KR102285126B1 - 플라스마 처리 장치 - Google Patents

플라스마 처리 장치 Download PDF

Info

Publication number
KR102285126B1
KR102285126B1 KR1020207009879A KR20207009879A KR102285126B1 KR 102285126 B1 KR102285126 B1 KR 102285126B1 KR 1020207009879 A KR1020207009879 A KR 1020207009879A KR 20207009879 A KR20207009879 A KR 20207009879A KR 102285126 B1 KR102285126 B1 KR 102285126B1
Authority
KR
South Korea
Prior art keywords
yoke
coil
plasma
sample
magnetic field
Prior art date
Application number
KR1020207009879A
Other languages
English (en)
Other versions
KR20210014617A (ko
Inventor
다쿠 이와세
마사카즈 이소자키
게네츠 요코가와
마사히토 모리
준이치 사야마
Original Assignee
주식회사 히타치하이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 히타치하이테크 filed Critical 주식회사 히타치하이테크
Publication of KR20210014617A publication Critical patent/KR20210014617A/ko
Application granted granted Critical
Publication of KR102285126B1 publication Critical patent/KR102285126B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

플라스마 밀도 분포를 중심 높음 분포와 절(節) 분포를 양쪽 모두 독립적으로 제어하는 것이 가능하게 하고, 처리의 균일성을 보다 높은 정밀도로 시료를 플라스마 처리할 수 있도록 하기 위해, 플라스마 처리 장치를, 시료가 플라스마 처리되는 진공 용기와, 플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과, 시료가 재치(載置)되는 시료대와, 진공 용기의 내부에 자장(磁場)을 형성시켜 진공 용기의 외측에 배치된 자장 형성부를 구비하여 구성하고, 자장 형성부에는, 제1 코일과, 제1 코일보다 내측에 배치되고 제1 코일의 직경보다 작은 직경의 제2 코일과, 제1 코일, 진공 용기의 위쪽 및 측면을 덮어 제1 코일이 내부에 배치된 제1 요크와, 제2 코일의 둘레 방향을 따라 제2 코일을 덮어 제2 코일의 아래쪽측에 개구부를 갖는 제2 요크를 구비시켰다.

