JP6848451B2 - 偏波結合装置および光変調装置 - Google Patents

偏波結合装置および光変調装置 Download PDF

Info

Publication number
JP6848451B2
JP6848451B2 JP2017003697A JP2017003697A JP6848451B2 JP 6848451 B2 JP6848451 B2 JP 6848451B2 JP 2017003697 A JP2017003697 A JP 2017003697A JP 2017003697 A JP2017003697 A JP 2017003697A JP 6848451 B2 JP6848451 B2 JP 6848451B2
Authority
JP
Japan
Prior art keywords
polarization
prism
light beam
incident
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017003697A
Other languages
English (en)
Other versions
JP2018112684A (ja
Inventor
誠美 佐々木
誠美 佐々木
大織 加藤
大織 加藤
康平 柴田
康平 柴田
田中 剛人
剛人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2017003697A priority Critical patent/JP6848451B2/ja
Priority to US15/868,332 priority patent/US10578885B2/en
Publication of JP2018112684A publication Critical patent/JP2018112684A/ja
Application granted granted Critical
Publication of JP6848451B2 publication Critical patent/JP6848451B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、偏波結合装置および光変調装置に関する。
光伝送システムにおいて、例えばDP−DQPSK(Dual Polarization Differential Quadrature Phase Shift Keying)方式によって光変調を行う光変調器が用いられることがある。DP−DQPSK方式では、まず、光変調器に入力された光ビームが2つに分岐され、分岐された2つの光ビームに電気信号が重畳される。そして、電気信号が重畳された2つの光ビームが合成される。
分岐された2つの光ビームに電気信号を重畳するには、例えばニオブ酸リチウム(LiNbO3)などの強誘電体結晶が用いられることがある。強誘電体結晶を用いる場合には、結晶内の導波路において光ビームに電気信号が重畳されるため、所定サイズの結晶が配置されることとなり、光変調器の小型化には一定の限界がある。そこで、近年では、光変調器の小型化・高効率化を目的として、半導体チップを用いた光変調器が検討されている。
また、電気信号が重畳された2つの光ビームを合成するには、偏波回転素子と偏波合成素子とを備える偏波結合部が用いられることがある。偏波結合部は、併進する2つの光ビームの一方の偏波方向を、例えば波長板などの偏波回転素子によって回転させ、偏波方向が互いに直交する2つの光ビームを、例えばPBC(Polarization Beam Combiner)プリズムなどの偏波合成素子によって合成する。
具体的には、PBCプリズムには偏光ビームスプリッタ膜が成膜されている。偏光ビームスプリッタ膜は、偏光選択性のある反射膜である。偏光ビームスプリッタ膜は、本膜への入射面に対して偏光面が平行方向の光(P偏光)を透過させ、偏光面が垂直方向の光(S偏光)を反射させる。一方の光ビームの偏波が波長板を通過することにより、波長板は、一方の光ビームの偏波方向を回転させて、他方の光ビームの偏波方向と直交させる。すなわち、一方の光ビームの偏波がP偏光の状態からS偏光の状態に変わる。
例えば図7に示すように、偏波結合部には、光ビーム31(図7中の実線)と光ビーム32(図7中の点線)とがP偏光の状態で入射される。光ビーム31の偏波が波長板12を通過することにより、波長板12は、光ビーム31の偏波方向を回転させて、光ビーム32の偏波方向と直交させる。すなわち、光ビーム31の偏波がP偏光の状態からS偏光の状態に変わる。反射膜14および偏光ビームスプリッタ膜15は、波長板12からPBCプリズム11に入射された光ビーム31の偏波を反射させる。偏光ビームスプリッタ膜15は、PBCプリズム11に入射された光ビーム32の偏波を透過させる。PBCプリズム11は、反射膜14および偏光ビームスプリッタ膜15を反射した光ビーム31と、偏光ビームスプリッタ膜15を透過した光ビーム32とを合成する。
