JP6842914B2 - 磁性体検出装置 - Google Patents

磁性体検出装置 Download PDF

Info

Publication number
JP6842914B2
JP6842914B2 JP2016255355A JP2016255355A JP6842914B2 JP 6842914 B2 JP6842914 B2 JP 6842914B2 JP 2016255355 A JP2016255355 A JP 2016255355A JP 2016255355 A JP2016255355 A JP 2016255355A JP 6842914 B2 JP6842914 B2 JP 6842914B2
Authority
JP
Japan
Prior art keywords
circuit
magnetic field
signal
detection
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016255355A
Other languages
English (en)
Other versions
JP2018105818A (ja
Inventor
三朗 伊藤
三朗 伊藤
Original Assignee
Yitoaマイクロテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yitoaマイクロテクノロジー株式会社 filed Critical Yitoaマイクロテクノロジー株式会社
Priority to JP2016255355A priority Critical patent/JP6842914B2/ja
Publication of JP2018105818A publication Critical patent/JP2018105818A/ja
Application granted granted Critical
Publication of JP6842914B2 publication Critical patent/JP6842914B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、ホール素子を用いたホールセンサを含み、磁性体を検出する磁性体検出装置に関する。
従来から、磁気を検出する素子としてホール素子が知られている。ホール素子は、ホール効果を利用し、磁気を電圧として検出する。例えば、ホール素子は、素子に駆動電流を印加するための一対の端子と、ホール効果によって素子に生じたホール電圧を検出するための一対の端子とを有する。また、ホール電圧の検出精度の向上を目的として、種々のホールセンサが検討されている。
例えば、特許文献1には、対をなす第1及び第2のホール素子と、当該第1及び第2のホール素子の各端子に対して駆動電流供給用端子とホール電圧検出用端子とを交互に切り替えるように素子を駆動するホール電圧検出装置が開示されている。
特許第5512561号公報
ホールセンサの用途としては、粒子状の磁性体をマーカとして用いてホールセンサ上に付着した対象物の検出を行う磁性体検出装置が検討されている。より具体的には、例えば、抗原に抗体が結合する抗原抗体反応を利用した免疫センサが検討されている。当該免疫センサは、例えば、抗原又は抗体に磁性体を結び付け、当該磁性体によって生じた磁気を検出することで、生体情報を検出する生体センサである。このような磁性体検出装置においては、磁性体の有無を確実に検出できることが好ましい。
本発明は上記した点に鑑みてなされたものであり、高精度かつ高感度で磁性体を検出することが可能な磁性体検出装置を提供することを課題の1つとしている。
請求項1に記載の発明は、磁性体を検出する検出面を有するホールセンサと、磁界生成信号に基づいて検出面に印加される検出面に沿った方向の印加磁界を生成する印加磁界生成回路と、センサ駆動信号に基づいてホールセンサを駆動するセンサ駆動回路と、磁界生成信号及びセンサ駆動信号に基づいてホールセンサからの電圧検出信号の信号処理を行い、処理信号を生成する信号処理回路と、処理信号に基づいて磁性体の有無を判定する判定回路と、を有することを特徴とする。
実施例1に係る磁性体検出装置の構成を示すブロック図である。 実施例1に係る磁性体検出装置の構成例を示す回路図である。 実施例1に係る磁性体検出装置のホールセンサの構成を模式的に示すブロック図である。 (a)及び(b)は実施例1に係る磁性体検出装置の動作原理を模式的に示す図である。 実施例1に係る磁性体検出装置のホールセンサの構成例を示す回路図である。 (a)及び(b)は、実施例1に係る磁性体検出装置のホールセンサの駆動構成例を示す図である。 (a)及び(b)は、実施例1に係る磁性体検出装置のホールセンサの駆動例及び演算例を模式的に示す図である。 (a)及び(b)は、実施例1に係る磁性体検出装置のホールセンサの駆動例及び演算例を模式的に示す図である。 (a)及び(b)は、実施例1に係る磁性体検出装置の信号処理回路による信号処理例を示すタイミングチャートである。 印加磁界生成回路への磁界生成信号及び印加磁界生成回路から発生する印加磁界の遷移を示すタイミングチャートである。
以下に本発明の実施例について詳細に説明する。
図1は、実施例1に係る磁性体検出装置10の構成を示すブロック図である。磁性体検出装置10は、ホールセンサ20と、磁性体に検出対象の磁界を発生させるためにホールセンサ20に印加される印加磁界SMを生成する印加磁界生成回路30と、センサ駆動信号CLに基づいてホールセンサ20を駆動する駆動電流(センサ駆動電流)SDを生成するセンサ駆動回路40とを有する。
また、磁性体検出装置10は、印加磁界SM及びセンサ駆動信号CLに基づいて、ホールセンサ20に生じた起電力を示す電圧検出信号SSに対して種々の信号処理を行う信号処理回路50と、信号処理回路50によって処理された処理信号SOに基づいて磁性体が存在するか否かを判定する判定回路60とを有する。また、磁性体検出装置10は、装置全体の制御部として機能する中央制御回路70と、装置の各種の出力結果などを表示する表示部80とを有する。
図2は、磁性体検出装置10の詳細な構成例を示すブロック図である。本実施例においては、印加磁界生成回路30は、印加磁界生成部31と、印加磁界生成部31を駆動する駆動信号を印加信号BDとして印加磁界生成部31に印加する駆動信号印加回路32とを有する。
