JP6947014B2 - 二次電池システムおよび二次電池の制御方法 - Google Patents

二次電池システムおよび二次電池の制御方法 Download PDF

Info

Publication number
JP6947014B2
JP6947014B2 JP2017248168A JP2017248168A JP6947014B2 JP 6947014 B2 JP6947014 B2 JP 6947014B2 JP 2017248168 A JP2017248168 A JP 2017248168A JP 2017248168 A JP2017248168 A JP 2017248168A JP 6947014 B2 JP6947014 B2 JP 6947014B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
potential
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248168A
Other languages
English (en)
Other versions
JP2019114475A (ja
Inventor
基行 鬼木
基行 鬼木
隆史 小椋
隆史 小椋
里紗 新子
里紗 新子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017248168A priority Critical patent/JP6947014B2/ja
Priority to US16/228,984 priority patent/US11196103B2/en
Priority to CN201811580539.3A priority patent/CN109962308B/zh
Publication of JP2019114475A publication Critical patent/JP2019114475A/ja
Application granted granted Critical
Publication of JP6947014B2 publication Critical patent/JP6947014B2/ja
Priority to US17/524,371 priority patent/US20220069370A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本開示は、二次電池システムおよび二次電池の制御方法に関し、より特定的には、リチウムイオン二次電池の負極へのリチウムの析出状態を推定するための技術に関する。
近年、ハイブリッド車および電気自動車などの電動車両の開発が進められている。これら電動車両に搭載される二次電池システムの中には、リチウムイオン二次電池が採用されたものが多く存在する。一般に、リチウムイオン二次電池は、他の二次電池と比べて、エネルギー密度が高いことから小型化が可能であり、かつ、平均動作電圧が高いことから高電圧の生成に適するためである。
リチウムイオン二次電池では、その充電態様によっては負極表面に金属リチウム(Li)が析出する可能性があることが知られている。この現象を以下、「リチウム析出」とも称する。リチウム析出は、たとえば、リチウムイオン二次電池のハイレート(高充電速度)での充電、高SOC(State Of Charge)状態での充電、長時間に亘る継続的な充電などが行なわれた場合に、負極電位が基準電位(金属リチウムの電位)を下回ることで起こる。リチウム析出が起こると、リチウムイオン二次電池の性能低下を招く虞がある。
そこで、リチウム析出を抑制するために、活物質(特に負極活物質)の内部におけるリチウム濃度分布を推定し、その推定結果に基づいて負極電位を算出する技術が提案されている。たとえば特開2014−032826号公報(特許文献1)に開示された技術では、活物質モデルに基礎方程式(拡散方程式、電荷保存則を示す式など)を適用することで、活物質内部でのリチウム拡散現象を考慮してリチウム濃度分布が推定される(たとえば特許文献1の図9および図10を参照)。
特開2014−032826号公報 特開2012−244888号公報
負極活物質の表面電位と、リチウムイオンが負極活物質の表面から負極活物質に挿入される際の反応抵抗による電圧降下量とを考慮することで、負極電位を算出することも考えられる(詳細は後述)。しかしながら、本発明者らによる検討の結果、上記2つの電圧成分を考慮するだけでは、リチウムイオン二次電池の充電履歴によっては負極電位の算出精度が低くなる場合があることが判明した。そうすると、リチウムイオン二次電池の負極へのリチウムの析出状態を正確に推定することができない可能性がある。
本開示は上記課題を解決するためになされたものであって、その目的は、リチウムイオン二次電池の負極へのリチウムの析出状態を正確に推定することである。
(1)本開示のある局面に従う二次電池システムは、リチウムイオンが挿入および脱離される負極活物質を含む負極を有する二次電池と、基準電位に対する負極の電位を示す負極電位を算出する制御装置とを備える。制御装置は、負極活物質の内部におけるリチウム濃度分布を算出するための電池モデルに従って、二次電池への充電電流値から求められる負極活物質へのリチウムイオンの挿入量と、負極活物質の内部におけるリチウムイオンの拡散係数とを用いて、基準電位に対する負極活物質の表面電位を算出する。制御装置は、二次電池への充電電流および二次電池の反応抵抗を用いて、二次電池の充電に伴う電圧降下量を算出し、表面電位から電圧降下量を減算することで負極電位を算出する。制御装置は、二次電池のSOC、二次電池の充電期間における平均電流値、および、充電期間における積算電流値によって負極電位を補正する。
(2)好ましくは、制御装置は、二次電池のSOC、平均電流値および積算電流値から、負極におけるリチウムの析出を促進する析出過電圧を算出し、電圧降下量を減算後の表面電位から析出過電圧をさらに減算することで負極電位を補正する。析出過電圧は、負極活物質の外部におけるリチウム濃度分布の偏りに起因して負極活物質の外部から負極活物質の表面に印加される電圧である。
(3)好ましくは、制御装置は、平均電流値が大きいほど大きく(高く)、かつ、積算電流値が大きいほど大きく(高く)なるように析出過電圧を算出する。
上記(1)〜(3)の構成によれば、二次電池の充電期間中における平均電流値および積算電流値に基づいて負極電位が補正される。この補正により、析出過電圧(負極活物質の外部におけるリチウム濃度分布の偏り、より詳細には、電極体の厚み方向におけるリチウム濃度分布の偏りに起因して負極活物質の表面に印加される電圧)を負極電位に反映させることができる。したがって、負極電位の算出精度が向上するので、負極へのリチウムの析出状態を正確に推定することができる。
(4)好ましくは、制御装置は、負極へのリチウムの析出反応および負極からのリチウムの溶解反応の平衡電位を用いて反応過電圧を算出する。反応過電圧が所定値を上回る場合には、制御装置は、二次電池のSOC、平均電流値および積算電流値から、負極におけるリチウムの溶解を促進する溶解過電圧を算出し、電圧降下量を減算後の表面電位に溶解過電圧を加算することで負極電位を補正する。
上記(4)の構成によれば、負極へのリチウム析出に加えて、負極からのリチウム溶解も考慮して、負極電位が補正される。このようにリチウムの析出および溶解の両方を考慮することで、負極電位の算出精度を一層向上させることができる。よって、負極へのリチウムの析出状態を、より正確に推定することが可能になる。
