JP6899035B2 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP6899035B2
JP6899035B2 JP2020520340A JP2020520340A JP6899035B2 JP 6899035 B2 JP6899035 B2 JP 6899035B2 JP 2020520340 A JP2020520340 A JP 2020520340A JP 2020520340 A JP2020520340 A JP 2020520340A JP 6899035 B2 JP6899035 B2 JP 6899035B2
Authority
JP
Japan
Prior art keywords
yoke
coil
plasma
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020520340A
Other languages
English (en)
Other versions
JPWO2020121588A1 (ja
Inventor
岩瀬 拓
拓 岩瀬
真一 磯崎
真一 磯崎
横川 賢悦
賢悦 横川
森 政士
政士 森
淳一 佐山
淳一 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2020121588A1 publication Critical patent/JPWO2020121588A1/ja
Application granted granted Critical
Publication of JP6899035B2 publication Critical patent/JP6899035B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

本発明は、半導体デバイスの製造工程において、酸化シリコン、窒化シリコン、低誘電率膜、ポリシリコン、アルミニウム等の材料に対し、プラズマを用いてエッチング等の処理を行うのに好適なプラズマ処理装置に係る。
半導体デバイスの製造プロセスでは、低温プラズマによるエッチングなどのプラズマ処理が広く用いられている。低温プラズマは例えば減圧下の反応容器内で上部電極と下部電極の二枚の電極が対向して配置された容量結合型の平行平板電極に高周波電力を印加することによって形成することができる。この平行平板型のプラズマ処理装置は半導体デバイスの製造プロセスにおいて多用されている。
平行平板型のプラズマ処理装置は、二枚の電極間に例えば半導体材料で構成されるウエハ(以下ウエハ)を載置し、所望のプロセスガスを導入した上で一方の電極に高周波電力を印加することでプラズマを生成し、ウエハへラジカルとイオンを供給することでプラズマ処理を行うようになっている。このようなプラズマによるエッチング加工は加工形状の異方性を制御できるため、加工精度の点で優位である。
半導体デバイスの加工寸法は微細化の一途を辿っており、加工精度の要求も高まる一方である。そのため、適度なガスの解離状態を維持しつつ低圧で高密度なプラズマを生成することが求められている。プラズマを生成するために印加する高周波電力の周波数は一般に10MHz以上であり、周波数が高いほど高密度なプラズマ生成に有利である。しかし、高周波数化すると電磁波の波長が短くなるため、プラズマ処理室内の電界分布が一様ではなくなってくる。電界分布はプラズマの電子密度に影響を与え、電子密度はエッチレートに影響を与える。エッチレートの面内分布の悪化は量産性を低下させてしまうので、高周波電力の周波数を高めるとともにエッチレートのウエハ面内の均一性を高めることが求められている。
そこで、例えば特許文献1(特開2008−166844号公報)ではウエハの中心から外周に向かって発散する磁界を形成し、磁界と電界の相互作用によりプラズマ密度分布を均一化する技術が知られている。また、例えば特許文献2(特開2004−200429号公報)では複数のコイル毎にヨークを設け、局所的にプラズマ密度分布を制御し、均一化する技術が知られている。
特開2008−166844号公報 特開2004−200429号公報
VHF帯以上の高周波電力によるプラズマでは、外部磁場による分布制御を行う技術(例えば特許文献1、特許文献2)があるが、同心円状に全体的にプラズマ密度分布を凹凸に制御することと局所的に制御することの両立は困難であった。
そこで本発明では、従来技術の課題を解決して、プラズマ密度分布を中心高な分布と節分布を両方とも独立に制御することが可能にし、試料をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができるプラズマ処理装置を提供する。
上記した従来技術の課題を解決するために、本発明では、プラズマ処理装置を、試料がプラズマ処理される真空容器と、プラズマを生成するための高周波電力を供給する高周波電源と、試料が載置される試料台と、真空容器の内部に磁場を形成させ真空容器の外側に配置された磁場形成部とを備え、磁場形成部は、第1のコイルと、第1のコイルより内側に配置され第1のコイルの直径より小さい直径の第2のコイルと、第1のコイル、真空容器の上方および側面を覆い第1のコイルが内部に配置された第1のヨークと、第2のコイルの周方向に沿って第2のコイルを覆い第2のコイルの下方側に開口部を有する第2のヨークとを具備させた。
また、上記した従来技術の課題を解決するために、本発明では、プラズマ処理装置を、 試料がプラズマ処理される真空容器と、プラズマを生成するための高周波電力を供給する高周波電源と、試料が載置される試料台と、真空容器の内部に磁場を形成させ真空容器の外側に配置された磁場形成部とを備え、磁場形成部は、第1のコイルと、第2のコイルと、第1のコイルを覆うとともに真空容器の上方および側面を覆い第1のコイルが内部に配置された第1のヨークと、第2のコイルを覆う第2のヨークとを具備し、第1のヨークの一方の端部から発した磁力線が第2のヨークを介して第1のヨークの他方の端部へ戻り、かつ第2のヨークから発した磁力線が第2のヨークへ戻るように第2のコイルと第2のヨークが構成されようにした。
本発明によれば、プラズマ密度分布を中心高な分布と節分布を両方とも独立に制御することが可能になり、試料台に載置された試料をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
本発明の実施例に係るプラズマ処理装置の概略の構成を示すブロック図である。 本発明の実施例に係るプラズマ処理装置における外周コイルとミドルヨークにより発生する磁力線の分布状態を模式的に示す、外周コイルとミドルヨークを含む部分断面図である。 比較例で示した構成において電子密度分布のコイル電流値依存性を示すグラフである。 本発明の実施例で示した構成においてミドルコイル電流のON/OFFによる電子密度分布電子密度分布を示すグラフである。 本発明の第1の変形例における外周コイルとミドルヨーク及びその周辺の部分の構成を示す部分断面図である。 本発明の第2の変形例における外周コイルとミドルヨーク及びその周辺の部分の構成を示す部分断面図である。 本発明の第3の変形例における外周コイルとミドルヨーク及びその周辺の部分の構成を示す部分断面図である。 本発明の第4の変形例におけるミドルヨークとミドルコイルの構成を示す部分断面図である。 本発明の第5の変形例におけるミドルヨークとミドルコイルの構成を示す部分断面図である。 本発明の実施例の比較例として例示したプラズマ処理装置の概略の構成を示すブロック図である。
