このような砥粒は、遠心分離によって遊離粒子を除去することにより得ることができる。 In the present embodiment, the abrasive grains having the above-mentioned absorbance of light having a wavelength of 380 nm of 0 may be used. Such abrasive grains can be obtained by removing free particles by centrifugation.

砥粒は、絶縁材料(例えば酸化珪素)の研磨速度を更に向上させやすい観点から、当該砥粒の含有量を1.0質量%に調整した水分散液(砥粒及び水からなる混合物)を遠心加速度5.8×10Gで5分間遠心分離したときに、波長500nmの光に対する下記の範囲の光透過率の液相(上澄み液)を与えることが好ましい。前記光透過率の下限は、50%/cm以上が好ましく、60%/cm以上がより好ましく、70%/cm以上が更に好ましく、80%/cm以上が特に好ましく、90%/cm以上が極めて好ましく、92%/cm以上が非常に好ましい。光透過率の上限は100%/cmである。The abrasive grains are an aqueous dispersion (mixture consisting of abrasive grains and water) in which the content of the abrasive grains is adjusted to 1.0% by mass from the viewpoint of further improving the polishing speed of the insulating material (for example, silicon oxide). When centrifuged at a centrifugal acceleration of 5.8 × 10 4 G for 5 minutes, it is preferable to provide a liquid phase (supernatant) having a light transmittance in the following range with respect to light having a wavelength of 500 nm. The lower limit of the light transmittance is preferably 50% / cm or more, more preferably 60% / cm or more, further preferably 70% / cm or more, particularly preferably 80% / cm or more, and extremely preferably 90% / cm or more. Preferably, 92% / cm or more is very preferable. The upper limit of light transmittance is 100% / cm.

第1の粒子及び第2の粒子を含む複合粒子は、ホモジナイザー、ナノマイザー、ボールミル、ビーズミル、超音波処理機等を用いて第1の粒子と第2の粒子とを接触させること、互いに相反する電荷を有する第1の粒子と第2の粒子とを接触させること、粒子の含有量が少ない状態で第1の粒子と第2の粒子とを接触させることなどにより得ることができる。 The first particle and the composite particle containing the second particle are brought into contact with the first particle and the second particle by using a homogenizer, a nanomizer, a ball mill, a bead mill, an ultrasonic processing machine or the like, and the charge opposite to each other. It can be obtained by bringing the first particle and the second particle into contact with each other, or by bringing the first particle and the second particle into contact with each other in a state where the content of the particles is low.

第1の粒子におけるセリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、第1の粒子の全体(研磨液に含まれる第1の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第1の粒子は、実質的にセリウム酸化物からなる態様(実質的に第1の粒子の100質量%がセリウム酸化物である態様)であってもよい。 The lower limit of the content of cerium oxide in the first particles is the whole of the first particles (the whole of the first particles contained in the polishing liquid; the same applies hereinafter) from the viewpoint of easily improving the polishing rate of the insulating material. As a reference, 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and 95% by mass or more is particularly preferable. The first particle may be in a mode substantially composed of cerium oxide (a mode in which 100% by mass of the first particle is substantially cerium oxide).

第2の粒子におけるセリウム化合物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、第2の粒子の全体(研磨液に含まれる第2の粒子の全体。以下同様)を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましい。第2の粒子は、実質的にセリウム化合物からなる態様(実質的に第2の粒子の100質量%がセリウム化合物である態様)であってもよい。 The lower limit of the content of the cerium compound in the second particles is based on the whole of the second particles (the whole of the second particles contained in the polishing liquid; the same applies hereinafter) from the viewpoint of easily improving the polishing rate of the insulating material. As a result, 50% by mass or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, and 95% by mass or more is particularly preferable. The second particle may be in a mode substantially composed of a cerium compound (a mode in which 100% by mass of the second particle is substantially a cerium compound).

研磨液に特定の波長の光を透過させた際に分光光度計によって得られる下記式の吸光度の値により第2の粒子の含有量を推定することができる。すなわち、粒子が特定の波長の光を吸収する場合、当該粒子を含む領域の光透過率が減少する。光透過率は、粒子による吸収だけでなく、散乱によっても減少するが、第2の粒子では、散乱の影響が小さい。そのため、本実施形態では、下記式によって算出される吸光度の値により第2の粒子の含有量を推定することができる。
吸光度 =−LOG10(光透過率[%]/100)
The content of the second particle can be estimated from the value of the absorbance of the following formula obtained by the spectrophotometer when light of a specific wavelength is transmitted through the polishing liquid. That is, when the particles absorb light of a specific wavelength, the light transmittance of the region containing the particles decreases. The light transmittance is reduced not only by absorption by the particles but also by scattering, but in the second particle, the influence of scattering is small. Therefore, in the present embodiment, the content of the second particle can be estimated from the value of the absorbance calculated by the following formula.
Absorbance = -LOG 10 (light transmittance [%] / 100)

複合粒子を含む砥粒における第1の粒子の含有量は、砥粒全体を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。これらの観点から、第1の粒子の含有量は、50〜95質量%であることがより好ましい。 The content of the first particles in the abrasive grains containing the composite particles is preferably in the following range with respect to the entire abrasive grains. The lower limit of the content of the first particles is preferably 50% by mass or more, more preferably more than 50% by mass, further preferably 60% by mass or more, and 70% by mass from the viewpoint of easily improving the polishing rate of the insulating material. % Or more is particularly preferable, 75% by mass or more is extremely preferable, 80% by mass or more is very preferable, 85% by mass or more is even more preferable, and 90% by mass or more is more preferable. The upper limit of the content of the first particles is preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 91% by mass or less, from the viewpoint of easily improving the polishing rate of the insulating material. From these viewpoints, the content of the first particles is more preferably 50 to 95% by mass.

複合粒子を含む砥粒における第2の粒子の含有量は、砥粒全体を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。これらの観点から、第2の粒子の含有量は、5〜50質量%であることがより好ましい。 The content of the second particles in the abrasive grains containing the composite particles is preferably in the following range with respect to the entire abrasive grains. The lower limit of the content of the second particles is preferably 5% by mass or more, more preferably 7% by mass or more, still more preferably 9% by mass or more, from the viewpoint of easily improving the polishing rate of the insulating material. The upper limit of the content of the second particles is preferably 50% by mass or less, more preferably less than 50% by mass, further preferably 40% by mass or less, and 30% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. Is particularly preferable, 25% by mass or less is extremely preferable, 20% by mass or less is very preferable, 15% by mass or less is even more preferable, and 10% by mass or less is more preferable. From these viewpoints, the content of the second particle is more preferably 5 to 50% by mass.

複合粒子を含む砥粒におけるセリウム酸化物の含有量は、砥粒全体を基準として下記の範囲が好ましい。セリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。セリウム酸化物の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。これらの観点から、セリウム酸化物の含有量は、50〜95質量%であることがより好ましい。 The content of cerium oxide in the abrasive grains containing the composite particles is preferably in the following range with respect to the entire abrasive grains. The lower limit of the content of the cerium oxide is preferably 50% by mass or more, more preferably more than 50% by mass, further preferably 60% by mass or more, and even more preferably 70% by mass, from the viewpoint of easily improving the polishing rate of the insulating material. The above is particularly preferable, 75% by mass or more is extremely preferable, 80% by mass or more is very preferable, 85% by mass or more is further preferable, and 90% by mass or more is more preferable. The upper limit of the content of the cerium oxide is preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 91% by mass or less, from the viewpoint of easily improving the polishing rate of the insulating material. From these viewpoints, the content of cerium oxide is more preferably 50 to 95% by mass.

複合粒子を含む砥粒におけるセリウム水酸化物の含有量は、砥粒全体を基準として下記の範囲が好ましい。セリウム水酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。セリウム水酸化物の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。これらの観点から、セリウム水酸化物の含有量は、5〜50質量%であることがより好ましい。 The content of cerium hydroxide in the abrasive grains containing the composite particles is preferably in the following range with respect to the entire abrasive grains. The lower limit of the content of the cerium hydroxide is preferably 5% by mass or more, more preferably 7% by mass or more, still more preferably 9% by mass or more, from the viewpoint of easily improving the polishing rate of the insulating material. The upper limit of the content of cerium hydroxide is preferably 50% by mass or less, more preferably less than 50% by mass, further preferably 40% by mass or less, and 30% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. Is particularly preferable, 25% by mass or less is extremely preferable, 20% by mass or less is very preferable, 15% by mass or less is even more preferable, and 10% by mass or less is more preferable. From these viewpoints, the content of cerium hydroxide is more preferably 5 to 50% by mass.

第1の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以上が好ましく、50質量%を超えることがより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、75質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましく、90質量%以上がより好ましい。第1の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましい。これらの観点から、第1の粒子の含有量は、50〜95質量%であることがより好ましい。 The content of the first particle is preferably in the following range based on the total amount of the first particle and the second particle. The lower limit of the content of the first particles is preferably 50% by mass or more, more preferably more than 50% by mass, further preferably 60% by mass or more, and 70% by mass from the viewpoint of easily improving the polishing rate of the insulating material. % Or more is particularly preferable, 75% by mass or more is extremely preferable, 80% by mass or more is very preferable, 85% by mass or more is even more preferable, and 90% by mass or more is more preferable. The upper limit of the content of the first particles is preferably 95% by mass or less, more preferably 93% by mass or less, still more preferably 91% by mass or less, from the viewpoint of easily improving the polishing rate of the insulating material. From these viewpoints, the content of the first particles is more preferably 50 to 95% by mass.

第2の粒子の含有量は、第1の粒子及び第2の粒子の合計量を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、5質量%以上が好ましく、7質量%以上がより好ましく、9質量%以上が更に好ましい。第2の粒子の含有量の上限は、絶縁材料の研磨速度を向上させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましく、25質量%以下が極めて好ましく、20質量%以下が非常に好ましく、15質量%以下がより一層好ましく、10質量%以下がより好ましい。これらの観点から、第2の粒子の含有量は、5〜50質量%であることがより好ましい。 The content of the second particle is preferably in the following range based on the total amount of the first particle and the second particle. The lower limit of the content of the second particles is preferably 5% by mass or more, more preferably 7% by mass or more, still more preferably 9% by mass or more, from the viewpoint of easily improving the polishing rate of the insulating material. The upper limit of the content of the second particles is preferably 50% by mass or less, more preferably less than 50% by mass, further preferably 40% by mass or less, and 30% by mass or less from the viewpoint of easily improving the polishing rate of the insulating material. Is particularly preferable, 25% by mass or less is extremely preferable, 20% by mass or less is very preferable, 15% by mass or less is even more preferable, and 10% by mass or less is more preferable. From these viewpoints, the content of the second particle is more preferably 5 to 50% by mass.

研磨液における第1の粒子の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。第1の粒子の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.08質量%以上が極めて好ましく、0.09質量%以上が非常に好ましい。第1の粒子の含有量の上限は、研磨液の保存安定性を高くしやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましく、0.1質量%以下がより一層好ましい。これらの観点から、第1の粒子の含有量は、0.005〜5質量%であることがより好ましい。 The content of the first particles in the polishing liquid is preferably in the following range based on the total mass of the polishing liquid. The lower limit of the content of the first particles is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, and further preferably 0.01% by mass or more from the viewpoint of easily improving the polishing rate of the insulating material. Preferably, 0.05% by mass or more is particularly preferable, 0.08% by mass or more is extremely preferable, and 0.09% by mass or more is very preferable. The upper limit of the content of the first particles is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and 0.5% by mass, from the viewpoint of easily increasing the storage stability of the polishing liquid. It is particularly preferably 0% by mass or less, extremely preferably 0.3% by mass or less, very preferably 0.2% by mass or less, and even more preferably 0.1% by mass or less. From these viewpoints, the content of the first particles is more preferably 0.005 to 5% by mass.

研磨液における第2の粒子の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。第2の粒子の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.009質量%以上が更に好ましい。第2の粒子の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下がより好ましく、0.03質量%以下が更に好ましく、0.02質量%以下が特に好ましく、0.01質量%以下が極めて好ましい。これらの観点から、第2の粒子の含有量は、0.005〜5質量%であることがより好ましい。 The content of the second particles in the polishing liquid is preferably in the following range based on the total mass of the polishing liquid. The lower limit of the content of the second particles is preferably 0.005% by mass or more from the viewpoint that the chemical interaction between the abrasive grains and the surface to be polished is further improved and the polishing speed of the insulating material is easily improved. 0.008% by mass or more is more preferable, and 0.009% by mass or more is further preferable. The upper limit of the content of the second particle makes it easy to avoid agglomeration of abrasive grains, and further improves the chemical interaction between the abrasive grains and the surface to be polished, effectively utilizing the characteristics of the abrasive grains. From the viewpoint of easy operation, 5% by mass or less is preferable, 3% by mass or less is more preferable, 1% by mass or less is further preferable, 0.5% by mass or less is particularly preferable, 0.1% by mass or less is extremely preferable, and 0. 05% by mass or less is very preferable, 0.04% by mass or less is further preferable, 0.035% by mass or less is more preferable, 0.03% by mass or less is further preferable, and 0.02% by mass or less is particularly preferable. 0.01% by mass or less is extremely preferable. From these viewpoints, the content of the second particle is more preferably 0.005 to 5% by mass.

