JP6898427B2 - 管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法 - Google Patents

管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法 Download PDF

Info

Publication number
JP6898427B2
JP6898427B2 JP2019509402A JP2019509402A JP6898427B2 JP 6898427 B2 JP6898427 B2 JP 6898427B2 JP 2019509402 A JP2019509402 A JP 2019509402A JP 2019509402 A JP2019509402 A JP 2019509402A JP 6898427 B2 JP6898427 B2 JP 6898427B2
Authority
JP
Japan
Prior art keywords
sapphire
axial direction
tubular
axis
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019509402A
Other languages
English (en)
Other versions
JPWO2018181981A1 (ja
Inventor
一郎 坂野
一郎 坂野
圭司 行廣
圭司 行廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2018181981A1 publication Critical patent/JPWO2018181981A1/ja
Application granted granted Critical
Publication of JP6898427B2 publication Critical patent/JP6898427B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/006Constructions of heat-exchange apparatus characterised by the selection of particular materials of glass
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/001Particular heat conductive materials, e.g. superconductive elements

Description

本開示は、管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法に関する。
サファイアからなる管状部材は、優れた耐薬品性を有することから薬液を流通させる用途に用いられている。また、サファイアは比較的高い熱伝導率を有するため、熱交換を行う用途へも適用されている。単結晶からなる管状部材の製造方法は特許文献1、2に記載されている。
特開昭58−26097号公報 特表2004−525852号公報
本開示の管状サファイア部材は、サファイアからなる管状体であり、軸方向に伸びた外壁と、前記軸方向に伸びた複数の貫通孔と、複数の前記貫通孔を区分する、前記軸方向に伸びた1以上の隔壁とを備え、前記軸方向はサファイアのc軸と平行であり、前記隔壁の少なくとも1つは、前記軸方向に見た正面視において、中心軸から前記外壁に向かって延在して前記外壁と接続しており、前記隔壁の延在方向はサファイアのa軸およびm軸のいずれかと平行である。
第1の実施形態に係る管状サファイア部材の軸方向に見た正面図である。 第2の実施形態の正面図である。 第3の実施形態の正面図である。 第4の実施形態の正面図である。 第5の実施形態の正面図である。 第6の実施形態の正面図である。 第7の実施形態の正面図である。 管状サファイア部材の製造に用いる金型の上面図である。 図8のA−A’部における縦断面図である。 サファイアの結晶構造を示す図である。