(5)本開示の他の局面に従う二次電池の制御方法は、リチウムイオンが挿入および脱離される負極活物質を含む負極を有する二次電池の負極電位を算出し、当該負極電位の算出結果に従って当該負極を保護するための保護制御を実行する。二次電池の制御方法は、第1〜第4のステップを含む。第1のステップは、負極活物質の内部におけるリチウム濃度分布を算出するための電池モデルに従って、二次電池への充電電流値から求められる負極活物質へのリチウムイオンの挿入量と、負極活物質の内部におけるリチウムイオンの拡散係数とを用いて、負極活物質の表面電位を算出するステップである。第2のステップは、二次電池への充電電流および二次電池の反応抵抗を用いて、二次電池の充電に伴う電圧降下量を算出するステップである。第3のステップは、表面電位から電圧降下量を減算することで負極電位を算出するステップである。第4のステップは、二次電池のSOC、二次電池の充電期間における平均電流値、および、充電期間における積算電流値によって負極電位を補正するステップである。第5のステップは、補正後の負極電位が基準電位を下回った場合に保護制御を実行するステップである。
上記(5)の方法によれば、上記(1)の構成と同様に、二次電池の負極へのリチウムの析出状態を正確に推定することができる。
本開示によれば、リチウムイオン二次電池の負極へのリチウムの析出状態を正確に推定することができる。
実施の形態1に係る二次電池システムが搭載された車両の全体構成を概略的に示す図である。 各セルの構成の一例を示す図である。 バッテリの充電時における正極電位および負極電位の時間変化の一例を示す図である。 比較例における電池モデルの概念図である。 本実施の形態における電池モデルの概念図である。 本実施の形態における負極活物質モデルを説明するための図である。 実施の形態1における充電電流抑制制御を示すフローチャートである。 最表面リチウム数の算出手法(図7のS104の処理)をより詳細に説明するための図である。 表面電位を算出するためのマップの一例を示す図である。 補正マップMP1の一例を示す図である。 実施の形態2における充電電流抑制制御を示すフローチャートである。 補正マップMP2の一例を示す図である。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
以下では、本開示に係る二次電池システムが電動車両に搭載された構成を例に説明する。電動車両とは、代表的にはハイブリッド車両(プラグインハイブリッド車を含む)であるが、これに限定されるものではない。本開示に係る二次電池システムは、二次電池システムから供給される電力を用いて動力を発生させる車両全般に適用可能である。そのため、電動車両は、電気自動車または燃料電池車であってもよい。また、本開示に係る二次電池システムの用途は車両用に限定されず、たとえば定置用であってもよい。
[実施の形態1]
<二次電池システムの構成>
図1は、実施の形態1に係る二次電池システムが搭載された車両の全体構成を概略的に示す図である。図1を参照して、車両1は、ハイブリッド車両である。車両1は、二次電池システム2と、パワーコントロールユニット(PCU:Power Control Unit)30と、モータジェネレータ41,42と、エンジン50と、動力分割装置60と、駆動軸70と、駆動輪80とを備える。二次電池システム2は、バッテリ10と、監視ユニット20と、電子制御装置(ECU:Electronic Control Unit)100とを備える。
エンジン50は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギーをピストンおよびロータなどの運動子の運動エネルギーに変換することによって動力を出力する内燃機関である。
動力分割装置60は、たとえば、サンギヤ、キャリア、リングギヤの3つの回転軸を有する遊星歯車機構(図示せず)を含む。動力分割装置60は、エンジン50から出力される動力を、モータジェネレータ41を駆動する動力と、駆動輪80を駆動する動力とに分割する。
モータジェネレータ41,42の各々は、交流回転電機であり、たとえば、ロータに永久磁石(図示せず)が埋設された三相交流同期電動機である。モータジェネレータ41は、主として、動力分割装置60を経由してエンジン50により駆動される発電機として用いられる。モータジェネレータ41が発電した電力は、PCU30を介してモータジェネレータ42またはバッテリ10に供給される。
モータジェネレータ42は、主として電動機として動作し、駆動輪80を駆動する。モータジェネレータ42は、バッテリ10からの電力およびモータジェネレータ41の発電電力の少なくとも一方を受けて駆動され、モータジェネレータ42の駆動力は駆動軸70に伝達される。一方、車両の制動時や下り斜面での加速度低減時には、モータジェネレータ42は、発電機として動作して回生発電を行なう。モータジェネレータ42が発電した電力は、PCU30を介してバッテリ10に供給される。
バッテリ10は、複数のセル10Aを含んで構成される。バッテリ10は、モータジェネレータ41,42を駆動するための電力を蓄え、PCU50を通じてモータジェネレータ41,42へ電力を供給する。また、バッテリ10は、モータジェネレータ41,42の発電時にPCU30を通じて発電電力を受けて充電される。
監視ユニット20は、電圧センサ21と、電流センサ22と、温度センサ23とを含む。電圧センサ21は、たとえば、互いに並列接続された複数のセル10Aからなるブロック(モジュール)毎の電圧VBを検出する。電流センサ22は、バッテリ10に入出力される電流IBを検出する。温度センサ23は、ブロック毎の温度TBを検出する。各センサは、その検出結果を示す信号をECU100に出力する。
なお、電圧センサ21および温度センサ23の監視単位はブロックに限定されず、セル10A毎であってもよいし、隣接する複数(ブロック内のセル数未満の数)のセル10A毎であってもよい。本実施の形態では、バッテリ10の内部構成は特に影響せず、複数のセル10Aを互いに区別したり複数のブロックを互いに区別したりしなくてよい。よって、以下では監視単位をバッテリ10とし、「バッテリ10の電圧VBを検出する」などと包括的に記載する。
PCU30は、ECU100からの制御信号に従って、バッテリ10とモータジェネレータ41,42との間で双方向の電力変換を実行する。PCU30は、モータジェネレータ41,42の状態を別々に制御可能に構成されており、たとえば、モータジェネレータ41を回生状態(発電状態)にしつつ、モータジェネレータ42を力行状態にすることができる。PCU30は、たとえば、モータジェネレータ41,42に対応して設けられる2つのインバータと、各インバータに供給される直流電圧をバッテリ10の出力電圧以上に昇圧するコンバータ(いずれも図示せず)とを含んで構成される。
ECU100は、CPU(Central Processing Unit)101と、メモリ(ROM(Read Only Memory)およびRAM(Random Access Memory))102と、各種信号を入出力するための入出力ポート(図示せず)とを含んで構成される。ECU100は、各センサから受ける信号ならびにメモリ102に記憶されたプログラムおよびマップに基づいて、エンジン50およびPCU30を制御することによってバッテリ10の充放電を制御する。ECU100により実行される主要な処理・制御として、バッテリ10の保護を目的に、バッテリ10の負極電位V2を算出する「負極電位算出処理」と、バッテリ10への充電電流を抑制する「充電電流抑制制御」とが挙げられる。負極電位算出処理および充電電流抑制制御については後に詳細に説明する。
図2は、各セル10Aの構成の一例を示す図である。図2を参照して、各セル10Aは、リチウムイオン二次電池である。セル10Aのケース上面は蓋体11によって封止されている。蓋体11には、正極端子12および負極端子13が設けられている。正極端子12および負極端子13の各々の一方端は、蓋体11から外部に突出している。正極端子12および負極端子13の各々の他方端は、ケース111内部において、内部正極端子および内部負極端子(いずれも図示せず)にそれぞれ電気的に接続されている。
