JP6963706B2 - 膜電極接合体 - Google Patents

膜電極接合体 Download PDF

Info

Publication number
JP6963706B2
JP6963706B2 JP2021050433A JP2021050433A JP6963706B2 JP 6963706 B2 JP6963706 B2 JP 6963706B2 JP 2021050433 A JP2021050433 A JP 2021050433A JP 2021050433 A JP2021050433 A JP 2021050433A JP 6963706 B2 JP6963706 B2 JP 6963706B2
Authority
JP
Japan
Prior art keywords
adsorption
gas diffusion
catalyst layer
diffusion layer
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021050433A
Other languages
English (en)
Other versions
JP2021163750A (ja
Inventor
博史 菅
俊之 中村
裕己 田中
一博 水木
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JP2021163750A publication Critical patent/JP2021163750A/ja
Application granted granted Critical
Publication of JP6963706B2 publication Critical patent/JP6963706B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、膜電極接合体に関するものである。
燃料電池は、複数の膜電極接合体と、複数のセパレータとを有している。膜電極接合体は、電解質膜、アノード及びカソードを有している。複数の膜電極接合体は、セパレータを介してスタックされている。このようにスタックされた複数の膜電極接合体は、ボルトなどの金属部材によって固定されている。また、各膜電極接合体には、金属製のガス供給配管を介して、燃料又は酸化剤が供給される。
特開2015−133337号公報
燃料電池が長時間運転されるに伴い、燃料電池に用いられる各金属部材から、Fe2+、Fe3+、Cr2+、Ni2+、又はTi2+などの多価の陽イオンが溶出される。このような陽イオンがアノード又はカソードを通過して電解質膜に到達すると、電解質膜のイオン交換性能が低下するという問題がある。この問題に対して、電解質膜のイオン交換性能を長時間維持させる、すなわち、電解質膜の耐久性を向上させることが要望されている。
本発明の課題は、電解質膜の耐久性を向上させることにある。
本発明のある側面に係る膜電極接合体は、電解質膜と、第1触媒層と、第1ガス拡散層と、少なくとも一つの第1吸着部と、を備えている。第1触媒層は、電解質膜上に配置される。第1ガス拡散層は、第1触媒層上に配置される。第1吸着部は、第1ガス拡散層の内部に配置される。第1吸着部は、陽イオン交換を有する。
この構成の膜電極接合体を用いれば、電解質膜の耐久性を向上させることができる。すなわち、この膜電極接合体は、第1ガス拡散層の内部に第1吸着部が配置されている。この第1吸着部は、陽イオン交換能を有している。このため、金属部材から溶出されてきたFe2+、Fe3+、Cr3+、Ni2+、又はTi2+などの陽イオンは、第1ガス拡散層を流れる間に第1吸着部に吸着される。この結果、電解質膜に到達する陽イオンの量を低減することができ、電解質膜のイオン交換能が低下するまでの期間を長くすることができる。この結果、電解質膜の耐久性を向上させることができる。
好ましくは、第1吸着部は、多価の陽イオンに対してイオン交換能を有する。
好ましくは、膜電極接合体は、複数の第1吸着部を備える。複数の第1吸着部は、互いに間隔をあけて配置される。
好ましくは、第1吸着部は、第1触媒層と間隔をあけて配置される。
好ましくは、第1ガス拡散層は、第1中央部と、第1中央部を囲む第1外周部と、を有する。
好ましくは、第1吸着部は、第1中央部の内部に配置され、第1外周部の内部に配置されていない。
好ましくは、第1中央部における第1吸着部の含有率は、第1外周部における第1吸着部の含有率よりも大きい。
好ましくは、第1中央部における第1吸着部と第1触媒層との距離は、第1外周部における第1吸着部と第1触媒層との距離よりも大きい。
好ましくは、膜電極接合体は、第2触媒層と、第2ガス拡散層とをさらに備える。第2触媒層は、第1触媒層と反対側において電解質膜上に配置される。第2ガス拡散層は、第2触媒層上に配置される。
好ましくは、膜電極接合体は、少なくとも一つの第2吸着部をさらに備える。第2吸着部は、第2ガス拡散層の内部に配置される。第2吸着部は、陽イオン交換能を有する。
好ましくは、第2吸着部は、多価の陽イオンに対してイオン交換能を有する。
好ましくは、膜電極接合体は、複数の第2吸着部を備えている。複数の第2吸着部は、互いに間隔をあけて配置される。
好ましくは、第2吸着部は、第2触媒層と間隔をあけて配置される。
好ましくは、第2ガス拡散層は、第2中央部と、第2中央部を囲む第2外周部と、を有する。
好ましくは、第2吸着部は、第2中央部の内部に配置され、第2外周部の内部に配置されていない。
好ましくは、第2中央部における第2吸着部の含有率は、第2外周部における第2吸着部の含有率よりも大きい。
好ましくは、第2中央部における第2吸着部と第2触媒層との距離は、第2外周部における第2吸着部と第2触媒層との距離よりも大きい。
本発明によれば、電解質膜の耐久性を向上させることができる。
燃料電池の断面図。 膜電極接合体のカソード側の拡大断面図。 膜電極接合体のアノード側の拡大断面図。 変形例に係る膜電極接合体のカソード側の拡大断面図。 変形例に係る膜電極接合体のアノード側の拡大断面図。 第1ガス拡散層の平面図。 切断方法を説明するための第1ガス拡散層の平面図。 切断方法を説明するための別の実施形態における第1ガス拡散層の平面図。 撮影箇所を説明するための膜電極接合体の断面図。 第2ガス拡散層の平面図。
以下、本実施形態に係る膜電極接合体10を図面を参照しつつ説明する。図1は、本実施形態に係る膜電極接合体10を用いた固体アルカリ形燃料電池100の構成を示す断面図である。なお、固体アルカリ形燃料電池100は、水酸化物イオンをキャリアとするアルカリ形燃料電池(AFC)の一種である。
(固体アルカリ形燃料電池100)
