JP6862935B2 - 濃縮システムおよび濃縮方法 - Google Patents

濃縮システムおよび濃縮方法 Download PDF

Info

Publication number
JP6862935B2
JP6862935B2 JP2017042549A JP2017042549A JP6862935B2 JP 6862935 B2 JP6862935 B2 JP 6862935B2 JP 2017042549 A JP2017042549 A JP 2017042549A JP 2017042549 A JP2017042549 A JP 2017042549A JP 6862935 B2 JP6862935 B2 JP 6862935B2
Authority
JP
Japan
Prior art keywords
membrane
draw solution
chamber
target liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017042549A
Other languages
English (en)
Other versions
JP2018143970A (ja
Inventor
櫻井 秀彦
秀彦 櫻井
綾乃 檜垣
綾乃 檜垣
崇人 中尾
崇人 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2017042549A priority Critical patent/JP6862935B2/ja
Publication of JP2018143970A publication Critical patent/JP2018143970A/ja
Application granted granted Critical
Publication of JP6862935B2 publication Critical patent/JP6862935B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、濃縮システムおよび濃縮方法に関する。
水処理分野においては、逆浸透(RO:reverse osmosis)を用いる水処理方法が従来から知られている。逆浸透とは、分離膜の一方側に流される対象液に対して人為的に高い圧力を加えることにより、対象液中の水が分離膜を介して分離膜の他方側に浸透する現象である。これにより、対象液中から水が取り出され、対象液が濃縮される。しかし、逆浸透では、対象液の浸透圧より高い圧力を加える必要がある。このため、実際のROシステムにおいては、ポンプの加圧能力に応じて、濃縮可能な対象液の濃度には上限がある。
そこで、近年、分離膜の両側に同じ濃度の対象液(同じ浸透圧の液)を流して、分離膜の一方側の対象液を加圧することにより、その分離膜の一方側の対象液中の水を分離膜を介して分離膜の他方側に浸透させて、分離膜の一方側の対象液を濃縮する方法(以下、「等圧膜分離法」と呼ぶ。)が提案されている(例えば、特許文献1(米国特許出願公開第2016/0339390号明細書)参照)。この等圧膜分離法によれば、対象液の濃度が高くなっても、分離膜の両側での浸透圧差が基本的に生じないため、必要な加圧の圧力が高くならず、RO法よりも高濃度の対象液を濃縮することが可能となる。
しかし、例えば、分離膜のファウリングを発生させ易い、スケール成分等を多く含む高濃度の対象液(廃液、果汁、牛乳など)に対して、等圧膜分離法を適用する場合、ファウリング(スケール生成)により分離膜が目詰まり等を生じ易い。このため、ファウリングを発生させ易い対象液に対して、等圧膜分離法をそのまま適用することは困難であった。
一方、ファウリングを発生させ易い対象液に対して、浸漬型正浸透モジュールを用いた処理を行うことが知られている(例えば、特許文献2(特開2011−173040号公報)参照)。浸漬型正浸透モジュールでは、半透膜の対象液側が開放されているため、逆洗操作などにより、半透膜に生成したスケールを除去し、半透膜の性能を維持することが容易である。
ただし、高濃度の対象液に対して浸漬型正浸透モジュールによる処理を実施する場合、対象液よりも浸透圧が高い非常に高濃度のドロー溶液(DS)が必要になる。そして、DSは通常、濃縮して再利用されるが、特許文献2では、高濃度のDSを再利用(再濃縮)するために、ROモジュールを用いている。しかし、ROに用いられるポンプの加圧能力の制限から、ROモジュールにより高濃度のDSを再濃縮することは難しいと考えられる。
米国特許出願公開第2016/0339390号明細書 特開2011−173040号公報
したがって、本発明の課題は、ファウリングを発生させ易い高濃度の対象液を、膜分離を用いて濃縮することが可能な、濃縮システムおよび濃縮方法を提供することである。