ケース111内部には電極体14が収容されている(図2ではケース111を透視して破線で示す)。電極体14は、たとえば、セパレータ17を介して積層された正極(正極シート)15と負極(負極シート)16とが筒状に捲回されることにより形成されている。正極15は、集電箔151(図4参照)と、集電箔151の表面に形成された正極活物質層(正極活物質、導電材およびバインダを含む層)とを含む。同様に、負極16は、集電箔161と、集電箔161の表面に形成された負極活物質層(負極活物質、導電材およびバインダを含む層)とを含む。セパレータ17は、正極活物質層および負極活物質層の両方に接するように設けられている。電極体14(正極活物質層、負極活物質層およびセパレータ17)は、電解液により含浸されている。
正極15、負極16、セパレータ17および電解液の材料としては、従来公知の各種材料を用いることができる。一例として、正極15には、コバルト酸リチウムまたはマンガン酸リチウムが用いられる。正極15の集電箔151にはアルミニウムが用いられる。負極16にはカーボン(グラファイト)が用いられる。負極の集電箔161には銅が用いられる。セパレータ17にはポリオレフィンが用いられる。電解液は、有機溶媒と、リチウムイオンと、添加剤とを含む。
なお、電極体14を捲回体にすることは必須ではなく、電極体14は捲回されていない積層体であってもよい。また、本実施の形態では、セル10Aが一般的なリチウムイオン二次電池(いわゆる液系の電池)である例について説明するが、本開示における「リチウムイオン二次電池」には、電解質として高分子ゲルが用いられるリチウムポリマー電池も含まれ得る。
<負極表面への金属リチウムの析出>
以上のように構成された二次電池システム2においては、バッテリ10の充電に伴い電圧VBが増加する。このとき、正極電位V1および負極電位V2の変化が起こっている。
図3は、バッテリ10の充電時における正極電位V1および負極電位V2の時間変化の一例を示す図である。図3において、横軸は、バッテリ10への充電開始時からの経過時間を示す。縦軸は、負極16内の反応物質である金属リチウムの電位(リチウム基準電位)に対する電位を示す。
図3を参照して、正極電位V1は、リチウム基準電位に対する正極15の電位である。負極電位V2は、リチウム基準電位に対する負極16の電位である。バッテリ10の電圧VBは、正極電位V1と負極電位V2との電位差(V1−V2)である。バッテリ10の継続的な充電により、正極電位V1が上昇する一方で負極電位V2が低下することで電圧VBが大きくなる。
一般に、負極活物質の電位が反応物質の電位を下回ると、その反応物質の析出が起こる。つまり、バッテリ10においては、負極電位V2がリチウム基準電位(=0V)以下となると、金属リチウムが負極表面に析出する。したがって、バッテリ10の充電時には、たとえば充電電流を抑制することで負極電位V2の低下を抑え、負極電位V2をリチウム基準電位よりも高い状態に維持する(後述の充電電流抑制制御)。これにより、負極表面へのリチウム析出が防止される。
なお、逆に、負極活物質の電位が反応物質の電位を上回る場合には、その反応物質の溶解が起こる。つまり、負極電位V2がリチウム基準電位よりも高いと、負極表面に析出した金属リチウムが電解液中に溶解する。このような金属リチウムの溶解については、実施の形態2にて説明する。
<1次元の電池モデル>
負極電位V2を算出するためには、バッテリ10を簡略化した電池モデルを構築することが求められる。本実施の形態において採用される電池モデルの理解を容易にするため、以下では、比較例における電池モデルについて、まず簡単に説明する。なお、リチウムイオンおよび金属リチウムを包括的に「リチウム」とも記載する。
図4は、比較例における電池モデルの概念図である。図4を参照して、比較例における電池モデルでは、正極15は、多数の正極活物質18の集合体により構成される。同様に、負極16は、多数の負極活物質19の集合体により構成される。ただし、図4では、紙面の都合上、正極活物質18および負極活物質19が1つずつ示されている。
図4において横方向に延在する座標xは、電極体14の厚み方向、すなわち正極15と負極16とがセパレータ17を介して重ね合わされた方向における位置を示す。このように比較例では、電極体14の厚み方向の位置xをパラメータとして含む一方で、電極体14の面内方向の位置は特に考慮しない1次元モデルが採用される。この1次元モデルにおいて、様々な基礎方程式を連立させて解くことによって負極電位V2を算出することができる。なお、これらの基礎方程式については、たとえば特許文献1の式(1)〜式(14)に示されているため、詳細な説明は繰り返さない。
<0次元の電池モデル>
車載用ECUであるECU100の演算資源(演算能力)には、典型的な研究開発用コンピュータ(たとえばシミュレーション用コンピュータ)と比べて制約がある。したがって、本実施の形態では、ECU100の演算負荷を低減して演算時間を短縮するために、より単純化された0次元の電池モデルが採用される。
図5は、本実施の形態における電池モデルの概念図である。図5を参照して、本実施の形態においては、図5に示すように、正極活物質18および負極活物質19が1粒子ずつだけ存在するものと想定する0次元の電池モデルが採用される。より詳細に説明すると、正極15には多数の正極活物質18が含まれるところ、各正極活物質18における電気化学反応が均一であるとの仮定の下に、多数の正極活物質18を単一の正極活物質18で代表させる。同様に、負極16に含まれる多数の負極活物質19を単一の負極活物質19で代表させる。
このように単純化された電池モデルを採用した上で負極電位V2が算出される。ここで、負極活物質モデルについて、より詳細に説明する。
図6は、本実施の形態における負極活物質モデルを説明するための図である。図6を参照して、負極活物質19は、仮想的に半径方向rにN分割される。以下では、N=5である例について説明する。ただし、Nは、2以上であれば特に限定されるものではない。分割された5つの層を、負極活物質19の中心Oから外周に向かってL〜Lと記載する。負極活物質19の半径方向rの距離は、負極活物質19の中心Oで0であり、負極活物質19の外表面(最表面)でDoutである。なお、層L(n=1〜5)の厚みは、図6に示すように互いに異なってもよいが、等しくてもよい。
本実施の形態では、リチウム析出が起こる負極活物質19のた外表面の領域A(斜線で示す)における負極電位V2が算出される。リチウム析出領域Aにおける負極電位V2の算出では、以下の2つの電圧成分を考慮することが考えられる。
第1の電圧成分とは、各層L1〜L5内のリチウム濃度(リチウム濃度分布)に応じて定まる電位を示す「表面電位U2」である。詳細は後述するが、表面電位U2は、負極活物質19の内部におけるリチウムの拡散を考慮して算出される。第2の電圧成分とは、リチウムが負極活物質19の外表面から出入り(充電時には入力)する際の「反応抵抗による電圧降下量ΔV」である。なお、反応抵抗とは、電解液と負極活物質19の外表面との界面における電荷の授受(電荷移動)に関連するインピーダンス成分を意味する。
本発明者らによる検討の結果、本実施の形態のように0次元の電池モデルが採用された負極電位算出処理では、上記2つの電圧成分を考慮するだけでは、バッテリ10の充電履歴によっては負極電位V2の算出精度が低くなる場合があることが判明した。より詳細には、バッテリ10が比較的大電流で充電された場合に負極電位V2の算出精度の低下が顕著になりやすい。