印加磁界生成部31は、例えば、コイルLを含む鉄心COからなる電磁石と、電磁石のコイルLに接続されたキャパシタCとを含む。本実施例においては、印加磁界生成部31は、共振回路、例えば、LC共振回路を構成する。
また、印加磁界生成部31は、磁界生成領域31Aを有する。例えば、鉄心COはC字型の形状を有し、磁界生成領域31AはC字型の鉄心COの端面間の領域である。磁性体検出装置10は、ホールセンサ20を磁界生成部31の磁界生成領域31Aに配置(挿入)することで、磁性体の検出動作を行う。
印加磁界生成回路30は、駆動信号印加回路32が印加磁界生成部31に印加する印加信号BDの基準信号となる磁界生成信号MDを生成する駆動信号生成回路33を有する。駆動信号生成回路33は、例えば磁界生成信号MDとしてクロック信号を生成するクロック生成回路である。駆動信号印加回路32は、磁界生成信号MDに基づいて印加信号BDを生成し、印加磁界生成部31に供給する。本実施例においては、磁界生成信号MDは第1の周波数f1の交流信号として生成され、印加信号BDは第1の周波数f1に基づいた交流電圧として生成される。これによって、印加磁界生成部31のコイルLに電流が流れ、磁界生成領域31Aに磁界が発生する。
また、印加磁界生成回路30は、印加磁界生成部31によって生成された(実際に発生している)印加磁界SMを検出して印加磁界検出信号BMを生成する印加磁界検出回路34を有する。例えば、印加磁界検出回路34は、ホール素子を含む。
印加磁界生成回路30は、印加磁界検出回路34によって検出された印加磁界検出信号BMの振幅を検出する振幅検出回路35を有する。また、印加磁界生成回路30は、駆動信号生成回路33が生成した磁界生成信号MDと、印加磁界検出回路34が検出した印加磁界検出信号BMとの間の位相比較を行う位相比較回路36とを有する。
センサ駆動回路40は、ホールセンサ20を駆動する駆動信号(センサ駆動電流)を印加信号SDとして印加する駆動信号印加回路41と、印加信号SDの基準信号となるセンサ駆動信号CLを生成する駆動信号生成回路42とを有する。駆動信号生成回路42は、例えばセンサ駆動信号CLとしてクロック信号を生成するクロック生成回路である。本実施例においては、駆動信号生成回路42は、第2の周波数f2の交流信号としてセンサ駆動信号CLを生成する。また、駆動電流印加回路41は、第2の周波数f2の交流電流として印加信号SDを生成する。
信号処理回路50は、ホールセンサ20からの電圧検出信号SSに対してフィルタリングを行う第1のフィルタ回路51と、第1のフィルタ回路51によってフィルタリングされた電圧検出信号SSをセンサ駆動信号CL(第2の周波数f2)に応じて復調する第1の復調回路52と、第1の復調回路52によって復調された電圧検出信号SSを増幅する増幅回路53とを有する。第1のフィルタ回路51は、本実施例においてはハイパスフィルタ(HPF)である。
また、信号処理回路50は、増幅回路53によって増幅された電圧検出信号SSを磁界生成信号MD(第1の周波数f1)に応じて復調する第2の復調回路54と、第2の復調回路54によって復調された電圧検出信号SSに対してフィルタリングを行う第2のフィルタ回路55と、第2のフィルタ回路55によってフィルタリングされた電圧検出信号SSに対してAD変換を行う変換回路56とを有する。本実施例においては、第2のフィルタ回路55はローパスフィルタ(LPF)である。また、変換回路56がAD変換を行った信号が信号処理回路50の処理信号SOとなる。
判定回路60は、信号処理回路50からの処理信号SOの信号レベルに基づいて、ホールセンサ20上の磁性体の有無を判定する。なお、本実施例においては信号処理回路50が変換回路56を有する場合について説明したが、変換回路56は、信号処理回路50ではなく、判定回路60が有していてもよい。すなわち、判定回路60は、第2のフィルタ回路55によってフィルタリングされた電圧検出信号SSを受信し、AD変換を行った後に磁性体の有無を判定してもよい。
図3は、ホールセンサ20の構成を模式的に示すブロック図である。図3を用いて、ホールセンサ20の構成について説明する。本実施例においては、ホールセンサ20は、一対のホール素子22及び23を含むセンサ回路21を有する。なお、図1には、ホール素子22及び23の上面を模式的に示している。
なお、本実施例においてはセンサ回路21が一対、すなわち2つのホール素子22及び23からなる場合について説明したが、センサ回路21は、複数対のホール素子を含んでいてもよく、例えばホール素子22及び23を含む二対以上のホール素子を含んでいてもよい。
ホール素子22は、例えば、半導体基板に設けられた半導体素子(図示せず)を含む。例えば、ホール素子22は、CMOS素子を含む。また、ホール素子22は、ホール素子22を駆動するための駆動端子又はホール素子22に生じた起電力を検出するための検出端子として機能する4つの端子T1、T2、T3及びT4を有する。端子T1〜T4においては、端子T1及びT2が対(端子対)となって動作し、端子T3及びT4が端子対となって動作する。すなわち、ホール素子22は、2つの端子対を有する。
具体的には、例えば、一方の端子対である端子T1及びT2がホール素子22に駆動電流(印加信号SD)を供給するための駆動端子対として機能する際、他方の端子対である端子T3及びT4が駆動時にホール素子22に生じた起電力(検出電圧又は出力電圧)を検出するための検出端子対として機能する。また、端子T3及びT4が駆動端子対として機能する際には、端子T1及びT2は検出端子対として機能する。
また、本実施例においては、ホール素子22の上面は、その上面上に存在する磁性体を検出する検出面22Aとして機能する。ホール素子22は矩形(本実施例においては正方形)の検出面形状を有し、その角部分に端子T1〜T4がそれぞれ配置されている。また、端子T1及びT2は、ホール素子22の中心を挟んで互いに対向して配置されている。また、端子T3及びT4は、ホール素子22の中心を挟んで互いに対向して配置されている。
従って、ホール素子22は、ホール素子22の矩形の検出面22Aにおいて互いに対角方向に駆動電流が供給される。また、ホール素子22は、検出面22Aの対角方向に生じた起電力を検出(出力)する。