Description

플라스마 처리 장치
본 발명은, 반도체 디바이스의 제조 공정에 있어서, 산화실리콘, 질화실리콘, 저(低)유전율막, 폴리실리콘, 알루미늄 등의 재료에 대하여, 플라스마를 이용하여 에칭 등의 처리를 행하는데 호적(好適)한 플라스마 처리 장치에 관한 것이다.
반도체 디바이스의 제조 프로세스에서는, 저온 플라스마에 의한 에칭 등의 플라스마 처리가 널리 이용되고 있다. 저온 플라스마는 예를 들면 감압 하의 반응 용기 내에서 상부 전극과 하부 전극의 2매의 전극이 대향하여 배치된 용량 결합형의 평행 평판 전극에 고주파 전력을 인가함으로써 형성할 수 있다. 이 평행 평판형의 플라스마 처리 장치는 반도체 디바이스의 제조 프로세스에 있어서 다용(多用)되고 있다.
평행 평판형의 플라스마 처리 장치는, 2매의 전극간에 예를 들면 반도체 재료로 구성되는 웨이퍼(이하 웨이퍼)를 재치(載置)하고, 소망의 프로세스 가스를 도입한 다음에 한쪽 전극에 고주파 전력을 인가함으로써 플라스마를 생성하고, 웨이퍼에 라디칼과 이온을 공급함으로써 플라스마 처리를 행하도록 되어 있다. 이러한 플라스마에 의한 에칭 가공은 가공 형상의 이방성을 제어할 수 있기 때문에, 가공 정밀도의 점에서 우위(優位)이다.
반도체 디바이스의 가공 치수는 미세화의 일로를 걷고 있으며, 가공 정밀도의 요구도 높아지고 있다. 그 때문에, 적당한 가스의 해리 상태를 유지하면서 저압에서 고밀도의 플라스마를 생성하는 것이 요구되고 있다. 플라스마를 생성하기 위해 인가하는 고주파 전력의 주파수는 일반적으로 10㎒ 이상이며, 주파수가 높을수록 고밀도의 플라스마 생성에 유리하다. 그러나, 고주파수화하면 전자파의 파장이 짧아지기 때문에, 플라스마 처리실 내의 전계(電界) 분포가 균일하지 않게 된다. 전계 분포는 플라스마의 전자 밀도에 영향을 주고, 전자 밀도는 에치 레이트에 영향을 준다. 에치 레이트의 면 내 분포의 악화는 양산성을 저하시켜 버리므로, 고주파 전력의 주파수를 높임과 함께 에치 레이트의 웨이퍼 면 내의 균일성을 높이는 것이 요구되고 있다.
그래서, 예를 들면 특허문헌 1(일본국 특개2008-166844호 공보)에서는 웨이퍼의 중심으로부터 외주(外周)를 향하여 발산하는 자계(磁界)를 형성하고, 자계와 전계의 상호작용에 의해 플라스마 밀도 분포를 균일화하는 기술이 알려져 있다. 또한, 예를 들면 특허문헌 2(일본국 특개2004-200429호 공보)에서는 복수의 코일마다 요크를 마련하고, 국소적으로 플라스마 밀도 분포를 제어하여, 균일화하는 기술이 알려져 있다.
일본국 특개2008-166844호 공보 일본국 특개2004-200429호 공보
VHF대 이상의 고주파 전력에 의한 플라스마에서는, 외부 자장에 의한 분포 제어를 행하는 기술(예를 들면 특허문헌 1, 특허문헌 2)이 있지만, 동심원 형상으로 전체적으로 플라스마 밀도 분포를 요철로 제어하는 것과 국소적으로 제어하는 것의 양립은 곤란했다.
그래서 본 발명에서는, 종래기술의 과제를 해결하여, 플라스마 밀도 분포를 중심 높음 분포와 절(節) 분포를 양쪽 모두 독립적으로 제어하는 것이 가능하게 하고, 시료를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있는 플라스마 처리 장치를 제공한다.
상기한 종래기술의 과제를 해결하기 위해, 본 발명에서는, 플라스마 처리 장치를, 시료가 플라스마 처리되는 진공 용기와, 플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과, 시료가 재치되는 시료대와, 진공 용기의 내부에 자장을 형성시켜 진공 용기의 외측에 배치된 자장 형성부를 구비하고, 자장 형성부는, 제1 코일과, 제1 코일보다 내측에 배치되고 제1 코일의 직경보다 작은 직경의 제2 코일과, 제1 코일, 진공 용기의 위쪽 및 측면을 덮어 제1 코일이 내부에 배치된 제1 요크와, 제2 코일의 둘레 방향을 따라 제2 코일을 덮고 제2 코일의 아래쪽측에 개구부를 갖는 제2 요크를 구비시켰다.
또한, 상기한 종래기술의 과제를 해결하기 위해, 본 발명에서는, 플라스마 처리 장치를, 시료가 플라스마 처리되는 진공 용기와, 플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과, 시료가 재치되는 시료대와, 진공 용기의 내부에 자장을 형성시켜 진공 용기의 외측에 배치된 자장 형성부를 구비하고, 자장 형성부는, 제1 코일과, 제2 코일과, 제1 코일을 덮음과 함께 진공 용기의 위쪽 및 측면을 덮어 제1 코일이 내부에 배치된 제1 요크와, 제2 코일을 덮는 제2 요크를 구비하고, 제1 요크의 한쪽 단부(端部)로부터 발한 자력선이 제2 요크를 통해 제1 요크의 다른쪽 단부로 돌아가며, 또한 제2 요크로부터 발한 자력선이 제2 요크로 돌아가도록 제2 코일과 제2 요크가 구성되도록 했다.
본 발명에 따르면, 플라스마 밀도 분포를 중심 높음 분포와 절 분포를 양쪽 모두 독립적으로 제어하는 것이 가능해지고, 시료대에 재치된 시료를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
도 1은 본 발명의 실시예에 따른 플라스마 처리 장치의 개략의 구성을 나타내는 블록도.
도 2는 본 발명의 실시예에 따른 플라스마 처리 장치에 있어서의 외주 코일과 미들 요크에 의해 발생하는 자력선의 분포 상태를 모식적으로 나타내는, 외주 코일과 미들 요크를 포함하는 부분 단면도.
도 3은 비교예에서 나타낸 구성에 있어서 전자 밀도 분포의 코일 전류값 의존성을 나타내는 그래프.
도 4는 본 발명의 실시예에서 나타낸 구성에 있어서 미들 코일 전류의 ON/OFF에 의한 전자 밀도 분포를 나타내는 그래프.
도 5는 본 발명의 제1 변형예에 있어서의 외주 코일과 미들 요크 및 그 주변 부분의 구성을 나타내는 부분 단면도.
도 6은 본 발명의 제2 변형예에 있어서의 외주 코일과 미들 요크 및 그 주변 부분의 구성을 나타내는 부분 단면도.
도 7은 본 발명의 제3 변형예에 있어서의 외주 코일과 미들 요크 및 그 주변 부분의 구성을 나타내는 부분 단면도.
도 8은 본 발명의 제4 변형예에 있어서의 미들 요크와 미들 코일의 구성을 나타내는 부분 단면도.
도 9는 본 발명의 제5 변형예에 있어서의 미들 요크와 미들 코일의 구성을 나타내는 부분 단면도.
도 10은 본 발명의 실시예의 비교예로서 예시한 플라스마 처리 장치의 개략의 구성을 나타내는 블록도.
본 발명은, 플라스마 처리 장치를, (a) 플라스마 생성역(生成域)의 직경 방향의 자속 밀도(Br)가 외주만큼 커지도록 하는 가변의 발산 자장을 형성하고, (b) 웨이퍼의 미들 영역(R=50∼100[㎜]) 플라스마 생성역만의 Br을 가변으로 하도록 구성한 것이다.
(a)를 위해 단면(斷面)이 L자형인 요크 A를 플라스마 생성 영역 위쪽에 배치하여 자속이 중앙으로부터 외주측으로 돌아가는 경로를 만들고, (b)를 위해 웨이퍼 미들 영역 바로 위에 아래쪽이 개방된 ㄷ자형 요크 B를 설치함과 함께 내부에 코일 C를 배치하도록 했다.
요크 A의 인(in)측 단부로부터 나오는 자속을 요크 B 경유로 요크 A의 아웃(out)측 단부로 되돌리고, 요크 B의 단부로부터 나오는 자속을 요크 B로 되돌리기 위해, 요크 A를 요크 B의 위쪽이며 또한 외주에 배치하도록 했다.
이때의 요건은,
·요크 A의 단면은 챔버를 덮는 위치에서 L자형일 것
·요크 B는 플라스마 생성역보다 위쪽에 배치하고, 아래쪽이 개방된 ㄷ자 형상일 것
·요크 A와 요크 B는 공간적으로 분단되어 있을 것
·요크 B의 반경 방향의 중심 위치는 요크 A의 그것보다도 내주(內周)측에 있을 것
·요크 B의 반경 방향의 중심 위치는 웨이퍼 상에 있을 것
·요크 B의 내부에 한 개 이상의 코일이 배치되어 있을 것
·요크 A의 내부에 인접하여 한 개 이상의 코일이 배치되어 있을 것
코일 C는 복수의 코일을 좌우로 나열해도 된다. 복수 나열한 코일 중 어느 것에 전류를 흘릴지에 의해 플라스마의 전자 밀도가 높아지는 반경 위치를 변화시킬 수 있다.
ㄷ자형 요크 B의 반경 방향의 중심 위치는 R=50∼100[㎜]에 배치시키는 것이 바람직하다. 보다 바람직하게는 고주파 전력의 파장 λ에 대하여, 샤워 플레이트의 비유전율 ε로 했을 때, R=λ/ε/4*1000[㎜]로 한다. 이것은 유전체 중을 전파하는 고주파의 실효적인 파장의 절반 길이로 정재파(定在波)가 발생하기 쉽기 때문이다.
즉 본 발명은, 플라스마 생성역의 직경 방향의 자속 밀도(Br)가 외주만큼 커지도록 하는 가변의 발산 자장을 형성하고, 게다가 웨이퍼의 미들 영역(R=50∼100[㎜]) 플라스마 생성역만의 Br을 가변으로 한다. 단면이 L자형인 요크 A를 플라스마 생성 영역 위쪽에 배치하여 자속이 중앙으로부터 외주측으로 돌아가는 경로를 만들고, 웨이퍼 미들 영역 바로 위에 아래쪽이 개방된 ㄷ자형 요크 B를 설치함과 함께 내부에 코일 C를 배치한다. 요크 A의 인측 단부로부터 나오는 자속을 요크 B 경유로 요크 A의 아웃측 단부로 되돌리고, 요크 B의 단부로부터 나오는 자속을 요크 B로 되돌리기 위해, 요크 A를 요크 B의 위쪽이며 또한 외주에 배치한 것이다.
이하, 본 발명의 실시형태를 도면에 의거하여 상세하게 설명한다. 본 실시형태를 설명하기 위한 전체 도면에 있어서 동일 기능을 갖는 것은 동일한 부호를 부여하도록 하고, 그 반복되는 설명은 원칙적으로 생략한다.
단, 본 발명은 이하에 나타내는 실시형태의 기재 내용에 한정하여 해석되는 것이 아니다. 본 발명의 사상 내지 취지로부터 일탈하지 않는 범위에서, 그 구체적 구성을 변경할 수 있는 것은 당업자라면 용이하게 이해된다.
[실시예 1]
도 1은, 본 발명의 실시예에 따른 플라스마 처리 장치(100)의 구성의 개략을 모식적으로 나타내는 종단면도이다.
