WO2017038402A1 - 水処理方法および水処理システム - Google Patents

水処理方法および水処理システム Download PDF

Info

Publication number
WO2017038402A1
WO2017038402A1 PCT/JP2016/073411 JP2016073411W WO2017038402A1 WO 2017038402 A1 WO2017038402 A1 WO 2017038402A1 JP 2016073411 W JP2016073411 W JP 2016073411W WO 2017038402 A1 WO2017038402 A1 WO 2017038402A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
draw solution
semipermeable membrane
forward osmosis
hollow fiber
Prior art date
Application number
PCT/JP2016/073411
Other languages
English (en)
French (fr)
Inventor
崇人 中尾
櫻井 秀彦
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017537697A priority Critical patent/JP6521077B2/ja
Publication of WO2017038402A1 publication Critical patent/WO2017038402A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment method and a water treatment system.
  • Forward osmosis is a solution with high concentration (high osmotic pressure) on the treated water (feed solution) side with low concentration (low osmotic pressure) through a semipermeable membrane (draw solution). It is a phenomenon that moves toward.
  • a water treatment method using a reverse osmosis (RO) process is conventionally known.
  • the reverse osmosis step is a step of moving water from a high-concentration treated water to a low-concentration solution side, contrary to normal osmosis, by applying artificially strong pressure.
  • Patent Document 1 discloses a forward osmosis water treatment system using a hollow fiber type semipermeable membrane.
  • Patent Document 2 JP-A-2015-47541 discloses a high temperature responsiveness as a draw solution. The use of relatively high viscosity solutions such as molecules is disclosed.
  • Water to be treated such as seawater usually contains scale components. For this reason, when water to be treated is poured into the hollow part of the hollow fiber type semipermeable membrane and a high-viscosity draw solution is allowed to flow outside the hollow fiber type semipermeable membrane, a scale component is formed on the inner wall of the hollow part of the hollow fiber type semipermeable membrane. There is a problem that it is easy to deposit. On the other hand, since the flow rate is relatively fast outside the hollow fiber type semipermeable membrane, even if the scale component adheres to the outer periphery of the hollow fiber type semipermeable membrane, it is easy to peel off and the scale component is difficult to deposit. For these reasons, it is necessary to flow the water to be treated on the outer peripheral surface side of the hollow fiber type semipermeable membrane and to flow the draw solution into the hollow part of the hollow fiber type semipermeable membrane.
  • an object of the present invention is to provide a water treatment method and a water treatment system capable of improving the efficiency of water treatment when a high-viscosity draw solution is used.
  • a water treatment method for obtaining purified water from water to be treated containing water and components other than water First, the water in the water to be treated is moved into the first draw solution by contacting the water to be treated and the first draw solution having an osmotic pressure higher than that of the water to be treated through the first semipermeable membrane.
  • the first semipermeable membrane is a hollow fiber type semipermeable membrane, the water to be treated is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane, and in the hollow portion of the hollow fiber type semipermeable membrane.
  • a water treatment method of flowing a first draw solution By bringing the first draw solution diluted in the first forward osmosis step into contact with the second draw solution having a higher osmotic pressure than the diluted first draw solution through the second semipermeable membrane, A second forward osmosis step for transferring water in one draw solution into the second draw solution; and Including a desalination step of obtaining purified water from the second draw solution diluted in the second forward osmosis step, Reusing the first draw solution concentrated in the second forward osmosis step in the first forward osmosis step; Reusing the second draw solution concentrated in the fresh water production process in the second forward osmosis process,
  • the first semipermeable membrane is a hollow fiber type semipermeable membrane
  • the first forward osmosis step is performed in a state where the immersion type hollow fiber membrane module in which the hollow fiber type semipermeable membrane is exposed is immersed in the water to be treated in the treatment tank, [1] or [2] The water treatment method as described.
  • the second semipermeable membrane is a hollow fiber type semipermeable membrane
  • the second draw solution is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane
  • the hollow fiber type semipermeable membrane The water treatment method according to any one of [1] to [4], wherein the first draw solution diluted in the first forward osmosis step is allowed to flow into the hollow portion of the water.
  • a water treatment system for obtaining purified water from water to be treated containing water and components other than water First, the water in the water to be treated is moved into the first draw solution by contacting the water to be treated and the first draw solution having an osmotic pressure higher than that of the water to be treated through the first semipermeable membrane.
  • a second forward osmosis module for transferring water in one draw solution into the second draw solution; and Including a fresh water generator for obtaining purified water from the second draw solution diluted in the second forward osmosis module; Reusing the first draw solution concentrated in the second forward osmosis module in the first forward osmosis module; The second draw solution concentrated in the fresh water generator is reused in the second forward osmosis module,
  • the first semipermeable membrane is a hollow fiber type semipermeable membrane, the water to be treated is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane, and in the hollow portion of the hollow fiber type semipermeable membrane.
  • the water treatment method of the present embodiment is a method for obtaining purified water from water to be treated, and includes at least a first forward osmosis step, a second forward osmosis step, and a fresh water production step.
  • the hollow fiber type semi-permeable in the first forward osmosis step by combining the first forward osmosis step and the second forward osmosis step and using a high-viscosity draw solution in the second forward osmosis step, the hollow fiber type semi-permeable in the first forward osmosis step. Since the pressure loss due to the membrane is reduced, the flow rate of the draw solution flowing in the hollow portion of the hollow fiber type semipermeable membrane can be increased. As a result, a flow rate necessary to maintain a sufficient effective osmotic pressure difference between the inside and outside of the hollow fiber type semipermeable membrane can be secured, and a high-viscosity draw solution can be obtained in the water treatment process until finally purified water is obtained. Even when used, the efficiency of water treatment can be improved.
  • the forward osmosis process is conventionally performed in one stage. Therefore, when the water to be treated 203 containing the scale component flows into the hollow part of the hollow fiber type semipermeable membrane 1, There is a problem that scale components are easily deposited on the inner wall of the hollow portion of the permeable membrane. Therefore, it is desirable that the water to be treated is brought into contact with the outer peripheral surface side of the hollow fiber type semipermeable membrane that has a relatively high flow rate and is difficult to deposit scale components.
  • the to-be-processed water 203 is the brine 201 concentrated by the reverse osmosis process.
  • the brine 201 flows into the first chamber 101 of the reverse osmosis module 10, and the water in the brine 201 moves to the second chamber 102 through the semipermeable membrane 100 by reverse osmosis, and becomes the product water 202.
  • the brine 201 is concentrated in the first chamber 101 to become treated water 203.
  • the water to be treated of the present embodiment also includes salt water concentrated by such reverse osmosis treatment.
  • first forward osmosis process the water to be treated is brought into contact with the first draw solution having a higher osmotic pressure than the water to be treated through the first semipermeable membrane, so that the water in the water to be treated is first. It is a step of moving into a draw solution.
  • the first semipermeable membrane 1 is a hollow fiber type semipermeable membrane (hollow fiber membrane), and the first forward osmosis module 11 is an immersion type hollow fiber membrane in which the hollow fiber type semipermeable membrane 1 is exposed. It is a module.
  • the water to be treated 203 is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane 1 by immersing the immersion type hollow fiber membrane module in the water to be treated in the treatment tank 3, and the hollow fiber type The first draw solution 204 is caused to flow into the hollow portion of the semipermeable membrane 1.
  • the water to be treated is a liquid containing components other than water and water.
  • water to be treated examples include seawater, brackish water, brackish water, well associated water, lake water, river water, factory wastewater, and the like.
  • the evaporation residue concentration (TDS) of the water to be treated is preferably 0.7 to 14% by mass.
  • to-be-processed water is the salt water concentrated by reverse osmosis processing.
  • the TDS of the water to be treated is preferably 0.5 to 14% by mass.
  • the first draw solution is not particularly limited as long as it has a higher osmotic pressure than the water to be treated. However, the first draw solution reduces the pressure loss in the hollow fiber type semipermeable membrane in the first forward osmosis step. From the viewpoint of securing a sufficient flow rate, a solution having a viscosity lower than that of the second draw solution is preferable.
  • the solute of the first draw solution include inorganic salts such as sodium chloride, potassium chloride, potassium nitrate and sodium hydrogen carbonate, sugars such as glucose and fructose, ammonium carbonate, ammonium hydrogen carbonate and butanol.
  • the immersion type hollow fiber membrane module 11 is provided with said straight type hollow fiber membrane element 2 (bundle of the hollow fiber type semipermeable membrane 1).
  • the immersion type hollow fiber membrane module 11 includes fixing resins 21 and 22 for fixing the plurality of hollow fiber type semipermeable membranes 1 at predetermined intervals at both ends of the hollow fiber membrane element 2.
  • the two fixing resins 21 and 22 may be connected to each other by a support not shown.
  • the fixing resin 21 is connected to a distribution chamber 21 a having an internal space communicating with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 through an opening at one end of the hollow fiber type semipermeable membrane 1.
  • the distribution chamber 21a has an inlet 21b that communicates with the internal space. Therefore, the inflow port 21 b communicates with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 at one end of the hollow fiber membrane element 2.
  • the fixing resin 22 is connected to an assembly chamber 22 a having an internal space communicating with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 through the opening at the other end of the hollow fiber type semipermeable membrane 1. .
  • the collecting chamber 22a has an outlet 22b communicating with the internal space. Accordingly, the outlet 22 b communicates with the hollow portions of the plurality of hollow fiber type semipermeable membranes 1 at the other end of the hollow fiber membrane element 2.
  • a plurality of hollow fiber type semipermeable membranes 1 are exposed in the submerged hollow fiber membrane module 11, a plurality of hollow fiber type semipermeable membranes 1 are exposed.
  • the plurality of hollow fiber type semipermeable membranes 1 only need to have at least a part of the outer surface exposed.
  • FIG. 1 one of the hollow fiber type semipermeable membranes 1 drawn in the fixing resins 21 and 22 is shown. The part is covered with resin and not exposed, but the other part of the hollow fiber type semipermeable membrane 1 is exposed.
  • the fixing resins 21 and 22, the distribution chamber 21 a, and the collecting chamber 22 a are drawn through, but it is not necessarily transparent.
  • Such a straight type immersion type hollow fiber membrane module can be manufactured by a conventionally known method, for example, by a method as disclosed in JP-A-10-192661.
  • the inner diameter of the hollow fiber type semipermeable membrane 1 of the present invention is not particularly limited, but is preferably 50 to 250 ⁇ m, more preferably 80 to 200 ⁇ m.
  • the hollow ratio [(inner diameter / outer diameter) 2 ⁇ 100 (%)] of the hollow fiber type semipermeable membrane is preferably 30 to 60%, more preferably 35 to 55%.
  • a hollow rate is a ratio of the area of the hollow part in the cross section of a hollow fiber type semipermeable membrane.
  • the length of the hollow fiber type semipermeable membrane is not particularly limited, but is preferably 15 to 400 cm, more preferably 20 to 350 cm.
  • the hollow fiber type semipermeable membrane preferably has a pore diameter of 100 nm or less.
  • a hollow fiber type semipermeable membrane for example, reverse osmosis membrane (RO membrane: Reverse Osmosis membrane), forward osmosis membrane (FO membrane: forward osmosis membrane), nanofiltration membrane (NF membrane: nanofiltration membrane), limited What is called an outer filtration membrane (UF membrane: Ultrafiltration Membrane) is mentioned.
  • the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm.
  • the NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm.
  • the material constituting the hollow fiber type semipermeable membrane 1 is not particularly limited, and examples thereof include cellulose resins, polysulfone resins, and polyamide resins.
  • the hollow fiber type semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.
  • the cellulose resin is preferably a cellulose acetate resin.
  • Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms.
  • the cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
