JP6915098B2 - 熱式流量計 - Google Patents

熱式流量計 Download PDF

Info

Publication number
JP6915098B2
JP6915098B2 JP2019565769A JP2019565769A JP6915098B2 JP 6915098 B2 JP6915098 B2 JP 6915098B2 JP 2019565769 A JP2019565769 A JP 2019565769A JP 2019565769 A JP2019565769 A JP 2019565769A JP 6915098 B2 JP6915098 B2 JP 6915098B2
Authority
JP
Japan
Prior art keywords
passage
gas
measured
main
passage portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019565769A
Other languages
English (en)
Other versions
JPWO2019142565A1 (ja
Inventor
斉藤 友明
友明 斉藤
佐藤 正幸
正幸 佐藤
晃 高砂
晃 高砂
徳安 昇
徳安  昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of JPWO2019142565A1 publication Critical patent/JPWO2019142565A1/ja
Application granted granted Critical
Publication of JP6915098B2 publication Critical patent/JP6915098B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は例えば主通路を流れる被計測気体の流量を計測する熱式流量計に関する。
従来から、被計測気体が流れる主通路にハウジングが配置され、ハウジングに設けられた副通路に主通路から被計測気体を取り込み、副通路内に配置された流量検出部により被計測気体の流量を計測する熱式流量計が、種々提案されている。熱式流量計は、流量検出部と被計測気体との間で熱伝達を行うことにより、被計測気体の質量流量を計測する構成を有している。
熱式流量計では、汚損対策の観点から、サイクロンバイパスによる遠心分離や、分岐通路による慣性分離等の副通路構造が採用されている。例えば、特許文献1には、サイクロンバイパスを有する熱式流量計の構造が示されている。
US2013/0061684
しかしながら、サイクロンバイパスや分岐通路を有する副通路は構造が複雑であり、装置の小型化が困難である。特に、装置が取り付けられる主通路が断面積の小さい小径通路の場合には、装置の一部が主通路から外側に大きく突出するおそれがあり、レイアウト位置が限定されるなど使い勝手が悪くなることが懸念される。
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、単純かつ省スペースな通路構造によって、測定精度と耐汚損性能を両立させることが可能な熱式流量計を提供することにある。
上記課題を解決する本発明の熱式流量計は、
被計測気体が流れる主通路にハウジングが配置され、該ハウジングに設けられた副通路に前記主通路から被計測気体を取り込み、前記副通路内に配置された流量検出部により被計測気体の流量を計測する熱式流量計であって、
前記副通路は、
前記主通路を流れる前記被計測気体の主流れ方向に対して傾斜して開口する入口開口部と、
該入口開口部から前記主通路を流れる前記被計測気体の主流れ方向に対して傾斜した方向に延びる傾斜通路部と、
を有することを特徴とする。
本発明によれば、サイクロンバイパスや分岐通路などの従来構造と比較して低背化による小型化が可能で、測定精度と耐汚損性能を両立させることができる。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の熱式流量計が適用される内燃機関システムの一例を示す概念図。 第1実施形態の熱式流量計が二次空気通路に取り付けられた状態を示す図であり、図2(a)は二次空気通路の上流端側から示す左側面図、図2(b)は正面図。 図2(a)のIII−III線断面図。 第1実施形態の熱式流量計の構成を説明する図であり、図4(a)は左側面図、図4(b)は正面図。 図4(a)のV−V線断面図。 図4(a)のVI−VI線断面図。 チップパッケージの外観図。 熱式流量計の要部を拡大して示す図であり、図8(a)は入口開口部と傾斜通路部の構成を説明する図、図8(b)は、導入面の構成を説明する図。 傾斜通路部の傾斜角度に対するダスト解析結果とノイズ試験結果を示すグラフ。 第1実施形態の熱式流量計の変形例。 図10に示す熱式流量計の断面図。 第2実施形態の熱式流量計の断面図。