도 1에 따른 플라스마 처리 장치(100)는, 솔레노이드 코일인 외주 코일(81) 및 미들 코일(83)을 이용한 유자장 평행 평판형의 플라스마 처리 장치이다. 본 실시예의 플라스마 처리 장치(100)는, 진공 용기(10)를 갖고, 이 진공 용기(10) 내부의 공간이며 처리 대상의 시료가 재치되고 처리용 가스가 공급되어 플라스마가 내부에 형성되는 처리실(40)이 형성되어 있다.
또한, 플라스마 처리 장치(100)는, 진공 용기(10)의 위쪽에 배치되어 처리실(40)의 내부에 플라스마를 형성하기 위한 전계 또는 자계를 생성하는 수단인 플라스마 형성부(50)와, 진공 용기(10)의 하부와 연결되어 처리실(40)의 내부를 배기하여 감압하는 터보 분자 펌프 등의 진공 펌프를 포함하는 배기부(45)와, 전체를 제어하는 제어부(70)를 구비하고 있다.
진공 용기(10)의 처리실(40)의 내부에는, 그 아래쪽에 배치된 원통형의 시료대(2)를 구비하고, 이 시료대(2)의 상면은, 그 위에 반도체 웨이퍼 등의 기판 형상의 피처리 시료(3)(이하, 시료(3)라고 기재함)가 올려지는 재치면(141)이 형성되어 있다.
이 재치면(141)의 위쪽에는, 이 재치면(141)에 대향하여 배치되어 플라스마를 형성하기 위한 고주파 전력이 공급되는 원판 형상의 상부 전극(4)이 마련되어 있다. 또한, 이 상부 전극(4)의 시료(3)의 측에서 시료대(2)의 재치면(141)에 대향하여 배치됨과 함께 처리실(40)의 천장면을 구성하고 당해 처리실(40)의 내부에 가스를 분산하여 공급하는 관통 구멍(51)을 복수 구비한 원판 형상의 샤워 플레이트(5)가 배치되어 있다.
샤워 플레이트(5)와 그 위쪽에 배치된 안테나인 상부 전극(4)은, 이들이 진공 용기(10)에 장착된 상태에서 이들 사이에 극간(41)이 형성된다. 극간(41)에는, 이것과 연결된 진공 용기(10)의 외부의 가스 공급부(60)와 접속하는 가스 도입 라인(6)으로부터 상부 전극(4) 내에 실시된 가스 유로를 통해 가스가 도입된다.
가스 공급부(60)는, 공급하는 가스의 종류에 따른 복수의 매스플로우 컨트롤러(61)를 구비하고 있으며, 각각의 매스플로우 컨트롤러(61)는, 도시하고 있지 않은 가스 봄베와 접속되어 있다. 극간(41)에 공급된 가스는, 극간(41)의 내부에서 분산된 후, 샤워 플레이트(5)측의 중앙부를 포함하는 영역에 배치된 복수의 관통 구멍(51)을 지나 처리실(40)의 내부에 공급된다.
가스 공급부(60)로부터, 이 복수의 관통 구멍(51)을 지나 처리실(40)의 내부에 공급되는 가스로서는, 시료(3)의 처리에 이용되는 처리용 가스 혹은 처리에는 직접적으로는 이용되지 않지만 처리용 가스를 희석하거나, 혹은 처리용 가스가 공급되지 않는 동안에 처리실(40)의 내부에 공급되어 처리용 가스와 교체되는 불활성 가스 등이 있다.
상부 전극(4)의 내부에는, 상부 전극용 냉매 유로(7)가 형성되어 있다. 이 상부 전극용 냉매 유로(7)에는, 냉매의 온도를 소정의 범위로 조절하는 칠러 등의 온도 제어 장치(도시 생략)와 연결된 냉매 공급 라인(71)이 접속되어 있다. 냉매 공급 라인(71)을 통해 온도 제어 장치(도시 생략)로부터 온도가 소정의 범위로 조절된 냉매가 상부 전극용 냉매 유로(7)의 내부에 공급되고 순환함으로써, 열교환되어 상부 전극(4)의 온도가 처리에 적절한 값의 범위 내로 조절된다.
또한, 상부 전극(4)은, 도전성 재료인 알루미늄 또는 스테인리스 등으로 형성된 원판 형상의 부재로 형성되어 있으며, 그 상면의 중앙부에 플라스마 형성용 고주파 전력이 전달되는 동축 케이블(91)이 전기적으로 접속되어 있다.
상부 전극(4)에는, 동축 케이블(91)을 통해 이것과 전기적으로 접속된 방전용 고주파 전원(8)(이하, 고주파 전원(8)이라고 기재함)으로부터 플라스마 형성용 고주파 전력이 방전용 고주파 전력 정합기(9)를 통해 공급되고, 상부 전극(4)의 표면으로부터 샤워 플레이트(5)를 투과하여 처리실(40)의 내부에 전계가 방출된다. 본 실시예에서는, 고주파 전원(8)으로부터 상부 전극(4)에 인가되는 플라스마 형성용 고주파 전력으로서, 초고주파대(VHF대)역의 주파수인 200㎒의 전력을 이용했다.
또한, 진공 용기(10)의 외부이며 처리실(40)의 상부의 위쪽과 측방을 둘러싸는 위치에는, 외주 요크(82)로 덮인 전자 코일인 외주 코일(81)과, 미들 요크(84)로 덮인 전자 코일인 미들 코일(83)이 배치되어 있다. 이 외주 코일(81)과 미들 코일(83)에 의해 발생하는 자계가, 처리실(40)의 내부에 형성된다.
샤워 플레이트(5)는, 석영 등의 유전체나 실리콘 등의 반도체로 구성되어 있다. 이에 따라, 고주파 전원(8)으로부터 상부 전극(4)에 플라스마 형성용 고주파 전력이 인가된 상태에서, 상부 전극(4)에 의해 형성된 전계가 샤워 플레이트(5)를 투과할 수 있다.
또한, 상부 전극(4)은, 그 위쪽이나 측방에 배치되어 석영이나 테프론(등록상표) 등의 유전체로 구성되고 링 형상의 상부 전극 절연체(12)에 의해, 진공 용기(10)로부터 전기적으로 절연되어 있다. 마찬가지로, 샤워 플레이트(5)의 주위에는, 석영 등의 유전체로 구성되는 절연 링(13)이 배치되어 있으며, 샤워 플레이트(5)는, 진공 용기(10)로부터 절연되어 있다. 이들 상부 전극 절연체(12)와 절연 링(13)과 상부 전극(4), 샤워 플레이트(5)는, 진공 용기(10)의 상부를 구성하는 덮개 부재(도시 생략)에 고정되어 있으며, 덮개 부재의 개폐 동작시에 덮개 부재와 일체적으로 회동한다.
원통형을 가진 진공 용기(10)는, 그 측벽이, 도시하고 있지 않은 진공 용기로서 감압된 내부를 시료(3)가 반송되는 반송 용기와 연결되고, 이들 사이에는, 시료(3)가 출입되는 통로의 개구로서의 게이트가 배치되고, 진공 용기(10) 내부에서 시료(3)의 처리가 될 경우에, 게이트를 폐색하여 진공 용기(10) 내부를 기밀하게 봉지(封止)하는 게이트 밸브가 배치되어 있다.
처리실(40)의 내부의 시료대(2)의 아래쪽이며 진공 용기(10)의 하부에는, 처리실(40)의 내부를 배기하는 배기부(45)와 연통(連通)하는 배기용 개구(42)가 배치되어 있다. 이 배기용 개구(42)와 배기부(45)의 도시하고 있지 않은 진공 펌프 사이에서 이들을 연결하는 배기의 경로(43)의 내부에는, 판 형상의 밸브인 압력 조정 밸브(44)가 배치되어 있다. 이 압력 조정 밸브(44)는, 배기의 경로(43)의 단면을 가로질러 배치된 판 형상의 밸브이며, 이 판 형상의 밸브가 축 방향으로 회전하여 유로에 대한 단면적을 증감시킨다.
제어부(70)에서 압력 조정 밸브(44)의 회전 각도를 조절함으로써, 처리실(40)로부터의 배기의 유량 또는 속도를 증감할 수 있다. 처리실(40)의 내부의 압력은, 샤워 플레이트(5)의 관통 구멍(51)으로부터 공급되는 가스의 유량 또는 속도와 배기용 개구(42)로부터 배기부(45)의 측으로 배출되는 가스나 입자의 유량 또는 속도와의 밸런스에 의해, 소망의 값의 범위 내가 되도록, 제어부(70)에 의해 조절된다.
다음으로, 시료대(2)의 주변의 구조에 관해서 설명한다. 본 실시예의 시료대(2)는, 처리실(40)의 아래쪽의 중앙부에 배치된 원통 형상의 대이며, 그 내부에 원통형 또는 원판 형상을 가진 금속제의 기재(基材)(2a)를 구비하고 있다.
본 실시예의 기재(2a)는, 동축 케이블을 포함하는 급전 경로(28)에 의해 바이어스용 고주파 전원(20)과 당해 급전 경로(28) 상에 배치된 바이어스용 고주파 전력 정합기(21)를 통해 전기적으로 접속되어 있다. 바이어스용 고주파 전원(20)으로부터 기재(2a)에 인가되는 바이어스용 고주파 전력은, 고주파 전원(8)으로부터 상부 전극(4)에 인가되는 플라스마 생성용 고주파 전력과는 다른 주파수(본 예에서는 4㎒)이다. 또한, 급전 경로(28) 상에는, 저항 또는 코일 등의 소자(32)가 배치되고, 당해 소자(32)는 접지된 바이어스용 고주파 전력 정합기(21) 및 바이어스용 고주파 전원(20)과 접속되어 있다.
고주파 전원(8)으로부터 상부 전극(4)에 플라스마 생성용 고주파 전력을 인가하여 시료대(2)와 샤워 플레이트(5) 사이에 플라스마(11)를 발생시킨 상태에서, 바이어스용 고주파 전원(20)으로부터 기재(2a)에 고주파 전력을 공급함으로써, 기재(2a)에는, 바이어스 전위가 발생한다. 이 바이어스 전위에 의해, 플라스마(11) 중의 이온 등의 하전 입자는, 시료(3)의 상면 또는 재치면(141)으로 유인된다. 즉, 기재(2a)는, 상부 전극(4)의 아래쪽에 있어서, 바이어스용 고주파 전력이 인가되는 하부 전극으로서 기능한다.
또한, 기재(2a)의 내부에는, 칠러 등의 온도 제어 장치(191)에 의해 소정의 온도로 조정된 냉매를 순환하여 통류시키기 위한 냉매 유로(19)가 다중(多重)의 동심 형상 또는 나선 형상으로 배치되어 있다.
기재(2a)의 상면에는, 정전 흡착막(14)이 배치되어 있다. 정전 흡착막(14)은, 알루미나 혹은 이트리아 등의 유전체의 재료로 형성되어 있으며, 그 내부에, 시료(3)를 정전 흡착시키기 위한 직류 전력이 공급되는 텅스텐 전극(15)을 내장하고 있다. 텅스텐 전극(15)의 이면(裏面)에는, 기재(2a)를 관통하여 배치된 정전 흡착용 급전 경로(27)가 접속되어 있다. 텅스텐 전극(15)은, 이 정전 흡착용 급전 경로(27)에 의해, 저항 또는 코일 등의 소자(32) 및 접지된 저역 통과 필터(로우 패스 필터)(16)를 통해 직류 전원(17)과 전기적으로 접속되어 있다.
본 실시예의 직류 전원(17) 및 바이어스용 고주파 전원(20)은, 그 일단측의 단자는 접지되거나 어스에 전기적으로 접속되어 있다.
보다 높은 주파수의 전류의 흐름을 방해하여 필터링(여과)하는 저역 통과 필터(16), 및 바이어스용 고주파 전력 정합기(21)는, 직류 전원(17) 및 바이어스용 고주파 전원(20)에, 고주파 전원(8)으로부터의 플라스마 형성용 고주파 전력이 유입하는 것을 억제하기 위해 배치되어 있다.