複合粒子を含む砥粒を含有する研磨液におけるセリウム酸化物の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。セリウム酸化物の含有量の下限は、絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上が更に好ましく、0.05質量%以上が特に好ましく、0.08質量%以上が極めて好ましく、0.09質量%以上が非常に好ましい。セリウム酸化物の含有量の上限は、研磨液の保存安定性を高くしやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.3質量%以下が極めて好ましく、0.2質量%以下が非常に好ましく、0.1質量%以下がより一層好ましい。これらの観点から、セリウム酸化物の含有量は、0.005〜5質量%であることがより好ましい。 The content of cerium oxide in the polishing liquid containing abrasive grains containing composite particles is preferably in the following range based on the total mass of the polishing liquid. The lower limit of the content of cerium oxide is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, still more preferably 0.01% by mass or more, from the viewpoint of easily improving the polishing rate of the insulating material. , 0.05% by mass or more is particularly preferable, 0.08% by mass or more is extremely preferable, and 0.09% by mass or more is very preferable. The upper limit of the content of the cerium oxide is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and 0.5% by mass from the viewpoint of easily increasing the storage stability of the polishing liquid. % Or less is particularly preferable, 0.3% by mass or less is extremely preferable, 0.2% by mass or less is very preferable, and 0.1% by mass or less is even more preferable. From these viewpoints, the content of cerium oxide is more preferably 0.005 to 5% by mass.

複合粒子を含む砥粒を含有する研磨液におけるセリウム水酸化物の含有量は、研磨液の全質量を基準として下記の範囲が好ましい。セリウム水酸化物の含有量の下限は、砥粒と被研磨面との化学的な相互作用が更に向上して絶縁材料の研磨速度を向上させやすい観点から、0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.009質量%以上が更に好ましい。セリウム水酸化物の含有量の上限は、砥粒の凝集を避けることが容易になると共に、砥粒と被研磨面との化学的な相互作用が更に良好となり、砥粒の特性を有効に活用しやすい観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が特に好ましく、0.1質量%以下が極めて好ましく、0.05質量%以下が非常に好ましく、0.04質量%以下がより一層好ましく、0.035質量%以下がより好ましく、0.03質量%以下が更に好ましく、0.02質量%以下が特に好ましく、0.01質量%以下が極めて好ましい。これらの観点から、セリウム水酸化物の含有量は、0.005〜5質量%であることがより好ましい。 The content of cerium hydroxide in the polishing liquid containing abrasive grains containing composite particles is preferably in the following range based on the total mass of the polishing liquid. The lower limit of the content of cerium hydroxide is preferably 0.005% by mass or more from the viewpoint that the chemical interaction between the abrasive grains and the surface to be polished is further improved and the polishing speed of the insulating material is easily improved. 0.008% by mass or more is more preferable, and 0.009% by mass or more is further preferable. The upper limit of the content of cerium hydroxide facilitates avoiding agglomeration of abrasive grains and further improves the chemical interaction between the abrasive grains and the surface to be polished, effectively utilizing the characteristics of the abrasive grains. From the viewpoint of easy easiness, 5% by mass or less is preferable, 3% by mass or less is more preferable, 1% by mass or less is further preferable, 0.5% by mass or less is particularly preferable, 0.1% by mass or less is extremely preferable, and 0. 05% by mass or less is very preferable, 0.04% by mass or less is further preferable, 0.035% by mass or less is more preferable, 0.03% by mass or less is further preferable, and 0.02% by mass or less is particularly preferable. 0.01% by mass or less is extremely preferable. From these viewpoints, the content of cerium hydroxide is more preferably 0.005 to 5% by mass.

(添加剤)
本実施形態に係る研磨液は、添加剤を含有する。ここで、「添加剤」とは、砥粒及び液状媒体以外に研磨液が含有する物質を指す。
(Additive)
The polishing liquid according to this embodiment contains an additive. Here, the "additive" refers to a substance contained in the polishing liquid in addition to the abrasive grains and the liquid medium.

[ヒドロキシ酸]
本実施形態に係る研磨液は、ヒドロキシ酸(高分子化合物Aに該当する化合物を除く)を含有する。ヒドロキシ酸は、少なくとも1個のカルボキシル基と少なくとも1個の水酸基とを有している。「水酸基」に、カルボキシル基中の「−OH」は含まれない。「水酸基」は、アルコール性水酸基及びフェノール性水酸基のいずれであってもよい。ヒドロキシ酸は、フェノール性水酸基を有していなくてよい。
[Hydroxy acids]
The polishing liquid according to this embodiment contains a hydroxy acid (excluding the compound corresponding to the polymer compound A). Hydroxy acids have at least one carboxyl group and at least one hydroxyl group. The "hydroxyl group" does not include "-OH" in the carboxyl group. The "hydroxyl group" may be either an alcoholic hydroxyl group or a phenolic hydroxyl group. Hydroxy acids do not have to have phenolic hydroxyl groups.

ヒドロキシ酸は、優れた洗浄性が得られやすい観点から、1個のカルボキシル基と1〜3個の水酸基(例えばアルコール性水酸基)とを有することが好ましい。ヒドロキシ酸の水酸基の数は、優れた洗浄性が得られやすい観点から、1〜2個が好ましく、2個がより好ましい。ヒドロキシ酸の水酸基の数は、2〜3個であってもよい。 The hydroxy acid preferably has one carboxyl group and 1 to 3 hydroxyl groups (for example, alcoholic hydroxyl groups) from the viewpoint that excellent detergency can be easily obtained. The number of hydroxyl groups of the hydroxy acid is preferably 1 to 2 and more preferably 2 from the viewpoint that excellent detergency can be easily obtained. The number of hydroxyl groups of the hydroxy acid may be 2 to 3.

ヒドロキシ酸としては、グリコール酸、グリセリン酸、乳酸(例えばDL−乳酸)、2,2−ビス(ヒドロキシメチル)プロピオン酸、2,2−ビス(ヒドロキシメチル)酪酸、2−ヒドロキシイソ酪酸(別名:2−メチル乳酸)、N,N−ビス(2−ヒドロキシエチル)グリシン、N−[2−ヒドロキシ−1,1−ビス(ヒドロキシメチル)エチル]グリシン、ビシン、トリシン、チロシン、セリン、トレオニン等が挙げられる。ヒドロキシ酸は、優れた洗浄性及び研磨速度が得られやすい観点から、乳酸(例えばDL−乳酸)、2,2−ビス(ヒドロキシメチル)プロピオン酸、2,2−ビス(ヒドロキシメチル)酪酸、N,N−ビス(2−ヒドロキシエチル)グリシン、及び、N−[2−ヒドロキシ−1,1−ビス(ヒドロキシメチル)エチル]グリシンからなる群より選ばれる少なくとも一種を含むことが好ましく、2,2−ビス(ヒドロキシメチル)プロピオン酸及び2,2−ビス(ヒドロキシメチル)酪酸からなる群より選ばれる少なくとも一種を含むことがより好ましく、2,2−ビス(ヒドロキシメチル)プロピオン酸を含むことが更に好ましい。 As the hydroxy acid, glycolic acid, glyceric acid, lactic acid (for example, DL-lactic acid), 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid, 2-hydroxyisobutyric acid (also known as:: 2-Methyllactic acid), N, N-bis (2-hydroxyethyl) glycine, N- [2-hydroxy-1,1-bis (hydroxymethyl) ethyl] glycine, bicin, tricin, tyrosine, serine, threonine, etc. Can be mentioned. Hydroxy acids include lactic acid (for example, DL-lactic acid), 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid, and N from the viewpoint of obtaining excellent detergency and polishing rate. , N-bis (2-hydroxyethyl) glycine, and at least one selected from the group consisting of N- [2-hydroxy-1,1-bis (hydroxymethyl) ethyl] glycine, preferably 2,2. It is more preferable to contain at least one selected from the group consisting of −bis (hydroxymethyl) propionic acid and 2,2-bis (hydroxymethyl) butyric acid, and further to contain 2,2-bis (hydroxymethyl) propionic acid. preferable.

ヒドロキシ酸は、優れた洗浄性が得られやすい観点から、脂肪族ヒドロキシ酸を含むことが好ましい。ヒドロキシ酸は、窒素原子を含むヒドロキシ酸を含んでいてもよく、窒素原子を含まないヒドロキシ酸を含んでいてもよい。ヒドロキシ酸は、アミノ基を有していてよく、アミノ基を有していなくてもよい。ヒドロキシ酸は、アミノ酸を含んでいてよく、アミノ酸を含んでいなくてもよい。 The hydroxy acid preferably contains an aliphatic hydroxy acid from the viewpoint that excellent detergency can be easily obtained. The hydroxy acid may contain a hydroxy acid containing a nitrogen atom, or may contain a hydroxy acid containing no nitrogen atom. The hydroxy acid may have an amino group and may not have an amino group. Hydroxy acids may or may not contain amino acids.

本実施形態に係る研磨液は、1個のカルボキシル基と1〜3個の水酸基とを有するヒドロキシ酸以外のヒドロキシ酸を含有してよい。このようなヒドロキシ酸としては、2個以上のカルボキシル基を有するヒドロキシ酸、4個以上の水酸基を有するヒドロキシ酸等が挙げられる。具体例としては、グルクロン酸、グルコン酸、クエン酸、酒石酸等が挙げられる。 The polishing liquid according to this embodiment may contain a hydroxy acid other than a hydroxy acid having one carboxyl group and 1 to 3 hydroxyl groups. Examples of such a hydroxy acid include a hydroxy acid having two or more carboxyl groups and a hydroxy acid having four or more hydroxyl groups. Specific examples include glucuronic acid, gluconic acid, citric acid, tartaric acid and the like.

ヒドロキシ酸の水酸基価の上限は、優れた洗浄性が得られやすい観点から、1500以下が好ましく、1300以下がより好ましく、1100以下が更に好ましく、1000以下が特に好ましく、900以下が極めて好ましい。ヒドロキシ酸の水酸基価の下限は、優れた洗浄性が得られやすい観点から、50以上が好ましく、150以上がより好ましく、250以上が更に好ましく、500以上が特に好ましく、600以上が極めて好ましく、650以上が非常に好ましい。これらの観点から、ヒドロキシ酸の水酸基価は、50〜1500がより好ましい。「水酸基価」とは、当該ヒドロキシ酸に含まれる水酸基数の大小の指標となる数値であり、下記式(1)から算出されるものとする。
水酸基価=56110×水酸基数/分子量 …(1)
The upper limit of the hydroxyl value of the hydroxy acid is preferably 1500 or less, more preferably 1300 or less, further preferably 1100 or less, particularly preferably 1000 or less, and extremely preferably 900 or less, from the viewpoint that excellent detergency can be easily obtained. The lower limit of the hydroxyl value of the hydroxy acid is preferably 50 or more, more preferably 150 or more, further preferably 250 or more, particularly preferably 500 or more, extremely preferably 600 or more, and 650, from the viewpoint that excellent detergency can be easily obtained. The above is very preferable. From these viewpoints, the hydroxyl value of the hydroxy acid is more preferably 50 to 1500. The "hydroxyl value" is a numerical value that is an index of the number of hydroxyl groups contained in the hydroxy acid, and is calculated from the following formula (1).
Hydroxy group value = 56110 x number of hydroxyl groups / molecular weight ... (1)

ヒドロキシ酸の含有量の下限は、優れた洗浄性が得られやすい観点から、研磨液の全質量を基準として、0.001質量%以上が好ましく、0.003質量%以上がより好ましく、0.005質量%以上が更に好ましく、0.008質量%以上が特に好ましく、0.01質量%以上が極めて好ましく、0.03質量%以上が非常に好ましく、0.05質量%以上がより一層好ましく、0.08質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が特に好ましく、0.3質量%以上が極めて好ましく、0.4質量%以上が非常に好ましい。ヒドロキシ酸の含有量の上限は、優れた研磨速度が得られやすい観点から、研磨液の全質量を基準として、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましい。これらの観点から、ヒドロキシ酸の含有量は、研磨液の全質量を基準として、0.001〜1.0質量%がより好ましく、0.01〜1.0質量%が更に好ましい。 The lower limit of the hydroxy acid content is preferably 0.001% by mass or more, more preferably 0.003% by mass or more, based on the total mass of the polishing liquid, from the viewpoint of easily obtaining excellent detergency. 005% by mass or more is further preferable, 0.008% by mass or more is particularly preferable, 0.01% by mass or more is extremely preferable, 0.03% by mass or more is very preferable, 0.05% by mass or more is even more preferable. 0.08% by mass or more is more preferable, 0.1% by mass or more is further preferable, 0.2% by mass or more is particularly preferable, 0.3% by mass or more is extremely preferable, and 0.4% by mass or more is very preferable. .. The upper limit of the content of the hydroxy acid is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, based on the total mass of the polishing liquid, from the viewpoint that an excellent polishing rate can be easily obtained. More preferably, it is 5% by mass or less. From these viewpoints, the content of the hydroxy acid is more preferably 0.001 to 1.0% by mass, still more preferably 0.01 to 1.0% by mass, based on the total mass of the polishing liquid.

ヒドロキシ酸の含有量の下限は、優れた洗浄性が得られやすい観点から、砥粒100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上が更に好ましく、40質量部以上が特に好ましい。ヒドロキシ酸の含有量の上限は、優れた研磨速度が得られやすい観点から、砥粒100質量部に対して、100質量部以下が好ましく、100質量部未満がより好ましく、80質量部以下が更に好ましく、70質量部以下が特に好ましく、60質量部以下が極めて好ましく、50質量部以下が非常に好ましい。これらの観点から、ヒドロキシ酸の含有量は、砥粒100質量部に対して10〜100質量部がより好ましい。 The lower limit of the content of the hydroxy acid is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and further 30 parts by mass or more with respect to 100 parts by mass of the abrasive grains from the viewpoint that excellent detergency can be easily obtained. It is preferable, and 40 parts by mass or more is particularly preferable. The upper limit of the content of the hydroxy acid is preferably 100 parts by mass or less, more preferably less than 100 parts by mass, and further 80 parts by mass or less with respect to 100 parts by mass of the abrasive grains from the viewpoint that an excellent polishing rate can be easily obtained. Preferably, 70 parts by mass or less is particularly preferable, 60 parts by mass or less is extremely preferable, and 50 parts by mass or less is very preferable. From these viewpoints, the content of the hydroxy acid is more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the abrasive grains.