次に、本発明の実施形態について図面を用いて説明する。
<第1実施形態>
図1は、本発明の熱式流量計が適用される内燃機関システムの一例を示す概念図である。図1に示す内燃機関システム1は、例えば自動車用の原動機として自動車の車両に搭載されるエンジンシステムであり、燃焼室内にガソリンなどの燃料を直接噴射して点火プラグで着火する、いわゆる直噴式エンジン2を用いたものである。
直噴式エンジン2は、吸気側に吸気通路3が接続され、排気側に排気通路4が接続されている。吸気通路3には、上流側から順番にエアクリーナ11とエアフローセンサ12とスロットルバルブ13が設けられている。エアフローセンサ12は、吸気通路3を通過して直噴式エンジン2の燃焼室に流入する吸入空気の流量を検出する。
排気通路4には、GPF(ガソリンパティキュレートフィルタ)14が設けられている。GPF14は、排ガスに含まれているPM(粒子状物質)を捕集し、二次空気の供給を受けることで燃焼除去する構成を有している。エアクリーナ11とGPF14との間は、GPF14に二次空気を供給するための二次空気通路5によって接続されている。二次空気通路5は、吸気通路3よりも断面積が小さい小径通路によって構成されている。二次空気通路5には、熱式流量計15と二次エアポンプ16が配置されている。2次ポンプ16は、二次空気通路5を通過してエアクリーナ11からGPF14に二次空気を供給し、熱式流量計15は、その二次空気の流量を検出する。
内燃機関システム1は、不図示のECU(エンジン制御ユニット)を有しており、エアフローセンサ12で検出した吸入空気の流量に基づいて直噴式エンジン2のインジェクタから燃焼室内に直接噴射される燃料噴射量を制御し、また、熱式流量計15で検出した二次空気の流量に基づいて二次エアポンプ16からGPF14に供給される二次空気の量を制御する。
そして、内燃機関システム1は、吸気通路3と排気通路4との間がEGR通路6で接続されており、その通路途中にはインタークーラー17とEGRバルブ18が設けられている。また、吸気通路3と直噴式エンジン2のエンジンケース内との間がブローバイガス通路7で接続されており、その通路途中にはPCVバルブ19が設けられている。
図2は、第1実施形態の熱式流量計が二次空気通路に取り付けられた状態を示す図であり、図2(a)は二次空気通路の上流端側から示す左側面図、図2(b)は正面図である。そして、図3は、図2(a)のIII−III線断面図である。
二次空気通路5は、図2に示すように、円筒形状の通路ボディ21を有している。通路ボディ21は、二次空気通路5のエアクリーナ側に一方端部21aが接続され、GPF14側に他方端部21bが接続される。通路ボディ21の内部には、一方端部21aから他方端部21bに向かって被計測気体が流れる主通路23が設けられている。主通路23は、吸気通路3のエアフローセンサ12が取り付けられている箇所の断面積よりも小さな断面積を有している。
以下の説明では、二次空気通路5及び熱式流量計15の構造について理解容易のために、被計測気体の主流れ方向Fに沿ったY方向を前後方向とし、Y方向に直交するX方向を横方向とし、X方向とY方向に直交するZ方向を上下方向として説明するが、これらの方向は説明の便宜上のものであり、通路ボディ21及び熱式流量計15の姿勢状態を限定するものではない。
通路ボディ21の前後方向中間位置には、熱式流量計15を取り付けるための取付部22が設けられている。取付部22は、通路ボディ21の上部において外周面の一部が下方に凹んで平坦に形成された平坦面22aを有している。取付部22の平坦面22aには、通路ボディ21の通路壁を貫通して主通路23との間を連通する開口穴22bが開口して設けられている。取付部22は、開口穴22bに熱式流量計15の一部を挿入して、通路ボディ21の主通路23に配置した状態で熱式流量計15を取り付けることができるようになっている。
図4は、第1実施形態の熱式流量計の構成を説明する図であり、図4(a)は左側面図、図4(b)は正面図である。そして、図5は、図4(a)のV−V線断面図、図6は、図4(a)のVI−VI線断面図である。