  • the polysulfone resin is preferably a polyethersulfone resin.
  • the polyethersulfone resin is preferably a sulfonated polyethersulfone.
  • a membrane having a single layer structure which is entirely made of a cellulose-based resin there is a membrane having a single layer structure which is entirely made of a cellulose-based resin.
  • the single-layer structure here does not need to be a uniform film as a whole, for example, as disclosed in Patent Document 1, a dense layer is provided in the vicinity of the outer peripheral surface, and this dense layer is substantially In particular, it is preferably a separation active layer that defines the pore diameter of the hollow fiber type semipermeable membrane.
  • a specific hollow fiber type semipermeable membrane 2 having a dense layer made of a polyphenylene resin (for example, sulfonated polyethersulfone) on the outer peripheral surface of a support layer (for example, a layer made of polyphenylene oxide)
  • a film having a layer structure may be mentioned.
  • Another example includes a two-layered film having a dense layer made of a polyamide resin on the outer peripheral surface of a support layer (for example, a layer made of polysulfone or polyethersulfone).
  • the water treatment method of this embodiment includes a second forward osmosis step after the first forward osmosis step.
  • the first draw solution diluted in the first forward osmosis step and the second draw solution having an osmotic pressure higher than that of the diluted first draw solution are passed through the second semipermeable membrane. This is a step of moving the water in the first draw solution into the second draw solution.
  • the first draw solution 205 diluted in the first forward osmosis step flows into the first chamber 121 of the second forward osmosis module 12.
  • the water in the first draw solution 205 flows through the second semipermeable membrane 120 through the second chamber 122 (having a higher osmotic pressure than the diluted first draw solution 205).
  • the first draw solution 204 concentrated in the second forward osmosis step is reused in the first forward osmosis step.
  • the second semipermeable membrane is not particularly limited, but when the second semipermeable membrane is a hollow fiber type semipermeable membrane, the second draw solution is applied to the outer peripheral surface of the hollow fiber type semipermeable membrane. It is preferable that the first draw solution diluted in the first forward osmosis step is allowed to flow in the hollow portion of the hollow fiber type semipermeable membrane while being brought into contact with each other. This is because if the high-viscosity second draw solution is allowed to flow into the hollow portion of the hollow fiber type semipermeable membrane, a sufficient flow rate cannot be flowed due to pressure loss, and the efficiency of water treatment may be reduced.
  • the second draw solution is not particularly limited as long as it has a higher osmotic pressure than the diluted first draw solution, but preferably contains a temperature-responsive polymer.
  • the temperature-responsive polymer is a polymer having a characteristic (temperature responsiveness) in which hydrophilicity changes with a predetermined temperature as a critical point.
  • the temperature responsiveness is a characteristic that becomes hydrophilic or hydrophobic depending on the temperature.
  • the change in hydrophilicity is preferably reversible.
  • the temperature-responsive polymer can be dissolved in water or phase-separated from water by adjusting the temperature.
  • the temperature-responsive polymer is a polymer composed of a plurality of structural units derived from a monomer, and preferably has a hydrophilic group in the side chain.
  • LCST lower critical solution temperature
  • UCST upper critical solution temperature
  • the semipermeable membrane is preferably in contact with low-temperature water in which the temperature-responsive polymer is dissolved.
  • the LCST type is preferable.
  • a UCST type can be used in addition to the LCST type.
  • hydrophilic group examples include a hydroxyl group, a carboxyl group, an acetyl group, an aldehyde group, an ether bond, and an ester bond.
  • the hydrophilic group is preferably at least one selected from these.
  • the temperature-responsive polymer preferably has at least one hydrophilic group in at least some or all of the structural units. Moreover, the temperature-responsive polymer may have a hydrophobic group in some structural units while having a hydrophilic group. In addition, it is considered that the balance between the hydrophilic group and the hydrophobic group contained in the molecule is important for the temperature responsive polymer to have temperature responsiveness.
  • Specific temperature-responsive polymers include, for example, polyvinyl ether polymers, polyvinyl acetate polymers, (meth) acrylic acid polymers, and the like.
  • the viscosity of the second draw solution is preferably 0.50 Pa ⁇ s or less, more preferably 0.20 Pa ⁇ s or less.
  • the osmotic pressure of the second draw solution is preferably 0.5 to 20 MPa, more preferably 1 to 18 MPa, and even more preferably 2 to 15 MPa, although it depends on the molecular weight of the solute (temperature-responsive polymer). It is.
  • the water treatment method of this embodiment further includes a fresh water generation step after the second forward osmosis step.
  • a fresh water generation step purified water is obtained from the second draw solution diluted in the second forward osmosis step.
  • the draw solute of the second draw solution is a temperature-responsive polymer
  • the draw solute contained in the second draw solution is caused by flowing the second draw solution into another chamber and changing the temperature in the chamber. (Temperature-responsive polymer) can be separated from water.
  • the temperature-responsive polymer can be easily separated from the water and recovered simply by changing the temperature of the second draw solution. Moreover, since the temperature-responsive polymer has high separability from water, it is advantageous in that purified water with high purity can be obtained. Furthermore, the drawn solute after recovery can be easily reused (re-dissolved in a draw solution or the like). In this way, the second draw solution concentrated in the fresh water generation step can be reused in the second forward osmosis step.
  • the recovery process of the draw solute may be repeated in multiple stages so that pure water is obtained, and after the recovery of the draw solute, a treatment for further improving the quality of the purified water may be performed.
  • the water treatment system of this embodiment is a system for obtaining purified water from water to be treated containing water and components other than water.
  • the water treatment system includes at least a first forward osmosis module 11, a second forward osmosis module 12, and a fresh water generator 13.
  • the treated water 203 and the first draw solution 204 having an osmotic pressure higher than the treated water 203 are passed through the first semipermeable membrane 1 (hollow fiber type semipermeable membrane).
  • the water in to-be-processed water is moved in a 1st draw solution. Specifically, the water to be treated 203 is brought into contact with the outer peripheral surface of the hollow fiber type semipermeable membrane 1 and the first draw solution 204 is caused to flow into the hollow portion of the hollow fiber type semipermeable membrane 1.
  • the first draw solution 205 diluted in the first forward osmosis module 11 and the second draw solution 206 having a higher osmotic pressure than the diluted first draw solution 205 are secondly added.
  • the water in the first draw solution 205 is moved into the second draw solution 206.
  • the first draw solution 204 concentrated in the second forward osmosis module 12 is reused in the first forward osmosis module 11.
  • purified water 208 is obtained from the second draw solution 207 diluted by the second forward osmosis module 12. Note that the second draw solution 206 concentrated in the fresh water generator 13 is reused in the second forward osmosis module 12.
  • Examples 1 to 16 As Examples 1 to 16, a water treatment method including the two-stage forward osmosis step (first forward osmosis step and second forward osmosis step) described in the above embodiment and a water production step under the following conditions is assumed. Then, the simulation calculation of the amount of fresh water described later was performed.
  • Hollow fiber membrane module (with cross-wind type housing) Diameter of hollow fiber membrane element: 10 inches Filling rate of hollow fiber membrane: 50% Effective length of hollow fiber membrane: 115cm Water to be treated: First draw solution diluted in the first treatment step Second draw solution: 85 mass% poly (ethylene oxide) / poly (propylene oxide) / poly (ethylene oxide) triblock copolymer aqueous solution Water to be treated The simulation was carried out by adjusting the operating conditions so that the outlet concentration was 10% by mass and the flow pressure loss of the second draw solution was 0.075 MPa.
  • an aqueous solution of poly (ethylene oxide) / poly (propylene oxide) / poly (ethylene oxide) triblock copolymer having a concentration of 85% by mass was assumed.
  • the viscosity of the second draw solution was assumed to be 0.200 Pa ⁇ s.
  • the osmotic pressure of the second draw solution was 15.4 MPa.
  • a relational expression was created with reference to a curve showing the relationship between the pluronic concentration and the osmotic pressure, assuming that the osmotic pressure of seawater having a sodium chloride concentration of 40 mass% is 28 bar (2.8 MPa). This is the osmotic pressure when the concentration of the obtained poly (ethylene oxide) / poly (propylene oxide) / poly (ethylene oxide) triblock copolymer aqueous solution is 85% by mass.
  • the hollow fiber type semipermeable membrane is classified as a FO membrane having a dense layer thickness of about 2 ⁇ m, a pressure differential water permeability of 150 (L / m 2 / day), and a pressure differential salt removal rate of 99.6%. used.
  • the filling rate is [ ⁇ (outer diameter / 2) 2 ⁇ (number of fillings)] / [ ⁇ (module inner diameter / 2) 2 ].
  • the pressure differential water permeability and the pressure differential salt removal rate are parameters of a hollow fiber type semipermeable membrane measured as follows, for example.
  • thermosetting resin was poured into the sleeve, cured and sealed.
  • an opening surface of the hollow fiber type semipermeable membrane is obtained, and the membrane area on the basis of the outer diameter is about 0.1 m 2
  • a module was produced. This evaluation module was connected to a membrane performance testing device consisting of a feed water tank and a pump, and the performance was evaluated.
  • a supply aqueous solution having a sodium chloride concentration of 1500 mg / L is filtered from the outside to the inside of the hollow fiber type semipermeable membrane at 25 ° C. and a pressure of 1.5 MPa, and is operated for 1 hour. Thereafter, the permeated water was collected from the opening surface of the hollow fiber type semipermeable membrane, and the permeated water weight was measured with an electronic balance (Shimadzu Corporation LIBBROR EB-3200D).
  • FR pressure differential permeability
  • Pressure differential salt removal rate (1 ⁇ membrane permeated water salt concentration [mg / L] / feed aqueous solution salt concentration [mg / L]) ⁇ 100 It is calculated from.
  • Comparative Examples 1 to 5 As Comparative Examples 1 to 5, simulation calculation of water production amount described later was performed assuming a water treatment method including a one-step forward osmosis process and a water production process under the following conditions.
  • the water production amount was calculated
  • the calculation results of the examples are shown in Table 2, and the calculation results of the comparative examples are shown in Table 3.
  • the number of modules required to obtain a water production amount of 100 m 3 / day obtained from the water production amount is also shown.
  • the calculation program calculates the DS inlet flow rate, the DS outlet flow rate, the DS outlet concentration, and the total amount of water that has permeated through the hollow fiber type semipermeable membrane (fresh water generation amount: ⁇ V). The calculation was performed using In these calculations, the virtual module (hollow fiber type semipermeable membrane) was divided into equal minute sections in the flow direction, and the material balance in each section was calculated.
  • the amount of water permeating through the hollow fiber type semipermeable membrane in the first section of the virtual module is expressed as A ′ value (cm 3 / Cm 2 / s / (kgf / cm 2 )) (assuming constant value) ⁇ membrane area (cm 2 ) ⁇ 60 ⁇ [effective osmotic pressure ⁇ effective pressure (hydrostatic pressure)] (kgf / cm 2 ) Calculate the outlet concentration and outlet flow rate of DS in the first interval.
  • the final calculation is performed.
  • the DS outlet concentration and DS outlet flow rate of a virtual module are calculated.
  • the total amount of water permeated through the hollow fiber type semipermeable membrane in each section is the total amount of water ( ⁇ V) permeated through the hollow fiber type semipermeable membrane in the virtual module, and [DS outlet flow rate ⁇ DS inlet flow rate] ].
  • the A ′ value (water permeability) was calculated from the following formula using the film evaluation result at the laboratory level using the draw solution having the above viscosity and concentration, and was used for the simulation assuming a 10 inch module.
  • the A ′ values used are shown in Table 1 below.
  • 1 1st semipermeable membrane (hollow fiber type semipermeable membrane), 10 reverse osmosis module, 100 semipermeable membrane, 101 1st chamber, 102 2nd chamber, 11 1st forward osmosis module (immersion type hollow fiber membrane module), 12 2nd forward osmosis module, 120 2nd semipermeable membrane, 121 1st chamber, 122 2nd chamber, 13 fresh water generator, 2 hollow fiber membrane element, 201 brine, 202 production water, 203 treated water, 204 1st Draw solution, 205 diluted first draw solution, 206 second draw solution, 207 diluted second draw solution, 208 purified water, 21, 22 fixed resin, 21a distribution chamber, 21b inlet, 22a collecting chamber, 22b Discharge port, 3 treatment tank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