上述した偏波結合部の構成においては、図7に示したように、PBCプリズム11に波長板12が接着されるのが一般的である。例えば接着剤などの固定剤によって、波長板12がPBCプリズム11に固定される。この場合、波長板12とPBCプリズム11との接着面に塗布された固定剤が接着面の周囲にはみ出して、フィレット13と呼ばれる領域が形成されることがある。
固定剤によってPBCプリズム11と波長板12との接着面の周囲に形成されたフィレット13は、光ビームの通過を阻害する。このため、偏波結合部によって2つの光ビームを合成する場合には、光ビームがフィレット13を避けた経路を通過するように、2つの光ビームの入射位置が調整される。具体的には、PBCプリズム11と波長板12との接着面の周囲から離れた位置で光ビーム32がPBCプリズム11へ入射される。このように光ビーム32の入射位置を調整することで、フィレット13によって光ビーム32の通過が阻害されることがない。
特開平5−133800号公報 特開2015−169796号公報
しかしながら、このような偏波結合部に2つの光ビームを入力する場合には、2つの光ビームの間の距離を一定値以下に小さくすることができないという問題がある。例えば図7に示した偏波結合部において、PBCプリズム11と波長板12との接着面の周囲から離れた位置で光ビーム32がPBCプリズム11へ入射されることから、光ビーム31と光ビーム32との間には一定の間隔が設けられる。
そこで、図7に示した偏波結合部の課題を解決するために、すなわち、2つの光ビームの間の距離を近づけるために、従来では、更に、偏波回転素子と偏波合成素子とを固定するベース部材を備える偏波結合部が提案されている。具体的には、例えば図8に示すように、ベース部材23は、本体部と、本体部から延伸する2つの腕部とを有し、2つの腕部の間には切欠部が形成されている。ベース部材23の2つの腕部の端面には波長板22が接着されている。ベース部材23の2つの腕部と本体部との一面には、波長板22とベース部材23の切欠部とに対向する位置において、PBCプリズム21が接着される。ベース部材23は、PBCプリズム21と波長板22とが接着される基材である。例えば、ベース部材23はガラス材料などから形成され、PBCプリズム21は石英ガラスから形成され、波長板22は水晶から形成される。また、PBCプリズム21には反射膜24および偏光ビームスプリッタ膜25が成膜されている。
図8に示した偏波結合部では、図7に示した偏波結合部と同様に、偏波結合部には、光ビーム31、32がP偏光の状態で入射される。光ビーム31の偏波が波長板22を通過することにより、波長板22は、光ビーム31の偏波方向を回転させて、光ビーム32の偏波方向と直交させる。すなわち、光ビーム31の偏波がP偏光の状態からS偏光の状態に変わる。反射膜24および偏光ビームスプリッタ膜25は、波長板22からPBCプリズム21に入射された光ビーム31の偏波を反射させる。また、偏光ビームスプリッタ膜25は、ベース部材23の切欠部からPBCプリズム21に入射された光ビーム32の偏波を透過させる。PBCプリズム21は、反射膜24および偏光ビームスプリッタ膜25を反射した光ビーム31と、偏光ビームスプリッタ膜25を透過した光ビーム32とを合成する。
図8に示した偏波結合部では、ベース部材23に波長板22とPBCプリズム21とを接着するため、波長板22とPBCプリズム21とが直接接着されない。波長板22とPBCプリズム21とを接着する部分が存在しないため、接着剤などの固定剤によって形成されるフィレットが存在しない。このため、2つの光ビームの間の距離を一定値以下に小さくしても、フィレットによって光ビーム32の通過が阻害されることがない。
しかし、図8に示した偏波結合部では、図7に示した偏波結合部の課題を解決するために、新しい部品としてベース部材23を設けることになるので、部品点数が増えてしまう。その結果、図8に示した偏波結合部を例えば光変調器などの装置に適用する場合、電気信号が重畳された2つの光ビームの間の距離を近づけるためにベース部材23を製造することとなり、光変調器を十分に小型化することが困難になる。
開示の技術は、かかる点に鑑みてなされたものであって、装置の小型化を促進することができる偏波結合装置および光変調装置を提供することを目的とする。