熱式流量計15は、通路ボディ21の取付部22に固定される台座31と、台座31から下方に向かって突出して取付部22の開口穴22bに挿通することによって通路ボディ21の主通路23に配置されるハウジング32とを備えている。台座31は、所定の板厚を有する平板形状を有しており、取付部22の平坦面に対向して接面し、通路ボディ21の主通路23との間をシールした状態で取付部22に固定される。
ハウジング32は、主通路23を流れる被計測気体の主流れ方向Fに対向する横方向(X方向)の大きさよりも、主通路23を流れる被計測気体の主流れ方向Fに沿った前後方向(Y方向)の大きさの方が大きくなっており、主通路23を流れる被計測気体の主流れ方向Fに沿って延在する形状を有している。
ハウジング32は、取付部22に連続して設けられる基端部32aと、基端部32aに連続して設けられる先端部32bを有している。ハウジング32の基端部32aと先端部32bは、図4(b)に示すように、下側に位置する先端部32bの方が上側に位置する基端部32aよりも前方に突出しており、前後方向(Y方向)の長さが大きい形状となっている。そして、図4(a)に示すように、上側に位置する基端部32aと下側に位置する先端部32bとの間には、段差が設けられて、先端部32bの方が基端部32aよりも横方向(X方向)の幅が広い形状となっている。
ハウジング32は、図5に示すように、基端部32aに温度検出部42が配置され、先端部32bに流量検出部43が配置されている。温度検出部42は、ハウジング32の基端部32aから前方に向かって突出する突起部45の先端部分に配置されている。したがって、主通路23を流れる被計測気体を温度検出部42に直接接触させることができ、被計測気体の正確な温度を検出することができる。また、温度検出部42をハウジング32の基端部32aから離れた位置に配置できるので、台座31から伝達される熱の影響を小さくすることができる。
また、突起部45の先端部分は、ハウジング32の先端部32bの前端よりも後方の位置に配置されている。したがって、熱式流量計15を通路ボディ21に取り付ける作業において、先端部32bが温度検出部42を周囲の部材から保護し、温度検出部42が他の部材との意図しない接触により破損するのを未然に防ぐことができる。
流量検出部43は、ハウジング32の先端部32bに形成された副通路51内に配置されている。図5に示すように、ハウジング32の先端部32bには、主通路23を流れる被計測気体の一部を取り込む副通路51が設けられている。
副通路51は、前方に向かって開口する入口開口部52と、後方に向かって開口する出口開口部53との間に亘って、前後方向に延在するように形成されている。副通路51は、例えば上下左右が壁面によって囲まれる矩形或いは円形などの閉断面を有する通路として定義され、入口開口部52は、副通路51の上流端に形成され、出口開口部53は、副通路51の下流端に形成される。
図8は、熱式流量計の要部を拡大して示す図であり、図8(a)は入口開口部と傾斜通路部の構成を説明する図、図8(b)は、導入面の構成を説明する図である。
副通路51の入口開口部52は、主通路23を流れる被計測気体の主流れ方向Fに対して傾斜して開口する。入口開口部52は、台座31から離間する方向に向かって開口するように主流れ方向Fに直交する方向に対して角度θだけ傾いて形成されている。入口開口部52は、上端よりも下端の方が後方に位置しており、所定の俯角を有するように前方でかつ斜め下方に向かって開口している。出口開口部53は、ハウジング32の先端部32bの後端に開口している(図5を参照)。出口開口部53は、主通路23を流れる被計測気体の主流れ方向Fに対して直交して開口する。
副通路51は、入口開口部52から主通路23を流れる被計測気体の主流れ方向Fに対して傾斜した方向に延びる傾斜通路部54と、傾斜通路部54の後端56に連続して被計測気体の主流れ方向Fと平行に延在して出口開口部53につながる平行通路部55を有している。
傾斜通路部54は、入口開口部52から後方に移行するにしたがってハウジング32の台座31側に漸次接近するように、前後方向(Y方向)に対して傾斜通路部54の中心線C1が角度θだけ傾斜している。傾斜通路部54の角度θは、25°以上70°以下が好ましく、曲り損失が小さくなるようにできるだけ緩やかな角度がさらに好ましく、本実施形態では、33°に設定されている。