本開示の管状サファイア部材について、図面を参照しながら説明する。
図1は、第1の実施形態に係る管状サファイア部材1の軸方向に見た正面図である。
図1に示すように、管状サファイア部材1は、外壁1aと、複数の貫通孔2aを隔てている隔壁1bを備えている。管状サファイア部材1は、図1において奥行き方向が軸方向である。外壁1aと隔壁1bは、軸方向に伸びている。管状サファイア部材1は、軸方向に見た正面視において、いずれも同一形状を有する、環状に配置された複数の貫通孔2aを備える。
なお、サファイアとは酸化アルミニウムの単結晶のことであり、本開示の管状サファイア部材1は、特に耐熱性や耐腐食性が要求される用途に好適である。また、管状サファイア部材1は透光性を有するので、貫通孔2aを流れる流体の観察が可能であるとともに、熱伝導だけでなく熱輻射によっても流体に熱を伝えることが可能である。なお、本開示において、管状とは、軸方向に延伸する第1貫通孔2aを備えた形状のことである。管状サファイア部材1は、外径よりも軸長が短い形状(管状板)でもよい。
本開示の管状サファイア部材1は、外壁1aおよび隔壁1bは、軸方向がサファイアのc軸と平行である。隔壁1bは、軸方向に見た正面視において、中心軸から外壁1aに向かって延在して外壁1aと接続しており、隔壁1bの延在方向はサファイアのa軸およびm軸のいずれかと平行である。中心軸とは、軸方向に見た正面視において、管状サファイア部材1の外周面の断面の重心位置を通る、軸方向に平行は仮想軸のことをいう。例えば断面が円形状である場合、この円の中心位置を通り軸方向に平行な仮想軸が中心軸となる。
貫通孔2aが、軸方向に沿って同一形状であるとは、貫通孔2aが、ほぼ同じ形状で軸方向に延伸していることを意味しており、部分的に大きさが変化していてもよい。
本開示の管状サファイア部材1は、外壁1aに沿って延在して接続された隔壁1bを備えていることから、単に1つの貫通孔が存在する管状部材と比べて、構造体として高い強度を有する。また、隔壁1bにおいて、サファイアの結晶方位と隔壁1bとの関係が上記構成を満たすものであることから、管状サファイア部材1は、破壊しにくく、信頼性に優れる。すなわち、管状サファイア部材1の軸方向をサファイアのc軸と平行とし、隔壁1bの延在方向Dをサファイアのa軸およびm軸のいずれかと平行にすることにより、破壊しにくい管状サファイア部材1となる。
以下に、このような構造とすることで管状サファイア部材1の構造体としての強度が高くなる理由について説明する。図10は、サファイアの結晶構造を示す図である。図10(a)〜(d)にそれぞれ示すように、サファイアは代表的な結晶面として、c面、m面、a面、r面等の結晶面を有する。
サファイアは、結晶面と結晶軸の方向の違いによって機械的強度が異なる。主面の面方位、及び主面の長辺の軸方位を種々に選んだサファイア試料について、JISR1601による3点曲げ強度試験を行った結果を表1に示す。各試料は、幅4mm、長さ40mm、厚さ3mmの寸法を有し、表面はダイヤモンド砥石により研削仕上げされ、表面粗さ(Ra)は0.5μm程度であり、また、試料を支持する支点間の距離は30mmとした。
Figure 0006898427
表1に示すとおり、試験片の3点曲げ強度は、410MPa〜960MPaの範囲で異なっている。主面の長辺の軸方位をc軸とし、主面の面方位を結晶のa軸に垂直なa面とした場合に試験片の強度は最大となり、960MPaの強度を示した。また、主面の長辺の軸方位をc軸とし、主面の面方位を結晶のm軸に垂直なm面とした場合には、700MPaの強度を示した。
すなわち、隔壁1bの軸方向と直交する隔壁1bの延在方向Dをサファイアのa軸およびm軸のいずれかと平行とした場合、隔壁1bの強度は比較的強い。そのため、管状サファイア部材1は、構造部材としての信頼性が向上する。