本願が開示する偏波結合装置は、1つの態様において、偏波合成素子を有している。偏波合成素子は、偏波合成素子に入射された第1の偏波の偏波方向を回転させる偏波回転部を有する第1のプリズムと、偏波回転部により偏波方向が回転した第1の偏波と偏波合成素子に入射された第2の偏波とを合成する偏波合成部へ前記第2の偏波を伝播させる第2のプリズムを有し前記第1のプリズムと前記第2のプリズムとが一体化されている。
本願が開示する偏波結合装置及び光変調装置の1つの態様によれば、装置の小型化を促進することができるという効果を奏する。
図1は、第1実施形態に係る光変調器の構成の一例を示す図である。 図2は、第1実施形態に係る偏波結合部の構成の一例を示す上面図である。 図3は、第1実施形態に係る偏波結合部の構成の一例を示す側面図である。 図4は、第1実施形態に係る偏波結合部のプリズムを構成する複屈折材料の光学(結晶)軸の方向の一例を示す図である。 図5は、第2実施形態に係る偏波結合部の構成の一例を示す上面図である。 図6は、第2実施形態に係る偏波結合部の構成の一例を示す側面図である。 図7は、偏波結合部の構成の一例を示す上面図である。 図8は、偏波結合部の構成の一例を示す上面図である。
以下、本願が開示する偏波結合装置および光変調装置の実施形態について、図面を参照して詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
[第1実施形態]
図1は、第1実施形態に係る光変調器100の構成を示す図である。光変調器100は、光ファイバ110a、110bに接続される。その光変調器100は、フェルール120a、120b、入力側レンズ130、光変調チップ140、出力側レンズ150、170、偏波結合部160を有する。
フェルール120a、120bは、それぞれ光ファイバ110a、110bの末端を収納し、光ファイバ110a、110bの位置を固定する。例えば、光変調器100において、光ファイバ110aおよびフェルール120aから信号光が入力され、フェルール120bおよび光ファイバ110bから信号光が出力される。
入力側レンズ130は、フェルール120aに収納された光ファイバ110aの先端から照射される信号光を集光して、得られた光ビームを光変調チップ140に出力する。
光変調チップ140は、半導体材料から形成される。光変調チップ140は、入力側レンズ130から入力される光ビームを2つに分岐し、分岐された2つの光ビームに電気信号を重畳する。そして、光変調チップ140は、電気信号が重畳された2つの光ビームを、出力側レンズ150を介して偏波結合部160に出力する。なお、光変調チップ140は、電気信号が重畳された2つの光ビーム以外にも、光変調チップ140の動作を監視するための監視用の光ビームを出力しても良い。
出力側レンズ150としては、マイクロレンズアレイなどが挙げられる。出力側レンズ150は、光変調チップ140によって電気信号が重畳された光ビームを偏波結合部160に向けて出力する。すなわち、出力側レンズ150は、2つの併進する光ビームを偏波結合部160に出力する。出力側レンズ150が出力する2つの光ビームの偏波方向は同一である。
偏波結合部160は、出力側レンズ150から出力される2つの光ビームを合成し、偏波方向が直交する2つの偏波を含む光ビームを出力する。すなわち、偏波結合部160は、出力側レンズ150から出力される一方の光ビームの偏波方向を回転させた後、他方の光ビームと合成し、得られた1つの光ビームを出力する。本実施形態においては、偏波結合部160に入射する2つの光ビームの間に固定剤から形成されるフィレットが存在しないため、2つの光ビームを近付けることが可能である。結果として、光変調チップ140を最大限に小型化しても、この光変調チップ140から出力される2つの光ビームを偏波結合部160によって合成することが可能となる。偏波結合部160の具体的な構成については、後に詳述する。
出力側レンズ170は、偏波結合部160から出力される光ビームを、フェルール120bに収納された光ファイバ110bの先端に照射する。
図2は、第1実施形態に係る偏波結合部160の構成の一例を示す上面図である。偏波結合部160は、偏波合成素子200、偏光ビームスプリッタ膜230、ミラー240を有する。
偏波合成素子200は、プリズム210、220を有する。
プリズム210は、ガラス材料または複屈折材料で形成されている。プリズム210を上面から見た場合、プリズム210の形状は台形である。
プリズム220は、複屈折材料で形成されている。プリズム220を上面から見た場合、プリズム220の形状は平行四辺形である。