また、ホール素子23は、2つの端子対を構成する4つの端子T5、T6、T7及びT8を有する。また、端子T5〜T8においては、ホール素子22の端子T1〜T4と同様に、端子T5及びT6が端子対となって動作し、端子T7及びT8が端子対となって動作する。
また、ホール素子23の上面は磁性体を検出する検出面23Aとして機能する。図3に示すように、本実施例においては、ホール素子23はホール素子22と同一形状、例えば正方形の検出面23Aを有し、端子T5〜T8は、その角部分にそれぞれ配置されている。また、ホール素子23は、ホール素子22と同様に、各端子対が駆動端子対又は検出端子対として機能しつつホール素子23内に生じたホール電圧の検出動作を行う。また、ホール素子22及び23は、正方形の検出面22A及び23Aの辺部分同士が互いに対向するように配置されている。
また、ホールセンサ20は、ホール素子22及び23に対し、2つの端子対の各々を駆動端子対又は検出端子対として機能させる接続切替を行う切替回路24を有する。切替回路24は、電源VS1及びVS2と端子T1〜T8との間に設けられ、電源VS1及びVS2と端子T1〜T8との間の接続状態を切替える。
例えば、切替回路24によって、駆動端子対となる端子対を介して、第1の電源VS1から高電位側の電源電位がセンサ回路21に供給され、第2の電源VS2から低電位側の電源電位がセンサ回路21に供給される。これによって、センサ回路21のホール素子22及び23に駆動電流が印加される。
本実施例においては、切替回路24には、第1の電源VS1からの電位として電源電位が、第2の電源VS2からの電位として接地電位GNDがそれぞれ印加されている。例えば、切替回路24は、端子T1〜T8の各々に対し、電源電位を供給するか、接地電位GNDを供給するか、又は後述する演算回路24に接続するかを切替える。なお、切替回路24によって演算回路25に接続された端子対は、検出端子対として機能する。
センサ駆動回路40は、切替回路24に駆動電流SDを供給して切替回路24による端子切替の制御を行い、センサ回路21を駆動する。本実施例においては、センサ駆動回路40は、切替回路24の切替制御を行う制御信号を生成し、切替回路24に供給する。また、センサ駆動回路40は、駆動端子対となった端子対を介してホール素子22及び23に対して駆動電流を供給する。
また、ホールセンサ20は、センサ回路21からの検出電圧に対して演算処理を行う演算回路25を有する。また、演算回路25は、センサ回路21の検出端子対に生じた起電力に対して演算処理を行って電圧検出信号SSを生成し、信号処理回路50に出力する。
次に、図4(a)及び(b)を用いて、磁性体検出装置10が検出する磁性体及びこれによってホールセンサ20に印加される検出対象の磁界について説明する。本実施例においては、磁性体検出装置10は、ホールセンサ20上に付着した磁性体としての磁気ビーズBZを検出することで、磁気ビーズBZに結合された抗原AGを検出する免疫センサである。ホールセンサ20のセンサ回路21は、磁気ビーズBZを検出する検出面21Aを有する。
図4(a)は、磁性体検出装置10の検出対象となる磁気ビーズBZを含む検体SPと、検体SPによるホールセンサ20上での抗原抗体反応を模式的に示す図である。図4(a)に示すように、まず、ホールセンサ20のセンサ回路21は、センサ回路20が切替回路24及び演算回路25と共に集積された集積回路CPとして構成され、集積回路CPを実装する実装基板上に搭載されている。磁性体検出装置10は、この集積回路CPを印加磁界生成回路30の印加磁界生成部31A(図2)に挿入し、ホールセンサ20を駆動することで磁気ビーズBZの検出動作を行う。
また、センサ回路21の検出面21Aには、複数の抗体AB1が敷き詰められるように固定される。一方、検出対象となる検体SPは、抗体AB2に結合された磁気ビーズBZと、抗原AGとを含む溶液である。例えば、検体SPは、人体の血液や粘膜などから採取された溶液である。
センサ回路21の検出面21A上には、この検体SPが滴下される。センサ回路21の検出面21A上に検体SPが滴下されると、センサ回路21上の抗体AB1と、検体SP中の抗原AG及び抗体AB2とが抗原抗体反応を行い、互いに結合する。これによって、センサ回路21の検出面21A上に磁気ビーズBZが付着する。なお、磁気ビーズBZは、例えば、磁性を有するコア材料に、特定の官能基が化学装飾されたナノサイズの磁性粒子である。
図4(b)は、印加磁界生成回路30によって印加された印加磁界SMを示す図である。印加磁界生成回路30は、センサ回路21の検出面21Aに平行な方向(水平方向と称する場合がある)に、印加磁界SMを印加する。センサ回路21に磁気ビーズBZが付着すると、磁気ビーズBZに印加磁界SMが印加される。図4(b)に示すように、磁気ビーズBZは、印加磁界SMによって磁束方向の転換作用が生じ、印加磁界SMの向きとは異なる方向に磁界MFを発生させる。この磁界MFは、センサ回路21の検出対象となる磁界(垂直磁界)を含む。
なお、センサ回路21の検出面21Aは、ホール素子22の検出面22A及びホール素子23の検出面23Aと、検出面22A及び23Aの間のセンサ回路21の表面領域を含む。例えば、センサ回路21の検出面21Aは、ホール素子22及び23が形成された半導体基板上の配線層又は保護膜、封止膜(図示せず)の表面である。
図4(b)に示すように、例えば、センサ回路21の検出面21Aにおいてホール素子22及び23の間に磁気ビーズBZが付着した場合、磁気ビーズBZによって発生した磁界MFの向きは、ホール素子22の検出面22Aに向かう方向の成分を含み、かつホール素子23の検出面23Aから離れる方向の成分を含む。つまり、センサ回路21のホール素子22及び23には、互いに反対方向の磁界が印加されることとなる。
なお、磁気ビーズBZがセンサ回路21の検出面21Aのいずれの位置に付着した場合でも、ほとんどの場合、ホール素子22及び23には互いに反対方向の成分を含む磁界MFが入力されることとなる。
このように、印加磁界生成回路30はホールセンサ20の検出面21A(検出面22A及び23A)において検出面21Aに沿った方向の印加磁界SMを生成し、磁気ビーズBZを励起する。これによって、印加磁界SMが印加された磁気ビーズBZに対し、ホールセンサ20の検出対象となる磁界MFを生成させる。