被処理水中の水を第1半透膜を介して第1ドロー溶液中に移動させる第1正浸透工程、第1ドロー溶液の水を第2半透膜を介して第1ドロー溶液よりも高い浸透圧を有する第2ドロー溶液中に移動させる第2正浸透工程、および、第2ドロー溶液から浄化水を得る造水工程を含み、第2正浸透工程で濃縮された第1ドロー溶液を第1正浸透工程で再利用し、造水工程で濃縮された第2ドロー溶液を第2正浸透工程で再利用し、第1正浸透工程において、第1半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に被処理水を接触させると共に、中空糸型半透膜の中空部内に第1ドロー溶液を流す、水処理方法。

Description

水処理方法および水処理システム
 本発明は、水処理方法および水処理システムに関する。
 正浸透(FO:forward osmosis)とは、半透膜を介して、低濃度(低浸透圧)の被処理水(フィード溶液)側の水が高濃度(高浸透圧)の溶液(ドロー溶液)に向かって移動する現象のことである。一方、水処理分野においては、逆浸透(RO:reverse osmosis)工程を用いる水処理方法が従来から知られている。逆浸透工程は、人為的に強い圧力を加えることにより、正浸透とは逆に、高濃度の被処理水から低濃度の溶液側に水を移動させる工程である。
 しかし、逆浸透工程は強い圧力を必要とするため、エネルギー消費量が極めて多く、エネルギー効率が低い。そこで、近年、水処理のエネルギー効率を高めるために、人為的に圧力を加える必要のない正浸透現象を利用した水処理システムが提案されている。例えば、特開2014-184402号公報(特許文献1)には、中空糸型半透膜を用いた正浸透水処理システムが開示されている。
 また、水処理システムに用いられる正浸透用のドロー溶液としては種々のものが知られているが、例えば、特開2015-47541号公報(特許文献2)には、ドロー溶液として温度応答性高分子などの比較的高粘度の溶液を用いることが開示されている。
特開2014-184402号公報 特開2015-47541号公報
 海水などの被処理水は、通常、スケール成分を含んでいる。このため、中空糸型半透膜の中空部内に被処理水を流し、高粘度のドロー溶液を中空糸型半透膜の外側に流す場合、中空糸型半透膜の中空部内壁にスケール成分が堆積し易いという問題がある。これに対して、中空糸型半透膜の外側は比較的流速が速いため、スケール成分が中空糸型半透膜の外周に付着しても剥がれやすく、スケール成分は堆積し難い。このような理由から、被処理水を中空糸型半透膜の外周面側に流し、ドロー溶液を中空糸型半透膜の中空部内に流す必要性がある。
 しかしながら、既存の正浸透用の中空糸型半透膜の中空部内に、特許文献2に開示される温度応答性高分子などの高粘度のドロー溶液を流す場合は、圧力損失が大きい。このため、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要なドロー溶液の流量を確保できず、水処理の効率が低下してしまうという問題があった。
 本発明は、上記の課題に鑑み、高粘度のドロー溶液を用いる場合において、水処理の効率を向上させることのできる、水処理方法および水処理システムを提供することを目的とする。
 [1] 水と水以外の成分を含む被処理水から浄化水を得る水処理方法であって、
 被処理水と、被処理水よりも高い浸透圧を有する第1ドロー溶液と、を第1半透膜を介して接触させることで、被処理水中の水を第1ドロー溶液中に移動させる第1正浸透工程、
 第1正浸透工程で希釈された第1ドロー溶液と、希釈された第1ドロー溶液よりも高い浸透圧を有する第2ドロー溶液と、を第2半透膜を介して接触させることで、第1ドロー溶液中の水を第2ドロー溶液中に移動させる第2正浸透工程、および、
 第2正浸透工程で希釈された第2ドロー溶液から浄化水を得る造水工程を含み、
 第2正浸透工程で濃縮された第1ドロー溶液を第1正浸透工程で再利用し、
 造水工程で濃縮された第2ドロー溶液を第2正浸透工程で再利用し、
 第1正浸透工程において、第1半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に被処理水を接触させると共に、中空糸型半透膜の中空部内に第1ドロー溶液を流す、水処理方法。
 [2] 第2ドロー溶液は、所定の温度を臨界点として親水性が変化する特性を有する温度応答性高分子を含む、[1]に記載の水処理方法。
 [3] 第1正浸透工程は、中空糸型半透膜が露出した浸漬型中空糸膜モジュールを処理槽内の被処理水中に浸漬した状態で実施される、[1]または[2]に記載の水処理方法。
 [4] 被処理水は、逆浸透処理によって濃縮された塩水である、[1]~[3]のいずれかに記載の水処理方法。
 [5] 第2正浸透工程において、第2半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に第2ドロー溶液を接触させると共に、中空糸型半透膜の中空部内に第1正浸透工程で希釈された第1ドロー溶液を流す、[1]~[4]のいずれかに記載の水処理方法。
 [6] 水と水以外の成分を含む被処理水から浄化水を得る水処理システムであって、
 被処理水と、被処理水よりも高い浸透圧を有する第1ドロー溶液と、を第1半透膜を介して接触させることで、被処理水中の水を第1ドロー溶液中に移動させる第1正浸透モジュール、
 第1正浸透モジュールで希釈された第1ドロー溶液と、希釈された第1ドロー溶液よりも高い浸透圧を有する第2ドロー溶液と、を第2半透膜を介して接触させることで、第1ドロー溶液中の水を第2ドロー溶液中に移動させる第2正浸透モジュール、および、
 第2正浸透モジュールで希釈された第2ドロー溶液から浄化水を得る造水装置を含み、
 第2正浸透モジュールで濃縮された第1ドロー溶液を第1正浸透モジュールで再利用し、
 造水装置で濃縮された第2ドロー溶液を第2正浸透モジュールで再利用し、
 第1正浸透モジュールにおいて、第1半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に被処理水を接触させると共に、中空糸型半透膜の中空部内に第1ドロー溶液を流す、水処理方法。
 [7] 第2ドロー溶液は、所定の温度を臨界点として親水性が変化する特性を有する温度応答性高分子を含む、[6]に記載の水処理システム。
 本発明によれば、高粘度のドロー溶液を用いる場合において、水処理の効率を向上させることのできる、水処理方法および水処理システムを提供することができる。
本発明の水処理方法(水処理システム)の一例を示す模式図である。 浸漬型中空糸膜モジュールの構成の一例を概略的に示す部分透過斜視図である。 従来の水処理方法(水処理システム)の一例を示す模式図である。
 以下、本発明の実施形態について、図面を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を表す。
 <水処理方法>
 本実施形態の水処理方法は、被処理水から浄化水を得る方法であり、少なくとも第1正浸透工程、第2正浸透工程および造水工程を含む。
 本実施形態においては、第1正浸透工程と第2正浸透工程とを組み合わせて、第2正浸透工程で高粘度のドロー溶液を使用することで、第1正浸透工程における中空糸型半透膜による圧力損失が低下するため、中空糸型半透膜の中空部内を流れるドロー溶液の流量を多くすることができる。これにより、中空糸型半透膜の内外での十分な有効浸透圧差を維持するために必要な流量を確保でき、最終的に浄化水を得るまでの水処理の工程で高粘度のドロー溶液を用いる場合でも、水処理の効率を向上させることができる。
 一方、従来は、図3に示されるように、正浸透工程が1段階であったため、スケール成分を含む被処理水203を中空糸型半透膜1の中空部内に流すと、中空糸型半透膜の中空部内壁にスケール成分が堆積し易いという問題がある。したがって、比較的流速が速く、スケール成分が堆積し難い中空糸型半透膜の外周面側に被処理水を接触させることが望ましい。
 しかし、中空糸型半透膜1の中空部内に高粘度のドロー溶液(第2ドロー溶液)206を流す場合、圧力損失が大きいため、ポンプ4でドロー溶液206に圧力を加えることなどが行われるが、中空部内を流れるドロー溶液206の流量は少なくなる。一般に、中空糸型半透膜の中空部内を流れるドロー溶液の流量が少なくなると、ドロー溶液が中空部内を流れる間にドロー溶液側へ透過する水の量が多くなる。これにより、中空部内を流れるドロー溶液の全体的な浸透圧が低下し、ドロー溶液と被処理水(フィード溶液)との間の浸透圧差が小さくなるため、水の回収効率が低下してしまう。中空糸型半透膜の中空部内に、温度応答性高分子などの高粘度のドロー溶液を流す場合は、圧力損失が大きく、必要なドロー溶液の流量を確保できず、水処理の効率が低下してしまうという問題があった。
 なお、図3では、被処理水203は、逆浸透処理によって濃縮されたかん水201である。すなわち、かん水201は、逆浸透モジュール10の第1室101に流入し、かん水201中の水が逆浸透により半透膜100を通って第2室102に移動して、生産水202となる。一方、かん水201は、第1室101で濃縮されて、被処理水203となる。本実施形態の被処理水としても、このような逆浸透処理によって濃縮された塩水が挙げられる。
 以下、本実施形態の水処理方法の各工程について、図1を参照して説明する。
 (第1正浸透工程)
 第1正浸透工程は、被処理水と、被処理水よりも高い浸透圧を有する第1ドロー溶液と、を第1半透膜を介して接触させることで、被処理水中の水を第1ドロー溶液中に移動させる工程である。