傾斜通路部54の中心線C1は、入口開口部52の中心点と、傾斜通路部54の後端56の中心点との間を結んだ直線である。平行通路部55の中心線C2は、前後方向(Y方向)に延在して、傾斜通路部54の後端56の中心点と出口開口部53の中心点との間を結ぶ直線である。
傾斜通路部54の上面61は、入口開口部52から後方に移行するにしたがって漸次傾斜通路部54の中心線C1に接近し、中間位置で再び中心線C1から離間するように凸状に湾曲している。傾斜通路部54の上面61は、比較的大きな曲率半径で湾曲しており、被計測気体が通過する際に剥離渦が発生するのを防ぐことができるようになっている。
傾斜通路部54の下面62は、図8(a)に示すように、入口開口部52の上端よりも上側の位置に、下面62の上端が配置されており、入口開口部52から副通路51に流入した被計測気体を案内してその向きを斜めに変更することができる。したがって、傾斜通路部54は、入口開口部52から副通路51に被計測気体と共に流入する汚損物がそのままY方向に沿って真っ直ぐに流量検出部43に到達するのを防ぐことができ、流量検出部43の耐汚損性能を確保することができる。
図9は、傾斜通路部の傾斜角度に対するダスト解析結果とノイズ試験結果を示すグラフである。
図9に示すダスト解析結果によれば、傾斜通路部54は、その傾斜角度が増加するに応じて傾斜通路部54に侵入するダストの数(侵入ダスト数)が減少する傾向を示している。特に傾斜通路部54の角度θが0°から25°の範囲では、侵入ダスト数が急激に変化し、25°から90°の範囲では、緩やかに変化している。傾斜通路部54の角度θが0°から25°の範囲は、入口開口部52を上流側から見た場合に平行通路部55が露出している範囲であり、比較的多くのダストが侵入している。したがって、耐汚損性の観点からすると、傾斜通路部54の角度θを25°から70°の範囲に設定し、入口開口部52を上流側から見た場合に平行通路部55を露出させないようにする構成が好ましい。
そして、図9に示すノイズ試験結果によれば、傾斜通路部54は、その傾斜角度が増加するのに応じて流量検出部により検出される流量のノイズ(2σノイズ%)が増大する傾向を示している。傾斜通路部54の角度θが小さいほど流量の検出精度がよい理由としては、(1)主流れ方向に対する傾斜通路部54の曲がりが小さいので剥離渦の影響が小さいこと、及び、(2)流速が速いのでS/N比で優位になることであることが考えられる。
下記の表1は、傾斜通路部54の角度によるノイズ性能と耐汚損性能への影響をまとめたものである。
Figure 0006915098
ノイズ性能は、傾斜通路部54の角度θが小さい方が通路内の現象として剥離渦の発生が抑制されかつ流速も速いので性能がよくなり、反対に角度θが大きくなると性能が悪化する。そして、耐汚損性能は、傾斜通路部54の角度θが大きいと通路内の現象としてダストが分流されて流量検出部を迂回するので性能がよくなり、反対に角度θが小さいとダストが分流されず、性能が悪化する。表1に示すように、ノイズ性能は、角度θが0°で◎となり、90°で×となっている。そして、耐汚損性能は、角度θが90°で◎となり、0°で×となっている。傾斜通路部54の角度θが33°近傍では、ノイズ性能と耐汚損性能の両方が損なわれず、○となる。以上より、傾斜通路部54の形状は、入口開口部52を上流側から見た場合に平行通路部55を露出させないように隠し、尚且つ、曲り損失が小さくなるようにできるだけ角度θを緩やかな角度とする構成が好ましいことが理解できる。
傾斜通路部54の下面62は、前方から見た場合に露出して主通路23を流れる被計測気体を直接受ける導入面を有している。導入面は、前方に向かって凸状に湾曲する湾曲面と、湾曲面の曲率頂点に連続して傾斜する傾斜面とを有している。導入面は、湾曲面として、入口開口部52の下端から上方に移行するにしたがって前方に向かって移行するように曲率半径Raで湾曲する第1の湾曲面62aと、第1の湾曲面62aの上端から上方に移行するにしたがって後方に向かって移行するように曲率半径Rbで湾曲する第2の湾曲面62bとを有している。そして、第2の湾曲面62bの上端である曲率頂点Pに連続して後方に移行するにしたがって上昇するように傾斜した傾斜面62cを有している。曲率頂点Pは、入口開口部52を被計測気体の主流れ方向Fから見た場合に露出する導入面に配置されている。このように、導入面に曲率頂点Pが配置されているので、入口開口部52から傾斜通路部54に流入した被計測気体を滑らかに誘導でき、流量検出部43のノイズ性能を向上させ、流量の検出精度を高くすることができる。