なお、隔壁1bの軸方向と直交する隔壁1bの延在方向Dがa軸と平行な場合、隔壁1bが、特に高い強度を有する。例えば、図1に示す管状サファイア部材1であれば、図1に示す上下方向に沿って環状部材1に圧縮力がかかるような用途に、好適に用いることができる。 また、隔壁1bの軸方向と直交する隔壁1bの延在方向Dがm軸と平行な場合、外壁1aに強度が高いa軸と平行な領域が存在することになる。この場合、外壁1aの全体的な強度も高くなり、管状サファイア部材1に等圧的に力が加わる用途に好適に用いることができる。
図1では、一つの隔壁1bが設けられている例を示したが、第2の実施形態を示す図2のように、同じ方向を向くように配置された複数の隔壁1bがあってもよい。図2の例では、外壁1aで囲まれた空間に2つの隔壁1bが配置されることで、3つの貫通孔2aが設けられている。図1や図2に示す形態では、特に、図1および図2における上下方向に沿った力に対して、変形または破壊が起こり難い。
また、例えば、第3の実施形態を示す図3のように、中心軸から離れる方向に伸びた隔壁1bが配置されることで3つの貫通孔2aを有する場合でも、隔壁1bの軸方向に直交する隔壁1bの延在方向Dが、サファイアのa軸およびm軸のいずれかと平行とすることができる。
図3の例では、それぞれの隔壁1bがなす角度が120°となる3つの隔壁1bは、管状サファイア部材1の中心軸の近傍で接続している。この例では、管状サファイア部材1は、隔壁1bによって隔てられた3つの貫通孔2aが、外壁1aの外周に沿って環状に配置されている。このように、隔壁1b同士のなす角度が120°の場合には、全ての隔壁1bについて、隔壁1bの延在方向Dをサファイアのa軸やm軸と平行にすることができる。
また、第4の実施形態を示す図4のように隔壁1b同士のなす角度が60°の場合も同様に、全ての隔壁1bについて、隔壁1bの延在方向Dをサファイアのa軸やm軸と平行にすることができる。
また、第5の実施形態を示す図5のように、貫通孔2の1つが中心軸と重なる位置に配置されており、軸方向に見た正面視において、中心軸と重なる位置に配置された貫通孔2を囲む囲繞外壁1cを備えていてもよい。つまり、軸方向と重なる位置に、囲繞外壁1cによって囲まれた貫通孔をさらに備えていてもよい。以下、囲繞外壁1cによって囲まれた貫通孔を第2貫通孔2bと記載し、他の貫通孔を第1貫通孔2aと記載して説明する。図5に示す例は、この第2貫通孔2bが、管状サファイア部材1の中心軸と重なる位置に配置されており、その周りを複数の第1貫通孔2aが取り囲む構造となっている。
図5に示す構造によれば、すなわち、管状サファイア部材1の中心に第2貫通孔2bを備えるように囲繞外壁1cを配置することで、中心軸の近傍領域における機械強度が比較的高くなっている。
また、一つの第2貫通孔2bと複数の第1貫通孔1aとの間で熱交換可能となり、管状サファイア部材1を熱交換器の用途で使用する場合など、1つのサファイア部材で複数種類の熱交換経路を構成することもできるし、熱交換の効率を比較的高くすることもできる。
また、第6の実施形態を示す図6のように、管状サファイア部材1の中心に第2貫通孔2bが位置し、その周りを楕円形状の第1貫通孔2aが取り囲む構造としてもよい。このような構造とすると、第1貫通孔1aに角部のある場合に比べ、応力が集中する部分を無くすことができる。
第1貫通孔2aの形状は円形としてもよく、図1〜6に示すように、第1貫通孔2aの形状を、非円形としてもよい。このように第1貫通孔2aの形状を非円形とすると、円形の場合に比べ、第1貫通孔2aの体積に対する、第1貫通孔2aの面積 が大きくなるため、熱交換効率を高くすることができる。非円形の例として、楕円や四角、あるいは第1貫通孔2aの内壁に複数の溝が形成されている形状があげられる。これらの貫通孔2の横断面における形状は、角部がある場合には、その角部を丸くしてもよい。
また、第7の実施形態を示す図7のように、全ての隔壁1bが中心軸の近傍で接続する実施形態において、隔壁1bの接続部分の柱状体の、軸方向に見た正面視における面積を比較的大きくしてもよい。この場合、中心軸を含む領域において、比較的高い機械強度を有する。