직류 전원(17)으로부터의 직류 전력, 혹은 바이어스용 고주파 전원(20)으로부터의 고주파 전력은, 손실 없이 각각 정전 흡착막(14) 및 시료대(2)에 공급되지만, 시료대(2)측으로부터 직류 전원(17) 및 바이어스용 고주파 전원(20)에 유입하는 플라스마 형성용 고주파 전력은 저역 통과 필터(16) 또는 바이어스용 고주파 전력 정합기(21)를 통해 어스로 흐른다. 또, 도 1 중의 바이어스용 고주파 전원(20)으로부터의 급전 경로(28) 상에는, 저역 통과 필터(16)는 도시되어 있지 않지만, 마찬가지의 효과를 갖는 회로가 도시하는 바이어스용 고주파 전력 정합기(21) 내에 내장되어 있다.
이러한 구성에서는, 시료대(2)로부터 직류 전원(17) 및 바이어스용 고주파 전원(20)측을 보았을 경우의 고주파 전원(8)으로부터의 전력의 임피던스는, 상대적으로 낮아진다. 본 실시예에서는, 저항 또는 코일 등의 임피던스를 높이는 소자(32)를, 급전 경로 상에서 전극과 저역 통과 필터(16) 및 바이어스용 고주파 전력 정합기(21) 사이에 삽입하여 배치함으로써, 시료대(2)의 기재(2a)측으로부터 직류 전원(17) 혹은 바이어스용 고주파 전원(20)측을 본 플라스마 형성용 고주파 전력의 임피던스를 높게(본 실시예에서는 100Ω 이상으로) 하고 있다.
도 1에 나타내는 실시예는, 정전 흡착막(14)의 내부에 배치된 텅스텐 전극(15)을 복수 구비하고 있으며, 이들 중 한쪽과 다른쪽이 서로 다른 극성을 갖도록 직류 전압이 공급되는 양극성의 정전 흡착을 행하는 것으로 되어 있다. 이 때문에, 재치면(141)을 형성하는 정전 흡착막(14)이, 시료(3)와 접촉하는 면의 면적을 2등분되었거나 또는 이것으로 간주할 수 있을 정도로 근사(近似)한 범위 내의 값으로 텅스텐 전극(15)이 서로 다른 극성을 갖는 2개의 영역으로 나누어져, 각각에 독립된 값의 직류 전력이 공급되어, 서로 다른 값의 전압으로 유지된다.
정전 흡착되어 접촉하고 있는 정전 흡착막(14)과 시료(3)의 이면 사이에는, 배관(181)을 통해 헬륨 공급 수단(18)으로부터 헬륨 가스가 공급된다. 이에 따라, 시료(3)와 정전 흡착막(14) 사이의 열전달의 효율이 향상되어, 기재(2a)의 내부의 냉매 유로(19)와의 열의 교환량을 증대시킬 수 있고, 시료(3)의 온도를 조절하는 효율을 높이고 있다.
기재(2a)의 아래쪽에는, 테프론(등록상표) 등으로 형성된 원판 형상의 절연판(22)이 배치되어 있다. 이에 따라, 접지되거나 어스와 전기적으로 접속되어 접지 전위가 된 기재(2a)는, 아래쪽의 처리실(40)을 구성하는 부재로부터 전기적으로 절연되어 있다. 또한, 기재(2a)의 측면의 주위에는, 알루미나 등의 유전체제의 링 형상의 절연층(23)이, 기재(2a)를 둘러싸도록 하여 배치되어 있다.
기재(2a)의 아래쪽에서, 이것과 접속되어 배치된 절연판(22)의 주위, 및 그 위쪽에서 기재(2a)를 둘러싸도록 하여 배치되고 절연층(23)의 주위에는, 접지되거나 어스와 전기적으로 접속되어 접지 전위가 된 도전성 재료로 구성된 도전판(29)이 배치되어 있다. 도전판(29)은, 위쪽에서 볼 때 원형이거나 이것으로 간주할 수 있을 정도의 근사한 형상을 가진 판 부재이다. 도전판(29)과 기재(2a) 사이에는 절연층(23)이 개재되어 있으며, 도전판(29)과 기재(2a)는, 전기적으로 절연되어 있다.
링 형상의 절연층(23)의 위쪽에는, 석영 등의 유전체 혹은 실리콘 등의 반도체로 구성된 서셉터 링(25)이 배치되어 있다. 서셉터 링(25)이 시료(3)의 주위에 배치되고, 기재(2a)를 서셉터 링(25)과 절연층(23)으로 덮음으로써, 시료(3)의 외단부 주변의 반응 생성물의 분포를 제어하여, 프로세스 성능의 균일화를 행하고 있다.
이와 같이, 시료대(2)는, 기재(2a)와, 텅스텐 전극(15)을 내부에 구비한 정전 흡착막(14), 기재(2a)를 올려 기재(2a)와 진공 용기(10) 사이를 전기적으로 절연하는 절연판(22), 절연 재료로 형성되어 기재(2a)의 주위를 둘러싸는 절연층(23), 기재(2a)의 상면과 정전 흡착막(14)의 측면을 덮는 서셉터 링(25), 및 절연판(22)의 외주부와 절연층(23)의 외주부를 덮는 도전판(29)을 구비하여 구성되어 있다.
서셉터 링(25)의 외주측에는, 서셉터 링(25)에 접하도록 배치된 동심원 형상인 판 형상의 차폐판(24)이 장착되어 있다. 차폐판(24)은, 처리실(40)의 내부에 형성되는 플라스마(11)의 발생 영역이, 시료대(2)의 측면으로까지 확대하는 것을 방지하여, 시료대(2)의 상부에 치우치게 하기 위한 것으로, 말하자면, 가두기 위해 배치된 것이다. 판 형상의 차폐판(24)에는, 가스나 입자를 상하 방향으로 통과시키기 위해, 복수의 구멍(241)이 형성되어 있다.
기재(2a)에는 온도 계측기(35)가 임베드되어 있어, 기재(2a)의 온도를 계측한다. 시료(3)의 표면에 도시하고 있지 않은 온도 계측기를 설치한 상태에서, 도시하고 있지 않은 가열 수단으로 시료(3)를 가열하여 시료(3)의 온도를 변화시켜, 그 때의 도시하고 있지 않은 온도 계측기로 계측한 시료(3)의 표면 온도와 기재(2a)에 임베드된 온도 계측기(35)로 계측된 기재(2a)의 온도와의 관계를 미리 데이터베이스화하여 기억해 둔다. 처리실(40)의 내부에 플라스마(11)를 발생시켜 시료(3)를 실제로 처리하고 있을 때에 이 데이터베이스를 참조함으로써, 기재(2a)에 임베드된 온도 계측기(35)로 계측한 기재(2a)의 온도로부터, 플라스마 처리 중의 시료(3)의 온도를 추정할 수 있다.
본 실시예에 따른 플라스마 처리 장치(100)에 있어서는, 외주 코일(81)의 부근에는 단면 형상이 L자형인 외주 요크(82)가 외주 코일(81)을 둘러싸도록 배치되어 있다. 또한, 외주 요크(82)의 내측에는 미들 코일(83)과, 미들 코일(83)을 둘러싸도록 단면이 ㄷ자형인 미들 요크(84)가 배치되어 있다. 단면 형상이 L자형인 외주 요크(82)와 단면이 ㄷ자형인 미들 요크(84)는, 서로 접촉하지 않도록 배치되어 있다.
미들 요크(84)는, 미들 코일(83)에 전력을 인가하여 자계를 발생시켰을 때에, 미들 요크(84)로부터 발생하는 자속이, 시료대(2)에 재치된 시료(3)의 상부의 플라스마(11)가 생성하는 영역에 발산하도록 아래쪽이 개방된 ㄷ자형으로 되어 있다.
외주 코일(81), 외주 요크(82), 미들 코일(83), 미들 요크(84)의 형상 및 배치는, 시료대(2)에 재치된 시료(3)의 상부의 플라스마(11)를 생성하는 영역의 직경 방향의 자속 밀도(Br)가 외주만큼 커지도록 하는 가변의 발산 자장을 형성하고, 시료(3)의 미들 영역(예를 들면, 시료(3)가 직경 φ300㎜의 웨이퍼일 경우에는, R=50∼100[㎜]의 영역)에 있어서의 플라스마 생성역의 Br을 가변으로 할 목적으로 결정된다.
본 실시예의 구성에서는, 외주 요크(82)를 미들 요크(84)의 위쪽에서 일부가 오버랩하며, 또한 외주에 배치하고 있다. 이러한 구성으로 함으로써, 도 2에 모식적으로 나타내는 바와 같이, 외주 코일(81)에 전류를 흘림으로써 발생하는 자장에 의해 외주 요크(82)의 인측 단부(8201)로부터 나오는 자력선(8210)으로 나타나는 자속을 미들 요크(84) 경유로 외주 요크(82)의 아웃측 단부(8202)로 되돌릴 수 있다. 또한, 미들 코일(83)에 전류를 흘림으로써 발생하는 자장에 의해, 미들 요크(84)의 단부(8401)로부터 나오는 자력선(8220)으로 나타나는 자속을, 외주 요크(82)를 경유하여 미들 요크(84)로 되돌릴 수 있다. 또, 도 2에 있어서, 자력선(8210과 8220)으로 나타낸 자속은, 모두, 외주 코일(81)과 미들 코일(83)에 동시에 전류를 흘려보냈을 경우에 발생하는 자속의 상태를 나타내고 있다.
이에 따라, 단면 형상이 L자형인 외주 요크(82)와 ㄷ자형인 미들 요크(84)에 의해 형성된 자계는, 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마의 전자 밀도 분포(이하, 단순히 플라스마 밀도 분포라고도 기재함)의 요철(농담(濃淡))이 제어 가능해진다. 또한, ㄷ자형 미들 요크(84)는 단면 형상이 L자형인 외주 요크(82)에 대하여 공간적으로 분리되어 있기 때문에, 미들 요크(84)는 외주 요크(82)에 대하여 비교적 독립된 자속 루프를 형성할 수 있고, 도 4에 나타낸 바와 같이, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
그 결과, 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서 자장의 제어를 비교적 정밀도 좋게 행할 수 있고, 시료대(2)에 재치한 시료(3)의 근방에서의 전자 밀도의 분포를, 비교적 정밀도 좋게 제어하는 것이 가능해진다.
다음으로 비교예에 대해서 설명한다. 도 10에 본 발명의 실시예에 대한 비교예로서의 플라스마 처리 장치(200)를 나타낸다. 비교예의 플라스마 처리 장치(200)의 전체적인 구성은 도 1에서 설명한 실시예에서 설명한 플라스마 처리 장치(100)와 마찬가지의 부분에는 같은 번호를 부여하여, 설명의 중복을 피한다. 도 10에 나타낸 플라스마 처리 장치(200)는, 요크와 코일의 구성이 도 1에서 설명한 실시예에 있어서의 미들 코일(83), 미들 요크(84)를 구비하고 있지 않은 점에 있어서 서로 다르다.
도 10에 나타낸 비교예의 요크(80)의 구조는 단면이 L자형으로 되어 있으며, 그 내측에 코일(1)을 외측과 내측의 2개소에 배치하고 있다. 이것은, 특허문헌 1에 기재되어 있는 플라스마 처리 장치에 있어서의 요크(5) 및 코일(6)의 구성과 유사하다.