1個のカルボキシル基と1〜3個の水酸基とを有するヒドロキシ酸の含有量の下限は、優れた洗浄性が得られやすい観点から、研磨液に含まれるヒドロキシ酸の全質量を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、95質量%以上が特に好ましく、97質量%以上が極めて好ましく、99質量%以上が非常に好ましい。 The lower limit of the content of a hydroxy acid having one carboxyl group and 1 to 3 hydroxyl groups is 50 based on the total mass of the hydroxy acid contained in the polishing liquid from the viewpoint that excellent detergency can be easily obtained. Mass% or more is preferable, 70% by mass or more is more preferable, 90% by mass or more is further preferable, 95% by mass or more is particularly preferable, 97% by mass or more is extremely preferable, and 99% by mass or more is very preferable.

[高分子化合物A]
本実施形態に係る研磨液は、水酸基及びアミド基からなる群より選ばれる少なくとも一種を有する高分子化合物Aを含有する。高分子化合物Aとしては、水溶性高分子を用いることができる。「水溶性高分子」とは、水100gに対して0.1g以上溶解する高分子として定義する(以下同様)。
[Polymer compound A]
The polishing liquid according to this embodiment contains a polymer compound A having at least one selected from the group consisting of a hydroxyl group and an amide group. As the polymer compound A, a water-soluble polymer can be used. The "water-soluble polymer" is defined as a polymer that dissolves 0.1 g or more in 100 g of water (the same applies hereinafter).

高分子化合物Aは、優れた洗浄性が得られやすい観点から、水酸基を有する高分子化合物として、ポリオールを含むことが好ましい。ポリオールとは、分子中に2個以上の水酸基を有している化合物である。高分子化合物Aは、被研磨面に保護層を形成して研磨速度を緩やかに調整することが容易であることから、凹部の過研磨が容易に抑制され、研磨後のウエハを平坦に仕上げることが容易である観点から、水酸基を有する高分子化合物として、ポリエーテルポリオール(ポリエーテル構造を有する高分子化合物)を含んでよい。 The polymer compound A preferably contains a polyol as the polymer compound having a hydroxyl group from the viewpoint that excellent detergency can be easily obtained. A polyol is a compound having two or more hydroxyl groups in the molecule. Since it is easy to form a protective layer on the surface to be polished and to gently adjust the polishing rate of the polymer compound A, overpolishing of the recesses is easily suppressed, and the wafer after polishing is finished flat. From the viewpoint of ease of use, a polyether polyol (a polymer compound having a polyether structure) may be included as the polymer compound having a hydroxyl group.

水酸基を有する高分子化合物Aとしては、ポリグリセリン、ポリビニルアルコール、ポリアルキレングリコール(ポリエチレングリコール等)、ポリオキシアルキレングリコール、ポリオキシアルキレンソルビトールエーテル(ポリオキシプロピレンソルビトールエーテル等)、エチレンジアミンのポリオキシアルキレン縮合物(エチレンジアミンテトラポリオキシエチレンポリオキシプロピレン等)、2,2−ビス(4−ポリオキシアルキレン−オキシフェニル)プロパン、ポリオキシアルキレングリセリルエーテル、ポリオキシアルキレンジグリセリルエーテル、ポリオキシアルキレントリメチロールプロパンエーテル、ポリオキシアルキレンペンタエリスリトールエーテル、ポリオキシアルキレンメチルグルコシドなどが挙げられる。 Examples of the polymer compound A having a hydroxyl group include polyglycerin, polyvinyl alcohol, polyalkylene glycol (polyethylene glycol, etc.), polyoxyalkylene glycol, polyoxyalkylene sorbitol ether (polyoxypropylene sorbitol ether, etc.), and polyoxyalkylene condensation of ethylenediamine. Things (ethylenediamine tetrapolyoxyethylene polyoxypropylene, etc.), 2,2-bis (4-polyoxyalkylene-oxyphenyl) propane, polyoxyalkylene glyceryl ether, polyoxyalkylene diglyceryl ether, polyoxyalkylene trimethyl propane ether , Polyoxyalkylene pentaerythritol ether, polyoxyalkylene methyl glucoside and the like.

アミド基を有する高分子化合物Aとしては、ポリビニルピロリドン、ポリ−N−ビニルアセトアミド等が挙げられる。高分子化合物Aは、1級アミド基、2級アミド基及び3級アミド基からなる群より選ばれる少なくとも一種を有することができる。高分子化合物Aは、優れた洗浄性及び研磨速度が得られやすい観点から、2級アミド基を有する化合物を含むことが好ましい。高分子化合物Aは、優れた洗浄性及び研磨速度が得られやすい観点から、3級アミド基を有する化合物を含むことが好ましい。 Examples of the polymer compound A having an amide group include polyvinylpyrrolidone, poly-N-vinylacetamide and the like. The polymer compound A can have at least one selected from the group consisting of a primary amide group, a secondary amide group and a tertiary amide group. The polymer compound A preferably contains a compound having a secondary amide group from the viewpoint of easily obtaining excellent detergency and polishing rate. The polymer compound A preferably contains a compound having a tertiary amide group from the viewpoint of easily obtaining excellent detergency and polishing rate.

高分子化合物Aは、ポリオキシアルキレン構造を有する化合物を含むことが好ましい。これにより、被研磨面に保護層を形成して研磨速度を緩やかに調整することが更に容易であることから、凹部の過研磨が更に容易に抑制され、研磨後のウエハを平坦に仕上げることが更に容易である。ポリオキシアルキレン構造におけるオキシアルキレン基(構造単位)の炭素数は、優れた洗浄性が得られやすい観点から、1以上が好ましく、2以上がより好ましい。ポリオキシアルキレン構造におけるオキシアルキレン基(構造単位)の炭素数は、優れた洗浄性が得られやすい観点から、5以下が好ましく、4以下がより好ましく、3以下が更に好ましい。これらの観点から、前記炭素数は、1〜5が好ましい。ポリオキシアルキレン鎖は、単独重合鎖であってもよく、共重合鎖であってもよい。共重合鎖は、ブロック重合鎖であってもよく、ランダム重合鎖であってもよい。 The polymer compound A preferably contains a compound having a polyoxyalkylene structure. As a result, it is easier to form a protective layer on the surface to be polished to gently adjust the polishing rate, so that over-polishing of the recesses can be more easily suppressed, and the polished wafer can be finished flat. It's even easier. The carbon number of the oxyalkylene group (structural unit) in the polyoxyalkylene structure is preferably 1 or more, and more preferably 2 or more, from the viewpoint that excellent detergency can be easily obtained. The carbon number of the oxyalkylene group (structural unit) in the polyoxyalkylene structure is preferably 5 or less, more preferably 4 or less, still more preferably 3 or less, from the viewpoint that excellent detergency can be easily obtained. From these viewpoints, the carbon number is preferably 1 to 5. The polyoxyalkylene chain may be a homopolymerized chain or a copolymerized chain. The copolymer chain may be a block polymerized chain or a random polymerized chain.

高分子化合物Aは、優れた洗浄性が得られやすい観点から、下記の特徴の少なくとも一つを満たしていてよい。高分子化合物Aの水酸基の数は、4個以下であってよく、3個以下であってよく、1個又は2個であってよい。高分子化合物Aは、鎖式化合物であってよい。高分子化合物Aは、水酸基及びアミド基からなる群より選ばれる少なくとも一種を有するモノマーの単独重合体を含んでよい。高分子化合物Aは、グルコースに由来する構造単位を有さなくてよい。高分子化合物Aは、水酸基を側鎖のみに有する化合物を含んでよい。高分子化合物Aは、水酸基を有する複数の構造単位を有する化合物を含んでいてよい。高分子化合物Aは、水酸基を有する2個以上の同一の構造単位を有する化合物を含んでよい。高分子化合物Aは、アミド基を有する複数の構造単位を有する化合物を含んでいてよい。高分子化合物Aは、アミド基を有する2個以上の同一の構造単位を有する化合物を含んでよい。これらの構造単位におけるアミド基は、1級アミド基、2級アミド基及び3級アミド基からなる群より選ばれる少なくとも一種であってよい。高分子化合物Aは、アミド基を含む側鎖を有する化合物を含んでよく、炭素鎖又はポリオキシアルキレン鎖を含む主鎖と、当該主鎖に結合すると共にアミド基を含む側鎖と、を有する化合物を含んでよい。高分子化合物Aは、両末端に水酸基を含む主鎖を有する化合物を含んでよく、両末端に水酸基を含む炭素鎖又はポリオキシアルキレン鎖を有する化合物を含んでよい。「主鎖」としては、高分子化合物を構成する分子鎖のうちの最も長い分子鎖を用いることができる。 The polymer compound A may satisfy at least one of the following characteristics from the viewpoint that excellent detergency can be easily obtained. The number of hydroxyl groups of the polymer compound A may be 4 or less, may be 3 or less, and may be 1 or 2. The polymer compound A may be a chain compound. The polymer compound A may contain a homopolymer of a monomer having at least one selected from the group consisting of a hydroxyl group and an amide group. The polymer compound A does not have to have a structural unit derived from glucose. The polymer compound A may contain a compound having a hydroxyl group only in the side chain. The polymer compound A may contain a compound having a plurality of structural units having a hydroxyl group. The polymer compound A may contain two or more compounds having the same structural unit having a hydroxyl group. The polymer compound A may contain a compound having a plurality of structural units having an amide group. The polymer compound A may contain two or more compounds having the same structural unit having an amide group. The amide group in these structural units may be at least one selected from the group consisting of a primary amide group, a secondary amide group and a tertiary amide group. The polymer compound A may contain a compound having a side chain containing an amide group, and has a main chain containing a carbon chain or a polyoxyalkylene chain, and a side chain bonded to the main chain and containing an amide group. May include compounds. The polymer compound A may contain a compound having a main chain containing a hydroxyl group at both ends, and may contain a compound having a carbon chain containing a hydroxyl group or a polyoxyalkylene chain at both ends. As the "main chain", the longest molecular chain among the molecular chains constituting the polymer compound can be used.

高分子化合物Aは、優れた洗浄性が得られやすい観点から、ポリビニルアルコール、ポリアルキレングリコール、ポリビニルピロリドン、及び、ポリ−N−ビニルアセトアミドからなる群より選ばれる少なくとも一種を含むことが好ましい。高分子化合物Aは、優れた洗浄性が得られやすい観点から、芳香族基を有しない高分子化合物を含むことが好ましい。 The polymer compound A preferably contains at least one selected from the group consisting of polyvinyl alcohol, polyalkylene glycol, polyvinylpyrrolidone, and poly-N-vinylacetamide from the viewpoint of easily obtaining excellent detergency. The polymer compound A preferably contains a polymer compound having no aromatic group from the viewpoint that excellent detergency can be easily obtained.

高分子化合物Aの重量平均分子量の下限は、研磨後の被研磨面の洗浄性に優れる(砥粒が研磨後の被研磨面に残ることが抑制される)観点から、3000以上である。高分子化合物Aの重量平均分子量の下限は、優れた洗浄性が得られやすい観点から、4000以上が好ましく、5000以上がより好ましく、6000以上が更に好ましく、8000以上が特に好ましく、10000以上が極めて好ましい。高分子化合物Aの重量平均分子量の上限は、優れた洗浄性が得られやすい観点から、1000000以下が好ましく、750000以下がより好ましく、500000以下が更に好ましく、400000以下が特に好ましく、200000以下が極めて好ましく、100000以下が非常に好ましく、50000以下がより一層好ましく、30000以下がより好ましく、20000以下が更に好ましい。これらの観点から、高分子化合物Aの重量平均分子量は、3000〜1000000であることがより好ましい。 The lower limit of the weight average molecular weight of the polymer compound A is 3000 or more from the viewpoint of excellent cleanability of the surface to be polished after polishing (suppression of abrasive grains remaining on the surface to be polished after polishing). The lower limit of the weight average molecular weight of the polymer compound A is preferably 4000 or more, more preferably 5000 or more, further preferably 6000 or more, particularly preferably 8000 or more, and extremely preferably 10000 or more from the viewpoint that excellent detergency can be easily obtained. preferable. The upper limit of the weight average molecular weight of the polymer compound A is preferably 1,000,000 or less, more preferably 750000 or less, further preferably 500,000 or less, particularly preferably 400,000 or less, and extremely preferably 200,000 or less from the viewpoint that excellent detergency can be easily obtained. Preferably, 100,000 or less is very preferable, 50,000 or less is even more preferable, 30,000 or less is more preferable, and 20,000 or less is further preferable. From these viewpoints, the weight average molecular weight of the polymer compound A is more preferably 3000 to 1,000,000.

高分子化合物Aが水酸基を有する場合、高分子化合物Aの重量平均分子量の下限は、優れた洗浄性が得られやすい観点から、上述の重量平均分子量の範囲に加えて下記の範囲が好ましい。高分子化合物Aの重量平均分子量は、10000を超えることが好ましく、12000以上がより好ましく、15000以上が更に好ましく、18000以上が特に好ましく、20000以上が極めて好ましい。 When the polymer compound A has a hydroxyl group, the lower limit of the weight average molecular weight of the polymer compound A is preferably the following range in addition to the above-mentioned range of the weight average molecular weight from the viewpoint that excellent detergency can be easily obtained. The weight average molecular weight of the polymer compound A is preferably more than 10,000, more preferably 12,000 or more, further preferably 15,000 or more, particularly preferably 18,000 or more, and extremely preferably 20,000 or more.