プリズム220は、偏波回転部222(図2中の一点鎖線)、偏波合成部224を有する。偏波回転部222は、偏波合成素子200に入射された光ビーム301(図2中の実線)の偏波方向を回転させる。偏波合成部224は、偏波回転部222により偏波方向が回転した光ビーム301と、偏波合成素子200に入射された光ビーム302(図2中の点線)とを合成する。
プリズム220の第1面と第1面に対向する平行面である第2面とは、それぞれ、偏波回転部222が光ビーム301の偏波方向を回転させる区間の始点と終点とに相当する。本実施形態では、ミラー240は、プリズム220の第1面に設けられている。例えば、ミラー240は、プリズム220の第1面に成膜された偏光無依存の反射膜からなる。ミラー240は、偏波合成素子200に入射された光ビーム301の偏波を反射させて偏波回転部222に伝播する。
偏光ビームスプリッタ膜230は、プリズム210とプリズム220との間に設けられている。例えば、偏光ビームスプリッタ膜230は、プリズム220の第2面に成膜されている。偏光ビームスプリッタ膜230は、偏光選択性を有し、偏光分離膜とも呼ばれる。偏光ビームスプリッタ膜230は、例えば誘電体多層膜で構成され、本膜への入射面に対して偏光面が平行方向の光(P偏光)を透過させ、偏光面が垂直方向の光(S偏光)を反射させる。本実施形態では、偏光ビームスプリッタ膜230は、偏波回転部222に伝播した光ビーム301の偏波を反射させ、偏波合成素子200に入射された光ビーム302の偏波を透過させる。
図2を用いて、第1実施形態に係る偏波結合部160の動作を説明する。
光変調チップ140によって電気信号が重畳された光ビーム301、302は、出力側レンズ150から偏波結合部160に出力される。このとき、偏波結合部160の偏波合成素子200には、光ビーム301と光ビーム302とが併進してP偏光の状態で入射される。
光ビーム301は、偏波合成素子200のプリズム220に入射される。光ビーム301の伝播方向は、ミラー240で90度変更される。ミラー240で90度変更された光ビーム301は、偏光ビームスプリッタ膜230に対して略45度の方向に伝播する。ここで、プリズム220には、ミラー240から偏光ビームスプリッタ膜230までの光ビーム301の伝播方向において、光ビーム301の偏波方向を略90度回転させるように複屈折材料の光学(結晶)軸の方向が設定されている。すなわち、プリズム220には偏波回転部222が設けられている。偏波回転部222は、光ビーム301の偏波方向を90度回転させて、光ビーム302の偏波方向と直交させる。これにより、光ビーム301の偏波がP偏光の状態からS偏光の状態に変わる。偏光ビームスプリッタ膜230は光ビーム301の偏波を反射させ、光ビーム301の伝播方向は、偏光ビームスプリッタ膜230で90度変更される。
光ビーム302は、偏波合成素子200のプリズム210に入射され、プリズム210とプリズム220との間に設けられた偏光ビームスプリッタ膜230に伝播する。偏光ビームスプリッタ膜230は光ビーム302の偏波を透過させる。プリズム220の偏波合成部224は光ビーム301(S偏光)と光ビーム302(P偏光)とを合成し、合成した光ビームが偏波結合部160から出射される。
図3は、第1実施形態に係る偏波結合部160の構成の一例を示す側面図である。偏波結合部160の偏波合成素子200において、プリズム220は、複屈折材料として一軸性結晶で形成されている。本実施形態では、例えば一軸性結晶として水晶が用いられる。
光ビーム301は、偏波回転部222(図3中の紙面に垂直方向の伝播)により偏波方向が略90度回転した後に、偏波合成部224を伝播する。ここで、プリズム220が複屈折材料で形成されているため、偏波方向が回転した光ビーム301は、偏波合成部224においては異常光の伝播となり、Walk off(図3中のW部分)が発生する。Walk offは、結晶軸の性質上、光ビームが回転に寄与しない方向に伝播するときに発生する。しかし、Walk offによる光ビーム301の伝播方向のズレは僅かであり、例えば数μm程度である。
図4は、第1実施形態に係る偏波結合部160のプリズムを構成する複屈折材料の光学(結晶)軸の方向の一例を示す図である。図4では、プリズム210、220が共に複屈折材料で形成されている場合を例として説明する。
平行四辺形のプリズム220には光ビーム301が入射され、光ビーム301の伝播方向がミラー240で90度変更される。そのプリズム220は、上述のように一軸性結晶(例えば水晶)で構成されている。プリズム220を上面から見た場合、プリズム220の軸方向は水平、すなわち、0度になるように設定される(図4中の矢印X220を参照)。プリズム220を側面から見た場合、プリズム220の軸方向は45度になるように設定される(図4中の矢印Y220を参照)。