図1に示すように、固体アルカリ形燃料電池100は、膜電極接合体10、第1セパレータ11、及び第2セパレータ12を備えている。実際に使用する際は、複数の固体アルカリ形燃料電池100がスタックされる。詳細には、複数の膜電極接合体10が第1及び第2セパレータ11、12を介してスタックされる。
(膜電極接合体10)
膜電極接合体10は、カソード2、アノード3、及び電解質膜4を備える。膜電極接合体10は、下記の電気化学反応式に基づいて、比較的低温(例えば、50℃〜250℃)で発電する。ただし、下記の電気化学反応式では、燃料の一例としてメタノールが用いられている。
・カソード2: 3/2O+3HO+6e→6OH
・アノード3: CHOH+6OH→6e+CO+5H
・全体 : CHOH+3/2O→CO+2H
(カソード2)
カソード2は、電解質膜4の第1面41側(図1の上面側)に配置されている。カソード2は、一般的に空気極と呼ばれる陽極である。
固体アルカリ形燃料電池100の発電中、カソード2には、第1セパレータ11の第1流路111を介して酸素(O)を含む酸化剤が供給される。酸化剤としては、空気を用いるのが好ましく、空気は加湿されていることがより好ましい。カソード2は、内部に酸化剤を拡散可能な多孔質体である。カソード2の気孔率は特に制限されない。カソード2の厚みは特に制限されないが、例えば10〜200μmとすることができる。
図2に示すように、カソード2は、第1触媒層21と、第1ガス拡散層22と、複数の第1吸着部23と、を有している。第1触媒層21は、電解質膜4上に配置されている。詳細には、第1触媒層21は、電解質膜4の第1面41上に配置されている。第1触媒層21は、平面視において、矩形状である。第1触媒層21の厚さは、例えば、5〜50μm程度である。
第1触媒層21は、酸素還元反応に対する触媒活性を有している。すなわち、第1触媒層21は、酸素還元反応に対する触媒活性を有する触媒を含んでいる。なお、第1触媒層21に含まれる触媒は、AFCに使用される公知のカソード触媒であればよく、特に限定されない。第1触媒層21に含まれるカソード触媒の例としては、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、鉄族元素(Fe、Co、Ni)等の第8〜10族元素(IUPAC形式での周期表において第8〜10族に属する元素)、Cu、Ag、Au等の第11族元素(IUPAC形式での周期表において第11族に属する元素)、ロジウムフタロシアニン、テトラフェニルポルフィリン、Coサレン、Niサレン(サレン=N,N’−ビス(サリチリデン)エチレンジアミン)、銀硝酸塩、及びこれらの任意の組み合わせが挙げられる。カソード2における触媒の担持量は特に限定されないが、好ましくは0.1〜10mg/cm、より好ましくは、0.1〜5mg/cmである。カソード触媒はカーボンに担持させるのが好ましい。カソード2ないしそれを構成する触媒の好ましい例としては、白金担持カーボン(Pt/C)、パラジウム担持カーボン(Pd/C)、ロジウム担持カーボン(Rh/C)、ニッケル担持カーボン(Ni/C)、銅担持カーボン(Cu/C)、及び銀担持カーボン(Ag/C)が挙げられる。
第1ガス拡散層22は、第1触媒層21上に配置されている。第1ガス拡散層22は、平面視において、矩形状である。第1ガス拡散層22は、第1触媒層21よりも厚い。第1ガス拡散層22の厚さは、例えば、50〜150μm程度である。
第1ガス拡散層22は、第1セパレータ11の第1流路111内を流れる酸化剤を拡散して第1触媒層21に供給する。第1ガス拡散層22は、電気伝導性を有する。第1ガス拡散層22は、集電部材としても機能する。
第1ガス拡散層22は、カーボンペーパー、カーボンクロス、又はカーボンフェルトなどの導電性多孔質材料によって構成することができる。第1ガス拡散層22には、アセチレンブラックなどのカーボンブラック、又はグラファイトなどの導電性材料と、フッ素樹脂(PTFE、PVDF)などの撥水性材料と、を含むマイクロポーラス層が形成されていてもよい。
第1吸着部23は、第1ガス拡散層22の内部に配置されている。各第1吸着部23は、互いに間隔をあけて配置されている。詳細には、各第1吸着部23は、第1ガス拡散層22の面方向において、互いに間隔をあけて配置される。また、第1吸着部23は、第1触媒層21と間隔をあけて配置されていることが好ましい。なお、第1吸着部23と第1触媒層21とは接触していてもよい。
第1吸着部23は、陽イオン交換能を有している。好ましくは、第1吸着部23は、多価の陽イオンに対してイオン交換能を有する。なお、第1吸着部23は、多価の陽イオンに対してのみイオン交換能を有し、1価の陽イオンに対してはイオン交換能を有していなくてもよい。
第1吸着部23は、Fe2+、Fe3+、Cr3+、Ni2+、又はTi2+などの陽イオンを吸着する。第1吸着部23は、例えば、後述する電解質膜4のイオン伝導体によって構成することができる。その他に、第1吸着部23は、スルホン酸基、あるいはカルボン酸基を有する陽イオン交換樹脂などによって構成されていてもよい。
上述したようなカソード2は、次のように作製する。まず、第1ガス拡散層22を準備する。次に、第1ガス拡散層22に対して濡れ性を有し、且つエタノール及びIPA成分を含む触媒ペーストを、第1ガス拡散層22に塗布する。そして、この第1ガス拡散層22に塗布した触媒ペーストを、窒素気流中で乾燥させることで、第1吸着部23を含有する第1ガス拡散層22を得ることができる。
続いて、この第1ガス拡散層22の第1主面上に、第1ガス拡散層22に対して撥水性を有し且つ水を主溶媒とする触媒ペーストを塗布することなどによって、第1触媒層21を形成する。このようにすることによって、第1吸着部23を有するカソード2を得ることができる。
(アノード3)
図1に示すように、アノード3は、電解質膜4の第2面42側(図1の下面側)に配置されている。アノード3は、一般的に燃料極と呼ばれる陰極である。
固体アルカリ形燃料電池100の発電中、アノード3には、第2セパレータ12の第2流路121を介して、水素原子(H)を含む燃料が供給される。燃料としては、メタノールを用いるのが好ましい。アノード3は、内部に燃料を拡散可能な多孔質体である。アノード3の気孔率は特に制限されない。アノード3の厚みは特に制限されないが、例えば10〜500μmとすることができる。
燃料は、アノード3において水酸化物イオン(OH)と反応可能な燃料化合物を含んでいればよく、液体燃料及び気体燃料のいずれの形態であってもよい。