本実施例においては、磁性体検出装置10においては、ホールセンサ20の検出面21Aには第1の抗体AB1が固定され、磁気ビーズBZは第2の抗体AB2に結合される。そして、判定回路60は、第1及び第2の抗体AB1及びAB2が抗原AGに結合されることでホールセンサ20の検出面21Aに付着した磁気ビーズBZの有無を判定する。そして、判定回路60は、磁気ビーズBZの存在を検出し、抗原AGの有無を検出(判定)する。免疫センサとしての磁性体検出装置10は、例えば、特定の抗原AGを検出することで、人体が当該抗原AGであるウィルスを有しているか否かを判定することができる。
図5は、ホールセンサ20の構成例を示す模式的な回路図である。図5を用いて切替回路24及び演算回路25の構成例について説明する。まず、切替回路24は、ホール素子22の各端子T1、T2、T3及びT4のそれぞれに対し、電源電位を印加するか、接地電位GNDを印加するか、又は演算回路25に接続するかを選択的に切替える切替素子S1、S2、S3及びS4を有する。同様に、切替回路24は、ホール素子23の各端子T5、T6、T7及びT8のそれぞれに対し、その接続状態を切替える切替素子S5、S6、S7及びS8を有する。
具体的には、切替素子S1は、ホール素子22の端子T1に接地電位GNDを印加するか、又は端子T1を演算回路25に接続するかを選択的に切替える。切替素子S2は、端子T2に電源電位を印加するか、又は端子T2を演算回路25に接続するかを選択的に切替える。切替素子S3は、端子T3に接地電位GNDを印加するか、又は端子T3を演算回路25に接続するかを選択的に切替える。切替素子S4は、端子T4に電源電位を印加するか、又は端子T4を演算回路25に接続するかを切替える。
また、切替素子S5は、ホール素子23の端子T5に電源電位を印加するか、又は端子T5を演算回路25に接続するかを選択的に切替える。切替素子S6は、端子T6に接地電位GNDを印加するか、又は端子T6を演算回路25に接続するかを選択的に切替える。切替素子S7は、端子T7に電源電位を印加するか、又は端子T7を演算回路25に接続するかを選択的に切替える。切替素子S8は、端子T8に接地電位GNDを印加するか、又は端子T8を演算回路25に接続するかを選択的に切替える。
なお、センサ駆動回路40は、印加信号SDとして、切替素子S1〜S8の各々の切替状態を制御する制御信号を生成し、各切替素子S1〜S8に供給する。
次に、演算回路25は、本実施例においては、切替回路24を介してホール素子22の端子T1〜T4のうちの検出端子対に接続された第1の差動増幅器A1と、切替回路24を介してホール素子23の端子T5〜T8のうちの検出端子対に接続された第2の差動増幅器A2と、第1及び第2の差動増幅器A1及びA2に接続された第3の差動増幅器A3とを有する。
第1の差動増幅器A1は、その非反転入力端子にはそれぞれ切替素子S1及びS3を介してホール素子22の端子T1及びT3が接続され、反転入力端子にはそれぞれ切替素子S2及びS4を介して端子T2及びT4が接続されている。第1の差動増幅器A1の出力端子は第3の差動増幅器A3の非反転入力端子に接続されている。
第2の差動増幅器A2は、その非反転入力端子にはそれぞれ切替素子S6及びS8を介してホール素子23の端子T6及びT8が接続され、反転入力端子にはそれぞれ切替素子S5及びS7を介して端子T5及びT7が接続されている。第2の差動増幅器A2の出力端子は第3の差動増幅器A3の反転入力端子に接続されている。
なお、本実施例においては、センサ回路21、切替回路24及び演算回路25は、集積回路CPとして1つのICチップ内に集積されている。
次に、図6(a)及び(b)を用いてホールセンサ20の駆動構成について説明する。本実施例においては、ホールセンサ20は、センサ駆動回路40による切替回路24の制御によって、図6(a)に示すフェーズ(第1フェーズ)と図6(b)に示すフェーズ(第2フェーズ)とを第2の周波数f2に基づいて交互に切替てホール電圧の検出動作を行う。
センサ駆動回路40は、例えば図6(a)に示すように、駆動端子対となった端子対を介して、ホール素子22及び23に対して互いに反対方向の駆動電流(駆動電流D1及びD2)を供給するように切替回路24を制御する。
また、例えば図6(a)及び(b)に示すように、センサ駆動回路40は、ホール素子22及び23の各々に対し、第1の方向に駆動電流(例えば駆動電流D1)を供給する期間(第1フェーズ)と、第1の方向に直交する第2の方向に駆動電流(例えば駆動電流D3)を供給する期間(第2フェーズ)とを繰り返してホール素子22及び23の各々に駆動電流を供給する。
より具体的には、図6(a)に示す第1フェーズにおいては、端子T4及びT7に電源電位が印加され、端子T3及びT8に接地電位が印加される。従って、ホール素子22においては端子T3及びT4が駆動端子対として機能し、端子T4から端子T3に向かう駆動電流(素子駆動電流)D1が供給される。また、この時、ホール素子23においては端子T7及びT8が駆動端子対として機能し、端子T7から端子T8に向かう駆動電流D2が供給される。この駆動電流D1及びD2の向きは、互いに反対方向である。
なお、第1フェーズにおいては、ホール素子22においては端子T1及びT2が、ホール素子23においては端子T5及びT6がそれぞれ検出端子対として機能し、各端子T1、T2、T5及びT6が演算回路25に接続される。
また、図6(b)に示す第2フェーズにおいては、端子T2及びT5に電源電位が印加され、端子T1及びT6に接地電位が印加される。従って、ホール素子22においては端子T1及びT2が、ホール素子23においては端子T5及びT6がそれぞれ駆動端子対として機能する。そして、ホール素子22には端子T2から端子T1に向かう駆動電流D3が、ホール素子23には駆動電流D3とは反対方向の向きである端子T5から端子T6に向かう駆動電流D4が供給される。
このように、ホールセンサ20においては、センサ駆動回路40は、ホール素子22及び23に対して互いに反対方向の駆動電流を供給するように切替回路24の駆動制御を行う。換言すれば、センサ駆動回路40は、駆動端子対となった端子対を介してホール素子22及び23に対して互いに反対方向の駆動電流を供給する。