これにより、光ビーム301の偏波(P偏光)は、プリズム220の偏波回転部222で光学結晶軸に対して45度の偏光で入射するため、光学軸方向とこれに垂直な方向との屈折率の違い(複屈折)により、それぞれの光波成分に伝播位相差が生じる。この伝播位相差がπとなるように偏波回転部222の伝播距離(図4中の矢印L、すなわち、プリズム220の厚み)を設定することで、光ビーム301の偏波方向が90度回転し、光ビーム301の偏波がP偏光の状態からS偏光の状態に変わる。S偏光の状態になった光ビーム301は、偏光ビームスプリッタ膜230で反射され、光ビーム301の伝播方向が90度変更される。伝播方向が90度変更された光ビーム301(S偏光)の偏光方向は、光学結晶軸の方向と同一である。すなわち、プリズム220の偏波合成部224の部分においては、異常光成分のみの入射であり、S偏光の状態である偏波が回転しないように水晶の光学結晶軸の方向が設定されている。このため、プリズム220の偏波合成部224において、光ビーム301の偏波が回転することなく、光ビーム301がS偏光の状態で光ビーム302と合成される。
台形のプリズム210には光ビーム302が入射される。そのプリズム210は、平行四辺形のプリズム220と同様に、一軸性結晶(例えば水晶)で構成されている。プリズム210を上面から見た場合、プリズム210の軸方向は水平、すなわち、0度になるように設定される(図4中の矢印X210を参照)。プリズム210を側面から見た場合、プリズム210の軸方向は不問とする(図4中の矢印Y210を参照)。
これにより、プリズム210に入射した光ビーム302の偏波(P偏光)の偏光方向は、光学結晶軸に対して垂直である。すなわち、プリズム210においては、常光成分のみの入射であり、P偏光の状態である偏波が回転しないように水晶の光学結晶軸の方向が設定されている。このため、プリズム210において、光ビーム302の偏波が回転することなく、P偏光の状態で、偏光ビームスプリッタ膜230を通過(透過)する。偏光ビームスプリッタ膜230を通過した光ビーム302の偏波(P偏光)の偏光方向は、平行四辺形のプリズム220に入射された場合でも、光学結晶軸に対して垂直である。すなわち、プリズム220の偏波合成部224の部分においては、常光成分のみの入射であり、P偏光の状態である偏波が回転しないように水晶の光学結晶軸の方向が設定されている。このため、プリズム220の偏波合成部224において、光ビーム302の偏波が回転することなく、光ビーム302がP偏光の状態で光ビーム301と合成される。
また、平行四辺形のプリズム220のミラー240の面(第1面)と偏光ビームスプリッタ膜230の面(第2面)とを平行に設定することにより、入射される光ビームの有効径全体に対して均一な偏波回転が可能となる。
また、平行四辺形のプリズム220に設けられたミラー240の面(第1面)から偏光ビームスプリッタ膜230の面(第2面)までの距離(図4中の矢印Lを参照)は、偏波回転部222で光ビーム301の偏波方向が90度回転するときの伝播距離である。その距離Lは、光ビーム301の有効ビーム径よりも大きい値に設定される。例えば、複屈折材料として水晶を選択した場合、約90μmの奇数倍の選択ができ、ビーム径90μm以下の小径化、併進ビームの狭ピッチ化および偏波合成素子200の小型化が可能となる。
以上の説明により、本実施形態によれば、光変調器100の偏波結合部160は、偏波合成素子200を有し、偏波合成素子200は、プリズム210、220を有している。プリズム220は、偏波回転部222と偏波合成部224とが一体化されている。偏波回転部222は、偏波合成素子200に入射された光ビーム301が通過したときに光ビーム301の偏波方向を回転させる。偏波合成部224は、偏波回転部222により偏波方向が回転した光ビーム301と、偏波合成素子200に入射された光ビーム302とを合成する。このように、本実施形態では、プリズム220を偏波回転部222と偏波合成部224とで一体化することによって、装置の小型化を促進することができる。
また、本実施形態では、従来のようにベース部材を設けなくてもよい。具体的には、従来では、波長板とPBCプリズムとを接着剤などの固定剤で接着することによって形成されるフィレットが存在しないように、波長板とPBCプリズムとをベース部材に接着している。一方、本実施形態では、プリズム220は、従来の波長板の機能を有する偏波回転部222と、従来のPBCプリズムの機能を有する偏波合成部224とが一体化されている。このように、本実施形態では、従来のようにベース部材を設けなくても、2つの光ビーム301、302の間の距離を一定値以下に小さくすることができる。また、本実施形態では、フィレットによって光ビーム301、302の通過が阻害されることがない。