 図1を参照して、第1半透膜1は中空糸型半透膜(中空糸膜)であり、第1正浸透モジュール11は中空糸型半透膜1が露出した浸漬型中空糸膜モジュールである。第1浸透工程では、浸漬型中空糸膜モジュールを処理槽3内の被処理水中に浸漬することにより、中空糸型半透膜1の外周面に被処理水203を接触させると共に、中空糸型半透膜1の中空部内に第1ドロー溶液204を流す。
 被処理水とは、水と水以外の成分を含む液体である。被処理水としては、例えば、海水、汽水、かん水、坑井随伴水、湖沼水、河川水、工場廃水などが挙げられる。被処理水が塩分濃度が高い溶液である場合、被処理水の蒸発残留物濃度(TDS)は、好ましくは0.7~14質量%である。また、被処理水は、逆浸透処理によって濃縮された塩水であることが好ましい。この場合、被処理水のTDSは、好ましくは0.5~14質量%である。
 第1ドロー溶液は、被処理水よりも高い浸透圧を有する溶液であれば特に限定されないが、第1正浸透工程における中空糸型半透膜での圧力損失を低下させ、第1ドロー溶液の十分な流量を確保する観点から、第2ドロー溶液より低粘度の溶液であることが好ましい。第1ドロー溶液の溶質としては、塩化ナトリウム、塩化カリウム、硝酸カリウム、炭酸水素ナトリウム等の無機塩、グルコース、フルクトース等の糖のほか、炭酸アンモニウム、炭酸水素アンモニウム、ブタノールなどを挙げることができる。
 なお、図2を参照して、浸漬型中空糸膜モジュール11は、上記のストレート型の中空糸膜エレメント2(中空糸型半透膜1の束)を備えている。また、浸漬型中空糸膜モジュール11は、中空糸膜エレメント2の両端において、複数の中空糸型半透膜1を所定の間隔を開けて固定するための固定樹脂21,22を備えている。なお、浸漬型中空糸膜モジュール11の全体形状を維持するために、2つの固定樹脂21,22は、図示しない支持体によって相互に連結されていてもよい。
 固定樹脂21は、中空糸型半透膜1の一端の開口を介して、複数の中空糸型半透膜1の中空部に連通する内部空間を有する分配室21aに接続されている。分配室21aは、その内部空間に連通する流入口21bを有している。したがって、流入口21bは、中空糸膜エレメント2の一端において複数の中空糸型半透膜1の中空部に連通している。
 また、固定樹脂22は、中空糸型半透膜1の他端の開口を介して、複数の中空糸型半透膜1の中空部に連通する内部空間を有する集合室22aに接続されている。集合室22aは、その内部空間に連通する流出口22bを有している。したがって、流出口22bは、中空糸膜エレメント2の他端において複数の中空糸型半透膜1の中空部に連通している。
 図2に示されるように、浸漬型中空糸膜モジュール11において、複数の中空糸型半透膜1は露出している。なお、複数の中空糸型半透膜1は少なくともその一部の外表面が露出していればよく、図1では、固定樹脂21,22内に描かれた中空糸型半透膜1の一部は樹脂で覆われており露出していないが、中空糸型半透膜1の他の部分が露出している。なお、図2において、固定樹脂21,22、分配室21a、および、集合室22aを透過させて描いているが、実際に透明である必要はない。
 このようなストレート型の浸漬型中空糸膜モジュールは、従来公知の方法を用いて製造することができ、例えば、特開平10-192661号公報に開示されるような方法により製造することができる。
 本発明の中空糸型半透膜1の内径は、特に限定されないが、好ましくは50~250μmであり、より好ましくは80~200μmである。
 また、中空糸型半透膜の中空率〔(内径/外径)×100(%)〕は、好ましくは30~60%であり、より好ましくは35~55%である。なお、中空率は、中空糸型半透膜の横断面における中空部の面積の割合である。
 中空糸型半透膜の長さは、特に限定されないが、好ましくは15~400cm、より好ましくは20~350cmである。
 中空糸型半透膜は、孔径が100nm以下であることが好ましい。このような中空糸型半透膜としては、例えば、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、限外ろ過膜(UF膜:Ultrafiltration Membrane)と呼ばれているものが挙げられる。
 通常、RO膜およびFO膜の孔径は約2nm以下であり、UF膜の孔径は約2~100nmである。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1~2nmである。
 中空糸型半透膜1を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。中空糸型半透膜は、セルロース系樹脂およびポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。
 セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。
 ポリスルホン系樹脂は、好ましくはポリエーテルスルホン系樹脂である。ポリエーテルスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホンである。
 具体的な中空糸型半透膜の一例としては、全体がセルロース系樹脂から構成されている単層構造の膜が挙げられる。ただし、ここでいう単層構造とは、層全体が均一な膜である必要はなく、例えば、特許文献1に開示されるように、外周表面近傍に緻密層を有し、この緻密層が実質的に中空糸型半透膜の孔径を規定する分離活性層となっていることが好ましい。
 具体的な中空糸型半透膜の別の例としては、支持層(例えば、ポリフェニレンオキサイドからなる層)の外周表面にポリフェニレン系樹脂(例えば、スルホン化ポリエーテルスルホン)からなる緻密層を有する2層構造の膜が挙げられる。また、他の例として、支持層(例えば、ポリスルホンまたはポリエーテルスルホンからなる層)の外周表面にポリアミド系樹脂からなる緻密層を有する2層構造の膜が挙げられる。
 (第2正浸透工程)
 本実施形態の水処理方法は、第1正浸透工程の次に第2正浸透工程を含む。第2正浸透工程は、第1正浸透工程で希釈された第1ドロー溶液と、希釈された第1ドロー溶液よりも高い浸透圧を有する第2ドロー溶液と、を第2半透膜を介して接触させることで、第1ドロー溶液中の水を第2ドロー溶液中に移動させる工程である。
 すなわち、第1正浸透工程で希釈された第1ドロー溶液205は、第2正浸透モジュール12の第1室121に流入する。正浸透によって、第1ドロー溶液205中の水は、第2半透膜120を通って、第2室122を流れる(希釈された第1ドロー溶液205よりも高い浸透圧を有する)第2ドロー溶液206側に移動する。なお、第2正浸透工程で濃縮された第1ドロー溶液204は、第1正浸透工程で再利用される。
 第2正浸透工程において、第2半透膜は、特に限定されないが、第2半透膜が中空糸型半透膜である場合、中空糸型半透膜の外周面に第2ドロー溶液を接触させると共に、中空糸型半透膜の中空部内に第1正浸透工程で希釈された第1ドロー溶液を流すことが好ましい。高粘度の第2ドロー溶液を中空糸型半透膜の中空部内に流すと、圧力損失により十分な流量を流すことができず、水処理の効率が低下する場合があるからである。
 第2ドロー溶液は、希釈された第1ドロー溶液よりも高い浸透圧を有するものであれば特に限定されないが、温度応答性高分子を含むものが好ましい。温度応答性高分子とは、所定の温度を臨界点として親水性が変化する特性(温度応答性)を有する高分子である。温度応答性とは、言い換えれば、温度に応じて親水性になったり疎水性になったりする特性である。ここで、親水性の変化は可逆的であることが好ましい。この場合、温度応答性高分子は、温度を調整することで、水に溶解させたり、水と相分離させたりすることができる。
 温度応答性高分子は、モノマーに由来する複数の構造単位からなるポリマーであり、側鎖に親水性基を有していることが好ましい。
 温度応答性高分子には、下限臨界共溶温度(LCST)タイプと上限臨界共溶温度(UCST)タイプがある。LCSTタイプでは、低温の水に溶解している高分子が、高分子に固有の温度(LCST)以上の温度になると、水と相分離する。逆に、UCSTタイプでは、高温の水に溶解している高分子が、高分子に固有の温度(UCST)以下になると、水と相分離する(杉原ら、「環境応答性高分子の組織体への展開」、SEN’I GAKKAISHI(繊維と工業)、Vol.62,No.8,2006参照)。半透膜は、高温で劣化し易い素材を用いる場合においては、温度応答性高分子が溶解している低温の水に接触している方が望ましいため、本発明に用いる温度応答性高分子はLCSTタイプであることが好ましい。また、高温で劣化しにくい素材で構成された半透膜を用いる場合は、LCSTタイプの他、UCSTタイプも用いることができる。
 親水性基としては、例えば、水酸基、カルボキシル基、アセチル基、アルデヒド基、エーテル結合、エステル結合が挙げられる。親水性基は、これらから選択される少なくとも1種類であることが好ましい。
 温度応答性高分子は、少なくとも一部または全部の構造単位において少なくとも1つの親水性基を有することが好ましい。また、温度応答性高分子は、親水性基を有しつつ、一部の構造単位において疎水性基を有していてもよい。なお、温度応答性高分子が、温度応答性を有するためには、分子中に含まれる親水性基と疎水性基のバランスが重要であると考えられている。
 具体的な温度応答性高分子としては、例えば、ポリビニルエーテル系ポリマー、ポリ酢酸ビニル系ポリマー、(メタ)アクリル酸系ポリマーなどが挙げられる。