また、第1フェーズ及び第2フェーズ間においては、センサ駆動回路40は、ホール素子22及び23のそれぞれに対し、互いに直交する方向の駆動電流(例えば駆動電流D1及びD3又は駆動電流D2及びD4)を交互に供給するように切替回路24を制御する。なお、このようなホール素子22及び23に周期的に異なる方向に駆動電流を供給する駆動構成は、スピニングカレント法と称される場合がある。
次に、図7(a)及び(b)並びに図8(a)及び(b)を用いて、第1フェーズ及び第2フェーズにおけるホール素子22及び23による電圧検出動作並びに演算回路25による演算処理動作について説明する。なお、図7(a)及び(b)並びに図8(a)及び(b)においては、各ホール素子22及び23への駆動電流D1〜D4の向きを破線で示している。
まず、図7(a)及び(b)は、それぞれ第1フェーズ及び第2フェーズにおいて、ホール素子22及び23に対して互いに反対方向の磁界M1及びM2が生じている場合の模式的な動作説明図である。これは、センサ回路21の検出面21A上に磁気ビーズBZが付着している場合の動作に対応する。
まず、図7(a)に示す第1フェーズでは、ホール素子22の検出面22A(図の紙面)に垂直な方向において検出面22Aに向かう方向(図の奥行方向)に磁界M1が生じている。従って、ホール素子22の検出端子対である端子T1及びT2間には、端子T1側を高電位とし、端子T2側を低電位とする起電力が検出電圧V1として生ずる。一方、ホール素子23においては、ホール素子23の検出面23A(図の紙面)に垂直な方向において検出面23Aから離れる方向(図の手前方向)に磁界M2が生じている。従って、ホール素子23の検出端子対である端子T5及びT6間には、端子T5を高電位とし、端子T6側を低電位とする起電力が検出電圧V2として生ずる。
また、第1フェーズでは、演算回路25の第1の差動増幅器A1には、その非反転入力端子にはホール素子22における検出端子対の高電位側の端子T1が接続され、反転入力端子には低電位側の端子T2が接続される。従って、第1の差動増幅器A1は、正極性の増幅電圧AV1(+AV1)を出力する。一方、第2の差動増幅器A2には、その非反転入力端子にはホール素子23における検出端子対の低電位側の端子T6が接続され、反転入力端子には高電位側の端子T5が接続される。従って、第2の差動増幅器A2は、負極性の増幅電圧AV2(−AV2)を出力する。
そして、第3の差動増幅器A3には、その非反転入力端子には正極性の増幅電圧AV1が入力され、反転入力端子には負極性の増幅電圧AV2が入力される。従って、第3の差動増幅器A3からは、正極性であり、第1の差動増幅器A1からの増幅電圧AV1と第2の差動増幅器A2からの増幅電圧AV2とが加算された電圧(AV1+AV2)が電圧検出信号SSとして出力される。
一方、図7(b)に示す第2フェーズでは、ホール素子22の検出端子対である端子T3及びT4間には、端子T4側を高電位とし、端子T3側を低電位とする起電力が検出電圧V3として生ずる。また、ホール素子23の検出端子対である端子T7及びT8間には、端子T8側を高電位とし、端子T7側を低電位とする起電力が検出電圧V4として生ずる。
また、第2フェーズでは、演算回路25の第1の差動増幅器A1には、その非反転入力端子にはホール素子22における検出端子対の低電位側の端子T3が接続され、反転入力端子には高電位側の端子T4が接続される。従って、第1の差動増幅器A1は、負極性の増幅電圧AV1(−AV1)を出力する。一方、第2の差動増幅器A2には、その非反転入力端子にはホール素子23における検出端子対の高電位側の端子T8が接続され、反転入力端子には低電位側の端子T7が接続される。従って、第2の差動増幅器A2は、正極性の増幅電圧AV2(+AV2)を出力する。
そして、第3の差動増幅器A3には、その非反転入力端子には負極性の増幅電圧AV1が入力され、反転入力端子には正極性の増幅電圧AV2が入力される。従って、第3の差動増幅器A3からは、負極性であり、第1の差動増幅器A1からの増幅電圧AV1と第2の差動増幅器A2からの増幅電圧AV2とが加算された電圧(−AV1−AV2)が電圧検出信号SSとして出力される。
このように、演算回路25は、ホール素子22及び23に印加される磁界(検出対象の磁界)の駆動電流D1〜D4に垂直な成分が互いに反対方向の場合(例えば磁界M1及びM2が印加されている場合)、ホール素子22及び23の各々の検出端子対によって検出される検出電圧を加算する(強め合う)演算を行う。すなわち、印加される垂直磁界の向きが素子間で反対方向の場合、演算回路25の差動増幅器A3は加算回路として機能する。
次に、図8(a)及び(b)は、第1フェーズ及び第2フェーズにおいてホール素子22及び23の各々に同一方向の磁界M3及びM4がそれぞれ生じている場合の模式的な動作説明図である。これは、例えばセンサ回路21の検出面21上には磁気ビーズBZが付着していない場合の動作説明図であり、例えば検出面21A以外の他の表面領域に磁気ビーズBZが付着している場合又はいずれにも磁気ビーズBZが付着していない場合に対応する。
まず、図8(a)に示す第1フェーズでは、ホール素子22においては端子T1側を高電位とし、端子T2側を低電位とする起電力が検出電圧V5として生ずる。また、ホール素子23においては端子T6側を高電位とし、端子T5側を低電位とする起電力が検出電圧V6として生ずる。従って、第1及び第2の差動増幅器A1及びA2は、共に、正極性の電圧を増幅電圧AV1及びAV2(+AV1及び+AV2)として出力する。従って、第3の差動増幅器A3からは、増幅電圧AV1及びAV2の差分の電圧(+AV1−AV2)が電圧検出信号SSとして出力される。
一方、図8(b)に示す第2フェーズでは、ホール素子22においては端子T4側を高電位とし、端子T3側を低電位とする起電力が検出電圧V7として生ずる。また、ホール素子23においては端子T7側を高電位とし、端子T8側を低電位とする起電力が検出電圧V8として生ずる。従って、第1及び第2の差動増幅器A1及びA2は、共に、負極性の電圧を増幅電圧AV1及びAV2(−AV1及び−AV2)として出力する。従って、第3の差動増幅器A3からは、増幅電圧AV1及びAV2の差分の電圧(−AV1+AV2)が電圧検出信号SSとして出力される。