요크(80)와 코일(1)의 구성을 도 10의 비교예에 나타낸 구성으로 했을 경우, 코일(1)과 요크(80)가 형성하는 정(靜)자장은, 요크(80)의 내측 단부와 외측 단부를 잇는 자기 회로를 형성한다. 이 정자장은, 외주를 향하여 자속이 발산하는 수하(垂下)형의 자장을 형성한다.
도 10에 나타낸 본 발명의 비교예의 구성으로 플라스마의 전자 밀도 분포를 계산한 결과를, 도 3에 나타낸다. 코일(1)의 전류값을 7A부터 10A까지 바꾸어, 각각 계산을 행했다. 도 3에 있어서, 301 내지 304는, 각각 코일(1)의 전류값 7A, 8A, 9A, 10A의 경우의 시료대(2)의 반경 방향의 플라스마의 전자 밀도 분포를 나타내고 있다. 코일(1)의 전류값에 따라, 전자 밀도 분포(301)와 같은 내주 높음 내지 전자 밀도 분포(304)와 같은 외주 높음 전자 밀도 분포를 형성 가능한 것을 알 수 있다. 그러나, 전자 밀도 분포(301 내지 304)에서 나타나는 바와 같이, 어느 전류값이어도, 반경 위치(310)에서 나타나는 반경 100㎜의 주변의 전자 밀도가 국소적으로 높아지지는 않는다.
한편, 도 1에 나타낸 본 발명의 실시예의 구성에 있어서의 플라스마의 전자 밀도 분포를 계산한 결과를 도 4에 나타낸다. 도 1에 나타낸 구성에 있어서, 외주 코일(81)에 전류를 흘린 다음에, 미들 코일(83)에 전류를 흘렸을 경우의 전자 밀도 분포(401)와, 미들 코일(83)에 전류를 흘리지 않을 경우의 전자 밀도 분포(402)를 계산했다. 미들 코일(83)의 ON/OFF에 대응하여, 반경 위치(310)에서 나타나는 반경 100㎜의 주변의 위치에서, 전자 밀도 분포(401)가 411의 위치에서 국소적으로 증가시키는 것이 가능한 것을 알 수 있다.
시료(3)가 직경 φ300㎜의 웨이퍼일 경우에는, 미들 요크(84)의 반경 방향의 중심 위치는 R=50∼100[㎜]에 배치시키는 것이 바람직하다. 보다 바람직하게는 고주파 전력의 파장 λ에 대하여, 샤워 플레이트(5)의 비유전율 ε로 했을 때, R=λ/ε/4*1000[㎜]로 한다. 이것은 유전체 중을 전파하는 고주파의 실효적인 파장의 절반의 길이로 정재파가 발생하기 쉽기 때문이다.
상기에 설명한 바와 같이, 본 실시예에서는, 단면 형상이 L자형인 외주 요크(82)를 플라스마 생성 영역 위쪽에 배치하여 자속이 중앙으로부터 외주측으로 돌아가는 경로를 만들고, 웨이퍼 미들 영역 바로 위에 아래쪽이 개방된 ㄷ자형 미들 요크(84)를 설치함과 함께 내부에 미들 코일(83)을 배치했다. 외주 요크(82)의 인측 단부(8201)로부터 나오는 자속을 미들 요크(84) 경유로 외주 요크(82)의 아웃측 단부(8202)로 되돌리고, 미들 요크(84)의 단부(8401)로부터 나오는 자속을 미들 요크(84)로 되돌리기 위해, 외주 요크(82)를 미들 요크(84)의 위쪽이며 외주에 배치하는 구성으로 했다.
이에 따라, 본 실시예에 따른 플라스마 처리 장치(100)에서는, 제어부(70)에서 외주 코일(81)에 인가하는 전류를 제어하여, 진공 용기(10) 내부에서 시료대(2)에 재치된 시료(3)의 위쪽의 플라스마(11)를 생성하는 영역에 있어서, 시료(3)의 직경 방향의 자속 밀도(Br)가 외주만큼 커지도록 하는 가변의 발산 자장을 형성하고, 게다가 제어부(70)에서 미들 코일(83)에 인가하는 전류를 제어하여, 시료(3)의 위쪽의 플라스마(11)를 생성하는 영역에 있어서의 미들 영역(R=50∼100[㎜])의 Br을 가변으로 할 수 있다.
본 실시예의 도 1에 나타낸 바와 같은 외주 코일(81)과 미들 코일(83) 및 외주 요크(82)와 미들 요크(84)의 배치로 함으로써, 단면 형상이 L자형인 외주 요크(82)와 ㄷ자형인 미들 요크(84)에 의해 형성된 자계는, 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마 밀도 분포의 요철을 제어 가능하게 된다. 또한, ㄷ자형 미들 요크(84)는 L자형 외주 요크(82)와 비교적 독립된 자속 루프를 형성하고, 도 4에 나타낸 바와 같이, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
이상에서, 본 실시예에 따르면, 플라스마 밀도 분포의 중심 높음 분포와 절 분포를 양쪽 모두 독립적으로 제어하는 것이 가능해지고, 시료대에 재치된 시료를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
또한, 본 실시예에 따르면, 동심원 형상으로 전체적으로 플라스마 밀도를 요철로 제어하면서, φ300㎜ 웨이퍼의 중주(中周) 영역(R=50∼100㎜)의 플라스마 밀도를 독립적으로 제어할 수 있고, φ300㎜의 웨이퍼를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
[변형예 1]
본 발명의 실시예의 제1 변형예를, 도 5를 이용하여 설명한다. 도 5에는, 도 1에서 설명한 플라스마 처리 장치(100)에 있어서, L자형 외주 요크(82)와 ㄷ자형 미들 요크(84)와 그 주변에 상당하는 부분의 구성을 나타낸다.
도 5의 구성에서, 도 1에 나타낸 구성과 다른 점은, 도 1의 L자형 외주 요크(82)를, L자형 외주 요크(821)로 치환한 점이다. 도 1의 L자형 외주 요크(82)에서는, 인측 단부(8201)가 ㄷ자형 미들 요크(84)와 겹쳐 있었던 것에 대하여, 도 5에 나타낸 본 변형예의 구성에 있어서는, L자형 외주 요크(821)의 인측 단부(8211)가 ㄷ자형 미들 요크(84)와 겹쳐 있지 않은 점이다. 즉, L자형 외주 요크(821)의 인측 단부(8211)의 직경이 ㄷ자형 미들 요크(84)의 외경보다도 크고, L자형 외주 요크(821)의 인측 단부(8211)가 ㄷ자형 미들 요크(84)의 근방에 배치되어 있다.
L자형 외주 요크(821)와 ㄷ자형 미들 요크(84)를 도 5에 나타낸 바와 같은 관계로 해도, 외주 코일(81)에 전류를 흘림으로써 발생하는 자장에 의해 외주 요크(821)의 인측 단부(8211)로부터 나오는 자속을 미들 요크(84) 경유로 외주 요크(821)의 아웃측 단부(8212)로 되돌릴 수 있다. 또한, 미들 코일(83)에 전류를 흘림으로써 발생하는 자장에 의해 미들 요크(84)의 단부(8401)로부터 나오는 자속을 외주 요크(821)를 경유하여 미들 요크(84)로 되돌릴 수 있다.
이에 따라, L자형 외주 요크(821)와 ㄷ자형 미들 요크(84)에 의해 형성된 자계는, 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마 분포의 요철을 제어 가능하게 된다. 또한, ㄷ자형 미들 요크(84)는 L자형 외주 요크(821)와 비교적 독립된 자속 루프를 형성하고, 도 4에 나타낸 바와 같이, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
본 변형예와 같은 코일·요크 배치로 함으로써, L자형 요크와 ㄷ자형 요크에 의해 형성된 자계는 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마 밀도 분포의 요철을 제어 가능하게 된다. 또한, ㄷ자형 요크는 L자형 요크와 비교적 독립된 자속 루프를 형성하며, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
그 결과, 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서 자장의 제어를 비교적 정밀도 좋게 행할 수 있고, 시료대(2)에 재치한 시료(3)의 근방에서의 전자 밀도의 분포를, 비교적 정밀도 좋게 제어하는 것이 가능해지고, 시료대(2)에 재치된 시료(3)를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
또한, 본 변형예에 따르면, 동심원 형상으로 전체적으로 플라스마 밀도를 요철로 제어하면서, φ300㎜ 웨이퍼의 중주 영역(R=50∼100㎜)의 플라스마 밀도를 독립적으로 제어할 수 있고, φ300㎜의 웨이퍼를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
[변형예 2]
본 발명의 실시예의 제2 변형예를, 도 6을 이용하여 설명한다. 도 6에는, 도 1에서 설명한 플라스마 처리 장치(100)에 있어서, L자형 외주 요크(82)와 ㄷ자형 미들 요크(84)와 그 주변에 상당하는 부분의 구성을 나타낸다.
도 6의 구성에서, 도 1에 나타낸 구성과 다른 점은, 도 1의 L자형 외주 요크(82)를, 변형예 1의 경우와 마찬가지로 L자형 외주 요크(821)로 치환하고, 또한, ㄷ자형 미들 요크(841)로 치환한 점이다.
도 1의 L자형 외주 요크(821)에서는, 인측 단부(8201)가 ㄷ자형 미들 요크(84)와 겹쳐 있었던 것에 대하여, 도 6에 나타낸 본 변형예의 구성에 있어서는, 변형예 1의 경우와 마찬가지로 L자형 외주 요크(821)의 인측 단부(8211)가 ㄷ자형 미들 요크(841)와 겹쳐 있지 않다.
또한, 미들 코일(83)의 높이 방향의 위치를, 외주 요크(821)의 인측 단부(8211) 부근에 있어서의 외주 코일(81)의 높이와 거의 동등하게 하는 한편, ㄷ자형 미들 요크(841)의 단부(8411)의 위치가 도 1에서 설명한 실시예에 있어서의 ㄷ자형 미들 요크(84)의 단부(8401)의 위치와 같은 위치가 되도록, ㄷ자형 미들 요크(841)의 단부(8411)를 길게 돌출한 형상으로 하고 있다.
L자형 외주 요크(821)와 ㄷ자형 미들 요크(841)를 도 6에 나타낸 바와 같은 관계로 해도, 외주 코일(81)에 전류를 흘림으로써 발생하는 자장에 의해 외주 요크(821)의 인측 단부(8211)로부터 나오는 자속을 미들 요크(841) 경유로 외주 요크(821)의 아웃측 단부(8212)로 되돌릴 수 있다. 또한, 미들 코일(83)에 전류를 흘림으로써 발생하는 자장에 의해 미들 요크(841)의 단부(8411)로부터 나오는 자속을 외주 요크(821)를 경유하여 미들 요크(841)로 되돌릴 수 있다.