本発明は、プラズマ処理装置を、(a)プラズマ生成域の径方向の磁束密度(Br)が外周ほど大きくなるような可変の発散磁場を形成し、(b)ウエハのミドル領域(R=50〜100[mm])プラズマ生成域のみのBrを可変にするように構成したものである。
(a)のために断面がL字型のヨークAをプラズマ生成領域上方に配置して磁束が中央から外周側へ戻る経路をつくり、(b)のためにウェハミドル領域直上に下方が開いたコの字型のヨークBを設置するとともに内部にコイルCを配置するようにした。
ヨークAのイン側端部から出る磁束をヨークB経由でヨークAのアウト側端部に戻し、ヨークBの端部から出る磁束をヨークBに戻すため、ヨークAをヨークBの上方かつ外周に配置するようにした。
この時の要件は、
・ヨークAの断面はチャンバを覆うような位置でL字型であること
・ヨークBはプラズマ生成域より上方に配置し、下方が開いたコの字形状であること
・ヨークAとヨークBは空間的に分断していること
・ヨークBの半径方向の重心位置はヨークAのそれよりも内周側にあること
・ヨークBの半径方向の重心位置はウエハ上にあること
・ヨークBの内部に一個以上のコイルが配置されていること
・ヨークAの内部に隣接して一個以上のコイルが配置されていること
コイルCは複数のコイルを左右に並べてもよい。複数並んだコイルのいずれに電流を流すかによってプラズマの電子密度が高まる半径位置を変化させることができる。
コの字型ヨークBの半径方向の中心位置はR=50〜100[mm]に配置させることが望ましい。より望ましくは高周波電力の波長λに対し、シャワープレートの比誘電率εとしたとき、R=λ/ε/4*1000[mm]とする。これは誘電体中を伝搬する高周波の実効的な波長の半分の長さで定在波が発生しやすいためである。
すなわち本発明は、プラズマ生成域の径方向の磁束密度(Br)が外周ほど大きくなるような可変の発散磁場を形成し、なおかつウエハのミドル領域(R=50〜100[mm])プラズマ生成域のみのBrを可変にする。断面がL字型のヨークAをプラズマ生成領域上方に配置して磁束が中央から外周側へ戻る経路をつくり、ウェハミドル領域直上に下方が開いたコの字型のヨークBを設置するとともに内部にコイルCを配置する。ヨークAのイン側端部から出る磁束をヨークB経由でヨークAのアウト側端部に戻し、ヨークBの端部から出る磁束をヨークBに戻すため、ヨークAをヨークBの上方かつ外周に配置したものである。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。
ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
図1は、本発明の実施例に係るプラズマ処理装置100の構成の概略を模式的に示す縦断面図である。
図1に係るプラズマ処理装置100は、ソレノイドコイルである外周コイル81およびミドルコイル83を用いた有磁場平行平板型のプラズマ処理装置である。本実施例のプラズマ処理装置100は、真空容器10を有し、この真空容器10内部の空間であり処理対象の試料が載置され処理用のガスが供給されてプラズマが内部に形成される処理室40が形成されている。
更に、プラズマ処理装置100は、真空容器10の上方に配置されて処理室40の内部にプラズマを形成するための電界または磁界を生成する手段であるプラズマ形成部50と、真空容器10の下部と連結され処理室40の内部を排気して減圧するターボ分子ポンプ等の真空ポンプを含む排気部45と、全体を制御する制御部70を備えている。
真空容器10の処理室40の内部には、その下方に配置された円筒形の試料台2を備え、この試料台2の上面は、その上に半導体ウエハ等の基板状の被処理試料3(以下、試料3と記す)が載せられる載置面141が形成されている。
この載置面141の上方には、この載置面141に対向して配置されてプラズマを形成するための高周波電力が供給される円板形状の上部電極4が設けられている。また、この上部電極4の試料3の側で試料台2の載置面141に対向して配置されると共に処理室40の天井面を構成し当該処理室40の内部にガスを分散して供給する貫通孔51を複数備えた円板状のシャワープレート5とが配置されている。
シャワープレート5とその上方に配置されたアンテナである上部電極4とは、これらが真空容器10に取り付けられた状態でこれらの間に隙間41が形成される。隙間41へは、これと連結された真空容器10の外部のガス供給部60と接続するガス導入ライン6から上部電極4内に施されたガス流路を介してガスが導入される。
ガス供給部60は、供給するガスの種類に応じた複数のマスフローコントローラ61を備えており、それぞれのマスフローコントローラ61は、図示していないガスボンベと接続している。隙間41に供給されたガスは、隙間41の内部で分散された後、シャワープレート5の側の中央部を含むに領域に配置された複数の貫通孔51を通り処理室40の内部に供給される。
ガス供給部60から、この複数の貫通孔51を通り処理室40の内部に供給されるガスとしては、試料3の処理に用いられる処理用のガス或いは処理には直接的には用いられないものの処理用のガスを希釈する、もしくは処理用のガスが供給されない間に処理室40の内部に供給されて処理用のガスと入れ替えられる不活性ガスなどがある。
上部電極4の内部には、上部電極用冷媒流路7が形成されている。この上部電極用冷媒流路7には、冷媒の温度を所定の範囲に調節するチラー等の温度制御装置(図示せず)と連結された冷媒供給ライン71が接続されている。冷媒供給ライン71を介して温度制御装置(図示せず)から温度が所定の範囲に調節された冷媒が上部電極用冷媒流路7の内部に供給され循環することにより、熱交換されて上部電極4の温度が処理に適切な値の範囲内に調節される。
また、上部電極4は、導電性材料であるアルミまたはステンレス等で形成された円板状の部材で形成されており、その上面の中央部にプラズマ形成用の高周波電力が伝達される同軸ケーブル91が電気的に接続されている。
上部電極4には、同軸ケーブル91を介してこれと電気的に接続された放電用高周波電源8(以下、高周波電源8と記す)からプラズマ形成用の高周波電力が放電用高周波電力整合器9を介して供給され、上部電極4の表面からシャワープレート5を透過して処理室40の内部に電界が放出される。本実施例では、高周波電源8から上部電極4に印加されるプラズマ形成用の高周波電力として、超高周波帯(VHF帯)域の周波数である200MHzの電力を用いた。
さらに、真空容器10の外部であって処理室40の上部の上方と側方とを囲む位置には、外周ヨーク82で覆われた電磁コイルである外周コイル81と、ミドルヨーク84で覆われた電磁コイルであるミドルコイル83が配置されている。この外周コイル81とミドルコイル83により発生する磁界が、処理室40の内部に形成される。