[第2実施形態]
図5は、第2実施形態に係る偏波結合部160の構成の一例を示す上面図である。第2実施形態では、第1実施形態と同様の構成及び動作については説明を省略する。
偏波結合部160において、偏波合成素子200に光ビーム301、302が入射されるときの入射面に角度が設けられている。例えば、プリズム210の入射面には光ビーム302が入射され、プリズム210の入射面は角度としてθが設定されている。プリズム220の入射面には光ビーム301が入射され、プリズム220の入射面は角度として0度が設定されている。この場合、角度θは、偏波合成部224により光ビーム301、302が合成される際に、光ビーム301、302の伝播方向が等しくなるように設定されている。
図5を用いて、第2実施形態に係る偏波結合部160の動作を説明する。
光変調チップ140によって電気信号が重畳された光ビーム301、302は、出力側レンズ150から偏波結合部160に出力される。このとき、偏波結合部160の偏波合成素子200には、光ビーム301と光ビーム302とが交差してP偏光の状態で入射される。ここで、光ビーム301と光ビーム302の交差角度としてφが設定されている。
光ビーム301は、偏波合成素子200のプリズム220の入射面に対して入射角度が略0度で入射される。ここで、光ビーム301が偏波合成素子200のプリズム220に入射されてから、偏光ビームスプリッタ膜230に反射されるまでは、第1実施形態と同じである。
光ビーム302は、偏波合成素子200のプリズム210の入射面に対して入射角度が略θ+φ度で入射される。例えば、プリズム210が水晶(P偏光の屈折率1.53)で形成されている場合、光ビーム301と光ビーム302との交差角度φは3.2度、プリズム210の入射面の角度θは6度に設定される。その後、光ビーム302は、プリズム210の入射面で屈折して、プリズム210とプリズム220との間に設けられた偏光ビームスプリッタ膜230に対して略45度の方向に伝播する。偏光ビームスプリッタ膜230は光ビーム302の偏波を透過させる。プリズム220の偏波合成部224において、光ビーム301(S偏光)と光ビーム302(P偏光)とが略同じ方向に伝播し、合成した光ビームが偏波結合部160から出射される。
図6は、第2実施形態に係る偏波結合部160の構成の一例を示す側面図である。第1実施形態と同様に、光ビーム301は、偏波回転部222(図6中の紙面に垂直方向の伝播)により偏波方向が略90度回転した後に、偏波合成部224を伝播する。ここで、プリズム220が複屈折材料で形成されているため、偏波方向が回転した光ビーム301は、偏波合成部224においては異常光の伝播となり、Walk off(図6中のW部分)が発生する。しかし、Walk offによる光ビーム301の伝播方向のズレは僅かであり、例えば数μm程度である。
以上の説明により、本実施形態によれば、第1実施形態の効果に加えて、交差ビームの光学系が選択でき、2つの光ビーム301、302の大幅な狭ピッチ化、偏波光学素子200および光変調チップ140、更には光学系全体の小型化が可能となる。
なお、上記各実施形態においては、光変調器100に設けられる偏波結合部160について説明したが、各実施形態の偏波結合部160は、光変調器とは異なる種々の光モジュールにも適用することができる。すなわち、2つの光ビームを合成したり、1つの光ビームを分離したりする光モジュールであれば、上記各実施形態の偏波結合部160を用いることができる。
また、上記各実施形態においては、偏波結合部160の偏波合成素子200のプリズムを構成する複屈折材料として水晶を用いるものとしたが、これに限定されない。複屈折材料としては、サファイア、ルチル、YVO4(イットリウム・四酸化バナデート)などを用いることも可能である。
11、21 PBCプリズム
12、22 波長板
13 フィレット
14、24 反射膜
15、25 偏光ビームスプリッタ膜
23 ベース部材
31、32 光ビーム
100 光変調器(光変調装置)
110a、110b 光ファイバ
120a、120b フェルール
130 入力側レンズ
140 光変調チップ(変調部)
150、170 出力側レンズ
160 偏波結合部(偏波結合装置)
200 偏波合成素子
210、220 プリズム
222 偏波回転部
224 偏波合成部
230 偏光ビームスプリッタ膜(偏光分離膜)
240 ミラー
301、302 光ビーム

Claims (7)

  1. 偏波合成素子を有し、
    前記偏波合成素子は、
    前記偏波合成素子に入射された第1の偏波の偏波方向を回転させる偏波回転部を有する第1のプリズムと、