このように、演算回路50は、ホール素子22及び23に印加される磁界の駆動電流D1〜D4に垂直な成分が互いに同一方向の場合(例えば磁界M3及びM4が印加されている場合)、ホール素子22及び23の検出端子対によって検出される検出電圧を減算する(弱め合う)演算を行う。すなわち、素子間で同一方向の垂直磁界が印加された場合、演算回路50の差動増幅器A3は減算回路として機能する。
ここで、ホール素子22及び23からの検出電圧V1〜V8と、この検出電圧V1〜V8の演算回路25による演算処理について説明する。検出電圧V1〜V8には、磁界の印加によるホール効果によって生じたホール電圧と、ホール素子22及び23の形状誤差や製造誤差、応力の影響などによって生じたオフセット電圧とが含まれる。正確にホール電圧を検出するためには、オフセット電圧をホール電圧から区別(分離)することが好ましい。
本実施例においては、ホールセンサ20は、スピニングカレント法によって駆動電流を反対方向に供給し、また、検出電圧V1〜V4又は検出電圧V5〜V8を演算することで、電圧検出信号SSを交流信号(交流成分)として出力する。一方、素子固有のオフセット電圧は、電流の向きに応じて極性が変化する。従って、演算回路25からの電圧検出信号SS内においては、直流成分として表れる。
従って、例えば電圧検出信号SSにフィルタリング処理を行うことで、オフセット電圧の成分を分離(除去)することができる。なお、ホール素子22及び23に同一方向の磁界が印加された場合でも、この原理を用いてオフセット電圧の成分を除去することができ、ホール電圧を正確に検出することができる。
また、本実施例においては、ホールセンサ20は、第1及び第2フェーズ間において互いに直交する方向に駆動電流を供給するように構成されている。例えば、ホール素子22に対して、第1の方向に第1の駆動電流D1(図4(a)又は5(a))が供給される第1の期間(第1フェーズ)と、第1の方向に直交する第2の方向に第2の駆動電流D3(図4(b)又は5(b))が供給される第2の期間(第2フェーズ)とが交互に繰り返されてホール素子22に駆動電流が供給される。
このスピニングカレント法を用いた駆動を行うことによって、ホール素子22及び23の単体を考慮しても、その差動増幅器A1及びA2による増幅電圧AV1及びAV2において、ホール電圧は交流成分となり、オフセット電圧は直流成分となる。
換言すれば、ホール素子22及び23に対してフェーズ間で互いに直交する方向に駆動電流を供給することで、ホール素子22及び23内においてオフセット電圧を分離及び除去することが可能となる。さらに、ホール素子22及び23間で駆動電流を反対方向に供給することで、ホール素子22及び23の全体に生じたオフセット電圧を分離及び除去することができる。
また、ホール素子22及び23が正方形の検出面形状を有し、2つの端子対(端子対T1及びT2並びに端子対T3及びT4)がホール素子22及び23の検出面22A及び23Aの対角部分に配置されることで、単純な構成によって、同一フェーズ内での反対方向への駆動電流の供給や、2つのフェーズ間での互いに直交する方向への駆動電流を供給することができる。
例えば、ホール素子22又は23の検出面22A又は23Aを長方形にした場合、それぞれの対角部分に端子対を配置しても、反対方向の駆動電流又はフェーズ間での直交する方向の駆動電流の供給ができなくなる場合がある。従って、端子の位置合わせを工夫する必要がある。一方、ホール素子22及び23のように正方形の検出面22A及び23Aでかつその対角部分に端子が配置することで、端子の位置の正確な検討をすることなく、反対方向かつフェーズ間で直交する方向への駆動電流の供給を行うことができる。
また、演算回路25が第1〜第3の差動増幅器A1〜A3を含むことによって、例えば加算回路及び減算回路を用いることなく、検出電圧の加算又は減算処理を容易に行うことができる。
なお、ホール素子22及び23の検出面形状は、一例に過ぎない。また、演算回路25が検出端子対からの検出電圧を加算及び減算する場合について説明したが、演算回路25は当該検出電圧を加算する構成を有していればよい。
また、センサ駆動回路40は、フェーズ間でホール素子22又は23内において互いに直交する駆動電流を供給する場合について説明した。また、センサ駆動回路40は、ホール素子22及び23に対して互いに反対方向の駆動電流を供給する場合について説明した。しかし、切替回路24は2つの端子交互に対駆動端子対又は検出端子対として機能させるように接続切替を行えばよく、センサ駆動回路40は駆動端子対を介してホール素子22及び23に対して交互に異なる方向に駆動電流を供給すればよい。
また、本実施例においては、ホールセンサ20のセンサ回路21が2つのホール素子22及び23を有する場合について説明したが、センサ回路21は1つのホール素子(例えばホール素子22のみ)から構成されていてもよい。ホールセンサ20は、磁性体(磁気ビーズBZ)を検出する検出面(例えば検出面22A)を有する少なくとも1つのホール素子(例えばホール素子22)を含んでいればよい。この場合、例えば、切替回路24は1つのホール素子22の2つの端子対T1及びT2並びに端子T3及びT4を交互に駆動端子対又は検出端子対として機能させる接続切替を行えばよく、センサ駆動回路40は駆動端子対となった端子対を介してホール素子22に駆動電流を供給すればよい。
図9(a)及び(b)は、それぞれ、磁気ビーズBZがホールセンサ20のセンサ回路21上に存在する場合と存在しない場合とにおける、電圧検出信号SS及びその各処理結果を模式的に示す図である。
まず、図9(a)に示すように、磁気ビーズBZがセンサ回路21の検出面21Aに付着している場合、ホールセンサ20からは、ホールセンサ20の第2の周波数f2のセンサ駆動信号CL及び第1の周波数f1の磁界生成信号MDに基づいて変調された電圧検出信号SSが出力される。
復調回路52は、電圧検出信号SSに対し、第2の周波数f2に基づいた復調(センサ駆動信号CLに基づいた同期検波)を行う。これによって電圧検出信号SSが正弦波として復元される。その後、電圧検出信号SSは、復調回路54によって第1の周波数f1に基づいて復調される。そして、復調された電圧検出信号SSに対してローパスフィルタ55によるフィルタリングが行われ、電圧検出信号SSが平滑化される。このように、信号処理回路50は、電圧検出信号SSからホール電圧の成分を取り出し、処理信号SOとして判定回路60に出力する。