また、図1、3、4に示すように、第1貫通孔1aは、貫通方向に見た正面視において、円形状の等分形状としてもよい。また、第1貫通孔1aは、図5、7に示すように貫通方向に見た正面視において、環状の等分形状としてもよい。このように、第1貫通孔2aの形状を円形状の等分形状または環状の等分形状とすれば、軸方向に沿った正面視における、外壁1aの外周線に沿った機械強度分布が小さくなる。この場合、管状サファイア部材1に対して全体的に圧力がかかった場合も、変形や割れ等が少ない。
また、軸方向に見た正面視において、中心軸を対称中心として、第1貫通孔2aを点対称に配置するとよい。このような構造とすると、無作為に第1貫通孔2aが設けられている場合と比べ、軸方向に沿った正面視における、外壁1aの外周線に沿った機械強度分布が小さい。
以上、説明した管状サファイア部材1は、気体や液体を流通させるための流路部材として用いられる。例えば、管状サファイア部材1を、半導体素子を作製するための反応ガスなどを流通させる半導体製造装置の部品として用いることもできる。また、単に気体や液体を通過させるだけでなく、通過する気体や流体間で熱交換を行う熱交換器としても用いることができる。
以下に、図8、9を用いて管状サファイア部材1の製造方法について説明する。
管状サファイア部材1の製造方法においては、管状サファイア部材1の形状を決定するための金型3を用いる。図8は、金型3の上面視における概略図である。この金型の上面の一部に溶融したサファイア融液を配置し、そのサファイア融液に種となるサファイア結晶(以下、種結晶と記載する。)を接触させたのち、種結晶を図8における手前方向に引き上げることで管状サファイア部材1となるサファイア結晶を育成することができる。
そして、サファイア融液に種結晶を接触させる際に、種結晶の結晶方位を位置あわせして、種結晶を引き上げることで、軸方向がサファイアのc軸と平行となり、隔壁1bの軸方向に直交する隔壁1bの延在方向Dがサファイアのa軸およびm軸のいずれかと平行となる本開示の管状サファイア部材1を製造することができる。
以下に、本開示の管状サファイア部材1の製造方法について詳細に説明する。
本開示の管状サファイア部材1の製造方法は、以上説明した管状サファイア部材1における外壁1aおよび隔壁1bに対応する部分に開口部7と結晶育成面8を有する金型3を準備する工程と、引き上げ方向が、種結晶のc軸であり、引き上げ方向に直交する隔壁1bの延在方向Dが種結晶のa軸およびm軸のいずれかと平行となるように金型3の位置合わせをする工程と、金型3の開口部7に存在するサファイア融液に種結晶を接触させる工程と、種結晶を引き上げて成長させる工程とを有するものである。
管状サファイア部材1の製造に用いるEFG装置は、サファイア原料を加熱して得られるサファイア融液を収容する坩堝と、製造する管状サファイア部材1の断面形状を決定する金型3と、坩堝とサファイア融液と金型3とを加熱する加熱手段と、結晶引き上げ機構とを備えている。
そして、サファイア融液に、引き上げ機構の下端に取り付けられた種結晶を接触させて引き上げることにより、サファイア結晶を育成することができる。加熱手段は、例えば、坩堝の周りに設置された誘導加熱コイルである。
坩堝の材料としては、Mo、Ir、Wなどの高融点材料が好適に使用される。本実施形態では、Mo製の坩堝を使用した。坩堝の内周面と外周面の断面形状が円形であれば、加熱手段によって均一に加熱しやすいのでよい。
EFG装置は、さらに製造中に管状サファイア部材1、サファイア融液、金型3、種結晶を観察する手段である撮像部、画像処理部、表示部を備えていてもよい。
図8は、図3に示した3つの隔壁1bを有する管状サファイア部材1を製造するための金型3の上面視における概略図である。また、図9は、図8におけるA−A’部分における金型3の縦断面図である。
金型3は、外側にある環状金型3aと環状金型3aの内側に配置された3つの内側金型3bからなっている。上面視において、管状金型3aと3つの内側金型3bの間には、空間であるスリット6が存在している。また、隣り合う内側金型3b同士の間にも、空間であるスリット6が存在している。そして、これらのスリット6は全てつながっている。スリット6は、金型3の上面と連通し、また、スリット6の下端が、スリット6の下端に存在する融液に浸漬されるものであり、毛細管力によって、融液をスリット6の開口部7に供給する機能を有しており、製造時に開口部7にサファイア融液が存在することになる。