これは、0次元の電池モデルでは、比較例のような1次元の電池モデル(図4参照)と異なり、電極体14の厚み方向xにおけるリチウム濃度分布(すなわち、電解液中など正極活物質18および負極活物質19の外部におけるリチウム濃度分布)が考慮されていないことに起因するものと考えられる。バッテリ10の充電に伴うリチウムの偏りは活物質外部においても生じ得るが、大電流での充電時には、リチウムが偏る速度(リチウム濃度分布の偏りの増加速度)の方がリチウムの拡散速度(偏りの緩和速度)と比べて相対的に早い。そのため、リチウムの拡散が追い付かなくなり、その結果、リチウム濃度分布の偏りに起因する電圧が負極活物質19の外表面に印加されることとなる。この電圧成分により負極表面(リチウム析出領域A)へのリチウム析出が促進されるため、この電圧成分を「析出過電圧ηp」とも記載する。
そこで、本実施の形態においては、バッテリ10の充電履歴に応じた析出過電圧ηpを考慮に入れて負極電位V2を算出する。より具体的には、バッテリ10の充電時におけるバッテリ10の平均電流IBaveと積算電流ΣIBとを用いて、前述の2つの電圧成分から算出される負極電位V2が補正される。この補正により、以下に説明するように、0次元モデルの利点である演算時間の短縮を可能にしつつ、負極電位V2の算出精度を向上させることができる。
<充電電流抑制制御フロー>
図7は、実施の形態1における充電電流抑制制御を示すフローチャートである。図7および後述する図10に示すフローチャートは、たとえば、バッテリ10の充電時において、所定の演算周期(たとえば約100ミリ秒)が経過する毎に実行される。これらのフローチャート内の各ステップ(以下、Sと略す)は、基本的にはECU100によるソフトウェア処理によって実現されるが、ECU100内に作製された電子回路によるハードウェア処理によって実現されてもよい。
以下では、バッテリ10の充電開始を起点とする期間を「充電期間」と称する。充電期間とは、充放電が休止されていたバッテリ10の充電が開始された場合には、休止終了時(=充電開始時)からの期間を意味する。また、充電期間とは、たとえば車両1の走行に伴いバッテリ10の充放電方向が切り替わった場合には、放電から充電への切り替え時からの期間を意味する。ECU100は、図示しない別フローにおいて、充電期間中の電流IBの平均値を示す平均電流IBaveと、充電期間中の電流IBの積算値を示す積算電流ΣIBとを算出しているものとする。
図7を参照して、S101において、ECU100は、監視ユニット20内の各センサの検出結果を取得する。具体的には、ECU100は、電圧センサ21により検出されるバッテリ10の電圧VBを取得する。ECU100は、電流センサ22により検出される、バッテリ10に入出力される電流IBを取得する。ECU100は、温度センサ23により検出されるバッテリ10の温度TBを取得する。
S102において、ECU100は、S101にて取得された電流IBから、負極活物質19(より詳細には、負極活物質19の最表面の層L5)に入力されるリチウム数を算出する。具体的に説明すると、電極体14における正極15および負極16の極板面積により電流IB(単位:A=C/s)を除算することによって、電流密度(単位:C/(m・s))が算出される。この電流密度に演算周期(単位:s)と流入係数(単位:m)とを乗算することにより、負極活物質19に入出力された電荷量(単位:C)が分かる。各リチウムイオンの電荷量は既知であるため、負極活物質19に入出力された電荷量をリチウムイオンの電荷量により除算することで、負極活物質19に入出力されるリチウム数を求めることができる。
S103において、ECU100は、層L(n=1〜5)のうちの隣接する層間でのリチウム拡散を考慮して、層L〜Lにそれぞれ含まれるリチウム数N〜Nを算出する。具体的には以下のような算出手法を用いることができる。すなわち、m(mは自然数)番目の演算周期における層L内のリチウム数をN(m)と記載する。そうすると、層L内のリチウム数N(m)は、下記式(1)のように表される。
(m+1)=N(m)+N in(m)−N out(m) ・・・(1)
式(1)では、隣接する他の層から層Lへのリチウム流入数をN in(m)と記載し、層Lから隣接する層へのリチウム流出数をN out(m)と記載している。層Lへのリチウム流入数N in(m)は、下記式(2)のように表される。
in(m)=D×Cn+1×ΔNn+1(m)+D×A×ΔN(m)
・・・(2)
一方、層Lからのリチウム流出数N out(m)は、下記式(3)のように表される。
out(m)=D×An+1×ΔNn+1(m)+D×C×ΔN(m)
・・・(3)
上記式(2),(3)において、拡散係数をDで示す。CおよびAは、隣接する層間で表面積(図6に示す球状の層表面の面積)が異なるため、その補正を行なうための定数である。より具体的には、定数Cは、外側の層(層Ln+1)から、その層に隣接する内側の層(層L)へのリチウム流入における表面積差を考慮した補正定数である。逆に、定数Aは、内側の層から、その層に隣接する外側の層へのリチウム流出における表面積差を考慮した補正定数である。ΔNn+1は、層Ln+1と層Lとのリチウム数の差である。ΔNは、層Lと層Ln−1とのリチウム数の差である。すべての層L(n=1〜5)について初期値(N(0))を与え、上記式(1)〜(3)を繰り返し解くことによって、層L内のリチウム数N(m)を算出することができる。
S104において、ECU100は、S103にて算出されたリチウム数N,Nから、負極活物質19の最も外側の表面に存在するリチウム数を算出する。このリチウム数を「最表面リチウム数Nout」と記載する。最表面リチウム数Noutは、以下のように算出される。
図8は、最表面リチウム数Noutの算出手法(図7のS104の処理)をより詳細に説明するための図である。図5において、横軸は、負極活物質19の半径方向rに沿う距離を示す。負極活物質19の中心Oの位置を距離0で示し、負極活物質19の外側に向かうに従って距離が大きくなる。縦軸は、各位置におけるリチウム数の算出結果を示す。
図8を参照して、S103の処理により、リチウム数N〜Nは既に算出されている。ここでは、層L内のリチウム数Nは、層Lの最も内側の距離と最も外側の距離とのちょうど中間距離におけるリチウム数を示すものと考える(図6参照)。層L内のリチウム数Nについても同様に、層Lの最も内側の距離と最も外側の距離(=負極活物質19の最表面に相当する距離)とのちょうど中間距離におけるリチウム数を示すものと考える。そうすると、層L内のリチウム数Nを示す点(D,N)と、層L内のリチウム数Nを示す点(D,N)とを結ぶ直線Jを求めることができる。この直線Jを最表面の位置(距離Dout)まで外挿した点が(Dout,Nout)である。
図7に戻り、S105において、ECU100は、最表面リチウム数Noutから表面電位U2を算出する。一般に、活物質の表面電位は、活物質表面に存在する活物質量に応じて定まる。したがって、最表面リチウム数Noutと表面電位U2との相関関係が事前実験により求められ、たとえばマップMP0としてECU100のメモリ102に格納されている。
図9は、表面電位U2を算出するためのマップMP0の一例を示す図である。図9において、横軸は最表面リチウム数Noutを示し、縦軸は表面電位U2を示す。図9に示すように、最表面リチウム数Noutが多くなるに従って表面電位U2は低くなる。ECU100は、このマップMP0を参照することにより、最表面リチウム数Noutから表面電位U2を算出することができる。なお、マップに代えて関数または換算式を準備してもよい。
図7を再び参照して、S106において、ECU100は、反応抵抗による電圧降下量ΔVを算出する(ΔV>0)。電圧降下量ΔVは、下記式(4)に示すバトラー・ボルマー(Butler-Volmer)の式に従って算出することができる。
Figure 0006947014