換言すれば、信号処理回路60は、磁界生成信号MD及びセンサ駆動信号CLに基づいて、ホールセンサ20からの電圧検出信号SSの同期検波を行う。
一方、図9(b)は、磁気ビーズBZがセンサ回路21の検出面21A上に付着していない場合の電圧検出信号SS及びその処理結果を示す図である。なお、磁気ビーズBZが存在しない場合、理想的には電圧検出信号SSは無信号として出力されるが、実際にはオフセット電圧の成分が出力される。
ここで、オフセット電圧は、ホールセンサ20の印加信号(素子駆動電流)SDのみに応じて発生するため、電圧検出信号SSは、センサ駆動信号CLと同様の第2の周波数f2の矩形波となる。従って、復調回路52による復調後は直流成分となり、ローパスフィルタ55によるフィルタリング後には除去されることとなる。従って、確実に磁気ビーズBZが存在しないことを判定(検出)することができる。なお、このオフセット電圧の処理は、磁気ビーズBZが存在する場合にも行われるため、磁気ビーズBZによるホール電圧のみを高精度(高感度)で取り出すことができる。
次に図10を用いて、印加磁界生成回路30によって生成される印加磁界SMについて説明する。本実施例においては、印加磁界生成回路30の駆動信号生成回路33は、磁界生成信号MDの第1の周波数f1が印加磁界生成部31における共振回路の共振周波数f0となるように、磁界生成信号MDを生成する。従って、印加磁界生成部31には、コイルL(電磁石)及びキャパシタCからなる共振回路が共振する条件で印加信号BDが印加される。
これによって、印加磁界SMは、磁界生成信号MDと、印加磁界検出回路34からの印加磁界検出信号BM(実際に発生している印加磁界SM)とは、同位相となる。具体的には、磁界生成信号MDの第1の周波数f1が印加磁界生成部31の共振周波数f0と等しい場合、印加信号BDに対し、コイルLに生ずるコイル電圧V(L)が90°の位相進みを起こす。また、コイルLに生ずるコイル電流I(L)は、そのインピーダンス特性によってコイル電圧V(L)から90°の位相遅れを起こす。
従って、コイル電流I(L)によって生成される印加磁界SM(印加磁界検出信号BM)は、磁界生成信号MDと同位相となる。従って、信号処理回路50の復調回路54が磁界生成信号MDに基づいた電圧検出信号SSの復調を行うことで、検出感度の低下を抑制することができる。従って、高感度な磁性体の検出を行うことができる。
なお、磁界生成信号MDを印加磁界生成部31の共振周波数f0に合わせた周波数f1で生成する場合について説明したが、磁界生成信号MDの構成はこれに限定されない。印加磁界生成回路30は位相比較回路36を有し、駆動信号生成回路33は、磁界生成信号MDと印加磁界検出信号BMとが同位相となるように、磁界生成信号MDを生成すればよい。
上記したように、磁性体検出装置10は、磁性体(磁気ビーズBZ)を検出する検出面21Aを有するホールセンサ20と、磁界生成信号MDに基づいてホールセンサ20の検出面21Aに印加される検出面21Aに沿った方向の印加磁界SMを印加する印加磁界生成回路30と、センサ駆動信号CLに基づいてホールセンサ20を駆動するセンサ駆動回路40と、磁界生成信号MD及びセンサ駆動信号信号CLに基づいてホールセンサからの電圧検出信号SSの信号処理を行い、処理信号を生成する信号処理回路50と、信号処理回路50からの処理信号SOに基づいて磁性体(磁気ビーズBZ)の有無を判定する判定回路60と、を有する。従って、高精度かつ高感度で磁性体を検出することが可能な磁性体検出装置10を提供することができる。
10 磁性体検出装置
20 ホールセンサ
21 センサ回路21
22、23 一対のホール素子
21A、22A、23A 検出面
T1〜T8 端子(端子対)
30 印加磁界生成回路
31 印加磁界生成部
32 駆動信号印加回路
33 駆動信号生成回路
34 印加磁界検出回路
36 位相比較回路

Claims (5)

  1. 磁性体を検出する検出面を有するホールセンサと、
    センサ駆動信号に基づいて前記ホールセンサを駆動するセンサ駆動回路と、
    磁界生成信号を生成する駆動信号生成回路と、
    前記磁界生成信号に基づいて前記検出面に印加される前記検出面に沿った方向の印加磁界を生成する印加磁界生成部と、
    前記印加磁界生成部によって生成された前記印加磁界を検出する印加磁界検出回路と、
    前記印加磁界検出回路からの印加磁界検出信号と前記磁界生成信号との間の位相比較を行う位相比較回路と、
    前記磁界生成信号及び前記センサ駆動信号に基づいて前記ホールセンサからの電圧検出信号の信号処理を行い、処理信号を生成する信号処理回路と、
    前記処理信号に基づいて前記磁性体の有無を判定する判定回路と、を有し、
    前記駆動信号生成回路は、前記磁界生成信号と前記印加磁界検出信号とが同位相となるように、前記磁界生成信号を生成することを特徴とする磁性体検出装置。
  2. 前記印加磁界生成部は、共振回路を構成する電磁石及びキャパシタを含み、
    前記駆動信号生成回路は、前記磁界生成信号の周波数が前記印加磁界生成部の共振周波数となるように、前記磁界生成信号を生成することを特徴とする請求項1に記載の磁性体検出装置。
  3. 前記信号処理回路は、前記センサ駆動信号及び前記磁界生成信号に基づいて、前記ホールセンサからの前記電圧検出信号の同期検波を行うことを特徴とする請求項1又は2に記載の磁性体検出装置。
  4. 前記ホールセンサは、
    各々が2つの端子対を有する一対のホール素子と、
    前記センサ駆動信号に基づいて、前記一対のホール素子に対して2つの端子対の各々を駆動端子対又は検出端子対として機能させる接続切替を行う切替回路と、
    前記一対のホール素子の各々に印加される磁界の前記検出面に垂直な成分が互いに反対方向の場合、前記検出端子対の各々から出力される検出電圧同士の差分を演算する演算回路と、を有することを特徴とする請求項1乃至3のいずれか1つに記載の磁性体検出装置。
  5. 前記ホールセンサの前記検出面には、第1の抗体が固定され、