シャワープレート5は、石英等の誘電体やシリコン等の半導体で構成されている。これにより、高周波電源8から上部電極4にプラズマ形成用の高周波電力が印加された状態で、上部電極4により形成された電界がシャワープレート5を透過することができる。
また、上部電極4は、その上方や側方に配置されて石英やテフロン(登録商標)等の誘電体で構成されリング状の上部電極絶縁体12により、真空容器10から電気的に絶縁されている。同様に、シャワープレート5の周囲には、石英等の誘電体で構成される絶縁リング13が配置されており、シャワープレート5は、真空容器10から絶縁されている。これら上部電極絶縁体12と絶縁リング13と上部電極4、シャワープレート5とは、真空容器10の上部を構成する蓋部材(図示を省略)に固定されており、蓋部材の開閉の動作の際に蓋部材と一体として回動する。
円筒形を有した真空容器10は、その側壁が、図示していない真空容器であって減圧された内部を試料3が搬送される搬送容器と連結されて、これらの間には、試料3が出し入れされる通路の開口としてのゲートが配置され、真空容器10内部で試料3の処理がされる場合に、ゲートを閉塞して真空容器10内部を気密に封止するゲートバルブが配置されている。
処理室40の内部の試料台2の下方であって真空容器10の下部には、処理室40の内部を排気する排気部45と連通する排気用の開口42が配置されている。この排気用の開口42と排気部45の図示していない真空ポンプとの間でこれらを連結する排気の経路43の内部には、板状のバルブである圧力調整バルブ44が配置されている。この圧力調整バルブ44は、排気の経路43の断面を横切って配置された板状のバルブであり、この板状のバルブが軸回りに回転して流路に対する断面積を増減させる。
制御部70で圧力調整バルブ44の回転の角度を調節することにより、処理室40からの排気の流量または速度を増減することができる。処理室40の内部の圧力は、シャワープレート5の貫通孔51から供給されるガスの流量または速度と排気用の開口42から排気部45の側に排出されるガスや粒子の流量または速度とのバランスにより、所望の値の範囲内となるように、制御部70により調節される。
次に、試料台2の周辺の構造に関して説明する。本実施例の試料台2は、処理室40の下方の中央部に配置された円筒形状の台であって、その内部に円筒形または円板形状を有した金属製の基材2aを備えている。
本実施例の基材2aは、同軸ケーブルを含む給電経路28によりバイアス用高周波電源20と当該給電経路28上に配置されたバイアス用高周波電力整合器21を介して電気的に接続されている。バイアス用高周波電源20から基材2aに印加されるバイアス用高周波電力は、高周波電源8から上部電極4に印加されるプラズマ生成用高周波電力とは異なる周波数(本例では4MHz)である。また、給電経路28上には、抵抗またはコイル等の素子32が配置され、当該素子32は接地されたバイアス用高周波電力整合器21及びバイアス用高周波電源20と接続されている。
高周波電源8から上部電極4にプラズマ生成用高周波電力を印加して試料台2とシャワープレート5との間にプラズマ11を発生させた状態で、バイアス用高周波電源20から基材2aに高周波電力を供給することにより、基材2aには、バイアス電位が発生する。このバイアス電位により、プラズマ11中のイオン等の荷電粒子は、試料3の上面または載置面141に誘引される。すなわち、基材2aは、上部電極4の下方において、バイアス用高周波電力が印加される下部電極として機能する。
また、基材2aの内部には、チラー等の温度制御装置191により所定の温度に調整された冷媒を循環して通流させるための冷媒流路19が多重の同心状または螺旋状に配置されている。
基材2aの上面には、静電吸着膜14が配置されている。静電吸着膜14は、アルミナあるいはイットリア等の誘電体の材料で形成されており、その内部に、試料3を静電吸着させるための直流電力が供給されるタングステン電極15を内蔵している。タングステン電極15の裏面には、基材2aを貫通して配置された静電吸着用給電経路27が接続されている。タングステン電極15は、この静電吸着用給電経路27により、抵抗またはコイル等の素子32及び接地された低域通過フィルタ(ローパスフィルタ)16を介して直流電源17と電気的に接続されている。
本実施例の直流電源17及びバイアス用高周波電源20は、その一端側の端子は接地されるかアースに電気的に接続されている。
より高い周波数の電流の流れを妨げてフィルタリング(濾過)する低域通過フィルタ16、及びバイアス用高周波電力整合器21は、直流電源17およびバイアス用高周波電源20に、高周波電源8からのプラズマ形成用の高周波電力が流入するのを抑制するために配置されている。
直流電源17からの直流電力、或いはバイアス用高周波電源20からの高周波電力は、損失なくそれぞれ静電吸着膜14および試料台2に供給されるが、試料台2側から直流電源17およびバイアス用高周波電源20に流入するプラズマ形成用の高周波電力は低域通過フィルタ16またはバイアス用高周波電力整合器21を介してアースに流される。なお、図1中のバイアス用高周波電源20からの給電経路28上には、低域通過フィルタ16は図示されていないが、同様な効果を有する回路が図示するバイアス用高周波電力整合器21内に内蔵されている。
このような構成では、試料台2から直流電源17およびバイアス用高周波電源20側を見た場合の高周波電源8からの電力のインピーダンスは、相対的に低くされる。本実施例では、抵抗またはコイル等のインピーダンスを高める素子32を、給電経路上で電極と低域通過フィルタ16及びバイアス用高周波電力整合器21との間に挿入して配置することで、試料台2の基材2a側から直流電源17或いはバイアス用高周波電源20側を見たプラズマ形成用の高周波電力のインピーダンスを高く(本実施例では100Ω以上に)している。
図1に示す実施例は、静電吸着膜14の内部に配置されたタングステン電極15を複数備えており、これらのうち一方と他方とが異なる極性を有するように直流電圧が供給される両極性の静電吸着を行うものとなっている。このため、載置面141を形成する静電吸着膜14が、試料3と接触する面の面積を2等分されたか又はこれと見做せる程度に近似した範囲内の値でタングステン電極15が異なる極性を有する2つの領域に分けられ、それぞれに独立した値の直流電力が供給されて、異なる値の電圧に維持される。
静電吸着されて接触している静電吸着膜14と試料3の裏面との間には、配管181を介してヘリウム供給手段18よりヘリウムガスが供給される。これにより、試料3と静電吸着膜14との間の熱伝達の効率が向上し、基材2aの内部の冷媒流路19との熱の交換量を増大させることができ、試料3の温度を調節する効率を高めている。
基材2aの下方には、テフロン(登録商標)等で形成された円板状の絶縁板22が配置されている。これにより、接地されるかアースと電気的に接続され接地電位にされた基材2aは、下方の処理室40を構成する部材から電気的に絶縁されている。さらに、基材2aの側面の周囲には、アルミナ等の誘電体製のリング状の絶縁層23が、基材2aを囲むようにして配置されている。