이에 따라, L자형 외주 요크(821)와 ㄷ자형 미들 요크(841)에 의해 형성된 자계는, 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마 밀도 분포의 요철을 제어 가능하게 된다. 또한, ㄷ자형 미들 요크(841)는 L자형 외주 요크(821)와 비교적 독립된 자속 루프를 형성하고, 도 4에 나타낸 바와 같이, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
본 변형예에 따르면, 도 6에 나타낸 바와 같은 코일·요크 배치로 함으로써, L자형 요크와 ㄷ자형 요크에 의해 형성된 자계는 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마 밀도 분포의 요철을 제어 가능하게 된다. 또한, ㄷ자형 요크는 L자형 요크와 비교적 독립된 자속 루프를 형성하고, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
그 결과, 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서 자장의 제어를 비교적 정밀도 좋게 행할 수 있고, 시료대(2)에 재치한 시료(3)의 근방에서의 플라스마 밀도의 분포를, 비교적 정밀도 좋게 제어하는 것이 가능해지고, 시료대(2)에 재치된 시료(3)를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
또한, 본 변형예에 따르면, 동심원 형상으로 전체적으로 플라스마 밀도를 요철로 제어하면서, φ300㎜ 웨이퍼의 중주 영역(R=50∼100㎜)의 플라스마 밀도를 독립적으로 제어할 수 있고, φ300㎜의 웨이퍼를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
[변형예 3]
본 발명의 실시예의 제3 변형예를, 도 7을 이용하여 설명한다. 도 7에는, 도 1에서 설명한 플라스마 처리 장치(100)에 있어서, L자형 외주 요크(82)와 ㄷ자형 미들 요크(84)와 그 주변에 상당하는 부분의 구성을 나타낸다.
도 7의 구성에서, 도 1에 나타낸 구성과 다른 점은, 도 1의 L자형 외주 요크(82)를, L자형 외주 요크(822)로 치환한 점이다. 도 1의 L자형 외주 요크(82)에서는, 인측 단부(8201)가 ㄷ자형 미들 요크(84)와 일부 겹쳐 있었던 것에 대하여, 도 7에 나타낸 본 변형예의 구성에 있어서는, L자형 외주 요크(822)의 인측 단부(8221)가 ㄷ자형 미들 요크(842) 전체를 덮도록 겹쳐 있는 점이다.
L자형 외주 요크(822)와 ㄷ자형 미들 요크(842)를 도 7에 나타낸 바와 같은 관계로 함으로써, 외주 코일(81)에 전류를 흘림으로써 발생하는 자장에 의해 외주 요크(822)의 인측 단부(8221)로부터 나오는 자속을 미들 요크(842) 경유로 외주 요크(822)의 아웃측 단부(8222)로 되돌릴 수 있다. 또한, 미들 코일(83)에 전류를 흘림으로써 발생하는 자장에 의해 미들 요크(842)의 단부(8421)로부터 나오는 자속을 외주 요크(822)를 경유하여 미들 요크(842)로 되돌릴 수 있다.
본 변형예에 따르면, 도 7에 나타낸 바와 같은 코일·요크 배치로 함으로써, L자형 외주 요크(822)와 ㄷ자형 미들 요크(842)에 의해 형성된 자계는, 중심으로부터 외주를 향하여 원활하게 발산하는 자속을 형성하며, 플라스마 밀도 분포의 요철을 제어 가능하게 된다. 또한, ㄷ자형 미들 요크(842)는 L자형 외주 요크(822)에 대하여 비교적 독립된 자속 루프를 형성하고, 도 4에 나타낸 바와 같이, 미들 영역의 플라스마 밀도 분포의 제어가 가능해진다.
그 결과, 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서 자장의 제어를 비교적 정밀도 좋게 행할 수 있고, 시료대(2)에 재치한 시료(3)의 근방에서의 전자 밀도의 분포를, 비교적 정밀도 좋게 제어하는 것이 가능해지고, 시료대(2)에 재치된 시료(3)를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
또한, 본 변형예에 따르면, 동심원 형상으로 전체적으로 플라스마 밀도를 요철로 제어하면서, φ300㎜ 웨이퍼의 중주 영역(R=50∼100㎜)의 플라스마 밀도를 독립적으로 제어할 수 있고, φ300㎜의 웨이퍼를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
[변형예 4]
본 발명에 실시예의 제4 변형예로서, 도 1에서 설명한 플라스마 처리 장치(100)에 있어서, 미들 코일(83)과 ㄷ자형 미들 요크(84)를 조합한 변형예를 도 8에 나타낸다. 이 경우, 외주 코일(81)과 외주 요크(82)는, 도 1에서 설명한 실시예의 구성과 같으므로, 설명을 생략한다.
도 8에 나타낸 본 변형예에 있어서는, 실시예 1에서 설명한 미들 코일(83)을 두 개로 분리하여, 제1 미들 코일(831)과 제2 미들 코일(832)로 구성하고, 그것들을 ㄷ자형 미들 요크(843)로 덮도록 형성했다.
또, 외주 요크에 대해서는, 실시예 1에서 설명한 외주 요크(82) 외에, 변형예 1에서 설명한 외주 요크(822) 또는 변형예 3에서 설명한 외주 요크(822)를 이용해도 된다.
실시예 1에서 설명한 미들 코일(83)을 제1 미들 코일(831)과 제2 미들 코일(832)로 구성함으로써, 어느 미들 코일에 전류를 흘릴지에 따라 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서의 자장을 보다 미세하게 제어할 수 있으며, 플라스마의 전자 밀도가 높아지는 반경 위치를 조정할 수 있다.
그 결과, 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서 자장의 제어를 비교적 정밀도 좋게 행할 수 있고, 시료대(2)에 재치한 시료(3)의 근방에서의 전자 밀도의 분포를, 비교적 정밀도 좋게 제어하는 것이 가능해지고, 시료대(2)에 재치된 시료(3)를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
또, 도 8에 나타낸 구성에서는 제1 미들 코일(831)과 제2 미들 코일(832)을 구비한 구성을 나타냈지만, 미들 코일의 수는 3 이상이어도 된다.
또한, 본 변형예에 따르면, 동심원 형상으로 전체적으로 플라스마 밀도를 요철로 제어하면서, φ300㎜ 웨이퍼의 중주 영역(R=50∼100㎜)의 플라스마 밀도를 독립적으로 제어할 수 있고, φ300㎜의 웨이퍼를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
[변형예 5]
본 발명에 실시예의 제5 변형예로서, 도 1에서 설명한 플라스마 처리 장치(100)에 있어서, 미들 코일(83)과 ㄷ자형 미들 요크(84)를 조합한 변형예를 도 9에 나타낸다. 이 경우, 외주 코일(81)과 외주 요크(82)는, 도 1에서 설명한 실시예의 구성과 같으므로, 설명을 생략한다.
도 9에 나타낸 본 변형예에 있어서는, 실시예 1에서 설명한 미들 코일(83)과 ㄷ자형 미들 요크(84)로 조합을 두 개로 하여, 제1 미들 코일(833)과 제1 ㄷ자형 미들 요크(844)의 조합과, 제2 미들 코일(834)과 제2 ㄷ자형 미들 요크(844)의 조합으로 구성했다.
또, 외주 요크에 대해서는, 실시예 1에서 설명한 외주 요크(82) 외에, 변형예 1에서 설명한 외주 요크(822) 또는 변형예 3에서 설명한 외주 요크(822)를 이용해도 된다.
이와 같이, 제1 미들 코일(833)과 제1 ㄷ자형 미들 요크(844)의 조합과, 제2 미들 코일(834)과 제2 ㄷ자형 미들 요크(844)의 조합으로 구성함으로써, 어느 미들 코일로 전류를 흘려보낼지에 따라 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서의 자장을 보다 미세하게 제어할 수 있으며, 플라스마의 전자 밀도가 높아지는 반경 위치의 조정을 보다 미세하게 행할 수 있다.
그 결과, 시료대(2)의 상부의 플라스마(11)가 발생하는 영역에 있어서 자장의 제어를 비교적 미세하게 행할 수 있고, 시료대(2)에 재치한 시료(3)의 근방에서의 전자 밀도의 분포를, 보다 미세하게 제어하는 것이 가능해지고, 시료대(2)에 재치된 시료(3)를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
또, 도 9에 나타낸 구성에서는, 미들 코일과 미들 요크의 조합이 2세트일 경우에 대해서 나타냈지만, 미들 코일과 미들 요크의 조합의 수는 3 이상이어도 된다.
또한, 본 변형예에 따르면, 동심원 형상으로 전체적으로 플라스마 밀도를 요철로 제어하면서, φ300㎜ 웨이퍼의 중주 영역(R=50∼100㎜)의 플라스마 밀도를 독립적으로 제어할 수 있고, φ300㎜의 웨이퍼를 플라스마 처리할 경우에 있어서, 처리의 균일성을 보다 높은 정밀도로 확보할 수 있다.
본 발명은, 예를 들면, 반도체 디바이스의 제조 라인에 있어서, 반도체 웨이퍼를 플라스마 중에서 에칭 처리하여 반도체 웨이퍼 위에 미세한 패턴을 형성하는, 에칭 장치에 이용할 수 있다.
2: 시료대 2a: 기재
3: 시료 4: 상부 전극
5: 샤워 플레이트 8: 방전용 고주파 전원
10: 진공 용기 11: 플라스마
12: 상부 전극 절연체 13: 절연 링
22: 절연판 23: 절연층
24: 차폐판 25: 서셉터 링
30: 가스 통과 구멍 40: 처리실
45: 배기부 50: 플라스마 형성부
70: 제어부 81: 외주 코일
82, 821, 822: 외주 요크
83, 831, 832, 833, 834: 미들 코일
84, 841, 842, 843, 844, 854: 미들 요크
100: 플라스마 처리 장치