なお、式(4)では、反応抵抗をRで示し、ファラデー定数をFで示し、電荷移動係数をαで示し、負極活物質19の比表面積をaで示し、負極活物質19の膜厚をLで示し、交換電流密度をiで示し、標準速度定数をkで示し、活性化エネルギーをgで示している。Iとは、電流密度に析出表面積を乗算したものである。負極電位V2(=U2−ΔV)が0のときには、U2=ΔV(=IR)との関係が成り立つ。したがって、式(4)においてVをU2としてIRについて解くことで、電圧降下量ΔVを算出することができる。
S107において、ECU100は、S105にて算出された表面電位U2から、S106にて算出された電圧降下量ΔVを減算することにより、負極電位V2を算出する(V2=U2−ΔV)。なお、S101〜S107の処理が負極電位算出処理に相当する。
S108において、ECU100は、S101にて取得された監視ユニット20内の各センサの検出結果に基づいて、バッテリ10のSOCを推定する。SOC推定手法としては、電流積算法などの公知の各種手法を用いることができる。
S109において、ECU100は、充電期間における平均電流IBaveと、充電期間における積算電流ΣIBとを取得する。前述したように、平均電流IBaveおよび積算電流ΣIBは、電流センサ22の検出値(電流IB)に基づき、図示しない別フローにて算出されている。
ECU100のメモリ102には、後述する補正マップMP1が格納されている。ECU100は、補正マップMP1を参照することによって、S108にて推定されたバッテリ10のSOCと、S109にて取得された平均電流Iaveおよび積算電流ΣIBとから、負極電位V2を補正するための析出過電圧ηpを算出する(S110)。
図10は、補正マップMP1の一例を示す図である。図10を参照して、補正マップMP1では、事前の実験結果に基づき、バッテリ10のSOCと平均電流IBaveと積算電流ΣIBとの組合せ(SOC,IBave,ΣIB)毎に析出過電圧ηpが規定されている。図中に矢印で示すように、析出過電圧ηpは、図中左下から右上へと行くに従って高くなる。つまり、析出過電圧ηpは、平均電流IBaveが大きいほど高く、積算電流ΣIBが大きいほど高い。なお、図10に示す具体的な数値は、理解を容易にするための例示に過ぎないことを確認的に記載する。
電流に関するパラメータとして、平均電流IBaveおよび積算電流ΣIBの2つのパラメータが用いられる理由について説明する。たとえば、10秒間の充電期間中に電流IBが10Aで一定である第1の充電パターンと、20秒間の充電期間中の電流IBが同じく10Aで一定である第2の充電パターンとを比較する。第1の充電パターンと第2の充電パターンとでは、平均電流IBaveは等しいが、積算電流ΣIBが異なる。この場合、積算電流ΣIBが相対的に大きい第2の充電パターンの方が第1の充電パターンと比べて、電極体14の厚み方向xにおけるリチウム濃度分布に偏りが生じやすい。積算電流ΣIBをパラメータとして用いることで、このような違いを析出過電圧ηpに反映させることができる。
また、たとえば、10秒間の充電期間中、電流IBが10Aで一定である前述の第1の充電パターンと、5秒間の充電期間中、電流IBが20Aで一定である第3の充電パターンとを比較する。第1の充電パターンと第3の充電パターンでは、積算電流ΣIBは等しいが、平均電流IBaveが異なる。この場合、平均電流Iaveが相対的に大きい第3の充電パターンの方が第1の充電パターンと比べて、電極体14の厚み方向xにおけるリチウム濃度分布に偏りが生じやすい。このような違いについても、平均電流IBaveをパラメータとして用いることで析出過電圧ηpに反映させることが可能になる。
なお、図10では、(SOC,IBave,ΣIB)の3つのパラメータを含む3次元マップの例を示すが、バッテリ10の温度TBをさらに含む4次元マップを準備してもよい。これにより、より高精度に析出過電圧ηpを算出することが可能になる。
図7を再び参照して、S111において、ECU100は、補正マップMP1を参照することで求められた析出過電圧ηpにより負極電位V2を補正する。補正後の負極電位V2は、補正前の負極電位V2(=U2−ΔV)から析出過電圧ηpが減算された電位である(V2−ηp→V2)。
S112において、ECU100は、補正後の負極電位V2に基づいて、負極16へのリチウム析出が起こる可能性があるか否かを判定する。具体的には、ECU100は、補正後の負極電位V2がリチウム基準電位以下であるか否か、すなわち、負極電位V2が0V以下(V2≦0)であるか否かを判定する。
補正後の負極電位V2が0V以下である場合(S112においてYES)、ECU100は、負極16へのリチウム析出が起こる可能性があるとして処理をS113に進め、充電電流抑制制御を実行する。この充電電流抑制制御は、たとえば特許文献2の図5に記載された制御と同等であるため、詳細な説明は繰り返さないが、たとえば、時刻tにおける電流IB(t)と、許容入力電流Ilim(t)に基づき、Ilim(t)に対して所定量オフセットさせることで入力電流制限目標値Itagが算出される。そして、得られたItagに基づいて、バッテリ10への充電電力の制御上限値を示すWin(t)が算出される。その後、処理は、図示しないメインルーチンへと戻される。
なお、補正後の負極電位V2が0Vよりも高い場合(S112においてNO)には、ECU100は、負極16へのリチウム析出は起こらない可能性が高いとしてS113の処理をスキップして、処理をメインルーチンへと戻す。