基材2aの下方で、これと接続されて配置された絶縁板22の周囲、及びその上方で基材2aを囲むようにして配置され絶縁層23の周囲には、接地されるかアースと電気的に接続され接地電位にされた導電性材料から構成された導電板29が配置されている。導電板29は、上方から見て円形かこれと見做せる程度の近似した形状を有した板部材である。導電板29と基材2aとの間には絶縁層23が介在しており、導電板29と基材2aとは、電気的に絶縁されている。
リング状の絶縁層23の上方には、石英などの誘電体もしくはシリコンなどの半導体で構成されたサセプタリング25が配置されている。サセプタリング25が試料3の周囲に配置され、基材2aをサセプタリング25と絶縁層23とで覆うことで、試料3の外端部周辺の反応生成物の分布を制御し、プロセス性能の均一化を行っている。
このように、試料台2は、基材2aと、タングステン電極15を内部に備えた静電吸着膜14、基材2aを載せて基材2aと真空容器10との間を電気的に絶縁する絶縁板22、絶縁材料で形成されて基材2aの周囲を囲む絶縁層23、基材2aの上面と静電吸着膜14の側面を覆うサセプタリング25、および、絶縁板22の外周部と絶縁層23の外周部とを覆う導電板29を備えて構成されている。
サセプタリング25の外周側には、サセプタリング25に接するように配置された同心円状の板状の遮蔽板24が取り付けられている。遮蔽板24は、処理室40の内部に形成されるプラズマ11の発生領域が、試料台2の側面にまで拡大するのを防いで、試料台2の上部に偏らせるためのものであって、謂わば、閉じ込めるために配置されたものである。板状の遮蔽板24には、ガスや粒子を上下方向に通過させるために、複数の孔241が形成されている。
基材2aには温度計測器35が埋め込まれており、基材2aの温度を計測する。試料3の表面に図示していない温度計測器を設置した状態で、図示していない加熱手段で試料3を加熱して試料3の温度を変化させて、そのときの図示していない温度計測器で計測した試料3の表面温度と基材2aに埋め込まれた温度計測器35で計測された基材2aの温度との関係を予めデータベース化して記憶しておく。処理室40の内部にプラズマ11を発生させて試料3を実際に処理している時にこのデータベースを参照することにより、基材2aに埋め込まれた温度計測器35で計測した基材2aの温度から、プラズマ処理中の試料3の温度を推定することができる。
本実施例に係るプラズマ処理装置100においては、外周コイル81の付近には断面形状がL字型の外周ヨーク82が外周コイル81を取り囲むように配置されている。また、外周ヨーク82の内側にはミドルコイル83と、ミドルコイル83を取り囲むように断面がコの字型のミドルヨーク84が配置されている。断面形状がL字型の外周ヨーク82と断面がコの字型のミドルヨーク84は、互いに接触しないように配置されている。
ミドルヨーク84は、ミドルコイル83に電力を印加して磁界を発生させたときに、ミドルヨーク84から発生する磁束が、試料台2に載置された試料3の上部のプラズマ11が生成する領域に発散するように下方が開いたコの字型となっている。
外周コイル81、外周ヨーク82、ミドルコイル83、ミドルヨーク84の形状および配置は、試料台2に載置された試料3の上部のプラズマ11を生成する領域の径方向の磁束密度(Br)が外周ほど大きくなるような可変の発散磁場を形成し、試料3のミドル領域(例えば、試料3が直径Φ300mmのウエハである場合には、R=50〜100[mm]の領域)におけるプラズマ生成域のBrを可変にする目的で決定される。
本実施例の構成では、外周ヨーク82をミドルヨーク84の上方で一部がオーバーラップし、かつ外周に配置している。このような構成とすることにより、図2に模式的に示すように、外周コイル81に電流を流すことにより発生する磁場により外周ヨーク82のイン側端部8201から出る磁力線8210で表される磁束をミドルヨーク84経由で外周ヨーク82のアウト側端部8202に戻すことができる。さらに、ミドルコイル83に電流を流すことにより発生する磁場により、ミドルヨーク84の端部8401から出る磁力線8220で表される磁束を、外周ヨーク82を経由してミドルヨーク84に戻すことができる。なお、図2において、磁力線8210と8220とで表した磁束は、共に、外周コイル81とミドルコイル83とに同時に電流を流した場合に発生する磁束の状態を示している。
これにより、断面形状がL字型の外周ヨーク82とコの字型のミドルヨーク84によって形成された磁界は、中心から外周に向かって滑らかに発散する磁束を形成し、プラズマの電子密度分布(以下、単にプラズマ密度分布とも記す)の凹凸(濃淡)を制御可能となる。また、コの字型のミドルヨーク84は断面形状がL字型の外周ヨーク82に対して空間的に分離されているために、ミドルヨーク84は外周ヨーク82に対して比較的独立した磁束ループを形成することができ、図4に示したように、ミドル領域のプラズマ密度分布の制御が可能になる。
その結果、試料台2の上部のプラズマ11が発生する領域において磁場の制御を比較的精度良く行うことができ、試料台2に載置した試料3の近傍での電子密度の分布を、比較的精度良く制御することが可能になる。
次に比較例について説明する。図10に本発明の実施例に対する比較例としてのプラズマ処理装置200を示す。比較例のプラズマ処理装置200の全体的な構成は図1で説明した実施例で説明したプラズマ処理装置100と同様な部分には同じ番号を付して、説明の重複を避ける。図10に示したプラズマ処理装置200は、ヨークとコイルの構成が図1で説明した実施例におけるミドルコイル83、ミドルヨーク84を備えていない点において、異なる。
図10に示した比較例のヨーク80の構造は断面がL字型となっており、その内側にコイル1を外側と内側の二か所に配置している。これは、特許文献1に記載されているプラズマ処理装置におけるヨーク5及びコイル6の構成に類似している。
ヨーク80とコイル1の構成を図10の比較例に示したような構成とした場合、コイル1とヨーク80が形成する静磁場は、ヨーク80の内側端部と外側端部を繋ぐ磁気回路を形成する。この静磁場は、外周に向かって磁束が発散する垂下型の磁場を形成する。
図10に示した本発明の比較例の構成でプラズマの電子密度分布を計算した結果を、図3に示す。コイル1の電流値を7Aから10Aまで変えて、それぞれ計算を行った。図3において、301乃至304は、それぞれコイル1の電流値7A、8A,9A、10Aの場合の試料台2の半径方向のプラズマの電子密度分布を示している。コイル1の電流値によって、電子密度分布301のような内周高ないし電子密度分布304のような外周高の電子密度分布を形成可能なことがわかる。しかし、電子密度分布301乃至304で示されるように、いずれの電流値でも、半径位置310で示される半径100mmの周辺の電子密度が局所的に高まることはない。
一方、図1に示した本発明の実施例の構成におけるプラズマの電子密度分布を計算した結果を図4に示す。図1に示した構成において、外周コイル81に電流を流した上で、ミドルコイル83に電流を流した場合の電子密度分布401と、ミドルコイル83に電流を流さない場合の電子密度分布402を計算した。ミドルコイル83のON/OFFに対応して、半径位置310で示される半径100mmの周辺の位置で、電子密度分布401が411の位置で局所的に増加させることが可能なことがわかる。