そして、開口部7を取り囲むように金型3の上面の一部8が配置されている。また、金型3の上面には、管状サファイア部材1の貫通孔2aに対応する位置に凹部9が形成されている。
金型3の上面の形状についてまとめると、金型3の上面には、凹部9が形成されており、スリット6が配置され、スリット6を取り囲むように上面の一部8が配置されている。以後、スリット6を取り囲む上面の一部8を結晶育成面8という。
また、金型3の上面のうち、凹部9を除く部分、すなわち、スリット6の開口部7と結晶育成面8をあわせた領域を結晶育成領域10という。この結晶育成領域10は、図3に示す管状サファイア部材1の断面形状と略一致している。図9に示した金型3の上面のうち、結晶育成面8は、スリット6に向けて低くなるような傾斜を有しているが、結晶育成面8は水平な面であってもよい。
製造工程において、サファイア融液は、スリット6を通じて開口部7に到達し、結晶育成面8まで広がって存在する。つまり、結晶育成領域10の上側にサファイア融液が存在する。このサファイア融液に種結晶を接触させたのちに、種結晶を引き上げることで、断面形状が結晶育成領域10と略一致する管状サファイア部材1を製造することができる。
本開示の管状サファイア部材1を製造するために、以上説明した管状サファイア部材1の外壁1aおよび隔壁1bに対応する部分に、結晶育成領域10を有する金型3を準備する。
また、本開示の管状サファイア部材1を製造するために、種結晶を準備する。種結晶は、サファイアからなり、引き上げ方向がc軸となるものである。種結晶の断面形状は、結晶育成領域10と略同形状とするとよい。この種結晶はサファイアの塊を加工して準備することができる。
次に、管状サファイア部材1の引き上げ方向に直交する方向であって、準備した金型3において、隔壁1bとなる部分の結晶育成領域10が、外壁1aとなる部分の結晶育成領域に接続する方向dが種結晶のa軸およびm軸のいずれかとなるように種結晶の結晶方位と金型3との位置あわせを行う。
そして、アルミナ粉末からなるサファイア原料を、例えば2080℃に加熱してサファイア融液とし、そのサファイア融液を、スリット6および開口部7を通じて結晶育成領域10に供給する。そして、種結晶をそのサファイア融液に接触させた後、種結晶を引き上げて、サファイア結晶を成長させることで、本開示の管状サファイア部材1を得ることができる。なお、種結晶に近い部分や、結晶成長の終わりの部分は結晶の乱れや気泡を含むことがあるため、加工により除去するとよい。
また、適宜、研磨、アニール、エッチングなどの後処理を行ってもよい。なお、上記の例では、種結晶は、結晶育成領域10と略同形状としたが、例えば、複数の種結晶を組み合わせて用いてもよい。
また、図8の例では、管状サファイア部材1の外壁1bと隔壁1bに対応する部分に連続して開口部7が形成された例を示したが、一部に開口部7がない場合であっても、サファイア融液が結晶育成面8に引き上げられる形状となっていれば、一部に開口部7がなくてもよい。
また、本開示において、サファイアの軸と平行であると記載しているのは、完全に平行なもののみを意味しているのではなく、例えば、10°程度の角度のずれは許容される。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよい。例えば、管状サファイア部材1の外周形状は円形としたが、多角形状であってもよく、隔壁1bと同様に、外壁1bにおいても、軸方向と直交する方向をサファイアのa軸およびm軸のいずれかと平行としてもよい。
1 :管状サファイア部材
1a :外壁
1b :隔壁
2a :貫通孔(第1貫通孔)
2b :囲繞貫通孔(第2貫通孔)
3 :金型
3a :環状金型
3b :内部金型
6 :スリット
7 :開口部
8 :結晶育成面
9 :凹部
10 :結晶育成領域
D :延在方向