本発明者らは、ファウリングを発生させ易い高濃度の対象液を浸漬型正浸透モジュールにより濃縮し、その際に使用される高濃度のドロー溶液を等圧膜分離法で濃縮して再利用することで、上記の課題を解決し得ることを見出し、本発明に到達した。すなわち、本発明は以下のとおりである。
[1] 水と水以外の成分とを含む対象液を濃縮するための濃縮システムであって、
対象液を収容する処理槽と、処理槽内の対象液に浸漬される浸漬型正浸透モジュールと、膜分離モジュールと、を備え、
浸漬型正浸透モジュールは、半透膜を有し、半透膜の一方の面は対象液に接し、半透膜の他方の面はドロー溶質を含むドロー溶液に接するように構成され、
膜分離モジュールは、分離膜と、分離膜で仕切られた第1室および第2室と、を有し、
第1室にドロー溶液の一部を流し、第2室にドロー溶液の他の一部を流して、第1室のドロー溶液を加圧することで、第1室内のドロー溶液に含まれる水を分離膜を介して第2室内のドロー溶液に移行させ、濃縮されたドロー溶液を第1室から排出し、希釈されたドロー溶液を第2室から排出するように構成されている、濃縮システム。
[2] [1]に記載の濃縮システムを用いた対象液の濃縮方法であって、
浸漬型正浸透モジュールを、処理槽内の対象液に浸漬して、半透膜の対象液と反対側に、ドロー溶質を含むドロー溶液を流すことで、対象液中に含まれる水を半透膜を通してドロー溶液に移動させる、対象液濃縮工程と、
膜分離モジュールにおいて、第1室にドロー溶液の一部を流し、第2室にドロー溶液の他の一部を流して、第1室のドロー溶液を加圧することで、第1室内のドロー溶液に含まれる水を分離膜を介して第2室内のドロー溶液に移行させ、濃縮されたドロー溶液を第1室から排出し、希釈されたドロー溶液を第2室から排出する、ドロー溶液濃縮工程と、
濃縮されたドロー溶液を浸漬型正浸透モジュールで再利用する、ドロー溶液再利用工程と、を含む、
濃縮方法。
本発明によれば、ファウリングを発生させ易い高濃度の対象液を、膜分離を用いて濃縮することが可能な、濃縮システムおよび濃縮方法を提供することができる。
本発明の濃縮システムの一実施形態を示す模式図である。 本発明の濃縮方法の各工程を示すフロー図である。
<濃縮システム>
本実施形態の濃縮システムは、対象液を濃縮するための濃縮システムである。対象液は、水と水以外の成分を含む液体である。対象液は、好ましくはファウリングを発生させ易い高濃度の液体である。このような対象液としては、例えば、工業用、生活用等の廃水、および、果汁、牛乳等の飲料用の液体、河川水などが挙げられる。なお、ファウリング成分(ファウラント)としては、例えば、シリカ、アルミニウム、鉄、カルシウム、マンガン等の粘土質成分やタンパク質等の有機物、スライムなどが挙げられる。
図1を参照して、本実施形態の濃縮システムは、対象液(フィード溶液:FS)を収容する処理槽1と、処理槽1内の対象液に浸漬される浸漬型正浸透モジュール2と、膜分離モジュール3と、を備える。
(浸漬型正浸透モジュール)
浸漬型正浸透モジュール2は、半透膜21を有する。図1を参照して、浸漬型正浸透モジュール2は、半透膜21の一方の面(複数の中空糸膜の外側の面)は対象液(FS)に接し、半透膜21の他方の面(複数の中空糸膜の中空部の内壁面)はドロー溶質を含むドロー溶液(DS)に接するように構成されている。
半透膜としては、例えば、通常、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、限外ろ過膜(UF膜:Ultrafiltration Membrane)、精密ろ過膜(MF膜:Microfiltration Membrane)と呼ばれている半透膜が挙げられる。半透膜は、好ましくはRO膜、FO膜、NF膜またはUF膜である。通常、RO膜およびFO膜の孔径は約2nm以下であり、UF膜の孔径は約2〜100nm、MF膜の孔径は約0.1〜10μmである。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1〜2nmである。
半透膜の形状としては、特に限定されないが、例えば、中空糸膜、スパイラル膜、平膜などが挙げられる。なお、図1では、半透膜21として、中空部を有する糸状の半透膜(中空糸膜)が描かれているが、特にこのような形状に限定されない。なお、中空糸膜は、スパイラル膜、平膜などに比べて、モジュール当たりの膜面積を大きくすることができ、浸透効率を高めることができる点で有利である。なお、図1に示されるように半透膜21が中空糸膜である場合、中空糸膜は、中空部内にDSを流すために、両端に中空部と連通する開口を有する両端開口型の中空糸膜であることが好ましい。