 第2ドロー溶液の粘度は、好ましくは0.50Pa・s以下であり、より好ましくは0.20Pa・s以下である。ドロー溶液として、このような高粘度の溶液を中空糸型半透膜の中空部内に流した場合、正浸透処理の効率が低下しやすいため、特に本実施形態の水処理方法が有用である。
 第2ドロー溶液の浸透圧は、溶質(温度応答性高分子)の分子量等にもよるが、好ましくは0.5~20MPaであり、より好ましくは1~18MPaであり、さらに好ましくは2~15MPaである。
 (造水工程)
 本実施形態の水処理方法は、第2正浸透工程の後に造水工程をさらに含む。造水工程では、第2の正浸透工程で希釈された第2ドロー溶液から浄化水を得る。
 第2ドロー溶液のドロー溶質が温度応答性高分子である場合、第2ドロー溶液を別のチャンバー内に流入させ、該チャンバー内の温度を変化させることで、第2ドロー溶液に含まれるドロー溶質(温度応答性高分子)を水と分離させることができる。
 この場合、第2ドロー溶液の温度を変化させるだけで、温度応答性高分子を容易に水から分離させ、回収することができる。また、温度応答性高分子は水との分離性が高いため、純度の高い浄化水を得ることができる点で有利である。さらに、回収後のドロー溶質は、容易に再利用(ドロー溶液等に再溶解)することができる。このようにして、造水工程で濃縮された第2ドロー溶液は、第2正浸透工程で再利用することができる。
 なお、純粋な水が得られるようにドロー溶質の回収工程は多段階に分けて繰り返されてもよく、ドロー溶質の回収の後に、さらに浄化水の品質を高めるための処理を行ってもよい。
 <水処理システム>
 本実施形態の水処理システムは、水と水以外の成分を含む被処理水から浄化水を得るためのシステムである。図1を参照して、水処理システムは、少なくとも第1正浸透モジュール11と、第2正浸透モジュール12と、造水装置13とを備える。
 第1正浸透モジュール11では、被処理水203と、被処理水203よりも高い浸透圧を有する第1ドロー溶液204と、を第1半透膜1(中空糸型半透膜)を介して接触させることで、被処理水中の水を第1ドロー溶液中に移動させる。具体的には、中空糸型半透膜1の外周面に被処理水203を接触させると共に、中空糸型半透膜1の中空部内に第1ドロー溶液204を流す。
 第2正浸透モジュール12では、第1正浸透モジュール11で希釈された第1ドロー溶液205と、希釈された第1ドロー溶液205よりも高い浸透圧を有する第2ドロー溶液206と、を第2半透膜120を介して接触させることで、第1ドロー溶液205中の水を第2ドロー溶液206中に移動させる。なお、第2正浸透モジュール12で濃縮された第1ドロー溶液204は第1正浸透モジュール11で再利用される。
 造水装置13では、第2正浸透モジュール12で希釈された第2ドロー溶液207から浄化水208を得る。なお、造水装置13で濃縮された第2ドロー溶液206は第2正浸透モジュール12で再利用される。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1~16]
 実施例1~16として、以下の条件で、上記実施形態で説明した2段階の正浸透工程(第1正浸透工程および第2正浸透工程)と造水工程とを含む水処理方法を想定して、後述する造水量のシミュレーション計算を行った。
 (第1正浸透工程)
 浸漬型中空糸膜モジュール(中空糸膜配列:ストレート)
  中空糸膜エレメントの直径:10インチ
  中空糸膜の充填率:50%
  中空糸膜の有効長:120cm
 被処理水:5000ppmのNaCl水溶液
 第1ドロー溶液:10質量%NaCl水溶液
 中空糸型半透膜の中空部内への第1ドロー溶液の注入圧力が0.2MPaとなるようにシミュレーションを実施した。
 (第2正浸透工程)
 中空糸膜モジュール(クロスワインド型ハウジング付)
  中空糸膜エレメントの直径:10インチ
  中空糸膜の充填率:50%
  中空糸膜の有効長:115cm
 被処理水:第1処理工程で希釈された第1ドロー溶液
 第2ドロー溶液:85質量%のポリ(エチレンオキシド)/ポリ(プロピレンオキシド)/ポリ(エチレンオキシド)トリブロック共重合体水溶液
 被処理水の出口濃度が10質量%となり、かつ第2ドロー溶液の流動圧力損失が0.075MPaとなるように、運転条件を調整してシミュレーションを実施した。
 なお、第2ドロー溶液としては、濃度85質量%のポリ(エチレンオキシド)/ポリ(プロピレンオキシド)/ポリ(エチレンオキシド)トリブロック共重合体水溶液を想定した。第2ドロー溶液の粘度は、0.200Pa・sと仮定した。また、第2ドロー溶液の浸透圧は、15.4MPaとした。この浸透圧は、塩化ナトリウム濃度40質量%の海水の浸透圧を28bar(2.8MPa)として、プルロニックの濃度と浸透圧との関係を示す曲線を参考に関係式を作成し、その関係式から求めたポリ(エチレンオキシド)/ポリ(プロピレンオキシド)/ポリ(エチレンオキシド)トリブロック共重合体水溶液の濃度が85質量%のときの浸透圧である。
 中空糸型半透膜としては、緻密層厚みがおよそ2μm、圧力差透水量が150(L/m/日)、圧力差塩除去率が99.6%のFO膜に分類されるものを使用した。上記の充填率は、〔π(外径/2)×(充填本数)〕/〔π(モジュール内径/2)〕である。
 なお、圧力差透水量および圧力差塩除去率は、例えば、下記のようにして測定される中空糸型半透膜のパラメータである。
 〔圧力差透水量〕
 中空糸型半透膜を束ねて、プラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた中空糸型半透膜の端部を切断することで中空糸型半透膜の開口面を得て、外径基準の膜面積がおよそ0.1mの評価用モジュールを作製した。この評価用モジュールを供給水タンク、ポンプからなる膜性能試験装置に接続し、性能評価した。具体的には、塩化ナトリウム濃度1500mg/Lの供給水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過して1時間運転する。その後、中空糸型半透膜の開口面より膜透過水を採取して、電子天秤(島津製作所 LIBROR EB-3200D)で透過水重量を測定した。圧力差透水量(FR)は下記式:
FR[L/m/日]=透過水重量[L]/外径基準膜面積[m]/採取時間[分]×(60[分]×24[時間])
 より算出される。
 〔圧力差塩除去率〕
 透水量測定で採取した膜透過水と、同じく透水量の測定で使用した塩化ナトリウム濃度1500mg/L供給水溶液について電気伝導率計(東亜ディーケーケー社CM-25R)を用いて塩化ナトリウム濃度を測定する。圧力差塩除去率は下記式:
圧力差塩除去率[%]=(1-膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
 より算出される。
 [比較例1~5]
 比較例1~5として、以下の条件の1段階の正浸透工程と造水工程とを含む水処理方法を想定して、後述する造水量のシミュレーション計算を行った。
 (正浸透工程)
 浸漬型中空糸膜モジュール(中空糸膜配列:ストレート)
  中空糸膜エレメントの直径:10インチ
  中空糸膜の充填率:50%
  中空糸膜の有効長:120cm
 被処理水:蒸発残留物濃度(TDS)5000ppmの水溶液
 ドロー溶液:85質量%プルロニック水溶液(実施例の第2ドロー溶液と同じ)
 中空糸膜の中空部内への第1ドロー溶液の注入圧力を0.2MPaに固定
 <造水量のシミュレーション計算(1)>
 上記実施例の第1正浸透工程および第2正浸透工程、並びに、比較例の正浸透工程を想定して、造水量等の特性値を計算により求めた。なお、上記実施例および比較例の想定モジュールについて、温度25℃で、定常状態に達した場合を想定してシミュレーション計算により造水量を求めた。実施例の計算結果を表2に示し、比較例の計算結果を表3に示す。なお、造水量から求めた造水量100m/日を得るために必要なモジュールの本数を併せて示す。
 [計算方法]
 上記のパラメータを前提として、DS入口濃度をインプットすると、DS入口流量、DS出口流量、DS出口濃度、中空糸型半透膜を透過した水の総量(造水量:ΔV)が算出される計算プログラムを用いて、計算を実施した。なお、これらの計算では、仮想モジュール(中空糸型半透膜)を流れ方向において均等な微小区間に分割して、各区間での物質収支を計算した。
 具体的には、DS入口濃度、DS入口流量を用いて、仮想モジュールの最初の区間(最も入口側の区間)で中空糸型半透膜を透過する水の量を、A’値(cm/cm/s/(kgf/cm))(一定値と仮定)×膜面積(cm)×60×[有効浸透圧-有効圧力(静水圧)](kgf/cm)により算出し、最初の区間でのDSの出口側濃度および出口側流量を計算する。この最初の区間の出口側濃度および出口側流量を次の区間のDSの入口側濃度、入口側流量として、仮想モジュールの入口側から出口側へ順次、同様の計算を繰り返していくことで、最終的な仮想モジュール(中空糸型半透膜)のDS出口濃度およびDS出口流量を算出する。なお、各区間において中空糸型半透膜を透過した水の量の合計が、仮想モジュールで中空糸型半透膜を透過した水の総量(ΔV)であり、[DS出口流量-DS入口流量]で算出できる。
 また、A’値(透水性能)は、上記粘度および濃度のドロー溶液を用いた実験室レベルでの膜評価結果を用いて、下記式より算出し、10インチモジュールを想定したシミュレーションに利用した。利用したA’値を下記表1に示す。
 