導入面の第1の湾曲面62aと第2の湾曲面62bは、入口開口部52から傾斜通路部54内に進入してきた気体を上下に円滑に分配して、傾斜通路部54内における剥離渦の発生を抑制しつつ、被計測気体を傾斜通路部54の下流側に案内し、被計測気体以外をハウジング32の先端部32bの下方に案内して傾斜通路部54から逃がす。したがって、入口開口部52から副通路51に流入する異物の量を減らして、流量検出部43の耐汚損性を向上させることができる。
導入面の第1の湾曲面62aは、被計測気体以外を案内するためノイズ性能への影響が小さく、第1の湾曲面62aの曲率半径Raを第2の湾曲面62bの曲率半径Rbよりも小さくすることができ、ハウジング32の上下方向(Z方向)の高さを低くすることができる。したがって、熱式流量計15の低背化を図ることができ、熱式流量計15を断面積の小さい二次空気通路に取り付けた場合に、その一部が外方に大きく突出するのを防ぐことができる。
平行通路部55は、傾斜通路部54の後端56から出口開口部53に向かって略一定の断面積を有して延在しており、出口開口部53に移行するにしたがって漸次断面積が小さくなる絞り部が後端に設けられている。平行通路部55の絞り部は、平行通路部55を通過する被計測気体の流速を早めることができ、副通路51を通過する被計測気体に対して、ハウジング32の周囲に形成される剥離渦の影響を小さくすることができ、流量を安定させることができる。
図7は、チップパッケージの外観図である。
本実施形態では、温度検出部42と流量検出部43を有するチップパッケージ41がハウジング32の内部に組み込まれている。流量検出部43は、チップパッケージ41に設けられており、チップパッケージ41によって平行通路部55に配置されている。
チップパッケージ41は、熱式の流量検出センサや温度センサ等の複数のセンサチップと、LSIなどの演算回路部品と、コンデンサや電気抵抗体などの電子回路部品とをそれぞれリードフレームに実装して熱可塑性若しくは熱硬化性のモールド樹脂で一体にモールド成形した構成を有している。チップパッケージ41は、平面視略矩形の平板形状を有するパッケージ本体44を有している。
パッケージ本体44は、一方の側辺中央から前方に向かって突出する突起部45を有しており、突起部45の先端に温度検出部42を構成する温度センサが配置されている。また、パッケージ本体44の表面でかつ先端側の位置には、凹溝46が前後方向に延在するように形成されており、凹溝46の延在方向中間位置に流量検出部43を構成する熱式の流量検出センサが露出して配置されている。パッケージ本体44の上端には、複数のアウターリード47が設けられており、外部と電気的に接続されて信号を出力できるようになっている。
チップパッケージ41は、図5及び図6に示すように、副通路51をX方向に二つに分割するようにパッケージ本体44が副通路51内でZ方向に亘って上下に延在し、凹溝46と流量検出部43が副通路51内に位置するようにハウジング32内に配置されている。副通路51は、平行通路部55の流量検出部43に対向する位置に絞り33が設けられている。絞り33は、流量検出部43に向かって突出して流量検出部43との間に所定の間隙を形成しており、流量検出部43との間を通過する被計測気体の流速を早めて流量の検出精度を向上させる。
本実施形態では、図8に示すように、副通路51の入口開口部52の左右両側に、一対の整流板34が設けられている。一対の整流板34は、入口開口部52の側方から前方に向かって突出している。一対の整流板34は、主通路23を流れる被計測気体が入口開口部52から副通路51内に流れ込む際に、急縮小による剥離渦の発生を緩和し、副通路51内における被計測気体の流れを安定させることができる。
図10は、一対の整流板34を省略した図であり、図11は、図10の断面図である。
入口開口部52の傾斜度合いや傾斜通路部54の形状等によって副通路51内における剥離渦の発生が抑制されている場合には、図10及び図11に示すように、一対の整流板34を省略することができる。
本実施形態の熱式流量計15によれば、主通路23を流れる被計測気体の主流れ方向Fに対して傾斜して開口する入口開口部52と、被計測気体の主流れ方向Fに対して入口開口部52から入口開口部52と同じ向きに傾斜した方向に延びる傾斜通路部54とを有しているので、サイクロンバイパスや分岐通路などの従来構造と比較して低背化による小型化が可能で、測定精度と耐汚損性能を両立させることができる。
<第2実施形態>