半透膜が中空糸膜である場合、浸漬型正浸透モジュールは、(クロスワインド型に対して)平行配置型の中空糸膜モジュールであることが好ましい。平行配置型の中空糸膜モジュールでは、複数の中空糸膜が並列的に所定の間隔を開けて配置される。平行配置型の中空糸膜モジュールを用いることで、処理槽内の対象液が、中空糸膜モジュールの内部まで行き渡り易く、処理効率が高くなる。なお、このような平行配置型の中空糸膜モジュールは、従来公知の方法を用いて製造することができ、例えば、特開平10−192661号公報に開示されるような方法により製造することができる。
図1において、浸漬型正浸透モジュール2は、上記の平行配置型の中空糸膜モジュールである。浸漬型正浸透モジュール2は、中空糸膜(半透膜21)の両端において、複数の中空糸膜を所定の間隔を開けて固定するための固定樹脂22a,22bを備えている。固定樹脂22aは、中空糸膜の一端の開口を介して、複数の中空糸膜の中空部に連通する分配室を有している。分配室は流入口を有している。固定樹脂22bは、中空糸膜の一端の開口を介して、複数の中空糸膜の中空部に連通する集合室を有している。集合室は流出口を有している。したがって、固定樹脂22aの流入口にDSを流入させることで、中空糸膜の中空部にDSを流すことができ、中空糸膜の中空部を通過することで正浸透によって希釈されたDSが、固定樹脂22bの流出口から排出される。
半透膜を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。半透膜は、セルロース系樹脂およびスルホン化ポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。
セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。
ポリスルホン系樹脂は、好ましくはポリエーテルスルホン系樹脂である。ポリエーテルスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホンである。
(膜分離モジュール)
膜分離モジュール3は、分離膜30と、分離膜30で仕切られた第1室31および第2室32と、を有する。
膜分離モジュール3においては、第1室31にDS(浸漬型正浸透モジュール2で希釈されたDS)の一部を流し、第2室32にDSの他の一部を流して、第1室31内のDSを加圧する。これにより、第1室31内のDSに含まれる水が、分離膜を介して第2室32内のDSに移行する。そして、濃縮されたDSが第1室31から排出され、希釈されたDSが第2室32から排出される。
第1室31内のDSの加圧(昇圧)は、第1室31を外部から加圧することにより実施することができる(図1)。なお、ポンプ4(送液用ポンプ)とは別に、第1室31の上流側付近の流路に加圧用ポンプを設置し、この加圧用ポンプによって、第1室31内のDSを加圧してもよい。
分離膜30としては、上記の正浸透モジュール2の半透膜21と同様の膜を使用することができ、例えば、逆浸透膜(RO膜)、正浸透膜(FO膜)、ナノろ過膜(NF膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)と呼ばれる膜が挙げられる。分離膜30は、好ましくはRO膜、FO膜、NF膜またはUF膜である。なお、分離膜30としてRO膜、FO膜、NF膜またはUF膜を用いる場合、第1室31内のDSに対する加圧の圧力は、好ましくは0.5〜6.5MPaである。
分離膜の形状も、上記の正浸透モジュール2の半透膜21と同様であり、例えば、中空糸膜、スパイラル膜、平膜などが挙げられる。なお、図1では、分離膜30として平膜を簡略化して描いているが、特にこのような形状に限定されるものではない。中空糸膜は、スパイラル膜、平膜などに比べて、モジュール当たりの膜面積を大きくすることができ、浸透効率を高めることができる点で有利である。
なお、分離膜が中空糸膜である場合、通常は、中空糸膜の外側が第1室であり、中空糸膜の内側(中空部内)が第2室となる。中空糸膜の内側の流体を加圧しても、圧力損失が大きいため、加圧が十分に働き難いためである。
<濃縮方法>
本実施形態の濃縮方法は、上記の濃縮システムを用いた対象液の濃縮方法である。図2を参照して、本発明の濃縮方法は、以下に説明する対象液濃縮工程(正浸透工程)と、ドロー溶液濃縮工程(等圧膜分離工程)と、ドロー溶液再利用工程と、を少なくとも含む。なお、これらの各工程は、上記の濃縮システムにおいて同時に進行してもよい。
(対象液濃縮工程)
図1を参照して、対象液濃縮工程(正浸透工程)では、浸漬型正浸透モジュール2を、処理槽1内の対象液(FS)に浸漬して、半透膜21の対象液と反対側(中空糸膜の中空部)に、ドロー溶質を含むドロー溶液(DS)を流すことで、対象液中に含まれる水を半透膜21を通してDSに移動させる。これにより、対象液が濃縮される。