試料3が直径Φ300mmのウエハである場合には、ミドルヨーク84の半径方向の中心位置はR=50〜100[mm]に配置させることが望ましい。より望ましくは高周波電力の波長λに対し、シャワープレート5の比誘電率εとしたとき、R=λ/ε/4*1000[mm]とする。これは誘電体中を伝搬する高周波の実効的な波長の半分の長さで定在波が発生しやすいためである。
上記に説明したように、本実施例では、断面形状がL字型の外周ヨーク82をプラズマ生成領域上方に配置して磁束が中央から外周側へ戻る経路をつくり、ウェハミドル領域直上に下方が開いたコの字型のミドルヨーク84を設置するとともに内部にミドルコイル83を配置した。外周ヨーク82のイン側端部8201から出る磁束をミドルヨーク84経由で外周ヨーク82のアウト側端部8202に戻し、ミドルヨーク84の端部8401から出る磁束をミドルヨーク84に戻すために、外周ヨーク82をミドルヨーク84の上方かつ外周に配置する構成とした。
これにより、本実施例によるプラズマ処理装置100では、制御部70で外周コイル81に印加する電流を制御して、真空容器10内部で試料台2に載置された試料3の上方のプラズマ11を生成する領域において、試料3の径方向の磁束密度(Br)が外周ほど大きくなるような可変の発散磁場を形成し、なおかつ制御部70でミドルコイル83に印加する電流を制御して、試料3の上方のプラズマ11を生成する領域におけるミドル領域(R=50〜100[mm])のBrを可変にすることができる。
本実施例の図1に示したような外周コイル81とミドルコイル83及び外周ヨーク82とミドルヨーク84の配置とすることにより、断面形状がL字型の外周ヨーク82とコの字型のミドルヨーク84によって形成された磁界は、中心から外周に向かって滑らかに発散する磁束を形成し、プラズマ密度分布の凹凸を制御可能となる。また、コの字型のミドルヨーク84はL字型の外周ヨーク82と比較的独立した磁束ループを形成し、図4に示したように、ミドル領域のプラズマ密度分布の制御が可能になる。
以上より、本実施例によれば、プラズマ密度分布の中心高な分布と節分布を両方とも独立に制御することが可能になり、試料台に載置された試料をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
また、本実施例によれば、同心円状に全体的にプラズマ密度を凹凸に制御しつつ、Φ300mmウエハの中周領域(R=50〜100mm)のプラズマ密度を独立に制御することができ、Φ300mmのウエハをプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
[変形例1]
本発明の実施例の第1の変形例を、図5を用いて説明する。図5には、図1で説明したプラズマ処理装置100において、L字型の外周ヨーク82とコの字型のミドルヨーク84とその周辺に相当する部分の構成を示す。
図5の構成で、図1に示した構成と異なる点は、図1のL字型の外周ヨーク82を、L字型の外周ヨーク821に置き換えた点である。図1のL字型の外周ヨーク82では、イン側端部8201がコの字型のミドルヨーク84と重なっていたのに対して、図5に示した本変形例の構成においては、L字型の外周ヨーク821のイン側端部8211がコの字型のミドルヨーク84と重なっていない点である。すなわち、L字型の外周ヨーク821のイン側端部8211の径がコの字型のミドルヨーク84の外径よりも大きく、L字型の外周ヨーク821のイン側端部8211がコの字型のミドルヨーク84の近傍に配置されている。
L字型の外周ヨーク821とコの字型のミドルヨーク84とを図5に示したような関係にしても、外周コイル81に電流を流すことにより発生する磁場により外周ヨーク821のイン側端部8211から出る磁束をミドルヨーク84経由で外周ヨーク821のアウト側端部8212に戻すことができる。さらに、ミドルコイル83に電流を流すことにより発生する磁場によりミドルヨーク84の端部8401から出る磁束を外周ヨーク821を経由してミドルヨーク84に戻すことができる。
これにより、L字型の外周ヨーク821とコの字型のミドルヨーク84によって形成された磁界は、中心から外周に向かって滑らかに発散する磁束を形成し、プラズマ分布の凹凸を制御可能となる。また、コの字型のミドルヨーク84はL字型の外周ヨーク821と比較的独立した磁束ループを形成し、図4に示したように、ミドル領域のプラズマ密度分布の制御が可能になる。
本変形例のようなコイル・ヨーク配置とすることにより、L字型のヨークとコの字型ヨークによって形成された磁界は中心から外周に向かって滑らかに発散する磁束を形成し、プラズマ密度分布の凹凸を制御可能となる。また、コの字型ヨークはL字型ヨークと比較的独立した磁束ループを形成し、ミドル領域のプラズマ密度分布の制御が可能になる。
その結果、試料台2の上部のプラズマ11が発生する領域において磁場の制御を比較的精度良く行うことができ、試料台2に載置した試料3の近傍での電子密度の分布を、比較的精度良く制御することが可能になり、試料台2に載置された試料3をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
また、本変形例によれば、同心円状に全体的にプラズマ密度を凹凸に制御しつつ、Φ300mmウエハの中周領域(R=50〜100mm)のプラズマ密度を独立に制御することができ、Φ300mmのウエハをプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
[変形例2]
本発明の実施例の第2の変形例を、図6を用いて説明する。図6には、図1で説明したプラズマ処理装置100において、L字型の外周ヨーク82とコの字型のミドルヨーク84とその周辺に相当する部分の構成を示す。
図6の構成で、図1に示した構成と異なる点は、図1のL字型の外周ヨーク82を、変形例1の場合と同様にL字型の外周ヨーク821に置き換え、さらに、コの字型のミドルヨーク841に置き換えた点である。
図1のL字型の外周ヨーク821では、イン側端部8201がコの字型のミドルヨーク84と重なっていたのに対して、図6に示した本変形例の構成においては、変形例1の場合と同様にL字型の外周ヨーク821のイン側端部8211がコの字型のミドルヨーク841と重なっていない。
さらに、ミドルコイル83の高さ方向の位置を、外周ヨーク821のイン側端部8211付近における外周コイル81の高さとほぼ同等にする一方、コの字型のミドルヨーク841の端部8411の位置が図1で説明した実施例におけるコの字型のミドルヨーク84の端部8401の位置と同じ位置となるように、コの字型のミドルヨーク841の端部8411を長く突き出した形状にしている。
L字型の外周ヨーク821とコの字型のミドルヨーク841とを図6に示したような関係にしても、外周コイル81に電流を流すことにより発生する磁場により外周ヨーク821のイン側端部8211から出る磁束をミドルヨーク841経由で外周ヨーク821のアウト側端部8212に戻すことができる。さらに、ミドルコイル83に電流を流すことにより発生する磁場によりミドルヨーク841の端部8411から出る磁束を外周ヨーク821を経由してミドルヨーク841に戻すことができる。
これにより、L字型の外周ヨーク821とコの字型のミドルヨーク841によって形成された磁界は、中心から外周に向かって滑らかに発散する磁束を形成し、プラズマ密度分布の凹凸を制御可能となる。また、コの字型のミドルヨーク841はL字型の外周ヨーク821と比較的独立した磁束ループを形成し、図4に示したように、ミドル領域のプラズマ密度分布の制御が可能になる。
本変形例によれば、図6に示したようなコイル・ヨーク配置とすることにより、L字型のヨークとコの字型ヨークによって形成された磁界は中心から外周に向かって滑らかに発散する磁束を形成し、プラズマ密度分布の凹凸を制御可能となる。また、コの字型ヨークはL字型ヨークと比較的独立した磁束ループを形成し、ミドル領域のプラズマ密度分布の制御が可能になる。
その結果、試料台2の上部のプラズマ11が発生する領域において磁場の制御を比較的精度良く行うことができ、試料台2に載置した試料3の近傍でのプラズマ密度の分布を、比較的精度良く制御することが可能になり、試料台2に載置された試料3をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
また、本変形例によれば、同心円状に全体的にプラズマ密度を凹凸に制御しつつ、Φ300mmウエハの中周領域(R=50〜100mm)のプラズマ密度を独立に制御することができ、Φ300mmのウエハをプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
[変形例3]
本発明の実施例の第3の変形例を、図7を用いて説明する。図7には、図1で説明したプラズマ処理装置100において、L字型の外周ヨーク82とコの字型のミドルヨーク84とその周辺に相当する部分の構成を示す。
図7の構成で、図1に示した構成と異なる点は、図1のL字型の外周ヨーク82を、L字型の外周ヨーク822に置き換えた点である。図1のL字型の外周ヨーク82では、イン側端部8201がコの字型のミドルヨーク84と一部重なっていたのに対して、図7に示した本変形例の構成においては、L字型の外周ヨーク822のイン側端部8221がコの字型のミドルヨーク842全体を覆うように重なっている点である。
L字型の外周ヨーク822とコの字型のミドルヨーク842とを図7に示したような関係にすることで、外周コイル81に電流を流すことにより発生する磁場により外周ヨーク822のイン側端部8221から出る磁束をミドルヨーク842経由で外周ヨーク822のアウト側端部8222に戻すことができる。さらに、ミドルコイル83に電流を流すことにより発生する磁場によりミドルヨーク842の端部8421から出る磁束を外周ヨーク822を経由してミドルヨーク842に戻すことができる。
本変形例によれば、図7に示したようなコイル・ヨーク配置とすることにより、L字型の外周ヨーク822とコの字型のミドルヨーク842によって形成された磁界は、中心から外周に向かって滑らかに発散する磁束を形成し、プラズマ密度分布の凹凸を制御可能となる。また、コの字型のミドルヨーク842はL字型の外周ヨーク822に対して比較的独立した磁束ループを形成し、図4に示したように、ミドル領域のプラズマ密度分布の制御が可能になる。
その結果、試料台2の上部のプラズマ11が発生する領域において磁場の制御を比較的精度良く行うことができ、試料台2に載置した試料3の近傍での電子密度の分布を、比較的精度良く制御することが可能になり、試料台2に載置された試料3をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
また、本変形例によれば、同心円状に全体的にプラズマ密度を凹凸に制御しつつ、Φ300mmウエハの中周領域(R=50〜100mm)のプラズマ密度を独立に制御することができ、Φ300mmのウエハをプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
[変形例4]
本発明に実施例の第4の変形例として、図1で説明したプラズマ処理装置100において、ミドルコイル83とコの字型のミドルヨーク84と組み合わせの変形例を図8に示す。この場合、外周コイル81と外周ヨーク82とは、図1で説明した実施例の構成と同じであるので、説明を省略する。
図8に示した本変形例においては、実施例1で説明したミドルコイル83を二つに分離して、第一のミドルコイル831と第二のミドルコイル832とで構成し、それらをコの字型ミドルヨーク843で覆うように形成した。
なお、外周ヨークについては、実施例1で説明した外周ヨーク82のほかに、変形例1で説明したような外周ヨーク822又は変形例3で説明した外周ヨーク822を用いてもよい。
実施例1で説明したミドルコイル83を第一のミドルコイル831と第二のミドルコイル832とで構成することにより、何れのミドルコイルに電流を流すかによって試料台2の上部のプラズマ11が発生する領域における磁場をより細かく制御することができ、プラズマの電子密度が高まる半径位置を調整することができる。
その結果、試料台2の上部のプラズマ11が発生する領域において磁場の制御を比較的精度良く行うことができ、試料台2に載置した試料3の近傍での電子密度の分布を、比較的精度良く制御することが可能になり、試料台2に載置された試料3をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
なお、図8に示した構成では第一のミドルコイル831と第二のミドルコイル832とを備えた構成を示したが、ミドルコイルの数は3以上であってもよい。
また、本変形例によれば、同心円状に全体的にプラズマ密度を凹凸に制御しつつ、Φ300mmウエハの中周領域(R=50〜100mm)のプラズマ密度を独立に制御することができ、Φ300mmのウエハをプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
[変形例5]
本発明に実施例の第5の変形例として、図1で説明したプラズマ処理装置100において、ミドルコイル83とコの字型のミドルヨーク84と組み合わせの変形例を図9に示す。この場合、外周コイル81と外周ヨーク82とは、図1で説明した実施例の構成と同じであるので、説明を省略する。
図9に示した本変形例においては、実施例1で説明したミドルコイル83とコの字型のミドルヨーク84に組合せを二つにして、第一のミドルコイル833と第一のコの字型のミドルヨーク844の組合せと、第二のミドルコイル834と第二のコの字型のミドルヨーク844の組合せで構成した。
なお、外周ヨークについては、実施例1で説明した外周ヨーク82のほかに、変形例1で説明したような外周ヨーク822又は変形例3で説明した外周ヨーク822を用いてもよい。
このように、第一のミドルコイル833と第一のコの字型のミドルヨーク844の組合せと、第二のミドルコイル834と第二のコの字型のミドルヨーク844の組合せで構成することにより、何れのミドルコイルに電流を流すかによって試料台2の上部のプラズマ11が発生する領域における磁場をより細かく制御することができ、プラズマの電子密度が高まる半径位置の調整をより細かく行うことができる。
その結果、試料台2の上部のプラズマ11が発生する領域において磁場の制御を比較的細かく行うことができ、試料台2に載置した試料3の近傍での電子密度の分布を、より細かく制御することが可能になり、試料台2に載置された試料3をプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
なお、図9に示した構成では、ミドルコイルとミドルヨークの組合せが2組の場合について示したが、ミドルコイルとミドルヨークの組合せの数は3以上であってもよい。
また、本変形例によれば、同心円状に全体的にプラズマ密度を凹凸に制御しつつ、Φ300mmウエハの中周領域(R=50〜100mm)のプラズマ密度を独立に制御することができ、Φ300mmのウエハをプラズマ処理する場合において、処理の均一性をより高い精度で確保することができる。
本発明は、例えば、半導体デバイスの製造ラインにおいて、半導体ウエハをプラズマ中でエッチング処理して半導体ウエハ上に微細なパターンを形成する、エッチング装置に利用することができる。
2…試料台、2a…基材、3…試料、4…上部電極、5…シャワープレート、8…放電用高周波電源、10…真空容器、11…プラズマ、12…上部電極絶縁体、13…絶縁リング、22…絶縁板、23…絶縁層、24…遮蔽板、25…サセプタリング、30…ガス通過孔、40…処理室、45…排気部、50…プラズマ形成部、70…制御部、81…外周コイル、82,821,822…外周ヨーク、83,831,832,833,834…ミドルコイル、84,841,842,843,844,854…ミドルヨーク、100…プラズマ処理装置

Claims (9)

  1. 試料がプラズマ処理される真空容器と、
    プラズマを生成するための高周波電力を供給する高周波電源と、
    前記試料が載置される試料台と、
    前記真空容器の内部に磁場を形成させ前記真空容器の外側に配置された磁場形成部とを備え、
    前記磁場形成部は、第1のコイルと、前記第1のコイルより内側に配置され前記第1のコイルの直径より小さい直径の第2のコイルと、前記第1のコイル、前記真空容器の上方および側面を覆い前記第1のコイルが内部に配置された第1のヨークと、前記第2のコイルの周方向に沿って前記第2のコイルを覆い前記第2のコイルの下方側に開口部を有する第2のヨークとを具備することを特徴とするプラズマ処理装置。
  2. 請求項1に記載のプラズマ処理装置において、
    前記第1のヨークは、前記第2のヨークと電気的に接触しない位置に配置されていることを特徴とするプラズマ処理装置。
  3. 請求項1に記載のプラズマ処理装置において、
    前記第2のヨークは、前記第1のヨークの内部に配置されていることを特徴とするプラズマ処理装置。
  4. 請求項1に記載のプラズマ処理装置において、
    平面図における前記第2のヨークの外径は、平面図における前記試料の直径以上であることを特徴とするプラズマ処理装置。
  5. 請求項1に記載のプラズマ処理装置において、
    前記第2のコイルは、一方のコイルと前記一方のコイルの直径より大きい直径の他方のコイルを有することを特徴とするプラズマ処理装置。
  6. 請求項5に記載のプラズマ処理装置において、
    前記第2のヨークは、前記一方のコイルを覆う一方のヨークと、前記他方のコイルを覆う他方のヨークとを有することを特徴とするプラズマ処理装置。
  7. 請求項1に記載のプラズマ処理装置において、
    前記磁場形成部を制御する制御部をさらに備え、
    前記制御部は、前記試料の径方向の磁束密度が前記試料の外周ほど大きくなるような発散磁場が形成されるように前記第1のコイルに流れる電流を制御するとともに前記試料の径方向の中間領域における磁束密度が所望の値となるように前記第2のコイルに流れる電流を制御することを特徴とするプラズマ処理装置。
  8. 試料がプラズマ処理される真空容器と、
    プラズマを生成するための高周波電力を供給する高周波電源と、
    前記試料が載置される試料台と、
    前記真空容器の内部に磁場を形成させ前記真空容器の外側に配置された磁場形成部とを備え、
    前記磁場形成部は、第1のコイルと、第2のコイルと、前記第1のコイル、前記真空容器の上方および側面を覆い前記第1のコイルが内部に配置された第1のヨークと、前記第2のコイルを覆う第2のヨークとを具備し、
    前記第1のヨークの一方の端部から発した磁力線が前記第2のヨークを介して前記第1のヨークの他方の端部へ戻り、かつ前記第2のヨークから発した磁力線が前記第2のヨークへ戻るように前記第2のコイルと前記第2のヨークが構成されていることを特徴とするプラズマ処理装置。
  9. 請求項1に記載のプラズマ処理装置において、
    前記第1のヨークの一方の端部から発した磁力線が前記第2のヨークを介して前記第1のヨークの他方の端部へ戻り、かつ前記第2のヨークから発した磁力線が前記第2のヨークへ戻るように前記第2のコイルと前記第2のヨークが構成されていることを特徴とするプラズマ処理装置。
JP2020520340A 2019-07-29 2019-07-29 プラズマ処理装置 Active JP6899035B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029630 WO2020121588A1 (ja) 2019-07-29 2019-07-29 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JPWO2020121588A1 JPWO2020121588A1 (ja) 2021-02-15
JP6899035B2 true JP6899035B2 (ja) 2021-07-07

Family

ID=71076594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020520340A Active JP6899035B2 (ja) 2019-07-29 2019-07-29 プラズマ処理装置

Country Status (6)

Country Link
US (1) US20220157576A1 (ja)
JP (1) JP6899035B2 (ja)
KR (1) KR102285126B1 (ja)
CN (1) CN112585726B (ja)
TW (1) TWI738309B (ja)
WO (1) WO2020121588A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210125155A (ko) * 2020-04-07 2021-10-18 삼성디스플레이 주식회사 표시 장치의 제조방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161993A (ja) * 1995-12-12 1997-06-20 Hitachi Ltd 2重コイルを用いた多段コイルを有するプラズマ処理装置及び方法