A’値(cm/cm/s/(kgf/cm))=膜を透過した水量:ΔV(cm)/膜面積(cm)/時間(s)/[有効浸透圧-有効圧力(静水圧)](kgf/cm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示される結果から、高粘度のドロー溶液を用いる場合、正浸透工程が1段階であり、中空糸型半透膜の中空部内に高粘度のドロー溶液を流す比較例においては、水処理の効率(造水量)が低く、所望の造水量(100m/日)を得るためには、非現実的な数のモジュールが必要になる。これに対して、正浸透工程が2段階であり、高粘度のドロー溶液を中空糸型半透膜の中空部内に流さない実施例においては、水処理の効率(造水量)が極めて向上しており、所望の造水量(100m/日)を得るために必要なモジュールの本数も大幅に減少させることができる。なお、表3に示される結果から、中空糸型半透膜の内径が100~250μm程度の範囲であれば、本発明の効果を奏することができると考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 第1半透膜(中空糸型半透膜)、10 逆浸透モジュール、100 半透膜、101 第1室、102 第2室、11 第1正浸透モジュール(浸漬型中空糸膜モジュール)、12 第2正浸透モジュール、120 第2半透膜、121 第1室、122 第2室、13 造水装置、2 中空糸膜エレメント、201 かん水、202 生産水、203 被処理水、204 第1ドロー溶液、205 希釈された第1ドロー溶液、206 第2ドロー溶液、207 希釈された第2ドロー溶液、208 浄化水、21,22 固定樹脂、21a 分配室、21b 流入口、22a 集合室、22b 排出口、3 処理槽。