次に、本発明の第2実施形態について図12を用いて説明する。図12は、第2実施形態の熱式流量計の断面図であり、第1実施形態の図5に対応する図である。本実施形態において特徴的なことは、入口開口部及び傾斜通路の傾斜方向が第1実施形態と反対向きとなっている点である。本実施形態と同様の構成要素には、同一の符号を付することでその詳細な説明を省略する。
熱式流量計15のハウジング32の先端部32bには、副通路71が設けられている。副通路71は、前方に向かって開口する入口開口部72と、後方に向かって開口する出口開口部53との間に亘って、前後方向に延在するように形成されている。副通路71は、例えば上下左右が囲まれる矩形或いは円形などの閉断面を有する通路として定義され、入口開口部72は、副通路51の上流端に形成され、出口開口部53は、副通路71の下流端に形成される。
副通路71の入口開口部72は、主通路23を流れる被計測気体の主流れ方向Fに対して傾斜して開口する。入口開口部72は、台座31側に向かって開口するように主流れ方向Fに直交する方向に対して所定角度だけ傾いて形成されている。入口開口部72は、下端よりも上端の方が後方に位置しており、所定の仰角を有するように前方でかつ斜め上方に向かって開口している。
副通路71は、入口開口部72から主通路23を流れる被計測気体の主流れ方向Fに対して傾斜した方向に延びる傾斜通路74と、傾斜通路74の後端に連続して被計測気体の主流れ方向Fと平行に延在して出口開口部53につながる平行通路75を有している。傾斜通路74は、入口開口部72から後方に移行するにしたがってハウジング32の台座31から漸次離間するように、前後方向(Y方向)に対して所定角度だけ傾斜している。
傾斜通路部74の下面は、比較的大きな曲率半径で湾曲しており、被計測気体が通過する際に剥離渦が発生するのを防ぐことができるようになっている。傾斜通路部74の上面は、入口開口部72の下端よりも下側の位置に、上面の下端が配置されており、入口開口部72から副通路71に流入した被計測気体を案内してその向きを斜めに変更することができる。したがって、傾斜通路部74は、入口開口部72から副通路71に流入した被計測気体がそのままY方向に沿って真っ直ぐに流量検出部43に到達するのを防ぐことができ、流量検出部43の耐汚損性能を確保することができる。
傾斜通路74の上面は、被計測気体の主流れ方向Fから見た場合に露出して主通路23を流れる被計測気体を直接受ける導入面を有している。導入面は、入口開口部72の上端から下方に移行するにしたがって前方に向かって移行するように曲率半径Raで湾曲する第1の湾曲面と、第1の湾曲面の下端から下方に移行するにしたがって後方に向かって移行するように曲率半径Rbで湾曲する第2の湾曲面を有している。
導入面の第1の湾曲面と第2の湾曲面は、入口開口部72から傾斜通路部74内に進入してきた気体を当接させて上下に円滑に分配して、傾斜通路部74内における剥離渦の発生を抑制しつつ、被計測気体を傾斜通路部74の下流側に案内し、被計測気体以外をハウジング32の先端部32bの上方に案内して傾斜通路部74から逃がす。したがって、入口開口部72から副通路71に流入する異物の量を減らして、流量検出部43の耐汚損性を向上させることができる。
平行通路部75は、傾斜通路部74の後端から出口開口部53に向かって略一定の断面積を有して延在しており、出口開口部53近傍の後端には断面積が小さくなる絞り部が設けられている。平行通路部75の絞り部は、平行通路部75を通過する被計測気体の流速を速めることができ、副通路71を通過する被計測気体に対して、ハウジング32の周囲に形成される剥離渦の影響を小さくすることができる。
本実施形態では、流量検出部43を有するチップパッケージ41がハウジング32の内部に組み込まれている。チップパッケージ41は、流量検出部43のみを有しており、第1実施形態における温度検出部42は省略されている。流量検出部43は、チップパッケージ41によって平行通路部75に配置されている。
本実施形態の熱式流量計15によれば、主通路23を流れる被計測気体の主流れ方向Fに対して傾斜して開口する入口開口部72と、被計測気体の主流れ方向Fに対して入口開口部72から入口開口部72と同じ向きに傾斜した方向に延びる傾斜通路部74とを有しているので、サイクロンバイパスや分岐通路などの従来構造と比較して低背化による小型化が可能で、測定精度と耐汚損性能を両立させることができる。
上述の各実施形態では、流量検出部43がチップパッケージ41に設けられている場合を例に説明したが、かかる構成に限定されるものではなく、例えば回路基板に設ける構成としてもよい。