なお、対象液(FS)は、連続式で処理されてもよく、バッチ式で処理されてもよい。すなわち、連続的に処理槽1にFSを供給しながら、濃縮されたFSを回収してもよく、または、処理槽1を所定量のFSで満たして対象液濃縮工程を実施し、所定時間の対象液濃縮工程の終了後に、処理槽1内で濃縮された対象液を全て回収する操作を繰り返してもよい。
なお、対象液濃縮工程では、半透膜21に対して、逆洗操作、振動等の物理的操作などを行うことにより、半透膜に付着したファウラント、目詰まりしたファウラント等を除去し、半透膜の性能を維持(回復)することができる。また、図1に示されるように、処理槽1の底壁の上部に設けられたエア吹き出し口(図示せず)から気体を吹き出すことにより、対象液中に気泡1aを発生させてもよい。これにより、気泡1aが対象液を撹拌し、また中空糸膜を揺らすことで、中空糸膜にファウラントが付着したり、中空糸膜が目詰まりしたりすることを抑制し、中空糸膜の性能低下を抑制することができる。
上記工程によって、希釈されたDSの一部は、ドロー溶液濃縮工程により濃縮される。ドロー溶液濃縮工程で濃縮されたDSは、ドロー溶液再利用工程により浸漬型正浸透モジュール2で再利用される。
ドロー溶液(DS)の浸透圧は、溶質の分子量等にもよるが、好ましくは0.5〜20MPaである。ドロー溶質としては、例えば、糖類、タンパク質、合成高分子などが挙げられる。ドロー溶質(特に低分子のドロー溶質)は、対象液へ浸透する可能性があるため、その点を考慮して使用するドロー溶質の種類を選択することが望ましい。例えば、対象液が果汁などの飲料用の液である場合、ドロー溶質として塩などを用いると液がしょっぱくなる虞があるため、ドロー溶質として糖類などを選択することが好ましい。
(ドロー溶液濃縮工程)
ドロー溶液濃縮工程(等圧膜分離工程)では、膜分離モジュール3において、第1室31にDS(対象液濃縮工程において希釈された後のDS)の一部を流し、第2室32にDSの他の一部を流して、第1室31のDSを加圧する。これにより、第1室31内のDSに含まれる水が、分離膜を介して第2室32内のDSに移行する。したがって、第1室31内のDSが濃縮され、濃縮されたDSが第1室31から排出される。一方、第2室32内のDSは希釈され、希釈されたDSが第2室32から排出される。
ここで、膜分離モジュール3において、分離膜30の一方側(第1室31)と他方側(第2室32)に流入するDSは、同じものであるため、基本的に浸透圧は等しい。このため、RO法のように、高い浸透圧差に逆らって逆浸透を起こさせるための高い圧力が必要なく、比較的低圧の加圧によって、高濃度のDSを濃縮することができる(DSの一部を濃縮し、DSの他の一部を希釈することができる)。
ただし、分離膜30の一方側(第1室31)に流されるDSと、他方側(第2室32)に流されるDSとは、必ずしも同一の液である必要はない。第1室31に流されるDSと、第2室32に流されるDSとの浸透圧差(絶対値)が、第1室を加圧する圧力の10%以下程度であれば、膜分離工程は実施可能である。
なお、膜分離工程は、図1に示されるように1つの膜分離モジュール3を用いた1段の工程であってもよいが、複数の膜分離モジュールを用いた多段の工程であってもよい。膜分離工程において、最終的な分離膜の両側のDSの浸透圧差は、膜分離モジュールの第1室への加圧の圧力以上にはならないため、1段の工程(1つの膜分離モジュール)によるDSの濃縮率には限界がある。このため、膜分離工程を2段以上の工程とすることで、DSの濃縮率をさらに高めることが可能である。
(ドロー溶液再利用工程)
ドロー溶液再利用工程では、濃縮されたドロー溶液を浸漬型正浸透モジュール2で再利用する。具体的には、図1を参照して、膜分離工程において、膜分離モジュール3の第1室31から排出される濃縮後のDSが、浸漬型正浸透モジュール2の固定樹脂22aの流入口(集合室)を介して、中空糸膜の中空部内(半透膜21の対象液FSと反対側)にDSとして供給される。
(他の工程)
ドロー溶液濃縮工程において、第2室32から排出される希釈されたDSは、逆浸透(RO)法を用いて濃縮されてもよい。第2室32から排出される希釈されたDSは、対象液濃縮工程において希釈されたDS(1次希釈DS)がさらに希釈された液(2次希釈DS)であり、1次希釈DSよりも浸透圧が低い。このため、1次希釈DSの浸透圧が高く、RO法による濃縮が可能な浸透圧(例えば、1〜6MPa程度)を超えている場合でも、2次希釈DSの浸透圧が、RO法による濃縮が可能な浸透圧であれば、RO法による濃縮が可能である。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 処理槽、1a 気泡、2 浸漬型正浸透モジュール、21 半透膜、22a,22b 固定樹脂、3 膜分離モジュール、30 分離膜、31 第1室、32 第2室、4 ポンプ。