Claims (7)

  1.  水と水以外の成分を含む被処理水から浄化水を得る水処理方法であって、
     前記被処理水と、前記被処理水よりも高い浸透圧を有する第1ドロー溶液と、を第1半透膜を介して接触させることで、前記被処理水中の水を前記第1ドロー溶液中に移動させる第1正浸透工程、
     前記第1正浸透工程で希釈された前記第1ドロー溶液と、希釈された前記第1ドロー溶液よりも高い浸透圧を有する第2ドロー溶液と、を第2半透膜を介して接触させることで、前記第1ドロー溶液中の水を前記第2ドロー溶液中に移動させる第2正浸透工程、および、
     前記第2正浸透工程で希釈された前記第2ドロー溶液から前記浄化水を得る造水工程を含み、
     第2正浸透工程で濃縮された第1ドロー溶液を第1正浸透工程で再利用し、
     前記造水工程で濃縮された第2ドロー溶液を第2正浸透工程で再利用し、
     前記第1正浸透工程において、前記第1半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に前記被処理水を接触させると共に、前記中空糸型半透膜の中空部内に前記第1ドロー溶液を流す、水処理方法。
  2.  前記第2ドロー溶液は、所定の温度を臨界点として親水性が変化する特性を有する温度応答性高分子を含む、請求項1に記載の水処理方法。
  3.  前記第1正浸透工程は、前記中空糸型半透膜が露出した浸漬型中空糸膜モジュールを処理槽内の前記被処理水中に浸漬した状態で実施される、請求項1または2に記載の水処理方法。
  4.  前記被処理水は、逆浸透処理によって濃縮された塩水である、請求項1~3のいずれか1項に記載の水処理方法。
  5.  前記第2正浸透工程において、前記第2半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に前記第2ドロー溶液を接触させると共に、前記中空糸型半透膜の中空部内に前記第1正浸透工程で希釈された前記第1ドロー溶液を流す、請求項1~4のいずれか1項に記載の水処理方法。
  6.  水と水以外の成分を含む被処理水から浄化水を得る水処理システムであって、
     前記被処理水と、前記被処理水よりも高い浸透圧を有する第1ドロー溶液と、を第1半透膜を介して接触させることで、前記被処理水中の水を前記第1ドロー溶液中に移動させる第1正浸透モジュール、
     前記第1正浸透モジュールで希釈された前記第1ドロー溶液と、希釈された前記第1ドロー溶液よりも高い浸透圧を有する第2ドロー溶液と、を第2半透膜を介して接触させることで、前記第1ドロー溶液中の水を前記第2ドロー溶液中に移動させる第2正浸透モジュール、および、
     前記第2正浸透モジュールで希釈された前記第2ドロー溶液から前記浄化水を得る造水装置を含み、
     第2正浸透モジュールで濃縮された第1ドロー溶液を第1正浸透モジュールで再利用し、
     前記造水装置で濃縮された第2ドロー溶液を第2正浸透モジュールで再利用し、
     前記第1正浸透モジュールにおいて、前記第1半透膜は中空糸型半透膜であり、中空糸型半透膜の外周面に前記被処理水を接触させると共に、前記中空糸型半透膜の中空部内に前記第1ドロー溶液を流す、水処理システム。
  7.  前記第2ドロー溶液は、所定の温度を臨界点として親水性が変化する特性を有する温度応答性高分子を含む、請求項6に記載の水処理システム。
PCT/JP2016/073411 2015-08-31 2016-08-09 水処理方法および水処理システム WO2017038402A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537697A JP6521077B2 (ja) 2015-08-31 2016-08-09 水処理方法および水処理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170438 2015-08-31
JP2015170438 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038402A1 true WO2017038402A1 (ja) 2017-03-09