    前記磁性体は、第2の抗体に結合され、
    前記判定回路は、前記第1及び第2の抗体が抗原に結合されることで前記ホールセンサの前記検出面に付着した前記磁性体の有無を判定することを特徴とする請求項1乃至4のいずれか1つに記載の磁性体検出装置。
JP2016255355A 2016-12-28 2016-12-28 磁性体検出装置 Active JP6842914B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016255355A JP6842914B2 (ja) 2016-12-28 2016-12-28 磁性体検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255355A JP6842914B2 (ja) 2016-12-28 2016-12-28 磁性体検出装置

Publications (2)

Publication Number Publication Date
JP2018105818A JP2018105818A (ja) 2018-07-05
JP6842914B2 true JP6842914B2 (ja) 2021-03-17

Family

ID=62787088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255355A Active JP6842914B2 (ja) 2016-12-28 2016-12-28 磁性体検出装置

Country Status (1)

Country Link
JP (1) JP6842914B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958538B2 (ja) 2018-12-25 2021-11-02 Tdk株式会社 磁場検出装置および磁場検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102546A2 (en) * 2002-05-31 2003-12-11 The Regents Of The University Of California Method and apparatus for detecting substances of interest
JP2009047546A (ja) * 2007-08-20 2009-03-05 Canon Inc 物質検出装置
JP5512561B2 (ja) * 2011-01-19 2014-06-04 旭化成エレクトロニクス株式会社 ホール電圧検出装置
JP2013169382A (ja) * 2012-02-22 2013-09-02 Jvc Kenwood Corp 磁化検出装置及び磁化検出方法
JP6410308B2 (ja) * 2014-12-12 2018-10-24 国立大学法人東北大学 センサチップ、検出システム、及び、検出方法

Also Published As

Publication number Publication date
JP2018105818A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
CN105358990B (zh) 使用磁性材料在加速计上的磁强计
JP7105497B2 (ja) 被変調磁気抵抗センサ
JP2009536343A (ja) 磁性粒子を検知する磁気センサ装置及び方法
JP2009530602A (ja) 交流励起磁場を用いるセンサーデバイス
JP5512561B2 (ja) ホール電圧検出装置
JP2008522150A (ja) バイオセンサにおける磁気クロストークを低減する手段及び方法
US11249152B2 (en) Magnetic field detection device and method of detecting magnetic field
CN111381201B (zh) 磁场检测装置和磁场检测方法
EP1651945A1 (en) Integrated 1/f noise removal method for a magneto-resistive nano-particle sensor
US11169224B2 (en) Magnetic field detection device and method of detecting magnetic field
CN105988090A (zh) 微机械磁场传感器及其应用
JP6842914B2 (ja) 磁性体検出装置
JP6930831B2 (ja) ホールセンサ及び免疫センサ
JP6821113B2 (ja) 磁性体検出装置
JP3854420B2 (ja) 電磁流量計
Kayci et al. Quantitative measurements of non-covalent interactions with diamond based magnetic imaging
Tsai et al. Development of capacitance measurement system for human serum albumin detection
IT201900000821A1 (it) Apparato per la quantificazione di componenti biologiche disperse in un fluido.
JP7496258B2 (ja) 勾配磁界センサ、及び磁性物検出装置
JPH0755520A (ja) 容量式電磁流量計
Näf et al. Compact Low Noise AC Acquisition System for Wheatstone Bridge Sensors
CN117413196A (zh) 磁测量装置
JP2022114102A5 (ja)
JP2007183217A (ja) 磁性体検出装置および磁性体検出方法
JPH1038582A (ja) 角速度検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6842914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250