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
15 熱式流量計
23 主通路
31 台座
32 ハウジング
32a 基端部
32b 先端部
34 整流板
41 チップパッケージ
42 温度検出部
43 流量検出部
44 パッケージ本体
51 副通路
52 入口開口部
53 出口開口部
54 傾斜通路部
55 平行通路部
56 後端
61 上面
62 下面
62a 第1の湾曲面
62b 第2の湾曲面
P 曲率頂点

Claims (6)

  1. 被計測気体が流れる主通路にハウジングが配置され、該ハウジングに設けられた副通路に前記主通路から被計測気体を取り込み、前記副通路内に配置された流量検出部により被計測気体の流量を計測する熱式流量計であって、
    前記副通路は、
    前記主通路を流れる前記被計測気体の主流れ方向に対して傾斜して開口する入口開口部と、
    該入口開口部から前記主通路を流れる前記被計測気体の主流れ方向に対して傾斜した方向に延びる傾斜通路部と、
    該傾斜通路部の端部で折曲されて前記主通路を流れる前記被計測気体の主流れ方向に対して平行に延在する平行通路部と、
    を有し、
    前記平行通路部は、前記被計測気体の主流れ方向に沿って前記入口開口部から前記傾斜通路部の内部を見たときに、前記被計測気体の主流れ方向に直交する方向に偏倚した露出しない位置に配置されており、前記平行通路部の通路途中に前記流量検出部が配置されている
    ことを特徴とする熱式流量計。
  2. 前記ハウジングを前記主通路に固定する台座を備え、
    前記入口開口部は、前記台座から離間する方向に向かって開口し、
    前記傾斜通路部は、前記入口開口部から前記被計測気体の主流れ方向に沿って移行するにしたがって、漸次台座に接近する方向に傾斜していることを特徴とする請求項1に記載の熱式流量計。
  3. 前記傾斜通路部は、前記被計測気体の主流れ方向から見た場合に露出する導入面を有しており、
    該導入面は、前記被計測気体の主流れ方向前方に向かって凸状に湾曲する湾曲面と、前記湾曲面の曲率頂点に連続して傾斜する傾斜面とを有していることを特徴とする請求項2に記載の熱式流量計。
  4. 前記副通路は、出口開口部を有しており、該出口開口部に移行するにしたがって漸次断面積が小さくなる絞り部が設けられていることを特徴とする請求項1から請求項3のいずれか一項に記載の熱式流量計。
  5. 前記入口開口部の側方に整流板が設けられていることを特徴とする請求項1から請求項4のいずれか一項に記載の熱式流量計。
  6. 前記傾斜通路部は、前記被計測気体の主流れ方向に対して、25°以上70°以下の傾斜角度で傾斜していることを特徴とする請求項1から請求項5のいずれか一項に記載の熱式流量計。
JP2019565769A 2018-01-22 2018-12-14 熱式流量計 Active JP6915098B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018008412 2018-01-22
JP2018008412 2018-01-22
PCT/JP2018/046040 WO2019142565A1 (ja) 2018-01-22 2018-12-14 熱式流量計

Publications (2)

Publication Number Publication Date
JPWO2019142565A1 JPWO2019142565A1 (ja) 2020-11-19
JP6915098B2 true JP6915098B2 (ja) 2021-08-04

Family

ID=67302114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565769A Active JP6915098B2 (ja) 2018-01-22 2018-12-14 熱式流量計

Country Status (3)

Country Link
US (1) US11067419B2 (ja)
JP (1) JP6915098B2 (ja)
WO (1) WO2019142565A1 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735891A1 (de) * 1997-08-19 1999-02-25 Bosch Gmbh Robert Meßvorrichtung zum Messen der Masse eines in einer Leitung strömenden Mediums