Family

ID=58187238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073411 WO2017038402A1 (ja) 2015-08-31 2016-08-09 水処理方法および水処理システム

Country Status (2)

Country Link
JP (1) JP6521077B2 (ja)
WO (1) WO2017038402A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045525A1 (ja) * 2018-08-31 2020-03-05 株式会社日本触媒 ドロー溶質及び水処理装置
US20200144583A1 (en) * 2017-06-23 2020-05-07 Kabushiki Kaisha Toyota Jidoshokki Power storage device
JP2020185522A (ja) * 2019-05-13 2020-11-19 国立大学法人高知大学 排水処理装置及び排水処理装置の製造方法
CN112805247A (zh) * 2018-10-05 2021-05-14 奥加诺株式会社 水处理装置、水处理方法、正渗透膜处理方法、正渗透膜处理系统及水处理系统
WO2021149446A1 (ja) * 2020-01-23 2021-07-29 東洋紡株式会社 濃縮システム
JP2021164899A (ja) * 2020-04-06 2021-10-14 美浜株式会社 濃縮装置
JP2022133894A (ja) * 2021-03-02 2022-09-14 株式会社東芝 水処理システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224476A1 (en) * 2006-06-13 2010-09-09 Cath Tzahi Y Combined membrane-distillation-forward-osmosis systems and methods of use
JP2014512952A (ja) * 2011-04-25 2014-05-29 オアシス ウォーター,インコーポレーテッド 浸透分離システムおよび方法
JP2014184402A (ja) * 2013-03-25 2014-10-02 Jfe Engineering Corp 中空糸膜モジュール
JP2015047541A (ja) * 2013-08-30 2015-03-16 東洋紡株式会社 正浸透水処理方法および正浸透水処理装置およびドロー溶液
JP2015192979A (ja) * 2014-03-28 2015-11-05 Jfeエンジニアリング株式会社 半透膜による水処理装置
JP2016067989A (ja) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 正浸透膜分離方法、水処理設備および発電設備
JP2016150308A (ja) * 2015-02-17 2016-08-22 株式会社ササクラ 経口又は外用液体の濃縮装置及び濃縮方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224476A1 (en) * 2006-06-13 2010-09-09 Cath Tzahi Y Combined membrane-distillation-forward-osmosis systems and methods of use
JP2014512952A (ja) * 2011-04-25 2014-05-29 オアシス ウォーター,インコーポレーテッド 浸透分離システムおよび方法
JP2014184402A (ja) * 2013-03-25 2014-10-02 Jfe Engineering Corp 中空糸膜モジュール
JP2015047541A (ja) * 2013-08-30 2015-03-16 東洋紡株式会社 正浸透水処理方法および正浸透水処理装置およびドロー溶液
JP2015192979A (ja) * 2014-03-28 2015-11-05 Jfeエンジニアリング株式会社 半透膜による水処理装置
JP2016067989A (ja) * 2014-09-29 2016-05-09 大阪瓦斯株式会社 正浸透膜分離方法、水処理設備および発電設備
JP2016150308A (ja) * 2015-02-17 2016-08-22 株式会社ササクラ 経口又は外用液体の濃縮装置及び濃縮方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200144583A1 (en) * 2017-06-23 2020-05-07 Kabushiki Kaisha Toyota Jidoshokki Power storage device
US11594789B2 (en) * 2017-06-23 2023-02-28 Kabushiki Kaisha Toyota Jidoshokki Power storage device
JP7162308B2 (ja) 2018-08-31 2022-10-28 株式会社日本触媒 ドロー溶質及び水処理装置
US11639299B2 (en) 2018-08-31 2023-05-02 Nippon Shokubai Co., Ltd. Draw solute and water treatment equipment
WO2020045525A1 (ja) * 2018-08-31 2020-03-05 株式会社日本触媒 ドロー溶質及び水処理装置
JPWO2020045525A1 (ja) * 2018-08-31 2021-06-03 株式会社日本触媒 ドロー溶質及び水処理装置
CN112805247A (zh) * 2018-10-05 2021-05-14 奥加诺株式会社 水处理装置、水处理方法、正渗透膜处理方法、正渗透膜处理系统及水处理系统
JP2020185522A (ja) * 2019-05-13 2020-11-19 国立大学法人高知大学 排水処理装置及び排水処理装置の製造方法
JP7341719B2 (ja) 2019-05-13 2023-09-11 国立大学法人高知大学 排水処理装置及び排水処理装置の製造方法
JP2021115496A (ja) * 2020-01-23 2021-08-10 東洋紡株式会社 濃縮システム
WO2021149446A1 (ja) * 2020-01-23 2021-07-29 東洋紡株式会社 濃縮システム
JP2021164899A (ja) * 2020-04-06 2021-10-14 美浜株式会社 濃縮装置
JP7462460B2 (ja) 2020-04-06 2024-04-05 美浜株式会社 濃縮装置
JP2022133894A (ja) * 2021-03-02 2022-09-14 株式会社東芝 水処理システム
JP7547243B2 (ja) 2021-03-02 2024-09-09 株式会社東芝 水処理システム

Also Published As

Publication number Publication date
JPWO2017038402A1 (ja) 2018-03-01
JP6521077B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2017038402A1 (ja) 水処理方法および水処理システム
Sukitpaneenit et al. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production
JP6834360B2 (ja) 濃縮方法および濃縮装置
CN112867554B (zh) 中空纤维膜元件、中空纤维膜组件及正渗透水处理方法
CN104023830B (zh) 具有高耐氯性和高渗透性的水处理膜及其制备方法
Ong et al. Novel cellulose esters for forward osmosis membranes
JP2017025834A (ja) 正浸透発電方法、および、それに用いる正浸透発電システム
JP2015188786A (ja) 正浸透処理システム
JP7102706B2 (ja) 海水淡水化方法および海水淡水化システム
JP2018001111A (ja) 塩水の淡水化処理方法、および、塩水の淡水化処理システム
WO2020179594A1 (ja) Zero Liquid Dischargeシステム
JP7133429B2 (ja) 水処理システム及び水処理方法
JP6862935B2 (ja) 濃縮システムおよび濃縮方法
WO2018221103A1 (ja) 分離膜エレメント
JP6743810B2 (ja) 中空糸型半透膜、中空糸膜モジュールおよび正浸透水処理方法
JP6583416B2 (ja) 中空糸膜エレメント、中空糸膜モジュールおよび正浸透水処理方法
US20130092618A1 (en) Separation membrane, water treatment unit and water treatment apparatus
KR20140123347A (ko) 막 증류 수처리 시스템
Jeon et al. Effect of transmembrane pressure on draw solution channel height and water flux in spiral wound forward osmosis module
JP6477872B2 (ja) 浸漬型中空糸膜モジュール、および、それを用いる正浸透水処理方法
Cai et al. Hollow Fibers for Reverse Osmosis and Nanofiltration
WO2020022219A1 (ja) 正浸透処理方法および正浸透処理装置
JP2017051926A (ja) 濃度差エネルギー回収方法、および、それに用いる濃度差エネルギー回収システム
Stefani Forward osmosis: influence of sucrose and sodium chloride as draw solutions on process performance
Ng Development of thin-film composite membrane for forward osmosis process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841434

Country of ref document: EP

Kind code of ref document: A1