Claims (2)

  1. 水と水以外の成分とを含む対象液を濃縮するための濃縮システムであって、
    前記対象液を収容する処理槽と、前記処理槽内の前記対象液に浸漬される浸漬型正浸透モジュールと、膜分離モジュールと、を備え、
    前記浸漬型正浸透モジュールは、半透膜を有し、前記半透膜の一方の面は前記対象液に接し、前記半透膜の他方の面はドロー溶質を含むドロー溶液に接するように構成され、
    前記膜分離モジュールは、分離膜と、前記分離膜で仕切られた第1室および第2室と、を有し、
    前記第1室に前記ドロー溶液の一部を流し、前記第2室に前記ドロー溶液の他の一部を流して、前記第1室の前記ドロー溶液を加圧することで、前記第1室内の前記ドロー溶液に含まれる水を前記分離膜を介して前記第2室内の前記ドロー溶液に移行させ、濃縮された前記ドロー溶液を前記第1室から排出し、希釈された前記ドロー溶液を前記第2室から排出するように構成されており
    前記浸漬型正浸透モジュールにおいて希釈された前記ドロー溶液の浸透圧は、逆浸透法による濃縮が可能な浸透圧を超えている、濃縮システム。
  2. 請求項1に記載の濃縮システムを用いた前記対象液の濃縮方法であって、
    前記浸漬型正浸透モジュールを、処理槽内の前記対象液に浸漬して、前記半透膜の前記対象液と反対側に、ドロー溶質を含むドロー溶液を流すことで、前記対象液中に含まれる水を前記半透膜を通して前記ドロー溶液に移動させる、対象液濃縮工程と、
    前記膜分離モジュールにおいて、前記第1室に前記ドロー溶液の一部を流し、前記第2室に前記ドロー溶液の他の一部を流して、前記第1室の前記ドロー溶液を加圧することで、前記第1室内の前記ドロー溶液に含まれる水を前記分離膜を介して前記第2室内の前記ドロー溶液に移行させ、濃縮された前記ドロー溶液を前記第1室から排出し、希釈された前記ドロー溶液を前記第2室から排出する、ドロー溶液濃縮工程と、
    濃縮された前記ドロー溶液を前記浸漬型正浸透モジュールで再利用する、ドロー溶液再利用工程と、を含
    前記対象液濃縮工程において希釈された前記ドロー溶液の浸透圧は、逆浸透法による濃縮が可能な浸透圧を超えている、濃縮方法。
JP2017042549A 2017-03-07 2017-03-07 濃縮システムおよび濃縮方法 Active JP6862935B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042549A JP6862935B2 (ja) 2017-03-07 2017-03-07 濃縮システムおよび濃縮方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042549A JP6862935B2 (ja) 2017-03-07 2017-03-07 濃縮システムおよび濃縮方法