JP3602762B2 (ja) * 1999-12-28 2004-12-15 株式会社日立ユニシアオートモティブ 流量計測装置
JP2002005713A (ja) 2000-04-17 2002-01-09 Denso Corp 空気流量測定装置
JP2003176740A (ja) * 2001-12-11 2003-06-27 Denso Corp 流体測定装置
US6938473B2 (en) 2001-11-19 2005-09-06 Denso Corporation Apparatus for measuring flow amount
DE10345584A1 (de) * 2003-09-29 2005-04-28 Bosch Gmbh Robert Leiterplatte mit Kunststoffteil zur Aufnahme einer Messeinrichtung
JP4317556B2 (ja) * 2006-07-21 2009-08-19 株式会社日立製作所 熱式流量センサ
JP5049996B2 (ja) * 2009-03-31 2012-10-17 日立オートモティブシステムズ株式会社 熱式流量測定装置
DE102010020264A1 (de) 2010-05-28 2011-12-01 Continental Automotive Gmbh Luftmassenmesser
JP5541298B2 (ja) * 2012-01-26 2014-07-09 株式会社デンソー 空気流量測定装置
JP6355609B2 (ja) 2015-10-28 2018-07-11 日立オートモティブシステムズ株式会社 熱式流量計

Also Published As

Publication number Publication date
WO2019142565A1 (ja) 2019-07-25
JPWO2019142565A1 (ja) 2020-11-19
US20200326217A1 (en) 2020-10-15
US11067419B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
US7891240B2 (en) Thermal type flow measuring device
US7043978B2 (en) Airflow meter
JP5183164B2 (ja) 流量測定装置
CN105324644B (zh) 物理量测量装置
US8701474B2 (en) Air flow measuring device
US8950248B2 (en) Air flow measuring device having a sensor accommodated in a bypass flow passage
US20200363249A1 (en) Physical quantity measurement device
JP6915098B2 (ja) 熱式流量計
JP7122462B2 (ja) 物理量検出装置
WO2020202791A1 (ja) 物理量検出装置
JP6355609B2 (ja) 熱式流量計
CN109196311B (zh) 热式流量计
JP6995020B2 (ja) 物理量検出装置
JP6438707B2 (ja) 熱式流量計
JP6674917B2 (ja) 熱式流量計
WO2020003809A1 (ja) 物理量検出装置
JP2021067510A (ja) 物理量検出装置
CN109196312B (zh) 热式流量计
JP2020098179A (ja) 物理量測定装置
US11391610B2 (en) Flow rate measurement device
JP4512616B2 (ja) 空気流量測定モジュール
JP3867106B2 (ja) 空気流量測定モジュール
JP4006463B2 (ja) 流量測定モジュール及び内燃機関の制御方法
JP2021039027A (ja) 空気流量測定装置
CN113167620A (zh) 物理量测定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6915098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150