以上のように、実施の形態1によれば、バッテリ10の充電期間中の平均電流IBaveおよび積算電流ΣIBに基づいて負極電位V2が補正される。この補正により、析出過電圧ηp(すなわち、電極体14の厚み方向xにおけるリチウム濃度分布の偏りに起因して負極活物質19の外表面に印加される電圧)を負極電位V2に反映させることができる。したがって、負極電位V2の算出精度が向上するので、負極16へのリチウムの析出状態を正確に推定することができる。
また、析出過電圧ηpの算出に用いられる補正マップMP1のパタメータ(SOC、平均電流IBaveおよび積算電流ΣIB)は、いずれも簡易な演算により算出可能である。よって、本実施の形態によれば、0次元モデルの利点である演算負荷の低減および演算時間の短縮を維持しつつ、負極16へのリチウムの析出状態の推定精度向上が可能となる。
[実施の形態2]
実施の形態1では、補正マップMP1から算出される析出過電圧ηpにより負極電位V2が補正されると説明した。その一方で、負極活物質19のリチウム析出領域A(図6参照)に一旦析出したリチウムは、その状態に維持されるとは必ずしも限らず、電解液中に溶解してリチウムイオンに戻る場合もある。実施の形態2においては、リチウム析出に加えて、リチウム溶解についても考慮する構成について説明する。
図11は、実施の形態2における充電電流抑制制御を示すフローチャートである。図11を参照して、S200における負極電位算出処理は、実施の形態1における負極電位算出処理(図7におけるS101〜S107の処理)と同等であるため、説明は繰り返さない。また、S201,S202の処理も実施の形態1におけるS108,S109の処理とそれぞれ同等であるため、説明は繰り返さない。
S203において、ECU100は、補正前の負極電位V2が0V以下(V2≦0)であるか否かを判定する。補正前の負極電位V2が0V以下である場合(S203においてYES)、ECU100は、リチウム析出が起こる可能性があるとして処理をS205に進め、リチウムの析出/溶解反応の反応過電圧φを算出する。反応過電圧φは、下記式(5)に示すように、表面電位U2と、析出反応および溶解反応の平衡電位Ueqと、反応抵抗による電圧降下量ΔVとにより算出することができる。なお、平衡電位Ueqは既知の値であるため、補正前の負極電位V2(=U2−ΔV)から反応過電圧φを算出することができる。
φ=U2−Ueq−ΔV ・・・(5)
S206において、ECU100は、反応過電圧φの正負を判定する。反応過電圧φが負である場合(S206においてφ<0)、ECU100は、リチウム析出領域Aへのリチウム析出が起こっていると判定して処理をS207に進める。S207,S208の処理は、実施の形態1におけるS110,S111の処理とそれぞれ同等である。
これに対し、反応過電圧φが0または正である場合(S206においてφ≧0)、ECU100は、リチウム析出領域Aからリチウム溶解が起こっていると判定して処理をS209に進める。そして、ECU100は、補正マップMP2を参照することによって、バッテリ10のSOC、平均電流IBaveおよび積算電流ΣIBから溶解過電圧ηdを算出する。
図12は、補正マップMP2の一例を示す図である。図12に示す補正マップMP2においても補正マップMP1と同様に、バッテリ10のSOCと平均電流IBaveと積算電流ΣIBとの組合せ(SOC,IBave,ΣIB)毎に溶解過電圧ηdが規定されている。析出過電圧ηdも矢印で示すように、図中左下から右上へと行くに従って高くなる。
図11に戻り、S210において、ECU100は、補正マップMP2を参照することで求められた溶解過電圧ηdにより負極電位V2を補正する。より具体的には、補正前の負極電位V2に溶解過電圧ηdが加算される(V2+ηd→V2)。
このように、リチウム析出が起こるときにはS208の処理にて負極電位V2の補正が行なわれ、一方、リチウム溶解が起こるときにはS210の処理にて負極電位V2の補正が行なわれる。そして、補正後の負極電位V2が0V以下であるか否かが判定される(S211)。S211以降の処理は、実施の形態1における対応する処理と同等である。
なお、S203にて補正前の負極電位V2が0Vよりも高い場合(S203においてNO)には、リチウムの析出履歴があるか否かが判定される(S204)。リチウム析出履歴がある場合(Sに204においてYES)は、析出したリチウムの溶解が起こり得るとして、処理がS209に進められる。一方、そもそもリチウム析出履歴がない場合(S204においてNO)にはリチウム溶解も起こらないので、以降の処理がすべてスキップされ、処理がメインルーチンへと戻される。
以上のように、実施の形態2によれば、リチウム析出領域Aへのリチウム析出に加えて、リチウム析出領域Aからのリチウム溶解も考慮して、負極電位V2が補正される。このようにリチウムの析出および溶解の両方を考慮することで、負極電位V2の算出精度を一層向上させることができる。よって、負極16へのリチウムの析出状態を、より正確に推定することが可能になる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、2 二次電池システム、10 バッテリ、10A セル、20 監視ユニット、21 電圧センサ、22 電流センサ、23 温度センサ、30 PCU、41,42 モータジェネレータ、50 エンジン、60 動力分割装置、70 駆動軸、80 駆動輪、100 ECU、101 CPU、102 メモリ、11 蓋体、12 正極端子、13 負極端子、14 電極体、15 正極、16 負極、17 セパレータ、18 正極活物質、19 負極活物質。