燃料化合物としては、例えば、(i)ヒドラジン(NHNH)、水加ヒドラジン(NHNH・HO)、炭酸ヒドラジン((NHNHCO)、硫酸ヒドラジン(NHNH・HSO)、モノメチルヒドラジン(CHNHNH)、ジメチルヒドラジン((CHNNH、CHNHNHCH)、及びカルボンヒドラジド((NHNHCO)等のヒドラジン類、(ii)尿素(NHCONH)、(iii)アンモニア(NH)、(iv)イミダゾール、1,3,5−トリアジン、3−アミノ−1,2,4−トリアゾール等の複素環類化合物、(v)ヒドロキシルアミン(NHOH)、硫酸ヒドロキシルアミン(NHOH・HSO)等のヒドロキシルアミン類、及びこれらの組合せが挙げられる。これらの燃料化合物のうち炭素を含まない化合物(すなわち、ヒドラジン、水加ヒドラジン、硫酸ヒドラジン、アンモニア、ヒドロキシルアミン、硫酸ヒドロキシルアミン等)は、一酸化炭素による触媒被毒の問題が無いため特に好適である。
燃料化合物は、そのまま燃料として用いてもよいが、水及び/又はアルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノールなどの低級アルコール等)に溶解させた溶液として用いてもよい。例えば、上記燃料化合物のうち、ヒドラジン、水化ヒドラジン、モノメチルヒドラジン及びジメチルヒドラジンは液体であるので、そのまま液体燃料として使用可能である。また、炭酸ヒドラジン、硫酸ヒドラジン、カルボンヒドラジド、尿素、イミダゾール、及び3−アミノ−1,2,4−トリアゾール、及び硫酸ヒドロキシルアミンは固体であるが水に可溶である。1,3,5−トリアジン及びヒドロキシルアミンは固体であるがアルコールに可溶である。アンモニアは気体であるが水に可溶である。このように、固体の燃料化合物は、水又はアルコールに溶解させて液体燃料として使用可能である。燃料化合物を水及び/又はアルコールに溶解させて用いる場合、溶液中の燃料化合物の濃度は、例えば1〜99重量%であり、好ましくは30〜99重量%である。
また、メタノール、エタノール等のアルコール類やエーテル類を含む炭化水素系液体燃料、メタン等の炭化水素系ガス、或いは純水素などは、そのまま燃料として用いることができる。特に、本実施形態に係る固体アルカリ形燃料電池100に用いられる燃料としては、メタノールが好適である。メタノールは、気体状態、液体状態、及び、気液混合状態のいずれであってもよい。
図3に示すように、アノード3は、第2触媒層31と、第2ガス拡散層32と、複数の第2吸着部33とを有している。第2触媒層31は、電解質膜4上に配置されている。詳細には、第2触媒層31は、電解質膜4の第2面42上に配置されている。すなわち、第2触媒層31は、第1触媒層21と反対側において電解質膜4上に配置されている。第2触媒層31は、平面視において、矩形状である。第2触媒層31の厚さは、例えば、5〜50μm程度である。
第2触媒層31は、燃料の酸化反応に対する触媒活性を有している。すなわち、第2触媒層31は、燃料の酸化反応に対する触媒活性を有する触媒を含んでいる。なお、第2触媒層31に含まれる触媒は、AFCに使用される公知のアノード触媒であればよく、特に限定されない。第2触媒層31に含まれるアノード触媒の例としては、Pt、Ni、Co、Fe、Ru、Sn、及びPd等の金属触媒が挙げられる。金属触媒は、カーボン等の担体に担持されるのが好ましいが、金属触媒の金属原子を中心金属とする有機金属錯体の形態としてもよく、この有機金属錯体を担体として担持されていてもよい。また、アノード触媒の表面には多孔質材料等で構成された拡散層を配置してもよい。アノード3及びそれを構成する触媒の好ましい例としては、ニッケル、コバルト、銀、白金担持カーボン(Pt/C)、パラジウム担持カーボン(Pd/C)、ロジウム担持カーボン(Rh/C)、ニッケル担持カーボン(Ni/C)、銅担持カーボン(Cu/C)、及び銀担持カーボン(Ag/C)が挙げられる。
第2ガス拡散層32は、第2触媒層31上に配置されている。第2ガス拡散層32は、平面視において、矩形状である。第2ガス拡散層32は、第2触媒層31よりも厚い。第2ガス拡散層32の厚さは、例えば、50〜150μm程度である。
第2ガス拡散層32は、第2セパレータ12の第2流路121内を流れる燃料を拡散して第2触媒層31に供給する。第2ガス拡散層32は、電気伝導性を有する。第2ガス拡散層32は、集電部材としても機能する。
第2ガス拡散層32は、カーボンペーパー、カーボンクロス、又はカーボンフェルトなどの導電性多孔質材料によって構成することができる。第2ガス拡散層32には、アセチレンブラックなどのカーボンブラック、又はグラファイトなどの導電性材料と、フッ素樹脂(PTFE、PVDF)などの撥水性材料と、を含むマイクロポーラス層が形成されていてもよい。
第2吸着部33は、第2ガス拡散層32の内部に配置されている。各第2吸着部33は、互いに間隔をあけて配置されている。詳細には、各第2吸着部33は、第2ガス拡散層32の面方向において、互いに間隔をあけて配置される。また、第2吸着部33は、第2触媒層31と間隔をあけて配置されていることが好ましい。なお、第2吸着部33と第2触媒層31とは接触していてもよい。
第2吸着部33は、陽イオン交換能を有している。好ましくは、第2吸着部33は、多価の陽イオンに対してイオン交換能を有する。なお、第2吸着部33は、多価の陽イオンに対してのみイオン交換能を有し、1価の陽イオンに対してはイオン交換能を有していなくてもよい。
第2吸着部33は、Fe2+、Fe3+、Cr2+、Ni2+、又はTi2+などの陽イオンを吸着する。第2吸着部33は、例えば、後述する電解質膜4のイオン伝導体によって構成することができる。その他に、第2吸着部33は、スルホン酸基、あるいはカルボン酸基を有する陽イオン交換樹脂などによって構成されていてもよい。
上述したようなアノード3は、上述したカソード2と同様の方法によって作製することができる。
(電解質膜4)
図1に示すように、電解質膜4は、カソード2とアノード3との間に配置される。電解質膜4は、カソード2及びアノード3のそれぞれに接続される。電解質膜4は、イオン伝導性を有する。電解質膜4は、膜状であって、第1面41と第2面42とを有している。第1面41と第2面42とは、互いに逆側を向いている。電解質膜4の第1面41側にはカソード2が配置されており、第2面42側にはアノード3が配置されている。
電解質膜4は、イオン伝導体を含んでいる。このイオン伝導体は、水酸化物イオン(OH)伝導性を有する。イオン伝導体の水酸化物イオン伝導度は、1.0×10−4S/cm以上が好ましく、1.0×10−3S/cm以上がより好ましく、1.0×10−2S/cm以上が特に好ましいが、特に制限されず高ければ高いほど望ましい。
本実施形態に係るイオン伝導体は、フッ素系高分子樹脂である。イオン伝導体は、主鎖と、側鎖とを有する。
主鎖は、炭素(C)及びフッ素(F)を含む。主鎖は、C−F結合を含み、かつ、C−H結合を含まない。主鎖の骨格は、ポリテトラフルオロエチレン(PTFE)によって構成することができる。主鎖の骨格とは、炭素数が最大となる高分子内の炭素鎖を意味する。