Claims (8)

  1. サファイアからなる管状体であり、
    軸方向に伸びた外壁と、
    前記軸方向に伸びた複数の貫通孔と、
    複数の前記貫通孔を区分する、前記軸方向に伸びた1以上の隔壁とを備え、
    前記軸方向はサファイアのc軸と平行であり、
    前記隔壁の少なくとも1つは、前記軸方向に見た正面視において、中心軸から前記外壁に向かって延在して前記外壁と接続しており、前記隔壁の延在方向はサファイアのa軸およびm軸のいずれかと平行である、管状サファイア部材。
  2. 前記貫通孔の1つが前記中心軸と重なる位置に配置されており、
    前記軸方向に見た正面視において、前記中心軸と重なる位置に配置された前記貫通孔を囲む囲繞外壁を備える、請求項1に記載の管状サファイア部材。
  3. 前記軸方向に見た正面視において、前記貫通孔が非円形である、請求項1または請求項2に記載の管状サファイア部材。
  4. 前記軸方向に見た正面視において、複数の前記貫通孔が前記外壁の外周に沿って環状に配置されている、請求項1乃至請求項3に記載の管状サファイア部材。
  5. 前記軸方向に見た正面視において、いずれも同一形状を有する、環状に配置された複数の前記貫通孔を備える、請求項4に記載の管状サファイア部材。
  6. 請求項1乃至請求項5のいずれかに記載の管状サファイア部材を流路部材として備える熱交換器。
  7. 請求項6に記載の熱交換器を備える半導体製造装置。
  8. サファイアからなる管状体であり、
    軸方向に伸びた外壁と、
    前記軸方向に伸びた複数の貫通孔と、
    複数の前記貫通孔を区分する、前記軸方向に伸びた1以上の隔壁とを備え、
    前記軸方向はサファイアのc軸と平行であり、
    前記隔壁の少なくとも1つは、前記軸方向に見た正面視において、中心軸から前記外壁に向かって延在して前記外壁と接続しており、前記延在方向はサファイアのa軸およびm軸のいずれかと平行である管状サファイア部材の製造方法であって、
    前記管状サファイア部材における前記外壁および前記隔壁に対応する部分に結晶育成領域を有する金型を準備する工程と、
    サファイアからなる種結晶を準備する工程と、
    引き上げ方向が前記種結晶のc軸と平行であり、前記隔壁の前記延在方向が、前記種結晶のa軸およびm軸のいずれかとなるように前記種結晶の結晶方位と前記金型の位置合わせをする工程と、
    前記位置合わせをする工程で位置合わせされた状態で、前記金型の前記結晶育成領域に存在するサファイア融液に前記種結晶を接触させる工程と、
    前記種結晶を引き上げて結晶を育成する工程とを有する、管状サファイア部材の製造方法。
JP2019509402A 2017-03-30 2018-03-30 管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法 Active JP6898427B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017066689 2017-03-30
JP2017066689 2017-03-30
PCT/JP2018/013831 WO2018181981A1 (ja) 2017-03-30 2018-03-30 管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018181981A1 JPWO2018181981A1 (ja) 2020-04-23
JP6898427B2 true JP6898427B2 (ja) 2021-07-07