    前記偏波回転部により偏波方向が回転した前記第1の偏波と前記偏波合成素子に入射された第2の偏波とを合成する偏波合成部へ前記第2の偏波を伝播させる第2のプリズムとを有し、
    前記第1のプリズムと前記第2のプリズムとが一体化されていることを特徴とする偏波結合装置。
  2. 前記第1のプリズムは複屈折材料で形成され、
    前記第1のプリズムのうちの前記偏波回転部以外の部分において、前記第1、第2の偏波が回転しないように前記複屈折材料の光学軸の方向が設定されている、
    ことを特徴とする請求項1に記載の偏波結合装置。
  3. 前記第1のプリズムの第1面と前記第1面に対向する平行面である第2面とは、それぞれ、前記第1の偏波又は前記第2の偏波の光路変換面であって、かつ、前記偏波回転部が前記第1の偏波の偏波方向を回転させる区間の始点と終点とに相当する、
    ことを特徴とする請求項1または2に記載の偏波結合装置。
  4. 前記第1のプリズムの前記第1面に設けられ、前記偏波合成素子に入射された前記第1の偏波を反射させて前記偏波回転部に伝播させるミラーと、
    前記第1のプリズムの前記第2面に設けられ、前記偏波回転部を伝播した前記第1の偏波を反射させ、前記偏波合成素子に入射された前記第2の偏波を透過させる偏光分離膜と、
    を更に有することを特徴とする請求項3に記載の偏波結合装置。
  5. 前記偏波回転部で前記第1の偏波の偏波方向が回転するときの前記第1面から前記第2面までの伝播距離は、前記第1の偏波の有効ビーム径よりも大きい、
    ことを特徴とする請求項4に記載の偏波結合装置。
  6. 前記偏波合成素子に前記第1の偏波が入射されるときの第1の入射面に対して、前記偏波合成素子に前記第2の偏波が入射されるときの第2の入射面が角度を有して設けられ、
    前記角度は、前記偏波合成部により前記第1、第2の偏波が合成される際に前記第1、第2の偏波の伝播方向が等しくなるように設定される、
    ことを特徴とする請求項1から5のいずれか一項に記載の偏波結合装置。
  7. 光に電気信号を重畳し、それぞれ電気信号が重畳された第1、第2の光ビームを出力する変調部と、
    前記変調部から出力される前記第1、第2の光ビームを合成する偏波結合装置と、
    を有し、
    前記偏波結合装置は偏波合成素子を有し、
    前記偏波合成素子は、
    前記偏波合成素子に入射された第1の光ビームの偏波方向を回転させる偏波回転部を有する第1のプリズムと、
    前記偏波回転部により偏波方向が回転した前記第1の光ビームと前記偏波合成素子に入射された第2の光ビームとを合成する偏波合成部へ前記第2の光ビームを伝播させる第2のプリズムとを有し、
    前記第1のプリズムと前記第2のプリズムとが一体化されていることを特徴とする光変調装置。
JP2017003697A 2017-01-12 2017-01-12 偏波結合装置および光変調装置 Active JP6848451B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017003697A JP6848451B2 (ja) 2017-01-12 2017-01-12 偏波結合装置および光変調装置
US15/868,332 US10578885B2 (en) 2017-01-12 2018-01-11 Polarization coupling device and optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003697A JP6848451B2 (ja) 2017-01-12 2017-01-12 偏波結合装置および光変調装置

Publications (2)

Publication Number Publication Date
JP2018112684A JP2018112684A (ja) 2018-07-19
JP6848451B2 true JP6848451B2 (ja) 2021-03-24

Family

ID=62782988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003697A Active JP6848451B2 (ja) 2017-01-12 2017-01-12 偏波結合装置および光変調装置

Country Status (2)

Country Link
US (1) US10578885B2 (ja)