Claims (5)

  1. リチウムイオンが挿入および脱離される負極活物質を含む負極を有する二次電池と、
    基準電位に対する前記負極の電位を示す負極電位を算出する制御装置とを備え、
    前記制御装置は、
    前記負極活物質の内部におけるリチウム濃度分布を算出するための電池モデルに従って、前記二次電池への充電電流値から求められる前記負極活物質へのリチウムイオンの挿入量と、前記負極活物質の内部におけるリチウムイオンの拡散係数とを用いて、前記基準電位に対する前記負極活物質の表面電位を算出し、
    前記二次電池への充電電流および前記二次電池の反応抵抗を用いて、前記二次電池の充電に伴う電圧降下量を算出し、
    前記表面電位から前記電圧降下量を減算することで前記負極電位を算出し、
    前記二次電池のSOC、前記二次電池の充電期間における平均電流値、および、前記充電期間における積算電流値から、前記負極におけるリチウムの析出を促進する析出過電圧を算出し、前記電圧降下量を減算後の前記表面電位から前記析出過電圧をさらに減算することで前記負極電位を補正する、二次電池システム。
    、二次電池システム。
  2. 記析出過電圧は、前記負極活物質の外部におけるリチウム濃度分布の偏りに起因して前記負極活物質の外部から前記負極活物質の表面に印加される電圧である、請求項1に記載の二次電池システム。
  3. 前記制御装置は、前記平均電流値が大きいほど大きく、かつ、前記積算電流値が大きいほど大きくなるように前記析出過電圧を算出する、請求項2に記載の二次電池システム。
  4. 前記制御装置は、
    前記負極へのリチウムの析出反応および前記負極からのリチウムの溶解反応の平衡電位を用いて反応過電圧を算出し、
    前記反応過電圧が所定値を上回る場合には、前記二次電池のSOC、前記平均電流値および前記積算電流値から、前記負極におけるリチウムの溶解を促進する溶解過電圧を算出し、前記電圧降下量を減算後の前記表面電位に前記溶解過電圧を加算することで前記負極電位を補正する、請求項1〜3のいずれか1項に記載の二次電池システム。
  5. リチウムイオンが挿入および脱離される負極活物質を含む負極を有する二次電池の負極電位を算出し、当該負極電位の算出結果に従って当該負極を保護するための保護制御を実行する、二次電池の制御方法であって、
    前記負極活物質の内部におけるリチウム濃度分布を算出するための電池モデルに従って、前記二次電池への充電電流値から求められる前記負極活物質へのリチウムイオンの挿入量と、前記負極活物質の内部におけるリチウムイオンの拡散係数とを用いて、前記負極活物質の表面電位を算出するステップと、
    前記二次電池への充電電流および前記二次電池の反応抵抗を用いて、前記二次電池の充電に伴う電圧降下量を算出するステップと、
    前記表面電位から前記電圧降下量を減算することで前記負極電位を算出するステップと、
    前記二次電池のSOC、前記二次電池の充電期間における平均電流値、および、前記充電期間における積算電流値から、前記負極におけるリチウムの析出を促進する析出過電圧を算出し、前記電圧降下量を減算後の前記表面電位から前記析出過電圧をさらに減算することで前記負極電位を補正するステップと、
    補正後の負極電位が基準電位を下回った場合に前記保護制御を実行するステップとを含む、二次電池の制御方法。
JP2017248168A 2017-12-25 2017-12-25 二次電池システムおよび二次電池の制御方法 Active JP6947014B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017248168A JP6947014B2 (ja) 2017-12-25 2017-12-25 二次電池システムおよび二次電池の制御方法
US16/228,984 US11196103B2 (en) 2017-12-25 2018-12-21 Secondary battery system and method for controlling secondary battery
CN201811580539.3A CN109962308B (zh) 2017-12-25 2018-12-24 二次电池系统和二次电池的控制方法
US17/524,371 US20220069370A1 (en) 2017-12-25 2021-11-11 Secondary battery system and method for controlling secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248168A JP6947014B2 (ja) 2017-12-25 2017-12-25 二次電池システムおよび二次電池の制御方法