JP3666999B2 (ja) * 1996-07-26 2005-06-29 アネルバ株式会社 プラズマ処理装置
JP3582287B2 (ja) * 1997-03-26 2004-10-27 株式会社日立製作所 エッチング装置
JP3542514B2 (ja) * 1999-01-19 2004-07-14 株式会社日立製作所 ドライエッチング装置
JP3764639B2 (ja) * 2000-09-13 2006-04-12 株式会社日立製作所 プラズマ処理装置および半導体装置の製造方法
JP3591642B2 (ja) * 2001-02-07 2004-11-24 株式会社日立製作所 プラズマ処理装置
JP3881307B2 (ja) 2002-12-19 2007-02-14 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20050072444A1 (en) * 2003-10-03 2005-04-07 Shigeru Shirayone Method for processing plasma processing apparatus
JP2005150606A (ja) * 2003-11-19 2005-06-09 Hitachi High-Technologies Corp プラズマ処理装置
JP4601439B2 (ja) * 2005-02-01 2010-12-22 株式会社日立ハイテクノロジーズ プラズマ処理装置
CN1835339A (zh) * 2005-03-18 2006-09-20 日立粉末冶金株式会社 三相爪极型电机
US20070044916A1 (en) * 2005-08-31 2007-03-01 Masakazu Isozaki Vacuum processing system
JP2007311613A (ja) * 2006-05-19 2007-11-29 Hitachi High-Technologies Corp 試料台及びそれを備えたプラズマ処理装置
US8123902B2 (en) * 2007-03-21 2012-02-28 Applied Materials, Inc. Gas flow diffuser
JP2008166844A (ja) * 2008-03-17 2008-07-17 Hitachi High-Technologies Corp プラズマ処理装置
KR101357123B1 (ko) * 2009-01-15 2014-02-04 가부시키가이샤 히다치 하이테크놀로지즈 플라즈마 처리장치
JP2010192308A (ja) * 2009-02-19 2010-09-02 Hitachi High-Technologies Corp プラズマ処理装置
US8089050B2 (en) * 2009-11-19 2012-01-03 Twin Creeks Technologies, Inc. Method and apparatus for modifying a ribbon-shaped ion beam
JP5808697B2 (ja) * 2012-03-01 2015-11-10 株式会社日立ハイテクノロジーズ ドライエッチング装置及びドライエッチング方法
JP6204869B2 (ja) * 2014-04-09 2017-09-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6284825B2 (ja) * 2014-05-19 2018-02-28 東京エレクトロン株式会社 プラズマ処理装置
KR102334378B1 (ko) * 2015-09-23 2021-12-02 삼성전자 주식회사 유전체 윈도우, 그 윈도우를 포함한 플라즈마 공정 시스템, 및 그 시스템을 이용한 반도체 소자 제조방법
JP6620078B2 (ja) * 2016-09-05 2019-12-11 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP6836976B2 (ja) * 2017-09-26 2021-03-03 東京エレクトロン株式会社 プラズマ処理装置
JP2019109980A (ja) * 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP7091074B2 (ja) * 2018-01-05 2022-06-27 株式会社日立ハイテク プラズマ処理装置

Also Published As

Publication number Publication date
JPWO2020121588A1 (ja) 2021-02-15
KR102285126B1 (ko) 2021-08-04
WO2020121588A1 (ja) 2020-06-18
CN112585726A (zh) 2021-03-30
TW202105511A (zh) 2021-02-01
US20220157576A1 (en) 2022-05-19
KR20210014617A (ko) 2021-02-09
CN112585726B (zh) 2023-07-14
TWI738309B (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
US10615004B2 (en) Distributed electrode array for plasma processing
JP3150058B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2015162266A (ja) プラズマ処理装置
TWI661465B (zh) Plasma processing device
JP7364758B2 (ja) プラズマ処理方法
JP6899035B2 (ja) プラズマ処理装置
JP6785377B2 (ja) プラズマ処理装置
TWI701706B (zh) 電漿處理裝置
US20170076914A1 (en) Plasma processing apparatus
WO2023175690A1 (ja) プラズマ処理装置
KR102679639B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
JP2013229150A (ja) プラズマ処理装置
WO2023248406A1 (ja) プラズマ処理装置
JP2019160714A (ja) プラズマ処理装置
JP2016046357A (ja) プラズマ処理装置
KR20240104212A (ko) 플라스마 처리 장치 및 플라스마 처리 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210611

R150 Certificate of patent or registration of utility model

Ref document number: 6899035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150