JP (1) JP6848451B2 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422661A3 (en) * 1989-10-13 1992-07-01 Mitsubishi Rayon Co., Ltd Polarization forming optical device and polarization beam splitter
EP0498375B1 (en) * 1991-02-04 1995-06-21 Nippon Telegraph And Telephone Corporation Electrically tunable wavelength-selective filter
JPH05133800A (ja) 1991-11-11 1993-05-28 Nippon Telegr & Teleph Corp <Ntt> 光検出器
JP2004013079A (ja) * 2002-06-11 2004-01-15 Shinkosha:Kk 光ディバイス
JP3951897B2 (ja) * 2002-11-15 2007-08-01 株式会社日立製作所 偏光変換ユニット及びこれを用いたプロジェクタ
JP4690891B2 (ja) * 2003-11-26 2011-06-01 エクステラス インコーポレイテッド 単極光学波長セレクタ
US8305680B2 (en) * 2010-08-11 2012-11-06 Disco Corporation Stable mounting of non-linear optical crystal
JP5589926B2 (ja) * 2011-03-28 2014-09-17 住友大阪セメント株式会社 光変調器
US9316846B2 (en) * 2013-07-11 2016-04-19 Edmund L. Wolak Systems and methods to provide high brightness diode laser outputs
JP6291917B2 (ja) 2014-03-07 2018-03-14 富士通オプティカルコンポーネンツ株式会社 偏波合成装置及び光変調装置
JP6195807B2 (ja) * 2014-05-29 2017-09-13 三菱電機株式会社 光合波器および光合波器の製造方法

Also Published As

Publication number Publication date
US10578885B2 (en) 2020-03-03
JP2018112684A (ja) 2018-07-19
US20180196277A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP2774467B2 (ja) 偏波無依存型光アイソレータ装置
JP2010156842A (ja) 光変調器
JP5589926B2 (ja) 光変調器
JP2000028967A (ja) 光減衰器
US10598862B2 (en) Optical modulator
JP7408965B2 (ja) 光モジュール
JP6291917B2 (ja) 偏波合成装置及び光変調装置
JP6233366B2 (ja) 光変調装置
JPH04191703A (ja) 偏光無依存性光学部品
JPH0990279A (ja) 偏光無依存型光アイソレータと光サーキュレータ
JP6938894B2 (ja) 光変調器及び光モジュール
US6246518B1 (en) Reflection type optical isolator
JP4500074B2 (ja) 偏波無依存型光学機器
US6718076B2 (en) Acousto-optic tunable filter with segmented acousto-optic interaction region
JP6848451B2 (ja) 偏波結合装置および光変調装置
JP2004334169A (ja) ビーム合波素子、ビーム合波方法、ビーム分離素子、ビーム分離方法及び励起光出力装置
JPH0894969A (ja) 光サーキュレータおよび光の制御方法
JPH0667118A (ja) 光結合装置
WO2020202300A1 (ja) 偏光解消素子
JPS5848018A (ja) 光回路装置
JPH04358115A (ja) 偏光依存性解消フィルタアセンブリ
JP2789941B2 (ja) 複屈折回折格子型偏光子の使用方法
JPH02168204A (ja) 偏光プリズム
JPWO2003073052A1 (ja) 光信号処理装置
JPH09113859A (ja) 光学フィルタモジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150