高分子化合物Aがアミド基を有する場合、高分子化合物Aの重量平均分子量の上限は、優れた洗浄性が得られやすい観点から、上述の重量平均分子量の範囲に加えて下記の範囲が好ましい。高分子化合物Aの重量平均分子量は、15000以下が好ましく、12000以下がより好ましく、10000以下が更に好ましい。 When the polymer compound A has an amide group, the upper limit of the weight average molecular weight of the polymer compound A is preferably the following range in addition to the above-mentioned range of the weight average molecular weight from the viewpoint that excellent detergency can be easily obtained. The weight average molecular weight of the polymer compound A is preferably 15,000 or less, more preferably 12,000 or less, and even more preferably 10,000 or less.

高分子化合物Aの重量平均分子量は、例えば、標準ポリスチレンの検量線を用いてゲルパーミエーションクロマトグラフィー法(GPC)により下記の条件で測定することができる。
使用機器:日立L−6000型[株式会社日立製作所製]
カラム:ゲルパックGL−R420+ゲルパックGL−R430+ゲルパックGL−R440[日立化成株式会社製 商品名、計3本]
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75mL/min
検出器:L−3300RI[株式会社日立製作所製]
The weight average molecular weight of the polymer compound A can be measured, for example, by gel permeation chromatography (GPC) using a standard polystyrene calibration curve under the following conditions.
Equipment used: Hitachi L-6000 type [manufactured by Hitachi, Ltd.]
Column: Gelpack GL-R420 + Gelpack GL-R430 + Gelpack GL-R440 [Product name manufactured by Hitachi Kasei Co., Ltd., 3 in total]
Eluent: tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.75 mL / min
Detector: L-3300RI [manufactured by Hitachi, Ltd.]

高分子化合物Aの含有量は、研磨液の全質量を基準として下記の範囲が好ましい。高分子化合物Aの含有量の下限は、優れた洗浄性が得られやすい観点から、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.08質量%以上が特に好ましく、0.1質量%以上が極めて好ましい。高分子化合物Aの含有量の下限は、優れた研磨速度が得られやすい観点から、0.2質量%以上が好ましく、0.3質量%以上がより好ましく、0.4質量%以上が更に好ましく、0.5質量%以上が特に好ましい。高分子化合物Aの含有量の下限は、特に優れた洗浄性が得られやすい観点から、0.6質量%以上が好ましく、0.8質量%以上がより好ましく、1.0質量%以上が更に好ましい。高分子化合物Aの含有量の上限は、優れた洗浄性及び研磨速度が得られやすい観点から、5.0質量%以下が好ましく、3.0質量%以下がより好ましく、2.0質量%以下が更に好ましく、1.0質量%以下が特に好ましい。これらの観点から、高分子化合物Aの含有量は、0.01〜5.0質量%であることがより好ましく、0.05〜5.0質量%であることが更に好ましい。 The content of the polymer compound A is preferably in the following range based on the total mass of the polishing liquid. The lower limit of the content of the polymer compound A is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, still more preferably 0.05% by mass or more, from the viewpoint that excellent detergency can be easily obtained. , 0.08% by mass or more is particularly preferable, and 0.1% by mass or more is extremely preferable. The lower limit of the content of the polymer compound A is preferably 0.2% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.4% by mass or more, from the viewpoint that an excellent polishing rate can be easily obtained. , 0.5% by mass or more is particularly preferable. The lower limit of the content of the polymer compound A is preferably 0.6% by mass or more, more preferably 0.8% by mass or more, and further preferably 1.0% by mass or more, from the viewpoint that particularly excellent detergency can be easily obtained. preferable. The upper limit of the content of the polymer compound A is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and 2.0% by mass or less from the viewpoint of easily obtaining excellent detergency and polishing speed. Is more preferable, and 1.0% by mass or less is particularly preferable. From these viewpoints, the content of the polymer compound A is more preferably 0.01 to 5.0% by mass, and further preferably 0.05 to 5.0% by mass.

砥粒の含有量に対する高分子化合物Aの含有量の質量比(高分子化合物Aの含有量/砥粒の含有量)は、下記の範囲が好ましい。前記質量比の下限は、優れた洗浄性が得られやすい観点から、0.1以上が好ましく、0.3以上がより好ましく、0.5以上が更に好ましく、0.8以上が特に好ましく、1以上が極めて好ましい。前記質量比の下限は、優れた研磨速度が得られやすい観点から、2以上が好ましく、3以上がより好ましく、4以上が更に好ましく、5以上が特に好ましい。前記質量比の下限は、特に優れた洗浄性が得られやすい観点から、6以上が好ましく、8以上がより好ましく、10以上が更に好ましい。前記質量比の上限は、優れた洗浄性及び研磨速度が得られやすい観点から、50以下が好ましく、30以下がより好ましく、10以下が更に好ましい。これらの観点から、前記質量比は、0.1〜50であることがより好ましい。 The mass ratio of the content of the polymer compound A to the content of the abrasive grains (content of the polymer compound A / content of the abrasive grains) is preferably in the following range. The lower limit of the mass ratio is preferably 0.1 or more, more preferably 0.3 or more, further preferably 0.5 or more, particularly preferably 0.8 or more, from the viewpoint that excellent detergency can be easily obtained. The above is extremely preferable. The lower limit of the mass ratio is preferably 2 or more, more preferably 3 or more, further preferably 4 or more, and particularly preferably 5 or more, from the viewpoint that an excellent polishing rate can be easily obtained. The lower limit of the mass ratio is preferably 6 or more, more preferably 8 or more, still more preferably 10 or more, from the viewpoint that particularly excellent detergency can be easily obtained. The upper limit of the mass ratio is preferably 50 or less, more preferably 30 or less, still more preferably 10 or less, from the viewpoint that excellent detergency and polishing speed can be easily obtained. From these viewpoints, the mass ratio is more preferably 0.1 to 50.

ヒドロキシ酸の含有量に対する高分子化合物Aの含有量の質量比(高分子化合物Aの含有量/ヒドロキシ酸の含有量)は、下記の範囲が好ましい。前記質量比の下限は、優れた洗浄性が得られやすい観点から、0.01以上が好ましく、0.05以上がより好ましく、0.1以上が更に好ましく、0.2以上が特に好ましく、0.25以上が極めて好ましい。前記質量比の下限は、優れた研磨速度が得られやすい観点から、0.3以上が好ましく、0.5以上がより好ましく、1以上が更に好ましく、1.25以上が特に好ましい。前記質量比の下限は、特に優れた洗浄性が得られやすい観点から、1.5以上が好ましく、2以上がより好ましく、2.5以上が更に好ましい。前記質量比の上限は、優れた洗浄性及び研磨速度が得られやすい観点から、10以下が好ましく、5以下がより好ましく、2.5以下が更に好ましい。これらの観点から、前記質量比は、0.01〜10であることがより好ましい。 The mass ratio of the content of the polymer compound A to the content of the hydroxy acid (content of the polymer compound A / content of the hydroxy acid) is preferably in the following range. The lower limit of the mass ratio is preferably 0.01 or more, more preferably 0.05 or more, further preferably 0.1 or more, particularly preferably 0.2 or more, and 0, from the viewpoint that excellent detergency can be easily obtained. .25 or more is extremely preferable. The lower limit of the mass ratio is preferably 0.3 or more, more preferably 0.5 or more, further preferably 1 or more, and particularly preferably 1.25 or more, from the viewpoint that an excellent polishing rate can be easily obtained. The lower limit of the mass ratio is preferably 1.5 or more, more preferably 2 or more, and even more preferably 2.5 or more, from the viewpoint that particularly excellent detergency can be easily obtained. The upper limit of the mass ratio is preferably 10 or less, more preferably 5 or less, still more preferably 2.5 or less, from the viewpoint of easily obtaining excellent detergency and polishing speed. From these viewpoints, the mass ratio is more preferably 0.01 to 10.

[任意の添加剤]
本実施形態に係る研磨液は、任意の添加剤(ヒドロキシ酸又は高分子化合物Aに該当する化合物を除く)を含有していてもよい。任意の添加剤としては、水溶性高分子、酸化剤(例えば過酸化水素)、分散剤(例えばリン酸系無機塩)等が挙げられる。水溶性高分子としては、ポリアクリル酸、ポリアクリル酸共重合体、ポリアクリル酸塩、ポリアクリル酸共重合体塩等のポリアクリル酸系ポリマ;ポリメタクリル酸、ポリメタクリル酸塩等のポリメタクリル酸系ポリマなどが挙げられる。
[Any additive]
The polishing liquid according to the present embodiment may contain any additive (excluding the compound corresponding to the hydroxy acid or the polymer compound A). Examples of the optional additive include a water-soluble polymer, an oxidizing agent (for example, hydrogen peroxide), a dispersant (for example, a phosphoric acid-based inorganic salt) and the like. Examples of the water-soluble polymer include polyacrylic acid-based polymers such as polyacrylic acid, polyacrylic acid copolymer, polyacrylic acid salt, and polyacrylic acid copolymer salt; and polymethacrylic acid such as polymethacrylic acid and polymethacrylic acid salt. Examples include acid-based polymers.

(液状媒体)
本実施形態に係る研磨液における液状媒体としては、特に制限はないが、脱イオン水、超純水等の水が好ましい。液状媒体の含有量は、他の構成成分の含有量を除いた研磨液の残部でよく、特に限定されない。
(Liquid medium)
The liquid medium in the polishing liquid according to the present embodiment is not particularly limited, but water such as deionized water and ultrapure water is preferable. The content of the liquid medium may be the balance of the polishing liquid excluding the content of other constituent components, and is not particularly limited.

(研磨液の特性)
本実施形態に係る研磨液のpHの下限は、優れた洗浄性が得られやすい(例えば、砥粒の正のゼータ電位の絶対値が低下することにより砥粒と絶縁材料との静電引力を低減させやすい)観点から、2.0以上が好ましく、2.5以上がより好ましく、3.0以上が更に好ましく、3.2以上が特に好ましく、3.4以上が極めて好ましく、3.5以上が非常に好ましく、4.0以上がより一層好ましい。pHの上限は、優れた洗浄性が得られやすい観点から、8.0以下が好ましく、8.0未満がより好ましく、7.5以下が更に好ましく、7.0以下が特に好ましく、6.5以下が極めて好ましく、6.0以下が非常に好ましく、5.0以下がより一層好ましい。これらの観点から、研磨液のpHは、2.0〜8.0がより好ましく、2.0〜7.0が更に好ましい。pHは、3.0未満であってよく、2.8以下であってよく、2.5以下であってよい。研磨液のpHは、液温25℃におけるpHと定義する。
(Characteristics of polishing liquid)
The lower limit of the pH of the polishing liquid according to the present embodiment makes it easy to obtain excellent detergency (for example, the electrostatic attraction between the abrasive grains and the insulating material is increased by lowering the absolute value of the positive zeta potential of the abrasive grains. From the viewpoint of (easy to reduce), 2.0 or more is preferable, 2.5 or more is more preferable, 3.0 or more is further preferable, 3.2 or more is particularly preferable, 3.4 or more is extremely preferable, and 3.5 or more is extremely preferable. Is very preferable, and 4.0 or more is even more preferable. The upper limit of pH is preferably 8.0 or less, more preferably less than 8.0, further preferably 7.5 or less, particularly preferably 7.0 or less, and 6.5 or less, from the viewpoint that excellent detergency can be easily obtained. The following is extremely preferable, 6.0 or less is very preferable, and 5.0 or less is even more preferable. From these viewpoints, the pH of the polishing liquid is more preferably 2.0 to 8.0, and even more preferably 2.0 to 7.0. The pH may be less than 3.0, 2.8 or less, and 2.5 or less. The pH of the polishing liquid is defined as the pH at a liquid temperature of 25 ° C.

研磨液のpHは、無機酸、有機酸等の酸成分;アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、イミダゾール、アルカノールアミン、ピラゾール(例えば3,5−ジメチルピラゾール)等のアルカリ成分などによって調整できる。pHを安定化させるため、緩衝剤を添加してもよい。緩衝液(緩衝剤を含む液)として緩衝剤を添加してもよい。このような緩衝液としては、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。 The pH of the polishing solution is an acid component such as an inorganic acid or an organic acid; an alkaline component such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH), imidazole, alkanolamine, pyrazole (for example, 3,5-dimethylpyrazole). It can be adjusted by such as. A buffer may be added to stabilize the pH. A buffer may be added as a buffer (a solution containing a buffer). Examples of such a buffer solution include an acetate buffer solution and a phthalate buffer solution.

本実施形態に係る研磨液のpHは、pHメータ(例えば、東亜ディーケーケー株式会社製の型番PHL−40)で測定することができる。具体的には例えば、フタル酸塩pH緩衝液(pH:4.01)及び中性リン酸塩pH緩衝液(pH:6.86)を標準緩衝液として用いてpHメータを2点校正した後、pHメータの電極を研磨液に入れ、2分以上経過して安定した後の値を測定する。標準緩衝液及び研磨液の液温は、共に25℃とする。 The pH of the polishing liquid according to this embodiment can be measured with a pH meter (for example, model number PHL-40 manufactured by DKK-TOA CORPORATION). Specifically, for example, after calibrating a pH meter at two points using a phthalate pH buffer solution (pH: 4.01) and a neutral phosphate pH buffer solution (pH: 6.86) as standard buffer solutions. , Put the electrode of the pH meter in the polishing solution, and measure the value after it stabilizes after 2 minutes or more. The temperature of both the standard buffer solution and the polishing solution shall be 25 ° C.