Family

ID=63678195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509402A Active JP6898427B2 (ja) 2017-03-30 2018-03-30 管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法

Country Status (5)

Country Link
US (1) US20200048790A1 (ja)
EP (1) EP3604630B1 (ja)
JP (1) JP6898427B2 (ja)
CN (1) CN110475915B (ja)
WO (1) WO2018181981A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545272B2 (en) 2019-01-31 2023-01-03 Seaborg Aps Structural material for molten salt reactors
JP2020149051A (ja) * 2019-03-11 2020-09-17 京セラ株式会社 光コネクタ用スリーブおよび光コネクタ
JP2020149052A (ja) * 2019-03-11 2020-09-17 京セラ株式会社 光コネクタ用スリーブおよび光コネクタ
WO2021107049A1 (ja) * 2019-11-27 2021-06-03 京セラ株式会社 電離用電極およびサファイア部材

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868228A (en) * 1971-06-01 1975-02-25 Tyco Laboratories Inc Method of growing crystalline bodies from the melt
US4440728A (en) * 1981-08-03 1984-04-03 Mobil Solar Energy Corporation Apparatus for growing tubular crystalline bodies
SE453010B (sv) * 1986-07-24 1988-01-04 Eric Granryd Vermevexlarvegg anordnad med en tunn, halforsedd metallfolie for att forbettra vermeovergangen vid kokning respektive kondensation
US5549746A (en) * 1993-09-24 1996-08-27 General Electric Company Solid state thermal conversion of polycrystalline alumina to sapphire using a seed crystal
US5575067A (en) * 1995-02-02 1996-11-19 Hexcel Corporation Method of making a continuous ceramic fiber reinforced heat exchanger tube
JP2001255081A (ja) * 2000-03-10 2001-09-21 Sekisui Chem Co Ltd 地中熱交換器
US6562132B2 (en) 2001-04-04 2003-05-13 Ase Americas, Inc. EFG crystal growth apparatus and method
JP2003327495A (ja) * 2002-05-14 2003-11-19 Namiki Precision Jewel Co Ltd 晶癖面サファイヤ板材及びその製造方法
CN101858705B (zh) * 2010-06-13 2011-11-16 三花丹佛斯(杭州)微通道换热器有限公司 热交换器及其隔板
US9562703B2 (en) * 2012-08-03 2017-02-07 Tom Richards, Inc. In-line ultrapure heat exchanger
CN102767922B (zh) * 2012-08-10 2015-06-03 天津三电汽车空调有限公司 用于微通道换热器的分配管及微通道换热器
CN203132410U (zh) * 2013-03-19 2013-08-14 杭州三花微通道换热器有限公司 集流管和具有该集流管的换热器
CN203744811U (zh) * 2014-02-26 2014-07-30 美的集团股份有限公司 集流管及具有该集流管的平行流换热器
JP6400438B2 (ja) * 2014-11-07 2018-10-03 株式会社フルヤ金属 単結晶製造方法及び単結晶製造装置
CN105066084B (zh) * 2015-07-23 2017-04-19 泰晋环保工程技术(上海)有限公司 换热装置
CN105889768A (zh) * 2016-04-10 2016-08-24 何忠亮 一种散热组件
US20170328651A1 (en) * 2016-05-10 2017-11-16 Tom Richards, Inc. Point of dispense heat exchanger for fluids

Also Published As

Publication number Publication date
EP3604630A4 (en) 2021-01-13
US20200048790A1 (en) 2020-02-13
CN110475915A (zh) 2019-11-19
EP3604630A1 (en) 2020-02-05
CN110475915B (zh) 2021-11-02
EP3604630B1 (en) 2024-02-21
WO2018181981A1 (ja) 2018-10-04
JPWO2018181981A1 (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6898427B2 (ja) 管状サファイア部材、熱交換器、半導体製造装置および管状サファイア部材の製造方法
CN101277554B (zh) 加热装置
JP4941631B2 (ja) シリコンシードおよびその製造方法
TWI687372B (zh) 芯線保持器和矽的製造方法
TWI547603B (zh) 製造具有大粒徑之多晶材料的裝置及方法
EP3455384B1 (en) Thermal pyrolytic graphite tube device for directional thermal management
TW201441165A (zh) 用於製造具有減少的重量的玻璃形成裝置的方法
JP6412439B2 (ja) セラミックス製ターゲット材の製造方法および円筒形スパッタリングターゲットの製造方法
CN105970290A (zh) 一种有效抑制氧化镓晶体缺陷的生长装置
US20140113087A1 (en) Manufacturing method of heat insulation wall body and heat insulation wall body
KR20160114059A (ko) 정렬 불량 오차가 개선된 반응기 필라멘트 조립체
JP2012056841A (ja) シリコンシードとその加工方法および加工装置
JP7101194B2 (ja) 単結晶、efg装置用金型、efg装置、単結晶の製造方法、および単結晶部材の製造方法
US20150299895A1 (en) Stirring apparatus of ingot casting furnace
JP6597537B2 (ja) 単結晶製造用坩堝及びシリコン単結晶製造装置
JP2008249193A (ja) 熱交換器
CN218756145U (zh) 一种用于制备晶体材料的加热装置
JP6394124B2 (ja) 坩堝および単結晶の製造方法
CN219117620U (zh) 碳化硅单晶生长坩埚
JP6354399B2 (ja) 坩堝および単結晶の製造方法
JP5949601B2 (ja) 多層型熱反射板およびこれを用いた酸化物単結晶育成装置
JP7359720B2 (ja) 測定冶具及び測定方法
CN109680336B (zh) 一种晶锭生长炉及生长碲化铋晶锭的方法
WO2022024667A1 (ja) Cz用るつぼ
JP6507813B2 (ja) 種結晶の保持方法、及び種結晶ホルダー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210610

R150 Certificate of patent or registration of utility model

Ref document number: 6898427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150