Claims (9)

  1. 시료가 플라스마 처리되는 진공 용기와,
    플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과,
    상기 시료가 재치(載置)되는 시료대와,
    상기 진공 용기의 내부에 자장(磁場)을 형성시켜 상기 진공 용기의 외측에 배치된 자장 형성부를 구비하고,
    상기 자장 형성부는, 제1 코일과, 상기 제1 코일보다 내측에 배치되고 상기 제1 코일의 직경보다 작은 직경의 제2 코일과, 상기 제1 코일, 상기 진공 용기의 위쪽 및 측면을 덮어 상기 제1 코일이 내부에 배치된 제1 요크와, 상기 제2 코일의 둘레 방향을 따라 상기 제2 코일을 덮어 상기 제2 코일의 아래쪽측에 개구부를 갖는 제2 요크를 구비하는 것을 특징으로 하는 플라스마 처리 장치.
  2. 제1항에 있어서,
    상기 제1 요크는, 상기 제2 요크와 전기적으로 접촉하지 않는 위치에 배치되어 있는 것을 특징으로 하는 플라스마 처리 장치.
  3. 제1항에 있어서,
    상기 제2 요크는, 상기 제1 요크의 내부에 배치되어 있는 것을 특징으로 하는 플라스마 처리 장치.
  4. 제1항에 있어서,
    평면도에 있어서의 상기 제2 요크의 외경은, 평면도에 있어서의 상기 시료의 직경 이상인 것을 특징으로 하는 플라스마 처리 장치.
  5. 제1항에 있어서,
    상기 제2 코일은, 한쪽 코일과 상기 한쪽 코일의 직경보다 큰 직경의 다른쪽 코일을 갖는 것을 특징으로 하는 플라스마 처리 장치.
  6. 제5항에 있어서,
    상기 제2 요크는, 상기 한쪽 코일을 덮는 한쪽 요크와, 상기 다른쪽 코일을 덮는 다른쪽 요크를 갖는 것을 특징으로 하는 플라스마 처리 장치.
  7. 제1항에 있어서,
    상기 자장 형성부를 제어하는 제어부를 더 구비하고,
    상기 제어부는, 상기 시료의 직경 방향의 자속 밀도가 상기 시료의 외주(外周)만큼 커지도록 하는 발산 자장이 형성되도록 상기 제1 코일에 흐르는 전류를 제어함과 함께 상기 시료의 직경 방향의 중간 영역에 있어서의 자속 밀도가 소망의 값이 되도록 상기 제2 코일에 흐르는 전류를 제어하는 것을 특징으로 하는 플라스마 처리 장치.
  8. 시료가 플라스마 처리되는 진공 용기와,
    플라스마를 생성하기 위한 고주파 전력을 공급하는 고주파 전원과,
    상기 시료가 재치되는 시료대와,
    상기 진공 용기의 내부에 자장을 형성시켜 상기 진공 용기의 외측에 배치된 자장 형성부를 구비하고,
    상기 자장 형성부는, 제1 코일과, 제2 코일과, 상기 제1 코일, 상기 진공 용기의 위쪽 및 측면을 덮어 상기 제1 코일이 내부에 배치된 제1 요크와, 상기 제2 코일을 덮는 제2 요크를 구비하고,
    상기 제1 요크의 한쪽 단부(端部)로부터 발한 자력선이 상기 제2 요크를 통해 상기 제1 요크의 다른쪽 단부로 돌아가며, 또한 상기 제2 요크로부터 발한 자력선이 상기 제2 요크로 돌아가도록 상기 제2 코일과 상기 제2 요크가 구성되어 있는 것을 특징으로 하는 플라스마 처리 장치.
  9. 제1항에 있어서,
    상기 제1 요크의 한쪽 단부로부터 발한 자력선이 상기 제2 요크를 통해 상기 제1 요크의 다른쪽 단부로 돌아가며, 또한 상기 제2 요크로부터 발한 자력선이 상기 제2 요크로 돌아가도록 상기 제2 코일과 상기 제2 요크가 구성되어 있는 것을 특징으로 하는 플라스마 처리 장치.
KR1020207009879A 2019-07-29 2019-07-29 플라스마 처리 장치 KR102285126B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029630 WO2020121588A1 (ja) 2019-07-29 2019-07-29 プラズマ処理装置