Publications (2)

Publication Number Publication Date
JP2018143970A JP2018143970A (ja) 2018-09-20
JP6862935B2 true JP6862935B2 (ja) 2021-04-21

Family

ID=63589207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042549A Active JP6862935B2 (ja) 2017-03-07 2017-03-07 濃縮システムおよび濃縮方法

Country Status (1)

Country Link
JP (1) JP6862935B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158457A1 (ja) * 2019-01-30 2020-08-06 東洋紡株式会社 析出システムおよび析出方法
JP7351704B2 (ja) * 2019-10-10 2023-09-27 株式会社クラレ ろ過モジュールの運転方法およびろ過装置
CN115477365B (zh) * 2022-09-15 2023-10-27 东华大学 一种全膜法废水回用和同步回收有价组分的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001068A (ja) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd 膜分離方法および装置
US8216473B2 (en) * 2008-06-13 2012-07-10 Solution Dynamics, Llc Apparatus and methods for solution processing using reverse osmosis
JP2011173040A (ja) * 2010-02-23 2011-09-08 Kurita Water Ind Ltd 排水処理方法及び装置
JP2014065008A (ja) * 2012-09-26 2014-04-17 Kubota Corp 水処理方法および水処理システム
KR20180104152A (ko) * 2016-02-02 2018-09-19 트레비 시스템즈 인크. 삼투압 지원 역삼투 공정 및 이를 사용하는 방법

Also Published As

Publication number Publication date
JP2018143970A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6834360B2 (ja) 濃縮方法および濃縮装置
JP6977247B2 (ja) 濃縮方法および濃縮装置
JP6269241B2 (ja) 正浸透処理システム
JP2018001111A (ja) 塩水の淡水化処理方法、および、塩水の淡水化処理システム
JP6862935B2 (ja) 濃縮システムおよび濃縮方法
US20160346739A1 (en) Filtration apparatus
WO2020179594A1 (ja) Zero Liquid Dischargeシステム
JP7102706B2 (ja) 海水淡水化方法および海水淡水化システム
JP2013188710A (ja) 膜ろ過装置及び造水装置並びに膜ろ過装置の洗浄方法
CN110958912B (zh) 中空纤维膜组件
JPWO2020027056A1 (ja) 膜分離装置、造水システム、膜分離方法および造水方法
JP7133429B2 (ja) 水処理システム及び水処理方法
WO2012098969A1 (ja) 膜モジュールの洗浄方法、造水方法および造水装置
WO2017038402A1 (ja) 水処理方法および水処理システム
JP7352125B2 (ja) 膜分離装置および膜分離方法
CN115916381B (zh) 膜分离装置以及浓缩方法
CN110944736A (zh) 包括干燥膜的清洁膜的方法
WO2020022218A1 (ja) 正浸透処理方法および正浸透処理装置
JP2005254192A (ja) 膜分離装置および膜分離方法
JP2015226864A (ja) 正浸透用中空糸膜モジュール
WO2023026815A1 (ja) 正浸透処理方法および正浸透処理装置
JP7388347B2 (ja) ろ過装置およびその運転方法
JP7238233B2 (ja) 正浸透処理方法および正浸透処理装置
WO2023037877A1 (ja) 正浸透処理方法および正浸透処理装置
CN212832952U (zh) 浓缩系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250