本実施形態に係る研磨液は、砥粒と、ヒドロキシ酸と、高分子化合物Aと、液状媒体と、を少なくとも含む一液式研磨液として保存してもよく、スラリ(第1の液)と添加液(第2の液)とを混合して前記研磨液となるように前記研磨液の構成成分をスラリと添加液とに分けた複数液式(例えば二液式)の研磨液セットとして保存してもよい。すなわち、前記研磨液の構成成分は、スラリと添加液とに分けて保存されてよい。スラリは、例えば、砥粒と、液状媒体とを少なくとも含む。添加液は、例えば、ヒドロキシ酸と、高分子化合物Aと、液状媒体とを少なくとも含む。ヒドロキシ酸、高分子化合物A、任意の添加剤、及び、緩衝剤は、スラリ及び添加液のうち添加液に含まれることが好ましい。なお、前記研磨液の構成成分は、三液以上に分けた研磨液セットとして保存してもよい。 The polishing liquid according to the present embodiment may be stored as a one-component polishing liquid containing at least abrasive grains, a hydroxy acid, a polymer compound A, and a liquid medium, and may be stored as a slurry (first liquid). The components of the polishing liquid are stored as a multi-component (for example, two-component) polishing liquid set in which the constituent components of the polishing liquid are divided into a slurry and an additive liquid so as to be mixed with the additive liquid (second liquid) to become the polishing liquid. You may. That is, the constituent components of the polishing liquid may be stored separately as a slurry and an additive liquid. The slurry contains, for example, abrasive grains and at least a liquid medium. The additive liquid contains, for example, at least a hydroxy acid, a polymer compound A, and a liquid medium. The hydroxy acid, the polymer compound A, any additive, and the buffer are preferably contained in the additive solution among the slurry and the additive solution. The constituent components of the polishing liquid may be stored as a polishing liquid set divided into three or more liquids.

前記研磨液セットにおいては、研磨直前又は研磨時に、スラリ及び添加液が混合されて研磨液が作製される。また、一液式研磨液は、液状媒体の含有量を減じた研磨液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。複数液式の研磨液セットは、液状媒体の含有量を減じたスラリ用貯蔵液及び添加液用貯蔵液として保存されると共に、研磨時に液状媒体で希釈して用いられてもよい。 In the polishing liquid set, a slurry and an additive liquid are mixed immediately before or at the time of polishing to prepare a polishing liquid. Further, the one-component polishing liquid may be stored as a storage liquid for a polishing liquid in which the content of the liquid medium is reduced, and may be diluted with a liquid medium at the time of polishing and used. The multi-liquid type polishing liquid set is stored as a storage liquid for slurry and a storage liquid for additive liquid in which the content of the liquid medium is reduced, and may be diluted with a liquid medium at the time of polishing and used.

<研磨方法>
本実施形態に係る研磨方法(基体の研磨方法等)は、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて被研磨面(基体の被研磨面等)を研磨する研磨工程を備えていてよい。被研磨面は、絶縁材料を含んでいてよく、酸化珪素を含んでいてよい。絶縁材料は、負のゼータ電位を有していてよい。
<Polishing method>
The polishing method (method for polishing the substrate, etc.) according to the present embodiment uses the one-component polishing liquid or the polishing liquid obtained by mixing the slurry and the additive liquid in the polishing liquid set, and uses the surface to be polished (the polishing liquid). It may be provided with a polishing step for polishing the surface to be polished of the substrate, etc.). The surface to be polished may contain an insulating material and may contain silicon oxide. The insulating material may have a negative zeta potential.

絶縁材料(例えば酸化珪素)の研磨速度の下限は、170nm/min以上が好ましく、180nm/min以上がより好ましく、200nm/min以上が更に好ましく、250nm/min以上が特に好ましく、270nm/min以上が極めて好ましい。 The lower limit of the polishing rate of the insulating material (for example, silicon oxide) is preferably 170 nm / min or more, more preferably 180 nm / min or more, further preferably 200 nm / min or more, particularly preferably 250 nm / min or more, and particularly preferably 270 nm / min or more. Extremely preferable.

本実施形態によれば、絶縁材料をストッパ材料に対して選択的に研磨する研磨工程への研磨液又は研磨液セットの使用を提供することができる。ストッパ材料としては、窒化珪素、ポリシリコン等が挙げられる。 According to the present embodiment, it is possible to provide the use of a polishing liquid or a polishing liquid set in a polishing step of selectively polishing an insulating material with respect to a stopper material. Examples of the stopper material include silicon nitride and polysilicon.

本実施形態に係る研磨方法は、絶縁材料及び窒化珪素を有する基体の研磨方法であってもよく、例えば、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、絶縁材料を窒化珪素に対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、窒化珪素を含む部材とを有していてもよい。 The polishing method according to the present embodiment may be a polishing method for a substrate having an insulating material and silicon nitride. For example, the one-component polishing solution or the slurry and the additive solution in the polishing solution set are mixed. It may be provided with a polishing step of selectively polishing the insulating material with respect to silicon nitride by using the polishing liquid obtained above. In this case, the substrate may have, for example, a member containing an insulating material and a member containing silicon nitride.

本実施形態に係る研磨方法は、絶縁材料及びポリシリコンを有する基体の研磨方法であってもよく、例えば、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、絶縁材料をポリシリコンに対して選択的に研磨する研磨工程を備えていてもよい。この場合、基体は、例えば、絶縁材料を含む部材と、ポリシリコンを含む部材とを有していてもよい。 The polishing method according to the present embodiment may be a polishing method for a substrate having an insulating material and polysilicon. For example, the one-component polishing liquid or the slurry and the additive liquid in the polishing liquid set are mixed. It may be provided with a polishing step of selectively polishing the insulating material with respect to polysilicon by using the polishing liquid obtained above. In this case, the substrate may have, for example, a member containing an insulating material and a member containing polysilicon.

本実施形態に係る研磨方法は、ストッパ材料を含む第1部材と、絶縁材料を含むと共に第1部材上に配置された第2部材と、を有する基体の研磨方法であってよい。研磨工程は、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、第1部材が露出するまで第2部材を研磨する工程を有していてよい。研磨工程は、第1部材が露出した後に、前記一液式研磨液、又は、前記研磨液セットにおけるスラリと添加液とを混合して得られる研磨液を用いて、第1部材及び第2部材を研磨する工程を有していてよい。 The polishing method according to the present embodiment may be a method for polishing a substrate having a first member including a stopper material and a second member containing an insulating material and arranged on the first member. The polishing step is a step of polishing the second member until the first member is exposed by using the one-component polishing solution or the polishing solution obtained by mixing the slurry and the additive solution in the polishing solution set. You may have. In the polishing step, after the first member is exposed, the first member and the second member use the one-component polishing solution or the polishing solution obtained by mixing the slurry and the additive solution in the polishing solution set. May have a step of polishing.

「材料Aを材料Bに対して選択的に研磨する」とは、同一研磨条件において、材料Aの研磨速度が材料Bの研磨速度よりも高いことをいう。より具体的には、例えば、材料Bの研磨速度に対する材料Aの研磨速度の研磨速度比が80以上で材料Aを研磨することをいう。 "Selectively polishing the material A with respect to the material B" means that the polishing speed of the material A is higher than the polishing speed of the material B under the same polishing conditions. More specifically, for example, it means polishing the material A when the polishing rate ratio of the polishing rate of the material A to the polishing rate of the material B is 80 or more.

研磨工程では、例えば、被研磨材料を有する基体の当該被研磨材料を研磨定盤の研磨パッド(研磨布)に押圧した状態で、前記研磨液を被研磨材料と研磨パッドとの間に供給し、基体と研磨定盤とを相対的に動かして被研磨材料の被研磨面を研磨する。研磨工程では、例えば、被研磨材料の少なくとも一部を研磨により除去する。 In the polishing step, for example, the polishing liquid is supplied between the material to be polished and the polishing pad in a state where the material to be polished of the substrate having the material to be polished is pressed against the polishing pad (polishing cloth) of the polishing platen. , The surface to be polished of the material to be polished is polished by relatively moving the substrate and the polishing platen. In the polishing step, for example, at least a part of the material to be polished is removed by polishing.

研磨対象である基体としては、被研磨基板等が挙げられる。被研磨基板としては、例えば、半導体素子製造に係る基板(例えば、STIパターン、ゲートパターン、配線パターン等が形成された半導体基板)上に被研磨材料が形成された基体が挙げられる。被研磨材料としては、酸化珪素等の絶縁材料(ストッパ材料に該当する材料を除く);ポリシリコン、窒化珪素等のストッパ材料などが挙げられる。被研磨材料は、単一の材料であってもよく、複数の材料であってもよい。複数の材料が被研磨面に露出している場合、それらを被研磨材料と見なすことができる。被研磨材料は、膜状(被研磨膜)であってもよく、酸化珪素膜、ポリシリコン膜、窒化珪素膜等であってもよい。 Examples of the substrate to be polished include a substrate to be polished. Examples of the substrate to be polished include a substrate in which a material to be polished is formed on a substrate (for example, a semiconductor substrate on which an STI pattern, a gate pattern, a wiring pattern, etc. are formed) related to manufacturing a semiconductor element. Examples of the material to be polished include insulating materials such as silicon oxide (excluding materials corresponding to stopper materials); stopper materials such as polysilicon and silicon nitride. The material to be polished may be a single material or a plurality of materials. When a plurality of materials are exposed on the surface to be polished, they can be regarded as the materials to be polished. The material to be polished may be in the form of a film (film to be polished), or may be a silicon oxide film, a polysilicon film, a silicon nitride film, or the like.

このような基板上に形成された被研磨材料(例えば、酸化珪素等の絶縁材料)を前記研磨液で研磨し、余分な部分を除去することによって、被研磨材料の表面の凹凸を解消し、被研磨材料の表面全体にわたって平滑な面を得ることができる。本実施形態に係る研磨液は、絶縁材料を含む被研磨面を研磨するために使用されることが好ましい。本実施形態に係る研磨液は、酸化珪素を含む被研磨面を研磨するために使用されることが好ましい。 By polishing the material to be polished (for example, an insulating material such as silicon oxide) formed on such a substrate with the polishing liquid and removing excess portions, the unevenness of the surface of the material to be polished is eliminated. A smooth surface can be obtained over the entire surface of the material to be polished. The polishing liquid according to this embodiment is preferably used for polishing the surface to be polished containing an insulating material. The polishing liquid according to this embodiment is preferably used for polishing the surface to be polished containing silicon oxide.

本実施形態では、少なくとも表面に酸化珪素を含む絶縁材料と、絶縁材料の下層に配置されたストッパ(研磨停止層)と、ストッパの下に配置された基板(半導体基板等)とを有する基体における絶縁材料を研磨することができる。ストッパを構成するストッパ材料は、絶縁材料よりも研磨速度が低い材料であり、窒化珪素、ポリシリコン等が好ましい。このような基体では、ストッパが露出したときに研磨を停止させることにより、絶縁材料が過剰に研磨されることを防止できるため、絶縁材料の研磨後の平坦性を向上させることができる。 In the present embodiment, the substrate has an insulating material containing at least silicon oxide on the surface, a stopper (polishing stop layer) arranged under the insulating material, and a substrate (semiconductor substrate or the like) arranged under the stopper. The insulating material can be polished. The stopper material constituting the stopper is a material having a lower polishing rate than the insulating material, and silicon nitride, polysilicon, and the like are preferable. In such a substrate, by stopping the polishing when the stopper is exposed, it is possible to prevent the insulating material from being excessively polished, so that the flatness of the insulating material after polishing can be improved.

本実施形態に係る研磨液により研磨される被研磨材料の作製方法としては、低圧CVD法、準常圧CVD法、プラズマCVD法等のCVD法;回転する基板に液体原料を塗布する回転塗布法などが挙げられる。 As a method for producing a material to be polished by the polishing liquid according to the present embodiment, a CVD method such as a low pressure CVD method, a quasi-normal pressure CVD method, a plasma CVD method, etc.; a rotary coating method in which a liquid raw material is applied to a rotating substrate. And so on.

以下、基体(例えば、半導体基板上に形成された絶縁材料を有する基体)の研磨方法を一例に挙げて、本実施形態に係る研磨方法を説明する。本実施形態に係る研磨方法において、研磨装置としては、被研磨面を有する基体を保持可能なホルダーと、研磨パッドを貼り付け可能な研磨定盤とを有する一般的な研磨装置を使用できる。ホルダー及び研磨定盤のそれぞれには、回転数が変更可能なモータ等が取り付けてある。研磨装置としては、例えば、APPLIED MATERIALS社製の研磨装置:Reflexionを使用できる。 Hereinafter, the polishing method according to the present embodiment will be described by taking as an example a method for polishing a substrate (for example, a substrate having an insulating material formed on a semiconductor substrate). In the polishing method according to the present embodiment, as the polishing apparatus, a general polishing apparatus having a holder capable of holding a substrate having a surface to be polished and a polishing surface plate to which a polishing pad can be attached can be used. A motor or the like whose rotation speed can be changed is attached to each of the holder and the polishing surface plate. As the polishing device, for example, a polishing device: Reflection manufactured by Applied Materials can be used.

研磨パッドとしては、一般的な不織布、発泡体、非発泡体等が使用できる。研磨パッドの材質としては、ポリウレタン、アクリル樹脂、ポリエステル、アクリル−エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4−メチルペンテン、セルロース、セルロースエステル、ポリアミド(例えば、ナイロン(商標名)及びアラミド)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。研磨パッドの材質としては、特に、研磨速度及び平坦性に更に優れる観点から、発泡ポリウレタン及び非発泡ポリウレタンからなる群より選択される少なくとも一種が好ましい。研磨パッドには、研磨液がたまるような溝加工が施されていることが好ましい。 As the polishing pad, a general non-woven fabric, foam, non-foam or the like can be used. Materials for the polishing pad include polyurethane, acrylic resin, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly4-methylpentene, cellulose, cellulose ester, and polyamide (for example, nylon (trade name)). And aramid), polyimide, polyimideamide, polysiloxane copolymer, oxylan compound, phenol resin, polystyrene, polycarbonate, epoxy resin and other resins can be used. As the material of the polishing pad, at least one selected from the group consisting of foamed polyurethane and non-foamed polyurethane is preferable from the viewpoint of further excellent polishing speed and flatness. It is preferable that the polishing pad is grooved so that the polishing liquid can be collected.

研磨条件に制限はないが、研磨定盤の回転速度の上限は、基体が飛び出さないように200min−1(min−1=rpm)以下が好ましく、基体にかける研磨圧力(加工荷重)の上限は、研磨傷が発生することを充分に抑制する観点から、15psi(103kPa)以下が好ましい。研磨している間、ポンプ等で連続的に研磨液を研磨パッドに供給することが好ましい。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。Although there is no limit to the polishing conditions, the upper limit of the rotational speed of the polishing platen is preferably 200min -1 (min -1 = rpm) or less so as not fly out is base, the upper limit of the polishing pressure (working load) applied to the substrate Is preferably 15 psi (103 kPa) or less from the viewpoint of sufficiently suppressing the occurrence of polishing scratches. During polishing, it is preferable to continuously supply the polishing liquid to the polishing pad with a pump or the like. There is no limit to the amount of this supply, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid.

本実施形態に係る研磨方法は、研磨工程の後に、アルカリ液(洗浄液)を被研磨面に接触させる洗浄工程を更に備えてよい。洗浄工程では、アルカリ液を被研磨面に接触させることにより被研磨面を洗浄することができる。洗浄工程では、研磨工程で被研磨面に付着した砥粒を除去することにより被研磨面を洗浄することができる。アルカリ液のアルカリ源としては、アンモニア、TMAH(水酸化テトラメチルアンモニウム)等を用いることができる。洗浄工程では、フッ酸、アンモニア−過酸化水素混合液、塩酸−過酸化水素混合液、硫酸−過酸化水素混合液等を被研磨面に接触させなくてよい。 The polishing method according to the present embodiment may further include a cleaning step of bringing an alkaline solution (cleaning solution) into contact with the surface to be polished after the polishing step. In the cleaning step, the surface to be polished can be cleaned by bringing the alkaline solution into contact with the surface to be polished. In the cleaning step, the surface to be polished can be cleaned by removing the abrasive grains adhering to the surface to be polished in the polishing step. Ammonia, TMAH (tetramethylammonium hydroxide), or the like can be used as the alkaline source of the alkaline solution. In the cleaning step, hydrofluoric acid, ammonia-hydrogen peroxide mixed solution, hydrochloric acid-hydrogen peroxide mixed solution, sulfuric acid-hydrogen peroxide mixed solution and the like do not have to be brought into contact with the surface to be polished.

洗浄工程では、洗浄効率を高めるためにブラシを併用してもよい。また、洗浄後は、スピンドライヤ等を用いて、基体に付着した水滴を払い落としてから基体を乾燥させることが好ましい。 In the cleaning step, a brush may be used in combination to improve the cleaning efficiency. Further, after cleaning, it is preferable to use a spin dryer or the like to remove water droplets adhering to the substrate and then dry the substrate.

本実施形態は、プリメタル絶縁材料の研磨にも使用できる。プリメタル絶縁材料としては、酸化珪素、リン−シリケートガラス、ボロン−リン−シリケートガラス、シリコンオキシフロリド、フッ化アモルファスカーボン等が挙げられる。 This embodiment can also be used for polishing a premetal insulating material. Examples of the premetal insulating material include silicon oxide, phosphorus-silicate glass, boron-phosphorus-silicate glass, silicon oxyfluorolide, and amorphous carbon fluoride.

本実施形態は、酸化珪素等の絶縁材料以外の材料にも適用できる。このような材料としては、Hf系、Ti系、Ta系酸化物等の高誘電率材料;シリコン、アモルファスシリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、有機半導体等の半導体材料;GeSbTe等の相変化材料;ITO等の無機導電材料;ポリイミド系、ポリベンゾオキサゾール系、アクリル系、エポキシ系、フェノール系等のポリマ樹脂材料などが挙げられる。 This embodiment can be applied to materials other than insulating materials such as silicon oxide. Examples of such materials include high dielectric constant materials such as Hf-based, Ti-based, and Ta-based oxides; semiconductor materials such as silicon, amorphous silicon, SiC, SiGe, Ge, GaN, GaP, GaAs, and organic semiconductors; GeSbTe and the like. Phase change material; Inorganic conductive material such as ITO; Polyimide-based, polybenzoxazole-based, acrylic-based, epoxy-based, phenol-based and other polymer resin materials and the like can be mentioned.

本実施形態は、膜状の研磨対象だけでなく、ガラス、シリコン、SiC、SiGe、Ge、GaN、GaP、GaAs、サファイヤ、プラスチック等から構成される各種基板にも適用できる。 This embodiment can be applied not only to a film-like polishing target but also to various substrates composed of glass, silicon, SiC, SiCe, Ge, GaN, GaP, GaAs, sapphire, plastic and the like.

本実施形態は、半導体素子の製造だけでなく、TFT、有機EL等の画像表示装置;フォトマスク、レンズ、プリズム、光ファイバー、単結晶シンチレータ等の光学部品;光スイッチング素子、光導波路等の光学素子;固体レーザ、青色レーザLED等の発光素子;磁気ディスク、磁気ヘッド等の磁気記憶装置などの製造に用いることができる。 In this embodiment, not only the manufacture of semiconductor elements, but also image display devices such as TFTs and organic ELs; optical components such as photomasks, lenses, prisms, optical fibers, and single crystal scintillators; optical elements such as optical switching elements and optical waveguides. Light emitting elements such as solid-state lasers and blue laser LEDs; can be used in the manufacture of magnetic storage devices such as magnetic disks and magnetic heads.

以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.

<砥粒の作製>
(セリウム酸化物粒子の作製)
市販の炭酸セリウム水和物40kgをアルミナ製容器に入れ、830℃、空気中で2時間焼成することにより黄白色の粉末を20kg得た。この粉末の相同定をX線回折法により行い、セリウム酸化物粉末が得られたことを確認した。得られたセリウム酸化物粉末20kgを、ジェットミルを用いて乾式粉砕し、セリウム酸化物粒子を含むセリウム酸化物粉末を得た。
<Making abrasive grains>
(Preparation of cerium oxide particles)
40 kg of commercially available cerium carbonate hydrate was placed in an alumina container and calcined in air at 830 ° C. for 2 hours to obtain 20 kg of a yellowish white powder. The phase identification of this powder was performed by X-ray diffraction method, and it was confirmed that a cerium oxide powder was obtained. 20 kg of the obtained cerium oxide powder was dry-pulverized using a jet mill to obtain a cerium oxide powder containing cerium oxide particles.

(複合粒子の作製)
[セリウム酸化物スラリの準備]
前記セリウム酸化物粉末と、和光純薬工業株式会社製の商品名:リン酸二水素アンモニウム(分子量:97.99)とを混合して、セリウム酸化物粒子(第1の粒子)を5.0質量%(固形分含量)含有するセリウム酸化物スラリ(pH:7)を調製した。リン酸二水素アンモニウムの配合量は、セリウム酸化物粒子の全量を基準として1質量%に調整した。
(Preparation of composite particles)
[Preparation of cerium oxide slurry]
The cerium oxide powder and Wako Pure Chemical Industries, Ltd. trade name: ammonium dihydrogen phosphate (molecular weight: 97.99) are mixed to obtain 5.0 cerium oxide particles (first particles). A cerium oxide slurry (pH: 7) containing mass% (solid content) was prepared. The blending amount of ammonium dihydrogen phosphate was adjusted to 1% by mass based on the total amount of cerium oxide particles.

マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内にセリウム酸化物スラリを適量投入し、セリウム酸化物粒子の平均粒径を測定した。表示された平均粒径値を平均粒径(平均二次粒径)として得た。セリウム酸化物スラリにおけるセリウム酸化物粒子の平均粒径は145nmであった。 Trade name manufactured by Microtrac Bell Co., Ltd .: An appropriate amount of cerium oxide slurry was put into Microtrac MT3300EXII, and the average particle size of the cerium oxide particles was measured. The displayed average particle size value was obtained as the average particle size (average secondary particle size). The average particle size of the cerium oxide particles in the cerium oxide slurry was 145 nm.

ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム酸化物スラリにおけるセリウム酸化物粒子のゼータ電位は−55mVであった。 A suitable amount of cerium oxide slurry was put into DelsaNano C, a trade name manufactured by Beckman Coulter Co., Ltd., and the measurement was carried out twice at 25 ° C. The average value of the displayed zeta potentials was obtained as the zeta potentials. The zeta potential of the cerium oxide particles in the cerium oxide slurry was -55 mV.

[セリウム水酸化物スラリの準備]
480gのCe(NH(NO50質量%水溶液(日本化学産業株式会社製、商品名:CAN50液)を7450gの純水と混合して溶液を得た。次いで、この溶液を撹拌しながら、750gのイミダゾール水溶液(10質量%水溶液、1.47mol/L)を5mL/minの混合速度で滴下して、セリウム水酸化物を含む沈殿物を得た。セリウム水酸化物の合成は、温度20℃、撹拌速度500min−1で行った。撹拌は、羽根部全長5cmの3枚羽根ピッチパドルを用いて行った。
[Preparation of cerium hydroxide slurry]
480g of Ce (NH 4) 2 (NO 3) 6 50 % by weight aqueous solution (Nihon Kagaku Sangyo Co., Ltd., trade name: CAN 50 solution) to obtain a solution by mixing with pure water 7450G. Then, while stirring this solution, 750 g of an imidazole aqueous solution (10 mass% aqueous solution, 1.47 mol / L) was added dropwise at a mixing rate of 5 mL / min to obtain a precipitate containing cerium hydroxide. The synthesis of cerium hydroxide was carried out at a temperature of 20 ° C. and a stirring speed of 500 min- 1. Stirring was performed using a 3-blade pitch paddle having a blade length of 5 cm.

得られた沈殿物(セリウム水酸化物を含む沈殿物)を遠心分離(4000min−1、5分間)した後にデカンテーションで液相を除去することによって固液分離を施した。固液分離により得られた粒子10gと、水990gと、を混合した後、超音波洗浄機を用いて粒子を水に分散させて、セリウム水酸化物粒子(第2の粒子)を含有するセリウム水酸化物スラリ(粒子の含有量:1.0質量%)を調製した。The obtained precipitate (precipitate containing cerium hydroxide) was centrifuged (4000 min -1 , 5 minutes), and then solid-liquid separation was performed by removing the liquid phase by decantation. After mixing 10 g of the particles obtained by solid-liquid separation and 990 g of water, the particles are dispersed in water using an ultrasonic washing machine, and cerium containing cerium hydroxide particles (second particles) is dispersed. A hydroxide slurry (particle content: 1.0% by mass) was prepared.

ベックマン・コールター株式会社製、商品名:N5を用いてセリウム水酸化物スラリにおけるセリウム水酸化物粒子の平均粒径(平均二次粒径)を測定したところ、10nmであった。測定法は次のとおりである。まず、1.0質量%のセリウム水酸化物粒子を含む測定サンプル(セリウム水酸化物スラリ。水分散液)を1cm角のセルに約1mL入れた後、N5内にセルを設置した。N5のソフトの測定サンプル情報の屈折率を1.333、粘度を0.887mPa・sに設定し、25℃において測定を行い、Unimodal Size Meanとして表示される値を読み取った。 The average particle size (average secondary particle size) of the cerium hydroxide particles in the cerium hydroxide slurry manufactured by Beckman Coulter Co., Ltd. and trade name: N5 was measured and found to be 10 nm. The measurement method is as follows. First, about 1 mL of a measurement sample (cerium hydroxide slurry, aqueous dispersion) containing 1.0% by mass of cerium hydroxide particles was placed in a 1 cm square cell, and then the cell was placed in N5. The refractive index of the measurement sample information of the software of N5 was set to 1.333 and the viscosity was set to 0.887 mPa · s, the measurement was performed at 25 ° C., and the value displayed as Unimodal Size Mean was read.

ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のセリウム水酸化物スラリを投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。セリウム水酸化物スラリにおけるセリウム水酸化物粒子のゼータ電位は+50mVであった。 A suitable amount of cerium hydroxide slurry was put into DelsaNano C, a trade name manufactured by Beckman Coulter Co., Ltd., and the measurement was carried out twice at 25 ° C. The average value of the displayed zeta potentials was obtained as the zeta potentials. The zeta potential of the cerium hydroxide particles in the cerium hydroxide slurry was +50 mV.

セリウム水酸化物スラリを適量採取し、真空乾燥してセリウム水酸化物粒子を単離した後に純水で充分に洗浄して試料を得た。得られた試料について、FT−IR ATR法による測定を行ったところ、水酸化物イオン(OH)に基づくピークの他に、硝酸イオン(NO )に基づくピークが観測された。また、同試料について、窒素に対するXPS(N−XPS)測定を行ったところ、NH に基づくピークは観測されず、硝酸イオンに基づくピークが観測された。これらの結果より、セリウム水酸化物粒子は、セリウム元素に結合した硝酸イオンを有する粒子を少なくとも一部含有することが確認された。また、セリウム元素に結合した水酸化物イオンを有する粒子がセリウム水酸化物粒子の少なくとも一部に含有されることから、セリウム水酸化物粒子がセリウム水酸化物を含有することが確認された。これらの結果より、セリウムの水酸化物が、セリウム元素に結合した水酸化物イオンを含むことが確認された。An appropriate amount of cerium hydroxide slurry was collected, vacuum dried to isolate cerium hydroxide particles, and then thoroughly washed with pure water to obtain a sample. The obtained sample was subjected to measurement by FT-IR ATR method, hydroxide ions - in addition to the peak based on the nitrate ion (OH) (NO 3 -) peak based on was observed. Further, for the same sample, it was subjected to XPS (N-XPS) measurement for nitrogen, a peak based on NH 4 + is not observed, a peak based on nitrate ions was observed. From these results, it was confirmed that the cerium hydroxide particles contained at least a part of the particles having nitrate ions bonded to the cerium element. Further, since particles having hydroxide ions bonded to the cerium element are contained in at least a part of the cerium hydroxide particles, it was confirmed that the cerium hydroxide particles contain the cerium hydroxide. From these results, it was confirmed that the hydroxide of cerium contains hydroxide ions bonded to the element of cerium.

<上澄み液の吸光度及び光透過率の測定>
後述する実施例9において使用する砥粒が上澄み液において与える吸光度及び光透過率を測定した。
<Measurement of absorbance and light transmittance of supernatant>
The absorbance and light transmittance given by the abrasive grains used in Example 9 described later in the supernatant were measured.

2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリと、脱イオン水とを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。これにより、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子に加えて、セリウム酸化物粒子に接触していないセリウム水酸化物粒子(遊離粒子)を含有する試験用スラリ(セリウム酸化物粒子の含有量:0.1質量%、セリウム水酸化物粒子の含有量:0.01質量%)を調製した。 The cerium hydroxide slurry and deionized water were mixed to obtain a mixed solution while stirring at a rotation speed of 300 rpm using a two-blade stirring blade. Subsequently, the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then ultrasonic waves are irradiated using an ultrasonic cleaner (device name: US-105) manufactured by SND Co., Ltd. Stirred. As a result, in addition to the composite particles containing the cerium oxide particles and the cerium hydroxide particles in contact with the cerium oxide particles, the cerium hydroxide particles (free particles) not in contact with the cerium oxide particles. A test slurry (content of cerium oxide particles: 0.1% by mass, content of cerium hydroxide particles: 0.01% by mass) containing the above was prepared.

前記試験用スラリにおける砥粒の含有量(粒子の合計量)を0.1質量%に調整(イオン交換水で希釈)して試験液を調製した。試験液7.5gをベックマン・コールター株式会社製の遠心分離機(商品名:Optima MAX−TL)に入れ、遠心加速度5.8×10G、設定温度25℃で5分間処理して上澄み液を得た。A test solution was prepared by adjusting the content of abrasive particles (total amount of particles) in the test slurry to 0.1% by mass (diluted with ion-exchanged water). 7.5 g of the test solution was placed in a centrifuge (trade name: Optima MAX-TL) manufactured by Beckman Coulter Co., Ltd., and the supernatant was treated at a centrifugal acceleration of 5.8 × 10 4 G and a set temperature of 25 ° C. for 5 minutes. Got

前記上澄み液を1cm角の石英製セルに約4mL入れた後、セルを株式会社日立製作所製の分光光度計(装置名:U3310)内に設置した。波長200〜600nmの範囲で吸光度の測定を行い、得られたチャートから波長380nmにおける吸光度の値を読み取った。吸光度は0.002であった。また、得られたチャートから波長500nmにおける光透過率の値を読み取ったところ、92%/cm以上であった。 After putting about 4 mL of the supernatant into a 1 cm square quartz cell, the cell was placed in a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd. The absorbance was measured in the wavelength range of 200 to 600 nm, and the absorbance value at the wavelength of 380 nm was read from the obtained chart. The absorbance was 0.002. Moreover, when the value of the light transmittance at a wavelength of 500 nm was read from the obtained chart, it was 92% / cm or more.

<CMP用研磨液の調製>
(実施例1〜8、10〜13及び比較例1〜2)
前記セリウム酸化物粉末(セリウム酸化物粒子)と脱イオン水とを混合して混合液を得た。次に、表1又は表2に示すヒドロキシ酸(比較例2は無添加)、高分子化合物及びpH調整剤(3,5−ジメチルピラゾール)を前記混合液に混合した。そして、攪拌しながら超音波分散を行うことにより、CMP用研磨液の全質量を基準としてセリウム酸化物粒子0.1質量%、ヒドロキシ酸0.4質量%及びpH調整剤0.1質量%に加えて、表1又は表2に示す含有量の高分子化合物を含有するCMP用研磨液を得た。超音波分散は、超音波周波数400kHz、分散時間30分で行った。
<Preparation of polishing liquid for CMP>
(Examples 1 to 8 and 10 to 13 and Comparative Examples 1 to 2)
The cerium oxide powder (cerium oxide particles) and deionized water were mixed to obtain a mixed solution. Next, the hydroxy acids shown in Table 1 or Table 2 (Comparative Example 2 was not added), the polymer compound and the pH adjuster (3,5-dimethylpyrazole) were mixed with the mixed solution. Then, by performing ultrasonic dispersion while stirring, the total mass of the polishing liquid for CMP is reduced to 0.1% by mass of the cerium oxide particles, 0.4% by mass of the hydroxy acid, and 0.1% by mass of the pH adjuster. In addition, a polishing liquid for CMP containing the polymer compounds having the contents shown in Table 1 or Table 2 was obtained. The ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 30 minutes.

重量平均分子量4000のポリエチレングリコールとして、和光純薬工業株式会社製の商品名「ポリエチレングリコール4000」を用いた。重量平均分子量20000のポリエチレングリコールとして、和光純薬工業株式会社製の商品名「ポリエチレングリコール20000」を用いた。ポリビニルアルコールとして、和光純薬工業株式会社製の商品名「ポリビニルアルコール」を用いた。ポリ−N−ビニルアセトアミドとして、昭和電工株式会社製の商品名「ポリ−N−ビニルアセトアミド」を用いた。重量平均分子量10000のポリビニルピロリドンとして、東京化成工業株式会社製の商品名「ポリビニルピロリドン(K15)」を用いた。重量平均分子量40000のポリビニルピロリドンとして、東京化成工業株式会社製の商品名「ポリビニルピロリドン(K30)」を用いた。重量平均分子量360000のポリビニルピロリドンとして、東京化成工業株式会社製の商品名「ポリビニルピロリドン(K90)」を用いた。重量平均分子量2500のポリオキシエチレンポリオキシプロピレングリセリルエーテルとして、青木油脂工業株式会社製の商品名「ブラウノン GEP−2500」を用いた。 As the polyethylene glycol having a weight average molecular weight of 4000, the trade name "polyethylene glycol 4000" manufactured by Wako Pure Chemical Industries, Ltd. was used. As the polyethylene glycol having a weight average molecular weight of 20000, the trade name "polyethylene glycol 20000" manufactured by Wako Pure Chemical Industries, Ltd. was used. As the polyvinyl alcohol, the trade name "polyvinyl alcohol" manufactured by Wako Pure Chemical Industries, Ltd. was used. As the poly-N-vinylacetamide, the trade name "poly-N-vinylacetamide" manufactured by Showa Denko KK was used. As the polyvinylpyrrolidone having a weight average molecular weight of 10,000, the trade name “polyvinylpyrrolidone (K15)” manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the polyvinylpyrrolidone having a weight average molecular weight of 40,000, the trade name “polyvinylpyrrolidone (K30)” manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the polyvinylpyrrolidone having a weight average molecular weight of 360000, the trade name “polyvinylpyrrolidone (K90)” manufactured by Tokyo Chemical Industry Co., Ltd. was used. As the polyoxyethylene polyoxypropylene glyceryl ether having a weight average molecular weight of 2500, the trade name "Brownon GEP-2500" manufactured by Aoki Yushi Kogyo Co., Ltd. was used.

(実施例9)
2枚羽根の撹拌羽根を用いて300rpmの回転数で撹拌しながら、前記セリウム水酸化物スラリ200gと、脱イオン水1400gとを混合して混合液を得た。続いて、前記混合液を撹拌しながら前記セリウム酸化物スラリ400gを前記混合液に混合した後、株式会社エスエヌディ製の超音波洗浄機(装置名:US−105)を用いて超音波を照射しながら撹拌した。続いて、高分子化合物(重量平均分子量20000のポリエチレングリコール、和光純薬工業株式会社製、商品名「ポリエチレングリコール20000」)と、2,2−ビス(ヒドロキシメチル)プロピオン酸と、pH調整剤(3,5−ジメチルピラゾール)と、脱イオン水とを混合した。これにより、CMP用研磨液の全質量を基準として、砥粒0.1質量%、ヒドロキシ酸0.4質量%、高分子化合物0.1質量%及びpH調整剤0.1質量%を含有するCMP用研磨液を得た。CMP用研磨液は、砥粒として、セリウム酸化物粒子と、当該セリウム酸化物粒子に接触したセリウム水酸化物粒子と、を含む複合粒子を含有しており、セリウム酸化物粒子とセリウム水酸化物粒子との質量比は10:1(セリウム酸化物:セリウム水酸化物)であった。CMP用研磨液は、砥粒として、上述の複合粒子に加えて、セリウム酸化物粒子に接触していないセリウム水酸化物粒子(遊離粒子)を含有していた。
(Example 9)
While stirring at a rotation speed of 300 rpm using a two-blade stirring blade, 200 g of the cerium hydroxide slurry and 1400 g of deionized water were mixed to obtain a mixed solution. Subsequently, 400 g of the cerium oxide slurry is mixed with the mixed solution while stirring the mixed solution, and then ultrasonic waves are irradiated using an ultrasonic cleaner (device name: US-105) manufactured by SND Co., Ltd. It was stirred while stirring. Subsequently, a polymer compound (polyethylene glycol having a weight average molecular weight of 20000, manufactured by Wako Pure Chemical Industries, Ltd., trade name "polyethylene glycol 20000"), 2,2-bis (hydroxymethyl) propionic acid, and a pH adjuster ( 3,5-Dimethylpyrazole) and deionized water were mixed. As a result, 0.1% by mass of abrasive grains, 0.4% by mass of hydroxy acids, 0.1% by mass of polymer compound and 0.1% by mass of pH adjuster are contained based on the total mass of the polishing liquid for CMP. A polishing solution for CMP was obtained. The polishing liquid for CMP contains composite particles containing cerium oxide particles and cerium hydroxide particles in contact with the cerium oxide particles as abrasive grains, and the cerium oxide particles and cerium hydroxide. The mass ratio to the particles was 10: 1 (cerium oxide: cerium hydroxide). In addition to the above-mentioned composite particles, the polishing liquid for CMP contained cerium hydroxide particles (free particles) that were not in contact with the cerium oxide particles.

<砥粒のゼータ電位測定>
ベックマン・コールター株式会社製の商品名:DelsaNano C内に適量のCMP用研磨液を投入し、25℃において測定を2回行った。表示されたゼータ電位の平均値をゼータ電位として得た。実施例及び比較例の双方において砥粒のゼータ電位は+50mVであった。
<Measurement of zeta potential of abrasive grains>
A suitable amount of a polishing liquid for CMP was put into DelsaNano C, a trade name manufactured by Beckman Coulter Co., Ltd., and the measurement was carried out twice at 25 ° C. The average value of the displayed zeta potentials was obtained as the zeta potentials. The zeta potential of the abrasive grains was +50 mV in both Examples and Comparative Examples.

<砥粒の平均粒径の測定>
マイクロトラック・ベル株式会社製の商品名:マイクロトラックMT3300EXII内に上述の各CMP用研磨液を適量投入し、砥粒の平均粒径の測定を行った。表示された平均粒径値を砥粒の平均粒径(平均二次粒径)として得た。実施例1〜8、10〜13及び比較例1〜2の平均粒径は145nmであった。実施例9の平均粒径は155nmであった。
<Measurement of average grain size of abrasive grains>
A suitable amount of each of the above-mentioned polishing liquids for CMP was put into Microtrac MT3300EXII, a trade name manufactured by Microtrac Bell Co., Ltd., and the average particle size of the abrasive grains was measured. The displayed average particle size value was obtained as the average particle size (average secondary particle size) of the abrasive grains. The average particle size of Examples 1 to 8 and 10 to 13 and Comparative Examples 1 to 2 was 145 nm. The average particle size of Example 9 was 155 nm.

<CMP用研磨液のpH測定>
CMP用研磨液のpHを下記の条件で測定した。結果を表1及び表2に示す。
測定温度:25℃
測定装置:東亜ディーケーケー株式会社製、型番PHL−40
測定方法:標準緩衝液(フタル酸塩pH緩衝液、pH:4.01(25℃);中性リン酸塩pH緩衝液、pH:6.86(25℃))を用いて2点校正した後、電極をCMP用研磨液に入れ、2分以上経過して安定した後のpHを前記測定装置により測定した。
<pH measurement of polishing liquid for CMP>
The pH of the polishing liquid for CMP was measured under the following conditions. The results are shown in Tables 1 and 2.
Measurement temperature: 25 ° C
Measuring device: DKK-TOA CORPORATION, model number PHL-40
Measurement method: Two-point calibration was performed using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C); neutral phosphate pH buffer, pH: 6.86 (25 ° C)). After that, the electrode was put into a polishing solution for CMP, and the pH after lapsed for 2 minutes or more and stabilized was measured by the measuring device.

<CMP評価>
前記CMP用研磨液を用いて下記研磨条件で被研磨基板を研磨した。
研磨装置:Reflexion LK(APPLIED MATERIALS社製)
CMP用研磨液の流量:250mL/min
被研磨基板:酸化珪素膜(TEOS膜)をシリコン基板上に有する被研磨基板
研磨パッド:ローム・アンド・ハース・ジャパン株式会社製、型番IC1010
研磨圧力:3psi
回転数:被研磨基板/研磨定盤=93/87rpm
研磨時間:1min(60秒)
ウエハの洗浄:CMP処理後、超音波を印加しながら水で洗浄した。さらに、0.25質量%のアンモニア水を流しながら、ブラシを用いて45秒間洗浄した後、スピンドライヤで乾燥させた。
<CMP evaluation>
The substrate to be polished was polished under the following polishing conditions using the polishing liquid for CMP.
Polishing device: Reflection LK (manufactured by Applied Materials)
Flow rate of polishing liquid for CMP: 250 mL / min
Substrate to be polished: Substrate to be polished having a silicon oxide film (TEOS film) on the silicon substrate Polishing pad: manufactured by Roam & Haas Japan Co., Ltd., model number IC1010
Polishing pressure: 3psi
Rotation speed: Substrate to be polished / Polishing surface plate = 93/87 rpm
Polishing time: 1 min (60 seconds)
Wafer cleaning: After the CMP treatment, the wafer was washed with water while applying ultrasonic waves. Further, it was washed with a brush for 45 seconds while flowing 0.25% by mass of aqueous ammonia, and then dried with a spin dryer.

(洗浄性評価)
前記条件で研磨及び洗浄した酸化珪素膜上に残っている0.15μm以上の欠陥数(残存した砥粒の数)を、欠陥測定装置(APPLIED MATERIALS社製、商品名:Complus)を用いて測定した。また、下記式より、比較例1の欠陥数に対する他の実施例の欠陥数の割合(欠陥減少率)を算出した。結果を表1及び表2に示す。
欠陥減少率[%]=[(比較例1の欠陥数)−(実施例の欠陥数)]/(比較例1の欠陥数)×100
(Evaluation of cleanability)
The number of defects of 0.15 μm or more (the number of remaining abrasive grains) remaining on the silicon oxide film polished and washed under the above conditions is measured using a defect measuring device (manufactured by Applied Materials, trade name: Compulus). did. Further, the ratio of the number of defects in the other examples (defect reduction rate) to the number of defects in Comparative Example 1 was calculated from the following formula. The results are shown in Tables 1 and 2.
Defect reduction rate [%] = [(Number of defects in Comparative Example 1)-(Number of defects in Example 1)] / (Number of defects in Comparative Example 1) x 100

(研磨速度評価)
前記条件で研磨及び洗浄した酸化珪素膜の研磨速度(SiORR)を下記式より求めた。研磨前後における酸化珪素膜の膜厚差は、光干渉式膜厚測定装置(フィルメトリクス社製、商品名:F80)を用いて求めた。結果を表1及び表2に示す。
研磨速度=(研磨前後での酸化珪素膜の膜厚差[nm])/(研磨時間:1[min])
(Evaluation of polishing speed)
The polishing rate (SiO 2 RR) of the silicon oxide film polished and washed under the above conditions was calculated from the following formula. The difference in film thickness of the silicon oxide film before and after polishing was determined using a light interference type film thickness measuring device (manufactured by Filmometry, trade name: F80). The results are shown in Tables 1 and 2.
Polishing speed = (difference in film thickness of silicon oxide film before and after polishing [nm]) / (polishing time: 1 [min])

Figure 2019182061
Figure 2019182061

Figure 2019182061
Figure 2019182061

Claims (18)

砥粒と、ヒドロキシ酸と、水酸基及びアミド基からなる群より選ばれる少なくとも一種を有する高分子化合物と、液状媒体と、を含有し、
前記砥粒のゼータ電位が正であり、
前記高分子化合物の重量平均分子量が3000以上である、研磨液。
It contains abrasive grains, a hydroxy acid, a polymer compound having at least one selected from the group consisting of hydroxyl groups and amide groups, and a liquid medium.
The zeta potential of the abrasive grains is positive,
A polishing liquid having a weight average molecular weight of 3000 or more of the polymer compound.
前記砥粒がセリウム酸化物を含む、請求項1に記載の研磨液。 The polishing liquid according to claim 1, wherein the abrasive grains contain cerium oxide. 前記砥粒が、第1の粒子と、当該第1の粒子に接触した第2の粒子と、を含み、
前記第2の粒子の粒径が前記第1の粒子の粒径よりも小さく、
前記第1の粒子がセリウム酸化物を含有し、
前記第2の粒子がセリウム化合物を含有する、請求項1又は2に記載の研磨液。
The abrasive grains include a first particle and a second particle in contact with the first particle.
The particle size of the second particle is smaller than the particle size of the first particle,
The first particle contains cerium oxide and
The polishing liquid according to claim 1 or 2, wherein the second particles contain a cerium compound.
前記砥粒が、当該砥粒の含有量を1.0質量%に調整した水分散液を遠心加速度5.8×10Gで5分間遠心分離したときに、波長380nmの光に対する吸光度が0を超える液相を与える、請求項1〜3のいずれか一項に記載の研磨液。When the abrasive grains centrifuge the aqueous dispersion having the abrasive grains content adjusted to 1.0% by mass at a centrifugal acceleration of 5.8 × 10 4 G for 5 minutes, the absorbance with respect to light having a wavelength of 380 nm is 0. The polishing liquid according to any one of claims 1 to 3, which provides a liquid phase exceeding the above. 前記ヒドロキシ酸の水酸基の数が2個である、請求項1〜4のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 4, wherein the hydroxy acid has two hydroxyl groups. 前記ヒドロキシ酸の含有量が0.01〜1.0質量%である、請求項1〜5のいずれか一項に記載の研磨液。 The polishing liquid according to any one of claims 1 to 5, wherein the content of the hydroxy acid is 0.01 to 1.0% by mass. 前記高分子化合物が、ポリオキシアルキレン構造を有する化合物を含む、請求項1〜6のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 6, wherein the polymer compound contains a compound having a polyoxyalkylene structure. 前記高分子化合物が、水酸基を有する2個以上の同一の構造単位を有する化合物を含む、請求項1〜7のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 7, wherein the polymer compound contains two or more compounds having the same structural unit having a hydroxyl group. 前記高分子化合物が、2級アミド基を有する化合物を含む、請求項1〜8のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 8, wherein the polymer compound contains a compound having a secondary amide group. 前記高分子化合物が、3級アミド基を有する化合物を含む、請求項1〜9のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 9, wherein the polymer compound contains a compound having a tertiary amide group. 前記高分子化合物が、アミド基を含む側鎖を有する化合物を含む、請求項1〜10のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 10, wherein the polymer compound contains a compound having a side chain containing an amide group. 前記高分子化合物が、両末端に水酸基を含む主鎖を有する化合物を含む、請求項1〜11のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 11, wherein the polymer compound contains a compound having a main chain containing hydroxyl groups at both ends. 前記高分子化合物の含有量が0.01〜5.0質量%である、請求項1〜12のいずれか一項に記載の研磨液。 The polishing liquid according to any one of claims 1 to 12, wherein the content of the polymer compound is 0.01 to 5.0% by mass. pHが8.0未満である、請求項1〜13のいずれか一項に記載の研磨液。 The polishing solution according to any one of claims 1 to 13, wherein the pH is less than 8.0. 請求項1〜14のいずれか一項に記載の研磨液の構成成分が第1の液と第2の液とに分けて保存され、前記第1の液が、前記砥粒と、液状媒体と、を含み、前記第2の液が、前記ヒドロキシ酸と、前記高分子化合物と、液状媒体と、を含む、研磨液セット。 The constituent component of the polishing liquid according to any one of claims 1 to 14 is stored separately as a first liquid and a second liquid, and the first liquid is the abrasive grains and the liquid medium. , And the second liquid contains the hydroxy acid, the polymer compound, and a liquid medium. 請求項1〜14のいずれか一項に記載の研磨液、又は、請求項15に記載の研磨液セットにおける前記第1の液と前記第2の液とを混合して得られる研磨液を用いて被研磨面を研磨する研磨工程を備える、研磨方法。 The polishing liquid according to any one of claims 1 to 14 or the polishing liquid obtained by mixing the first liquid and the second liquid in the polishing liquid set according to claim 15 is used. A polishing method including a polishing process for polishing the surface to be polished. 前記被研磨面が酸化珪素を含む、請求項16に記載の研磨方法。 The polishing method according to claim 16, wherein the surface to be polished contains silicon oxide. 前記研磨工程の後に、アルカリ液を前記被研磨面に接触させる工程を更に備える、請求項16又は17に記載の研磨方法。

The polishing method according to claim 16 or 17, further comprising a step of bringing an alkaline solution into contact with the surface to be polished after the polishing step.

JP2020507899A 2018-03-22 2019-03-20 Polishing liquid, polishing liquid set and polishing method Active JP7056728B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/011464 2018-03-22
PCT/JP2018/011464 WO2019180887A1 (en) 2018-03-22 2018-03-22 Polishing liquid, polishing liquid set, and polishing method
JPPCT/JP2018/028105 2018-07-26
PCT/JP2018/028105 WO2020021680A1 (en) 2018-07-26 2018-07-26 Slurry and polishing method
PCT/JP2018/035480 WO2019181016A1 (en) 2018-03-22 2018-09-25 Polishing liquid, polishing liquid set, and polishing method
JPPCT/JP2018/035480 2018-09-25
PCT/JP2019/011867 WO2019182061A1 (en) 2018-03-22 2019-03-20 Polishing liquid, polishing liquid set, and polishing method

Publications (2)

Publication Number Publication Date
JPWO2019182061A1 true JPWO2019182061A1 (en) 2021-03-11
JP7056728B2 JP7056728B2 (en) 2022-04-19

Family

ID=67986225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507899A Active JP7056728B2 (en) 2018-03-22 2019-03-20 Polishing liquid, polishing liquid set and polishing method

Country Status (2)

Country Link
JP (1) JP7056728B2 (en)
WO (1) WO2019182061A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382508B1 (en) * 2018-09-25 2022-04-01 쇼와덴코머티리얼즈가부시끼가이샤 Slurry and Polishing Methods
KR102453292B1 (en) * 2020-07-07 2022-10-12 주식회사 나노신소재 CMP Composition of Cerium Oxide Powders
KR102484632B1 (en) * 2020-08-31 2023-01-04 솔브레인 주식회사 Cerium oxide particle, chemical-mechanical polishing slurry composition comprising the same and method for manufacturing semiconductor by using the same
WO2022070313A1 (en) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 Slurry and polishing method
KR20240024994A (en) * 2021-08-31 2024-02-26 가부시끼가이샤 레조낙 Polishing liquid, polishing method, manufacturing method of parts, and manufacturing method of semiconductor parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186339A (en) * 2011-03-07 2012-09-27 Hitachi Chem Co Ltd Polishing liquid and polishing method of substrate using the same
JP2013540851A (en) * 2010-09-08 2013-11-07 ビーエーエスエフ ソシエタス・ヨーロピア Aqueous abrasive composition and method for polishing substrate materials for electrical, mechanical and optical devices
JP2015137297A (en) * 2014-01-21 2015-07-30 株式会社フジミインコーポレーテッド Polishing composition and method of producing the same
JP2016029123A (en) * 2014-07-25 2016-03-03 旭硝子株式会社 Abrasive, polishing method, and additive liquid for polishing
JP2016538359A (en) * 2013-10-10 2016-12-08 キャボット マイクロエレクトロニクス コーポレイション Polishing composition for mixed abrasive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540851A (en) * 2010-09-08 2013-11-07 ビーエーエスエフ ソシエタス・ヨーロピア Aqueous abrasive composition and method for polishing substrate materials for electrical, mechanical and optical devices
JP2012186339A (en) * 2011-03-07 2012-09-27 Hitachi Chem Co Ltd Polishing liquid and polishing method of substrate using the same
JP2016538359A (en) * 2013-10-10 2016-12-08 キャボット マイクロエレクトロニクス コーポレイション Polishing composition for mixed abrasive
JP2015137297A (en) * 2014-01-21 2015-07-30 株式会社フジミインコーポレーテッド Polishing composition and method of producing the same
JP2016029123A (en) * 2014-07-25 2016-03-03 旭硝子株式会社 Abrasive, polishing method, and additive liquid for polishing

Also Published As

Publication number Publication date
WO2019182061A1 (en) 2019-09-26
JP7056728B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US11767448B2 (en) Polishing liquid, polishing liquid set, and polishing method
JP7056728B2 (en) Polishing liquid, polishing liquid set and polishing method
JP6965999B2 (en) Slurry and polishing method
JPWO2013125446A1 (en) Abrasive, abrasive set, and substrate polishing method
JP2017149798A (en) Polishing liquid, polishing liquid set and method for polishing substrate
JP6888744B2 (en) Slurry and polishing method
JP6753518B2 (en) Polishing liquid, polishing liquid set, additive liquid and polishing method
JP7235164B2 (en) Polishing liquid, polishing liquid set and polishing method
WO2018179064A1 (en) Slurry and polishing method
WO2019181015A1 (en) Polishing liquid, polishing liquid set, and polishing method
WO2019182057A1 (en) Slurry, slurry set and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R151 Written notification of patent or utility model registration

Ref document number: 7056728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350