Publications (2)

Publication Number Publication Date
JP2019114475A JP2019114475A (ja) 2019-07-11
JP6947014B2 true JP6947014B2 (ja) 2021-10-13

Family

ID=66950766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248168A Active JP6947014B2 (ja) 2017-12-25 2017-12-25 二次電池システムおよび二次電池の制御方法

Country Status (3)

Country Link
US (2) US11196103B2 (ja)
JP (1) JP6947014B2 (ja)
CN (1) CN109962308B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947014B2 (ja) * 2017-12-25 2021-10-13 トヨタ自動車株式会社 二次電池システムおよび二次電池の制御方法
JP7040408B2 (ja) * 2018-11-05 2022-03-23 トヨタ自動車株式会社 二次電池システム
JP7295050B2 (ja) * 2020-02-07 2023-06-20 プライムアースEvエナジー株式会社 リチウムイオン二次電池の制御装置及びリチウムイオン二次電池の制御方法
KR20220039249A (ko) * 2020-09-22 2022-03-29 주식회사 엘지에너지솔루션 배터리 장치 및 배터리 상태 추정 방법
CN112578290B (zh) * 2020-11-20 2022-11-22 华中科技大学鄂州工业技术研究院 一种固体氧化物燃料电池系统的动静态结合优化分析方法
JP7259138B1 (ja) 2021-12-10 2023-04-17 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、ドープ方法及びドープ装置
EP4216249A1 (en) 2021-12-10 2023-07-26 Asahi Kasei Kabushiki Kaisha Current separation method for nonaqueous lithium power storage element, prediction method, system and like
WO2023105818A1 (ja) 2021-12-10 2023-06-15 旭化成株式会社 非水系リチウム蓄電素子の電流分離方法、ドープ方法及びドープ装置
CN116583925A (zh) * 2021-12-10 2023-08-11 旭化成株式会社 非水系锂蓄电元件的电流分离方法、预测方法及系统等

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL58826A (en) * 1979-11-29 1982-11-30 Israel State Negative electrode for secondary zinc batteries
JPS63136477A (ja) * 1986-11-27 1988-06-08 Japan Storage Battery Co Ltd 蓄電池寿命検出装置
JP4802945B2 (ja) * 2006-08-31 2011-10-26 トヨタ自動車株式会社 二次電池の制御システムおよびそれを搭載したハイブリッド車両
JP4872743B2 (ja) * 2007-03-23 2012-02-08 トヨタ自動車株式会社 二次電池の状態推定装置
JP4649682B2 (ja) * 2008-09-02 2011-03-16 株式会社豊田中央研究所 二次電池の状態推定装置
JP4744622B2 (ja) * 2009-07-01 2011-08-10 トヨタ自動車株式会社 車両の制御装置
JP6001823B2 (ja) * 2011-01-24 2016-10-05 株式会社豊田中央研究所 二次電池のシミュレーション装置
JP5304844B2 (ja) 2011-05-24 2013-10-02 トヨタ自動車株式会社 バッテリの充電制御装置
US8945751B2 (en) * 2011-07-19 2015-02-03 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
CN103718053B (zh) * 2011-08-03 2016-08-17 丰田自动车株式会社 二次电池的劣化状态推定装置和劣化状态推定方法
JP5738784B2 (ja) * 2012-02-20 2015-06-24 トヨタ自動車株式会社 蓄電システム
JP5856548B2 (ja) 2012-08-02 2016-02-09 トヨタ自動車株式会社 二次電池の状態推定装置
JP5864380B2 (ja) * 2012-08-02 2016-02-17 トヨタ自動車株式会社 二次電池の状態推定装置
JP5971477B2 (ja) * 2012-12-25 2016-08-17 トヨタ自動車株式会社 二次電池の状態推定装置
JP2014126411A (ja) * 2012-12-25 2014-07-07 Toyota Motor Corp 二次電池の状態推定装置及び制御装置
CN105190985B (zh) * 2013-04-11 2017-05-24 丰田自动车株式会社 电池系统
US9377512B2 (en) * 2013-05-08 2016-06-28 GM Global Technology Operations LLC Battery state estimator combining electrochemical solid-state concentration model with empirical equivalent-circuit model
JP2016004725A (ja) * 2014-06-18 2016-01-12 トヨタ自動車株式会社 電池システム
CN204391208U (zh) * 2015-01-14 2015-06-10 穆尧 一种新型电动汽车锂离子电池装置
JP2016189269A (ja) * 2015-03-30 2016-11-04 日本電気株式会社 リチウムイオン二次電池の評価方法
KR102527326B1 (ko) * 2015-08-20 2023-04-27 삼성전자주식회사 배터리 충전 상태(SoC)를 예측하는 배터리 시스템 및 방법
CN105866695B (zh) * 2016-04-22 2019-06-18 宁德时代新能源科技股份有限公司 充电电池析锂的检测方法、电池管理系统及电池系统
JP6947014B2 (ja) * 2017-12-25 2021-10-13 トヨタ自動車株式会社 二次電池システムおよび二次電池の制御方法

Also Published As

Publication number Publication date
CN109962308A (zh) 2019-07-02
CN109962308B (zh) 2022-04-08
US20220069370A1 (en) 2022-03-03
JP2019114475A (ja) 2019-07-11
US11196103B2 (en) 2021-12-07
US20190198941A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6947014B2 (ja) 二次電池システムおよび二次電池の制御方法
JP6927008B2 (ja) 二次電池システムおよび二次電池のsoc推定方法
JP6863258B2 (ja) 二次電池システムおよび二次電池の活物質の応力推定方法
US9013138B2 (en) Charging apparatus for electric storage device, vehicle equipped with the charging apparatus, and method of controlling the charging apparatus
CN109839601B (zh) 二次电池的劣化状态推定方法和二次电池系统
JP5831631B2 (ja) 電池システムおよび、二次電池の分極判別方法
JP2020034426A (ja) 二次電池の劣化状態推定方法および二次電池システム
JP7115439B2 (ja) 二次電池システムおよび二次電池の内部状態推定方法
JP2009264962A (ja) 二次電池の残存容量推定方法及び装置
KR102637912B1 (ko) 전지 시스템 및 리튬 이온 전지의 열화 평가 방법
CN110879366B (zh) 二次电池系统和二次电池的soc推定方法
JP2019132655A (ja) 二次電池システムおよび二次電池の劣化状態推定方法
JP6927000B2 (ja) 二次電池の劣化状態推定方法
JP7020095B2 (ja) 二次電池システム
JP7040408B2 (ja) 二次電池システム
JP7275842B2 (ja) 電池システム及び車両、並びに電池システムの制御方法
JP6747333B2 (ja) 二次電池システム
JP6696460B2 (ja) 電池システム
JP7095664B2 (ja) 二次電池システム
CN113193241B (zh) 电池系统及锂离子电池的劣化评价方法
JP2022117384A (ja) 電池システム
JP2021125423A (ja) リチウムイオン二次電池の制御装置及びリチウムイオン二次電池の制御方法
JP2019212392A (ja) 電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6947014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151