側鎖は、主鎖に連なる。側鎖は、主鎖から枝分かれしている。側鎖は、スルホンアルカリ基(-SO 基)を末端に含む。スルホンアルカリ基は、スルホン酸基(-SO 基)の水素イオン(H)がアルカリ金属イオン(M)に置換された構成を有する。アルカリ金属(M)としては、Li、K、Na、及びNHからなる群から選ばれた1種以上を用いることができる。スルホンアルカリ基は、スルホン酸基の水素イオンをアルカリ金属イオンにカチオン交換することによって得られる。側鎖は、カルボキシアルカリ基(-COO基)を末端に含んでいても良い。カルボキシアルカリ基は、カルボキシル基(-COO)の水素イオン(H)がアルカリ金属イオン(M)に置換された構成を有する。イオン伝導体の製造方法については後述する。
このようなスルホンアルカリ基が導入されることによって、イオン伝導体はアルカリ性環境下において、高いイオン伝導性を発現する。
なお、イオン伝導体が有する全ての側鎖のうち少なくとも一つの側鎖がスルホンアルカリ基を有していれば、イオン伝導体は、アルカリ性環境下において、高いイオン伝導性を発現することができる。イオン伝導性を向上させるには、イオン伝導体が有する全ての側鎖のうち50%以上の側鎖がスルホンアルカリ基を有していることが好ましく、80%以上の側鎖がスルホンアルカリ基を有していることがより好ましく、全ての側鎖がスルホンアルカリ基を有していることが特に好ましい。
イオン伝導体の構造は、下記一般式(1)によって表すことができる。
Figure 0006963706
一般式(1)において、Mは上述したアルカリ金属であり、Xはフッ素原子又はトリフルオロメチル基である。一般式(1)において、x及びyは整数であり、xは5以上14以下とすることができ、yは1000とすることができる。一般式(1)において、pは0以上3以下の整数であり、qは0又は1であり、nは1以上12以下の整数である。
(イオン伝導体の製造方法)
次に、電解質膜4を構成するイオン伝導体の製造方法について説明する。
まず、パーフルオロスルホン酸ポリマーを準備する。パーフルオロスルホン酸ポリマーは、フッ素系高分子樹脂である。具体的には、パーフルオロスルホン酸ポリマーは、C−F結合からなる疎水性のパーフルオロカーボン骨格と、スルホン酸基を持つパーフルオロ側鎖とから構成されるパーフルオロカーボン材料である。パーフルオロスルホン酸ポリマーの側鎖は、スルホン酸基を末端に含む。これにより、パーフルオロスルホン酸ポリマーは、プロトン伝導性を発現する。
パーフルオロスルホン酸ポリマーとしては、ナフィオン(Nafion(登録商標)、デュポン社)、フレミオン(Flemion(登録商標)、旭硝子株式会社)、アシプレックス(Aciplex(登録商標)、旭化成株式会社)などの市販品を用いてもよい。
パーフルオロスルホン酸ポリマーの構造は、下記一般式(2)によって表すことができる。
Figure 0006963706
一般式(2)において、Xはフッ素原子又はトリフルオロメチル基である。一般式(2)において、x及びyは整数であり、xは5以上14以下とすることができ、yは1000とすることができる。一般式(2)において、pは0以上3以下の整数であり、qは0又は1であり、nは1以上12以下の整数である。
次に、所望のアルカリ金属イオンを含有するアルカリ性溶液を準備する。アルカリ性溶液が含有するアルカリ金属イオンは、Li、K、Na、及びNHからなる群から選ばれる1種以上のアルカリ金属(M)のイオンである。従って、アルカリ性溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液、炭酸カリウム、又は炭酸水素カリウムなどを用いることができる。アルカリ性溶液におけるアルカリ金属イオンの濃度は、後述するカチオン交換が十分行われる程度であればよく特に制限されないが、例えば、0.01〜1mol/Lとすることができる。
次に、アルカリ性溶液を用いて、パーフルオロスルホン酸ポリマーにアルカリ処理を施す。このアルカリ処理では、パーフルオロスルホン酸ポリマーをアルカリ性溶液に浸漬してもよいし、パーフルオロスルホン酸ポリマーにアルカリ性溶液を含浸させてもよいし、パーフルオロスルホン酸ポリマーにアルカリ性溶液を塗布してもよい。アルカリ処理は、室温(例えば、10〜30℃)で行うことができる。
このアルカリ処理によって、パーフルオロスルホン酸ポリマーが有する側鎖の末端に位置するスルホン酸基(-SO 基)の水素イオン(H)をアルカリ金属イオン(M)にカチオン置換する。その結果、上記一般式(1)によって表されるイオン伝導体が製造される。
(第1及び第2セパレータ11、12)
図1に示すように、第1及び第2セパレータ11、12は、膜電極接合体10を厚さ方向(z軸方向)の両側から挟むように配置されている。第1セパレータ11は、カソード2に酸素(O)を含む酸化剤を供給するように構成されている。第1セパレータ11は、第1流路111を有している。第1流路111は、カソード2と対向している。この第1流路111には、酸素(O)を含む酸化剤が供給される。
第2セパレータ12は、アノード3に水素原子(H)を含む燃料を供給するように構成されている。第2セパレータ12は、第2流路121を有している。第2流路121は、アノード3と対向している。この第2流路121には、水素原子(H)を含む燃料が供給される。例えば、第2流路121には、メタノールが供給される。
複数の膜電極接合体10が第1及び第2セパレータ11,12を介してスタックされている場合は、第1セパレータ11は、第1流路111が形成される面とは反対側の面に第2流路が形成されている。また、第2セパレータ12は、第2流路121が形成される面とは反対側の面に第1流路が形成されている。
第1及び第2セパレータ11,12は、例えば、金属製である。具体的には、第1及び第2セパレータ11,12は、Ti、SUS316、又はSUS329などによって構成されている。第1及び第2セパレータ11,12は、Fe2+、Fe3+、Cr3+、Ni2+、又はTi4+などの陽イオンを溶出する金属によって構成されている。
第1セパレータ11と膜電極接合体10との間には、第1シール部材13aが配置されている。第1シール部材13aは、第1セパレータ11と膜電極接合体10との間の密着性を向上させて、酸化剤が外部へ漏出することを防止する。第2セパレータ12と膜電極接合体10との間には、第2シール部材13bが配置されている。第2シール部材13bは、第2セパレータ12と膜電極接合体10との間の密着性を向上させて、燃料が外部へ漏出することを防止する。
第1及び第2シール部材13a、13bは、環状であり、膜電極接合体10の電解質膜4の外周部に当接している。第1及び第2シール部材13a、13bとして、例えば、Oリング、ゴムシートなどを例示することができる。第1シール部材13aは、第1セパレータ11と一体的に構成されていてもよい。第2シール部材13bは、第2セパレータ12と一体的に構成されていてもよい。
(実施形態の変形例)
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
変形例1
上記実施形態では、第1触媒層21からの距離に関して、各第1吸着部23は、隣り合う第1吸着部23と略同じであるが、各第1吸着部23の位置はこれに限定されない。例えば、図4に示すように、第1触媒層21からの距離D1について、各第1吸着部23は、隣り合う第1吸着部23と異なっていてもよい。なお、第1吸着部23と第1触媒層21との距離D1は、特に限定されるものではないが、例えば、5〜30μm程度とすることができる。図5に示すように、各第2吸着部33も同様に、第2触媒層31からの距離について、隣り合う第2吸着部33と異なっていてもよい。この第2吸着部33と第2触媒層31との距離D2も、特に限定されるものではないが、例えば、5〜30μm程度とすることができる。
変形例2
図6に示すように、第1ガス拡散層22は、第1中央部22aと、第1外周部22bとに分けることができる。第1外周部22bは、第1中央部22aを囲むように配置されている。なお、第1外周部22bの幅W1は、第1ガス拡散層22の長辺の長さL1の5%とすることができる。
第1吸着部23は、第1中央部22aの内部のみに配置され、第1外周部22bの内部に配置されていなくてもよい。
また、第1中央部22aにおける第1吸着部23の含有率が、第1外周部22bにおける第1吸着部23の含有率よりも大きくなるように、カソード2は構成されていてもよい。
第1中央部22aにおける第1吸着部23の含有率、及び第1外周部22bにおける第1吸着部23の含有率は、例えば、次のように測定することができる。
まず、図4に示すような切断面を3つ形成する。詳細には、図7に示すように、第1ガス拡散層22の中心Cを通り、第1流路111が延びる方向に沿って切断した第1切断面C1を形成する。また、この第1切断面C1と平行となるように切断した第2切断面C2及び第3切断面C3を形成する。
なお、第1切断面C1と第2切断面C2との距離d1は、第1切断面C1と第3切断面C3との距離d2と同じであり、これらの距離d1及びd2は、第1ガス拡散層22の第1寸法d0の25%とする。ここで、第1ガス拡散層22の第1寸法d0とは、第1ガス拡散層22の中心Cを通り、第1切断面C1と直交する方向に延びる寸法を意味する。なお、図8に示すように、平面視が矩形状でない場合、例えば、円形状のような場合であっても同様の方法で各切断面C1〜C3を形成する。
以上により、図9に示すような切断面C1〜C3が形成される。次に、各切断面C1〜C3における第1ガス拡散層22の第1中央部22a及び一対の第1外周部22bを、第1触媒層21と第1ガス拡散層22との境界を含むようにSEMによって500倍に拡大して撮影する。
詳細には、第1切断面C1における第1ガス拡散層22の第1中央部22aにおいて、中央部と、中央部から距離d3だけ離れた2箇所の合計3視野を撮影する。なお、距離d3は、各切断面における第1ガス拡散層22の第2寸法d4の25%とする。ここで、第1ガス拡散層22の第2寸法d4とは、各切断面における第1ガス拡散層22の長手方向の寸法を意味する。
第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第1ガス拡散層22の第1中央部22aにおいて3視野撮影する。このようにして撮影した第1中央部22aの各撮影視野において、第1吸着部23を構成する元素の元素マッピングを行うことで第1吸着部23の含有率を算出する。そして、各視野の第1吸着部23の含有率の平均値を、第1中央部22aにおける第1吸着部23の含有率とすることができる。
また、第1切断面C1における第1ガス拡散層22の両端部に位置する一対の第1外周部22bにおいて、各第1外周部22bのx軸方向の中央部を撮影する。すなわち、第1切断面C1において、第1外周部22bを2視野分撮影する。第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第1外周部22bを2視野分撮影する。
このようにして撮影した第1外周部22bの各撮影視野において、第1吸着部23を構成する元素の元素マッピングを行うことで第1吸着部23の含有率を算出する。そして、各視野の第1吸着部23の含有率の平均値を、第1外周部22bにおける第1吸着部23の含有率とすることができる。
変形例3
第1中央部22aにおける第1吸着部23と第1触媒層21との距離D1が、第1外周部22bにおける第1吸着部23と第1触媒層21との距離D1よりも大きくなるように、各第1吸着部23を配置することができる。なお、この距離D1は、上記第1吸着部23の含有率を測定する際に撮影した画像を用いて測定することができる。距離D1は、それぞれ測定した値の平均値とすることができる。
変形例4
図10に示すように、第2ガス拡散層32は、第2中央部32aと、第2外周部32bとに分けることができる。第2外周部32bは、第2中央部32aを囲むように配置されている。なお、第2外周部32bの幅W2は、第2ガス拡散層32の長辺の長さL2の5%とすることができる。
第2吸着部33は、第2中央部32aの内部のみに配置され、第2外周部32bの内部に配置されていなくてもよい。
また、第2中央部32aにおける第2吸着部33の含有率が、第2外周部32bにおける第2吸着部33の含有率よりも大きくなるように、カソード2は構成されていてもよい。
第2中央部32aにおける第2吸着部33の含有率、及び第2外周部32bにおける第2吸着部33の含有率は、例えば、次のように測定することができる。
まず、図5に示すような切断面を3つ形成する。この3つの切断面は、例えば、第1中央部22aにおける第1吸着部23の含有率、及び第1外周部22bにおける第1吸着部23の含有率を測定するために作成した切断面C1〜C3と同じである。
次に、各切断面C1〜C3における第2ガス拡散層32の第2中央部32a及び一対の第2外周部32bを、第2触媒層31と第2ガス拡散層32との境界を含むようにSEMによって500倍に拡大して撮影する。
詳細には、図9に示すように、第1切断面C1における第2ガス拡散層32の第2中央部32aにおいて、中央部と、中央部から距離d5だけ離れた2箇所の合計3視野を撮影する。なお、距離d5は、各切断面における第2ガス拡散層32の寸法d6の25%とする。ここで、第2ガス拡散層32の寸法d6とは、各切断面における第2ガス拡散層32の長手方向の寸法を意味する。
第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第2ガス拡散層32の第2中央部32aにおいて3視野撮影する。このようにして撮影した第2中央部32aの各撮影視野において、第2吸着部33を構成する元素の元素マッピングを行うことで第2吸着部33の含有率を算出する。そして、各視野の第2吸着部33の含有率の平均値を、第2中央部32aにおける第2吸着部33の含有率とすることができる。
また、第1切断面C1における第2ガス拡散層32の両端部に位置する一対の第2外周部32bにおいて、各第2外周部32bのx軸方向の中央部を撮影する。すなわち、第1切断面C1において、第2外周部32bを2視野分撮影する。第2切断面C2及び第3切断面C3でも、第1切断面C1と同様に、第2外周部32bを2視野分撮影する。
このようにして撮影した第2外周部32bの各撮影視野において、第2吸着部33を構成する元素の元素マッピングを行うことで第2吸着部33の含有率を算出する。そして、各視野の第2吸着部33の含有率の平均値を、第2外周部32bにおける第2吸着部33の含有率とすることができる。
変形例5
第2中央部32aにおける第2吸着部33と第2触媒層31との距離D2が、第2外周部32bにおける第2吸着部33と第2触媒層31との距離D2よりも大きくなるように、各第2吸着部33を配置することができる。なお、この距離D2は、上記第2吸着部33の含有率を測定する際に撮影した画像を用いて測定することができる。距離D2は、それぞれ測定した値の平均値とすることができる。
変形例6
上記実施形態では、アノード3は、複数の第2吸着部33を有しているが、この構成に限定されない。例えば、アノード3は、第2吸着部33を有していなくてもよい。
変形例7
上記実施形態では、カソード2が本発明の第1触媒層及び第1ガス拡散層の一例である第1触媒層21及び第1ガス拡散層22を有しているがこれに限定されない。例えば、アノード3が本発明の第1触媒層及び第1ガス拡散層の一例である第1触媒層21及び第1ガス拡散層22を有していてもよい。
変形例8
電解質膜4は、イオン伝導体に加えて、層状複水酸化物(LDH:Layered Double Hydroxide)をさらに含んでいてもよい。
LDHは、M2+ 1−x3+ (OH)n−x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An−はn価の陰イオン、nは1以上の整数、xは0.1〜0.4、mは水のモル数を意味する任意の整数である)の一般式で示される基本組成を有する。M2+の例としてはMg2+、Ca2+、Sr2+、Ni2+、Co2+、Fe2+、Mn2+、及びZn2+が挙げられ、M3+の例としては、Al3+、Fe3+、Ti3+、Y3+、Ce3+、Mo3+、及びCr3+が挙げられ、An−の例としてはCO 2−及びOHが挙げられる。M2+及びM3+としては、それぞれ1種単独で又は2種以上を組み合わせて用いることもできる。
LDHは、複数の水酸化物基本層と、これら複数の水酸化物基本層間に介在する中間層とから構成される。中間層は、陰イオン及びHOで構成される。水酸化物基本層は、例えば金属MがNi、Al、Tiの場合には、Ni、Al、Ti及びOH基を含む。以下、LDHの水酸化物基本層がNi、Al、Ti及びOH基を含む場合について説明する。
LDH中のNiはニッケルイオンの形態を採りうる。LDH中のニッケルイオンは典型的にはNi2+であると考えられるが、Ni3+等の他の価数もありうるため、特に限定されない。LDH中のAlはアルミニウムイオンの形態を採りうる。LDH中のアルミニウムイオンは典型的にはAl3+であると考えられるが、他の価数もありうるため、特に限定されない。LDH中のTiはチタンイオンの形態を採りうる。LDH中のチタンイオンは典型的にはTi4+であると考えられるが、Ti3+等の他の価数もありうるため、特に限定されない。水酸化物基本層は、Ni、Al、Ti及びOH基を主要構成要素として含むのが好ましいが、他の元素ないしイオンを含んでいてもよいし、不可避不純物を含んでいてもよい。不可避不純物は、製法上不可避的に混入されうる任意元素であり、例えば原料や基材に由来してLDH中に混入しうる。
LDHの中間層は、陰イオン及びHOで構成される。陰イオンは1価以上の陰イオン、好ましくは1価又は2価のイオンである。好ましくは、LDH中の陰イオンはOH及び/又はCO 2−を含む。
上記のとおり、Ni、Al及びTiの価数は必ずしも定かではないため、LDHを一般式で厳密に特定することは非実際的又は不可能である。仮に水酸化物基本層が主としてNi2+、Al3+、Ti4+及びOH基で構成されるものと想定した場合、LDHは、一般式:Ni2+ 1−x−yAl3+ Ti4+ (OH)n− (x+2y)/n・mHO(式中、An−はn価の陰イオン、nは1以上の整数、好ましくは1又は2であり、0<x<1、好ましくは0.01≦x≦0.5、0<y<1、好ましくは0.01≦y≦0.5、0<x+y<1、mは0以上、典型的には0を超える又は1以上の実数である)なる基本組成で表すことができる。もっとも、上記一般式はあくまで「基本組成」と解されるべきであり、Ni2+、Al3+、Ti4+等の元素がLDHの基本的特性を損なわない程度に他の元素又はイオン(同じ元素の他の価数の元素又はイオンや製法上不可避的に混入されうる元素又はイオンを含む)で置き換え可能なものとして解されるべきである。
このように電解質膜4がLDHを含む場合、イオン伝導体はLDHどうしを結着する。また、イオン伝導体は、電解質膜4とカソード2及びアノード3それぞれとの密着性を向上させる役割も果たす。
変形例9
第1吸着部23は、酸素還元反応に対する触媒活性を有していてもよい。詳細には、第1吸着部23は、吸着材と触媒とを含んでいる。第1吸着部23に含まれる吸着材は、上述した陽イオン交換能を有する。一方、第1吸着部23に含まれる触媒は、酸素還元反応に対する触媒活性を有する。なお、第1吸着部23に含まれる触媒の材料は、例えば、第1触媒層21の触媒として説明した材料のいずれかとすることができる。好ましくは、第1吸着部23の触媒の材料は、第1触媒層21の触媒の材料と同じである。また、第1吸着部23の触媒は、第1触媒層21の触媒と同様に、カーボンなどの担体に担持されていることが好ましい。なお、第2吸着部33も、上記第1吸着部23と同様に、酸素還元反応に対する触媒活性を有していてもよい。
変形例10
上記実施形態では、本発明に係る燃料電池を固体アルカリ形燃料電池に適用した実施形態を説明したが、本発明に係る燃料電池が適用される対象は固体アルカリ形燃料電池に限定されず、例えば、プロトン伝導膜を用いた固体高分子形燃料電池などの他の燃料電池にも適用することができる。
4 電解質膜
10 膜電極接合体
21 第1触媒層
22 第1ガス拡散層
23 第1吸着部
31 第2触媒層
32 第2ガス拡散層
33 第2吸着部

Claims (16)

  1. 電解質膜と、
    前記電解質膜上に配置される第1触媒層と、
    前記第1触媒層上に配置される第1ガス拡散層と、
    陽イオン交換能を有し、前記第1ガス拡散層の内部に配置される少なくとも一つの第1吸着部と、
    を備え
    前記第1ガス拡散層は、第1中央部と、前記第1中央部を囲む第1外周部と、を有し、
    前記第1中央部における前記第1吸着部と前記第1触媒層との距離は、前記第1外周部における前記第1吸着部と前記第1触媒層との距離よりも大きい、
    膜電極接合体。
  2. 前記第1吸着部は、多価の陽イオンに対してイオン交換能を有する、
    請求項1に記載の膜電極接合体。
  3. 複数の前記第1吸着部を備え、
    前記複数の第1吸着部は、互いに間隔をあけて配置される、
    請求項1又は2に記載の膜電極接合体。
  4. 前記第1吸着部は、前記第1触媒層と間隔をあけて配置される、
    請求項1から3のいずれかに記載の膜電極接合体。
  5. 前記第1吸着部は、前記第1中央部の内部に配置され、前記第1外周部の内部に配置されていない、
    請求項1から4のいずれかに記載の膜電極接合体。
  6. 前記第1中央部における前記第1吸着部の含有率は、前記第1外周部における前記第1吸着部の含有率よりも大きい、
    請求項1から4のいずれかに記載の膜電極接合体。
  7. 前記第1触媒層と反対側において前記電解質膜上に配置される第2触媒層と、
    前記第2触媒層上に配置される第2ガス拡散層と、
    をさらに備える、請求項1からのいずれかに記載の膜電極接合体。
  8. 陽イオン交換能を有し、前記第2ガス拡散層の内部に配置される少なくとも一つの第2吸着部、
    をさらに備える、請求項に記載の膜電極接合体。
  9. 前記第2吸着部は、多価の陽イオンに対してイオン交換能を有する、
    請求項に記載の膜電極接合体。
  10. 複数の前記第2吸着部を備え、
    前記複数の第2吸着部は、互いに間隔をあけて配置される、
    請求項8又は9に記載の膜電極接合体。
  11. 前記第2吸着部は、前記第2触媒層と間隔をあけて配置される、
    請求項8から10のいずれかに記載の膜電極接合体。
  12. 前記第2ガス拡散層は、第2中央部と、前記第2中央部を囲む第2外周部と、を有する、
    請求項8から11のいずれかに記載の膜電極接合体。
  13. 前記第2吸着部は、前記第2中央部の内部に配置され、前記第2外周部の内部に配置されていない、
    請求項12に記載の膜電極接合体。
  14. 前記第2中央部における前記第2吸着部の含有率は、前記第2外周部における前記第2吸着部の含有率よりも大きい、
    請求項12に記載の膜電極接合体。
  15. 前記第2中央部における前記第2吸着部と前記第2触媒層との距離は、前記第2外周部における前記第2吸着部と前記第2触媒層との距離よりも大きい、
    請求項12から14のいずれかに記載の膜電極接合体。
  16. 電解質膜と、
    前記電解質膜上に配置される第1触媒層と、
    前記第1触媒層上に配置される第1ガス拡散層と、
    陽イオン交換能を有し、前記第1ガス拡散層の内部に配置される少なくとも一つの第1吸着部と、
    前記第1触媒層と反対側において前記電解質膜上に配置される第2触媒層と、
    前記第2触媒層上に配置される第2ガス拡散層と、
    陽イオン交換能を有し、前記第2ガス拡散層の内部に配置される少なくとも一つの第2吸着部と、
    を備え、
    前記第2ガス拡散層は、第2中央部と、前記第2中央部を囲む第2外周部と、を有し、
    前記第2中央部における前記第2吸着部と前記第2触媒層との距離は、前記第2外周部における前記第2吸着部と前記第2触媒層との距離よりも大きい、
    膜電極接合体。

JP2021050433A 2020-03-30 2021-03-24 膜電極接合体 Active JP6963706B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060434 2020-03-30
JP2020060434 2020-03-30

Publications (2)

Publication Number Publication Date
JP2021163750A JP2021163750A (ja) 2021-10-11
JP6963706B2 true JP6963706B2 (ja) 2021-11-10

Family

ID=78005058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021050433A Active JP6963706B2 (ja) 2020-03-30 2021-03-24 膜電極接合体

Country Status (1)

Country Link
JP (1) JP6963706B2 (ja)

Also Published As

Publication number Publication date
JP2021163750A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
EP2193568B1 (en) Redox fuel cell
JP4979179B2 (ja) 固体高分子型燃料電池およびその製造方法
JP5287969B2 (ja) 固体高分子電解質膜及び固体高分子形燃料電池用膜電極接合体
US9991522B2 (en) Catalyst particles for fuel cells and method for producing same
WO2014002756A1 (ja) イオン伝導体およびこれを用いた電気化学デバイス
KR20170109085A (ko) 연료 전지
US10686196B2 (en) Catalyst particles, and electrode catalyst, electrolyte membrane-electrode assembly, and fuel cell using catalyst particles
JP4972867B2 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2006099999A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
US20150340703A1 (en) Electrode material, membrane-electrode assembly, fuel cell stack, and method for manufacturing electrode material
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
WO2021226119A1 (en) An anion exchange membrane electrolyzer having a platinum-group-metal free self-supported oxygen evolution electrode
JP6963706B2 (ja) 膜電極接合体
Vedarajan et al. Anion exchange membrane fuel cell: New insights and advancements
JP6963648B2 (ja) 電気化学セル用触媒層の製造方法、及び触媒層
JP4682629B2 (ja) 固体高分子型燃料電池用電解質膜、および固体高分子型燃料電池用膜・電極接合体
JP6941202B1 (ja) 膜電極接合体、及び電気化学セル
JP6963705B2 (ja) 膜電極接合体
JP6963704B2 (ja) 膜電極接合体
JP7041316B1 (ja) 燃料電池用電解質膜、及び燃料電池
US20230268531A1 (en) High-temperature anion-exchange membrane fuel cell
JP7195950B2 (ja) アニオン交換膜およびその製造方法
JP7041315B1 (ja) 電気化学セル用電解質、及び電気化学セル
Jiang et al. Alkaline Fuel Cells
US20230126907A1 (en) Biopolar membrane cell for the capture of carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210325

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211015

R150 Certificate of patent or registration of utility model

Ref document number: 6963706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150