Publications (2)

Publication Number Publication Date
KR20210014617A KR20210014617A (ko) 2021-02-09
KR102285126B1 true KR102285126B1 (ko) 2021-08-04

Family

ID=71076594

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207009879A KR102285126B1 (ko) 2019-07-29 2019-07-29 플라스마 처리 장치

Country Status (6)

Country Link
US (1) US20220157576A1 (ko)
JP (1) JP6899035B2 (ko)
KR (1) KR102285126B1 (ko)
CN (1) CN112585726B (ko)
TW (1) TWI738309B (ko)
WO (1) WO2020121588A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210125155A (ko) * 2020-04-07 2021-10-18 삼성디스플레이 주식회사 표시 장치의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200429A (ja) 2002-12-19 2004-07-15 Hitachi High-Technologies Corp プラズマ処理装置
JP2008166844A (ja) 2008-03-17 2008-07-17 Hitachi High-Technologies Corp プラズマ処理装置
JP2019109980A (ja) 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161993A (ja) * 1995-12-12 1997-06-20 Hitachi Ltd 2重コイルを用いた多段コイルを有するプラズマ処理装置及び方法
JP3666999B2 (ja) * 1996-07-26 2005-06-29 アネルバ株式会社 プラズマ処理装置
JP3582287B2 (ja) * 1997-03-26 2004-10-27 株式会社日立製作所 エッチング装置
JP3542514B2 (ja) * 1999-01-19 2004-07-14 株式会社日立製作所 ドライエッチング装置
JP3764639B2 (ja) * 2000-09-13 2006-04-12 株式会社日立製作所 プラズマ処理装置および半導体装置の製造方法
JP3591642B2 (ja) * 2001-02-07 2004-11-24 株式会社日立製作所 プラズマ処理装置
US20050072444A1 (en) * 2003-10-03 2005-04-07 Shigeru Shirayone Method for processing plasma processing apparatus
JP2005150606A (ja) * 2003-11-19 2005-06-09 Hitachi High-Technologies Corp プラズマ処理装置
JP4601439B2 (ja) * 2005-02-01 2010-12-22 株式会社日立ハイテクノロジーズ プラズマ処理装置
CN1835339A (zh) * 2005-03-18 2006-09-20 日立粉末冶金株式会社 三相爪极型电机
US20070044916A1 (en) * 2005-08-31 2007-03-01 Masakazu Isozaki Vacuum processing system
JP2007311613A (ja) * 2006-05-19 2007-11-29 Hitachi High-Technologies Corp 試料台及びそれを備えたプラズマ処理装置
US8123902B2 (en) * 2007-03-21 2012-02-28 Applied Materials, Inc. Gas flow diffuser
KR101357123B1 (ko) * 2009-01-15 2014-02-04 가부시키가이샤 히다치 하이테크놀로지즈 플라즈마 처리장치
JP2010192308A (ja) * 2009-02-19 2010-09-02 Hitachi High-Technologies Corp プラズマ処理装置
US8089050B2 (en) * 2009-11-19 2012-01-03 Twin Creeks Technologies, Inc. Method and apparatus for modifying a ribbon-shaped ion beam
JP5808697B2 (ja) * 2012-03-01 2015-11-10 株式会社日立ハイテクノロジーズ ドライエッチング装置及びドライエッチング方法
JP6204869B2 (ja) * 2014-04-09 2017-09-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6284825B2 (ja) * 2014-05-19 2018-02-28 東京エレクトロン株式会社 プラズマ処理装置
KR102334378B1 (ko) * 2015-09-23 2021-12-02 삼성전자 주식회사 유전체 윈도우, 그 윈도우를 포함한 플라즈마 공정 시스템, 및 그 시스템을 이용한 반도체 소자 제조방법
JP6620078B2 (ja) * 2016-09-05 2019-12-11 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP6836976B2 (ja) * 2017-09-26 2021-03-03 東京エレクトロン株式会社 プラズマ処理装置
JP7091074B2 (ja) * 2018-01-05 2022-06-27 株式会社日立ハイテク プラズマ処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200429A (ja) 2002-12-19 2004-07-15 Hitachi High-Technologies Corp プラズマ処理装置
JP2008166844A (ja) 2008-03-17 2008-07-17 Hitachi High-Technologies Corp プラズマ処理装置
JP2019109980A (ja) 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置

Also Published As

Publication number Publication date
JPWO2020121588A1 (ja) 2021-02-15
WO2020121588A1 (ja) 2020-06-18
CN112585726A (zh) 2021-03-30
TW202105511A (zh) 2021-02-01
US20220157576A1 (en) 2022-05-19
KR20210014617A (ko) 2021-02-09
CN112585726B (zh) 2023-07-14
JP6899035B2 (ja) 2021-07-07
TWI738309B (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
US10615004B2 (en) Distributed electrode array for plasma processing
KR100274757B1 (ko) 플라즈마 처리장치 및 플라즈마 처리방법
JP3150058B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2015162266A (ja) プラズマ処理装置
KR102218686B1 (ko) 플라스마 처리 장치
TWI661465B (zh) Plasma processing device
KR20170012106A (ko) 플라즈마 처리 장치
JP2020004780A (ja) プラズマ処理装置およびプラズマ処理方法
KR102285126B1 (ko) 플라스마 처리 장치
WO2019229784A1 (ja) プラズマ処理装置
JP2019110312A (ja) プラズマ処理方法
US20170076914A1 (en) Plasma processing apparatus
KR20180125432A (ko) 플라스마 처리 장치
JP2001210628A (ja) プラズマ処理装置
KR102679639B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
WO2023175690A1 (ja) プラズマ処理装置
JP2019160714A (ja) プラズマ処理装置
KR20240104212A (ko) 플라스마 처리 장치 및 플라스마 처리 방법
JP2016046357A (ja) プラズマ処理装置
KR20240001113A (ko) 플라스마 처리 장치
JP2024089806A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant