JP6839926B2 - 電気化学モジュール、電気化学装置およびエネルギーシステム - Google Patents

電気化学モジュール、電気化学装置およびエネルギーシステム Download PDF

Info

Publication number
JP6839926B2
JP6839926B2 JP2016072606A JP2016072606A JP6839926B2 JP 6839926 B2 JP6839926 B2 JP 6839926B2 JP 2016072606 A JP2016072606 A JP 2016072606A JP 2016072606 A JP2016072606 A JP 2016072606A JP 6839926 B2 JP6839926 B2 JP 6839926B2
Authority
JP
Japan
Prior art keywords
electrochemical
electrode layer
metal support
gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016072606A
Other languages
English (en)
Other versions
JP2017183224A (ja
Inventor
和徹 南
和徹 南
越後 満秋
満秋 越後
大西 久男
久男 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016072606A priority Critical patent/JP6839926B2/ja
Publication of JP2017183224A publication Critical patent/JP2017183224A/ja
Application granted granted Critical
Publication of JP6839926B2 publication Critical patent/JP6839926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電気化学モジュール、電気化学装置およびエネルギーシステムに関する。
従来の固体酸化物形燃料電池(以下「SOFC」と記す。)は、主としてセラミックス材料を支持体とするSOFCの開発が進められている。SOFCには、平板型セルや筒型セル、円盤型セルなど、構造の異なる幾つかの種類があるが、それぞれに長所と短所がある。筒型セルでは、平板型セルに比べて、ガスシールが容易である一方、筒の軸方向の電気抵抗が大きくなり、大きな出力密度が得られにくいという課題があった。特許文献1では、電極支持体の厚みを2mm程度と厚く作製し、軸方向の導電断面積を大きくすることにより、セルの電気抵抗を抑えることが可能であった。
特願平4−288822
特許文献1に記載の従来の筒型セルでは、筒の軸方向の電気抵抗を抑えるために、電極層を厚くする必要があった。そのため、高価なセラミックス材料を大量に使用する必要があり、これが高コストに繋がっていた。加えて、セラミックスを支持体とするため、高い信頼性・強度を得ることができなかった。更に、セラミックス同士の接続が困難であり、また、電気的な接続も困難なため、構造が複雑になり、信頼性・耐久性の確保やコストダウンが困難であるという課題も残っていた。
本発明は上述の課題に鑑みてなされたものであり、その目的は、材料コストと加工コストを抑制しつつ、コンパクトで高性能な、強度と信頼性に優れた電気化学素子を含む技術を提供することにある。
〔構成1〕
上記目的を達成するための本発明に係る電気化学モジュールの特徴構成は、
金属支持体と電気化学反応部とを有し、
前記金属支持体が筒形状であり、前記電気化学反応部は、電極層と、電解質層と、対極電極層とを少なくとも有し、前記金属支持体の表面に配置されており、
前記電解質層は、前記電極層と前記対極電極層との間に配置されている電気化学素子と、
有突起集電板とを有するセルユニットを、複数有し、前記セルユニットの前記電気化学素子が互いに電気的に接続されており、
前記金属支持体の筒の内部に気体を供給する金属製のガスマニホールドを有し、前記金属支持体と前記ガスマニホールドとの間に接合部位が形成されている電気化学モジュールであって、
前記有突起集電板は、金属製の板であって、凹部または凸部が1つ以上含まれる凹凸構造部位を有し、
複数のセルユニットが積層される際に、前記有突起集電板が、接続部材により前記ガスマニホールドに接続された状態で、一方のセルユニットの金属支持体と、もう一方のセルユニットの対極電極層とを電気的に接続する点にある。
上記の特徴構成によれば、電気伝導性の高い金属支持体表面に電気化学反応部を形成するため、支持体の厚みを厚くせずとも、筒の軸方向の電気抵抗を非常に小さく抑えることができ、材料コストを削減するとともに、電気化学素子を有するセルユニットを備えた電気化学モジュールのコンパクト化を図ることができる。
また、薄くても十分な強度を有する堅牢な金属支持体の表面に電気化学反応部を配置するから、コンパクトで高性能かつ強度と信頼性に優れた電気化学素子を得ると共に、電極層や電解質層に使用する高価なセラミックス材料の使用量を抑制しつつ、安価な金属材料で強度を確保することで材料コストを抑制し、セラミックスより加工しやすい金属支持体を用いることで加工コストを抑制した、コンパクトで高性能な、強度と信頼性に優れた電気化学素子を有するセルユニットを備えた電気化学モジュールを得ることができる。
更に、支持体が熱伝導性の高い金属からなるため、電気化学素子内での熱分布が生じ難く、熱応力分布による信頼性・耐久性の低下を抑えることが可能である。
なお、筒形状とは、断面形状が円、楕円、小判形、多角形等の形状である、筒形構造全般を含むものであり、上述の作用効果が得られる範囲であれば、加工上の問題も考慮して表面に凹凸があるものでも構わない。
また、上記の特徴構成によれば、上述のセルユニットの電気化学素子が複数電気的に接続されることで、材料コストと加工コストを抑制しつつ、コンパクトで高性能な、強度と信頼性に優れた電気化学モジュールを得ることができる。
更に、上記の特徴構成によれば、金属支持体とガスマニホールドは共に金属であるから、ガスマニホールドの形状に合わせて、ろう付けを含む各種の溶接や、かしめ等によって前記接合部位を形成できるため、材料コストおよび加工コストを抑制した低コストな電気化学モジュールを実現することができる。
〔構成2〕
本発明に係る電気化学モジュールの別の特徴構成は、前記有突起集電板が拡散防止膜を有する点にある。
〔構成3〕
本発明に係る電気化学モジュールの別の特徴構成は、前記凹凸構造部位が前記もう一方のセルユニットの対極電極層に接続される点にある。
〔構成4〕
本発明に係る電気化学モジュールの別の特徴構成は、前記電気化学反応部が、前記金属支持体の外側の面に配置されている点にある。
上記の特徴構成によれば、セルユニットを備えた電気化学モジュールの形成プロセスが簡易になり、製造コストを低く抑えることが可能である。
〔構成5〕
本発明に係る電気化学モジュールの別の特徴構成は、前記電極層、前記電解質層、前記対極電極層が、それぞれ薄層として形成されている点にある。
上記の特徴構成によれば、電極層、電解質層、対極電極層が、それぞれ薄層として形成されているから、電気化学反応部での反応効率を高めてセルユニットを備えた電気化学モジュールを高性能化することができる。また電気化学反応部を形成するための材料の量が少なくなるから、セルユニットを備えた電気化学モジュールの材料コストを低減することができる。
〔構成6〕
本発明に係る電気化学モジュールの別の特徴構成は、前記金属支持体が、内側と外側との間での気体の通流を許容する気体通流許容領域を有する点にある。
上記の特徴構成によれば、気体通流許容領域を通じて、気体を電極層に供給できるようになるため、燃料電池のような気体を反応に用いるセルユニットを備えた電気化学モジュールに好適である。
〔構成7〕
本発明に係る電気化学モジュールの別の特徴構成は、前記気体流通許容領域の外側の面または内側の面が、気密層によって覆われている点にある。
上記の特徴構成によれば、上記の気密層の、前記気体流通許容領域側に前記電極層を、もう一方の側に前記対極電極層をそれぞれ配置することで、前記電極層と前記対極電極層との間のガス流通を遮断することが可能であり、もって上記セルユニットを備えた電気化学モジュールの性能を高めることが可能である。
なお、気密層として、電解質層や後述の電子伝導層だけでなく、ガラスフリット等のガスシール材からなる層を適用可能である。
〔構成8〕
本発明に係る電気化学モジュールの別の特徴構成は、前記気密層が少なくとも前記電解質層を含む点にある。
上記の特徴構成によれば、前記電極層と前記対極電極層の間のガス流通を、前記電解質層によって遮断することで、上記セルユニットを備えた電気化学モジュールの構成要素数を削減でき、材料コスト・加工コストを抑えるとともに、材料間の熱膨張率のミスマッチ等による信頼性の低下を抑えることができる。
〔構成9〕
本発明に係る電気化学モジュールの別の特徴構成は、前記気密層が、少なくとも前記電解質層と電子伝導層を含む点にある。
上記の特徴構成によれば、一本の金属支持体上に複数の電気化学反応部を作製し、一の電気化学反応部の電極層と、他の電気化学反応部の対極電極層とを電気的に接続した、いわゆる横縞形SOFCとして使用することが可能であり、一つのセルユニットを備えた電気化学モジュールから高電圧の電力を取り出すことができる。この際、前記電極層と前記対極電極層の間のガス流通を、前記電解質層と前記電子伝導層とによって遮断することで、上記セルユニットを備えた電気化学モジュールの構成要素数を削減でき、材料コスト・加工コストを抑えるとともに、材料間の熱膨張率のミスマッチ等による信頼性の低下を抑えることができる。
〔構成10〕
本発明に係る電気化学モジュールの別の特徴構成は、前記電極層が、気体透過性を有する多孔質であることである。
上記の特徴構成によれば、前記電極層内での気体拡散性が高く、高性能なセルユニットを備えた電気化学モジュールを得ることができる。
〔構成11
本発明に係る電気化学装置の特徴構成は、上述の電気化学モジュールと、電気化学モジュールに対して還元性成分を含有する燃料を供給する燃料供給部とを少なくとも有し、前記電気化学モジュールから電力を取り出す構成とする点にある。
上記の特徴構成によれば、例えば、水素や炭化水素ガス、アルコール等の、還元性成分を含有する燃料を電気化学モジュールに供給して、電気化学反応により発電を行って電力を取り出すことができるので、コンパクトで高性能な、強度と信頼性・耐久性に優れた電気化学装置を実現することができる。このため、定置用や移動用など、多岐に渡る用途に使用可能な電気化学装置として好適である。
〔構成12
本発明に係る電気化学装置の別の特徴構成は、上述の電気化学モジュールと改質器を少なくとも有し、前記電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部と、前記電気化学モジュールから電力を取り出すインバータとを有する点にある。
上記の特徴構成によれば、電気化学モジュールと改質器を有し電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部と、電気化学モジュールから電力を取り出すインバータとを有するので、都市ガス等の既存の原燃料供給インフラを用い、低コストでコンパクトな耐久性・信頼性および性能に優れた電気化学モジュールから電力を取り出すことができ、低コストでコンパクトな耐久性・信頼性および性能に優れた電気化学装置を実現することができる。また、電気化学モジュールから排出される未利用の燃料ガスをリサイクルするシステムを構築し易くなるため、高効率な電気化学装置を実現することができる。
〔構成13
上記目的を達成するための本発明に係るエネルギーシステムの特徴構成は、上述の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部を有する点にある。
上記の特徴構成によれば、電気化学装置と、電気化学装置から排出される熱を再利用する排熱利用部を有するので、低コストでコンパクトな耐久性・信頼性および性能に優れ、かつエネルギー効率にも優れたエネルギーシステムを実現することができる。なお、電気化学装置から排出される未利用の燃料ガスの燃焼熱を利用して発電する発電システムと組み合わせてエネルギー効率に優れたハイブリットシステムを実現することもできる。
電気化学素子の構造を示す概略図 電気化学素子の構造を示す図1の線II−IIに沿う断面図 電気化学素子の構造を示す図1の線III−IIIに沿う断面図 セルユニットおよび電気化学モジュールの構造を示す上面図 セルユニットおよび電気化学モジュールの構造を示す側面図 有突起集電板の構造を示す斜視断面図 電気化学素子の構造を示す概略図 電気化学素子の構造を示す図7の線VIII−VIIIに沿う断面図 電気化学素子間の接続の態様を示す断面図 有突起集電板の構造を示す斜視断面図 電気化学装置およびエネルギーシステムの構成を示す概略図
〔第1実施形態〕
<電気化学素子>
以下、第1実施形態に係る電気化学素子について図1〜図3に基づいて説明する。電気化学素子Qは、金属支持体1と電気化学反応部Rとを有し、金属支持体1が筒形状であり、筒の外側1eと内側1fとの間での気体の通流を許容する気体通流許容領域Pを有し、電気化学反応部Rは、電極層Aと、電解質層Bと、対極電極層Cとを少なくとも有し、金属支持体1の外側1eに配置されており、電極層Aに、気体通流許容領域Pを通流した気体が供給され、電解質層Bは、電極層Aと対極電極層Cとの間に配置され、電極層Aと気体通流許容領域Pとを覆って設けられている。
<金属支持体>
金属支持体1は、両端が開放された金属製の筒である。金属支持体1には、外側1eと内側1fとを貫通して複数の貫通孔1aが形成されている。本実施形態では、金属支持体1は両端が開放された円筒形状であり、貫通孔1aは、筒の径方向に沿って枝分かれのない直線状に形成されている。貫通孔1aは、金属支持体1の両端を除いて、金属支持体1の全面に設けられている。本実施形態では、貫通孔1aが設けられている帯状の領域を気体通流許容領域Pと称する。
なお、金属支持体1は、支持体として電気化学素子を形成するのに充分な強度を有すれば良く、例えば、0.1mm〜2mm程度、好ましくは0.1mm〜1mm程度、より好ましくは0.1mm〜0.5mm程度の厚みのものを用いることができる。また、金属支持体1には、焼結金属や発泡金属等を用いることもできる。
金属支持体1の材料としては、耐熱性、耐酸化性および耐腐食性に優れた金属材料が用いられる。例えば、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。例えば、Crを15重量%〜25重量%程度含むFe−Cr系合金材料の場合、その上に形成する電極層Aや電解質層Bの材料と熱膨張率が近くなり、信頼性・耐久性に優れた電気化学素子を得ることができるため好ましい。また、Crを70重量%以上含むCrリッチなCr−Fe系合金を用いることもできる。更に、Ni−Cr−Al系やFe−Cr−Al系の合金等も用いることができる。
金属支持体1の表面には、拡散防止膜(図示なし)が形成されている。拡散防止膜は、金属支持体1からのCrの飛散を抑制するために設けられる。拡散防止膜は導電性を有し、電気化学反応部Rの電極層A(後述)と金属支持体1との導通を抑制しないよう、低い抵抗値となるように構成される。
拡散防止膜の抵抗値としては、0.1Ω・cm2程度以下であればよく、0.05Ω・cm2程度以下であれば、電気化学素子Qを燃料電池として動作させた場合でも十分な起電力と電流量を確保でき好適である。
拡散防止膜は種々の手法により形成されうるが、金属支持体1の表面を酸化させて金属酸化物とする手法が好適に利用される。その場合、酸素分圧を低く制御した雰囲気下や、不活性ガスあるいは水素雰囲気下にて金属支持体1を熱処理することにより、適切な厚さおよび抵抗値を有する拡散防止膜を金属支持体1の表面に好適に形成することができる。特に、金属支持体1に、Crを15重量%〜25重量%程度含むFe−Cr系合金材料を用いると、焼成処理によって、その表面に容易に酸化クロムを主成分とする拡散防止膜を形成することができるため好ましい。また、拡散防止膜は、金属支持体1の表面に、スパッタリング法やPLD法、CVD法、スプレーコーティング法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、拡散防止膜は導電性の高いスピネル相などを含んでも良い。
<電気化学反応部>
本実施形態に係る電気化学反応部Rは、電極層Aと、電解質層Bと、対極電極層Cと、中間層とを有する。
<電極層>
電極層Aは、金属支持体1の外側1eの表面(すなわち拡散防止膜)の上に、膜の状態で形成される。その膜厚は、例えば、1μm〜100μm程度、好ましくは、5μm〜50μm程度とすることができる。このような膜厚にすることで、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。
電極層Aの材料としては、例えばNiO−酸化セリウム(セリア)を主成分とするもの、Ni−酸化セリウム(セリア)を主成分とするもの、NiO−ジルコニアを主成分とするもの、Ni−ジルコニアを主成分とするもの、CuO−酸化セリウム(セリア)を主成分とするもの、Cu−酸化セリウム(セリア)を主成分とするものなどの複合材を用いることができる。なお、酸化セリウム(セリア)、ジルコニア等あるいはこれらに異種元素をドープした固溶体を複合材の骨材と呼ぶ。電極層Aは、気体透過性を具備するように形成される。例えば、電極層Aの表面および内部に微細な複数の細孔を有するように構成される。
電極層Aは、低温焼成法(例えば1400℃等の高温域での焼成処理をせず、例えば1100℃程度以下の低温域での焼成処理を用いる湿式法)やスプレーコーティング法、スパッタリング法、パルスレーザーデポジション法、CVD法などにより形成することが好ましい。これらの、低温域での使用可能なプロセスにより、例えば1400℃等の高温域での焼成を用いずに、例えば1100℃程度以下の低温域での処理によって、良好な電極層Aが得られる。そのため、金属支持体1に高温加熱によるダメージを与えることを抑制でき、また、金属支持体1と電極層Aとの間の高温加熱による元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Qを実現できるので好ましい。
<電解質層>
電解質層Bは、電極層Aと対極電極層Cとの間に膜状で設けられる。その膜厚は、例えば、1μm〜50μm程度、好ましくは1μm〜20μm程度、より好ましくは2μm〜10μm程度とすることができる。このような膜厚にすることで、高価な電解質層材料の使用量を低減してコストダウンを図りつつ、十分な電解質性能を確保することが可能となる。
電解質層Bの材料としては、種々のジルコニア系材料、酸化セリウム系材料、種々のペロブスカイト系複合酸化物等の固体電解質材料を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層Bをジルコニア系セラミックスにすると、電気化学素子Qの稼働時の温度をセリア系セラミックスに比べて高くすることができ、非常に高効率な電気化学素子Qを構成することができる。
電解質層Bは、低温焼成法(例えば1400℃等の高温域での焼成処理をせず、例えば1100℃程度以下の低温域での焼成処理を用いる湿式法)やスプレーコーティング法、スパッタリング法、パルスレーザーデポジション法、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1400℃等の高温域での焼成を用いずに、例えば1100℃程度以下の低温域での処理によって、緻密で気密性の高い電解質層Bが得られる。そのため、金属支持体1に高温加熱によるダメージを与えることを抑制でき、また、金属支持体1と電極層Aとの間の高温加熱による元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Qを実現できるので好ましい。
電解質層Bは、気密性を保つために緻密に構成される。なお、電解質層Bに、相対密度が90%以上である層が含まれることが好ましい。また、相対密度が95%以上である層が含まれることがより好ましく、更には、相対密度が98%以上である層が含まれることが好ましい。このように、相対密度を高くすることで電解質層Bを緻密なものとすることができる。なお、ここで相対密度とは、電解質材料の理論密度に対して実際に形成された電解質層Bの密度の割合を表す。
<対極電極層>
対極電極層Cは、電解質層Bの上に膜状で設けられる。その膜厚は、例えば、1μm〜100μm程度、好ましくは、5μm〜50μm程度とすることができる。このような膜厚にすることで、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な対極電極性能を確保することが可能となる。
対極電極層Cの材料としては、例えば、LSCF(La−Sr−Co−Fe系酸化物)、LSC(La−Sr−Co系酸化物)、LSM(La−Sr−Mn系酸化物)等の複合酸化物を用いることができる。なお対極電極層Cは、低温焼成法(例えば1400℃等の高温域での焼成処理をせず、例えば1100℃程度以下の低温域での焼成処理を用いる湿式法)やスプレーコーティング法、スパッタリング法、パルスレーザーデポジション法、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1400℃等の高温域での焼成を用いずに、例えば1100℃程度以下の低温域での処理によって、良好な対極電極層Cが得られる。そのため、金属支持体1に高温加熱によるダメージを与えることを抑制でき、また、金属支持体1と電極層Aとの間の高温加熱による元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Qを実現できるので好ましい。
<中間層>
なお、電極層Aと電解質層Bとの間に中間層(緩衝層)が膜の状態で形成されていてもよい。その膜厚は、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは5μm〜20μm程度とすることができる。このような膜厚にすることで、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な中間層性能を確保することが可能となる。
中間層の材料としては、例えば、酸化セリウム系材料やジルコニア系材料等を用いることができる。中間層を電極層Aと電解質層Bとの間に導入することにより、電気化学反応部Rの性能や信頼性、耐久性を向上できる。なお中間層は、低温焼成法(例えば1400℃等の高温域での焼成処理をせず、例えば1100℃程度以下の低温域での焼成処理を用いる湿式法)やスプレーコーティング法、スパッタリング法、パルスレーザーデポジション法、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1400℃等の高温域での焼成を用いずに、例えば1100℃程度以下の低温域での処理によって、良好な中間層が得られる。そのため、金属支持体1に高温加熱によるダメージを与えることを抑制でき、また、金属支持体1と電極層Aとの間の高温加熱による元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Qを実現できるので好ましい。
また電解質層Bと対極電極層Cとの間に、中間層(反応防止層)が膜の状態で形成されていてもよい。その膜厚は、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは5μm〜20μm程度とすることができる。このような膜厚にすることで、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な中間層性能を確保することが可能となる。
中間層の材料としては、例えば、酸化セリウム系材料やジルコニア系材料等を用いることができる。中間層を電解質層Bと対極電極層Cとの間に導入することにより、対極電極層Cの構成材料と電解質層Bの構成材料との反応が効果的に抑制され、電気化学反応部Rの性能の長期安定性を向上できる。なお中間層は、低温焼成法(例えば1400℃等の高温域での焼成処理をせず、例えば1100℃程度以下の低温域での焼成処理を用いる湿式法)やスプレーコーティング法、スパッタリング法、パルスレーザーデポジション法、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1400℃等の高温域での焼成を用いずに、例えば1100℃程度以下の低温域での処理によって、良好な中間層が得られる。そのため、金属支持体1に高温加熱によるダメージを与えることを抑制でき、また、金属支持体1と電極層Aとの間の高温加熱による元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Qを実現できるので好ましい。
以上説明した中間層は、一方だけ、あるいは両方を設けることが可能である。すなわち、電極層A、電解質層B、中間層、対極電極層Cをこの順で積層した構成も可能である。電極層A、中間層、電解質層B、対極電極層Cをこの順で積層した構成も可能である。電極層A、中間層、電解質層B、中間層、対極電極層Cをこの順で積層した構成も可能である。
<気密層>
本実施形態では、気密層は電解質層Bからなる。つまり、電解質層Bが、電極層Aと対極電極層Cとの間の気体の流通を遮断する。
なお、気密層として、例えば、後述の電子伝導層や、ガラスシール材をはじめとするガスシール材等からなる層を適用することもできる。
気密層を構成する各層の緻密度は、例えば相対密度90%以上、好ましくは相対密度95%以上、より好ましくは相対密度98%以上とすることができる。このような緻密度にすることで、ガスの流通を遮断する、気密性の高い層とすることができる。なお相対密度とは、各層の構成材料の理論密度に対して実際に形成された各層の密度の割合を表す。
また、その膜厚は、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは5μm〜20μm程度とすることができる。このような膜厚にすることで、高価な材料の使用量を低減してコストダウンを図りつつ、十分な気密性を確保することが可能となる。
以上の様に構成された電気化学素子Qでは、導電性を有する拡散防止膜の上に接して電極層Aが形成されている。したがって、金属支持体1と電極層Aとの間の電気伝導性が確保されている。
また以上の様にして構成された本実施形態に係る電気化学素子Qでは、金属支持体1の外側1eにおいて、気体通流許容領域Pが、電解質層Bによって覆われている。電解質層Bは気密性の高い層であるから、電解質層Bが電極層Aと対極電極層Cとの間に配置されることにより、電極層Aと対極電極層Cとの間のガス流通を遮断して、もって電気化学素子Qの性能が高められている。
<電気化学反応部Rでの電気化学反応>
以上の様に構成された電気化学反応部Rは、気体の供給を受け、電気化学反応を生じさせる。
電気化学反応部Rが燃料電池として動作する場合は、電極層Aに水素ガスが供給され、対極電極層Cに酸素ガスが供給される。そうすると、対極電極層Cにおいて酸素分子O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層Bを通って電極層Aへ移動する。電極層Aにおいては、水素分子H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層Aと対極電極層Cとの間に起電力が発生し、発電が行われる。
電気化学反応部Rが電解セルとして動作する場合は、電極層Aに水蒸気を含有するガスが供給され、電極層Aと対極電極層Cとの間に電圧が印加される。そうすると、電極層Aにおいて水分子H2Oが電子e-を受け取って水素分子H2と酸素イオンO2-となる。酸素イオンO2-は電解質層Bを通って対極電極層Cへ移動する。対極電極層Cにおいて酸素イオンO2-が電子を放出して酸素分子O2となる。以上の反応により、水分子H2Oが水素H2と酸素O2とに電気分解される。
<セルユニット>
次に、本実施形態に係るセルユニットUについて図4〜図6に基づいて説明する。セルユニットUは、電気化学素子Qと、有突起集電板3とを有する。有突起集電板3は、金属製の板であって、凹部または凸部が1つ以上含まれる凹凸構造部位3aを有し、金属支持体1に電気的に接続されており、凹凸構造部位3aが、複数のセルユニットUが積層される際に、他のセルユニットUの対極電極層Cに接続される。そしてセルユニットUは、金属支持体1の筒の内部に気体を供給する金属製のガスマニホールド8を有し、金属支持体1がガスマニホールド8との間に接合部位を形成している。
詳しくは本実施形態に係るセルユニットUは、4つの電気化学素子Qと、有突起集電板3と、一対のガスマニホールド8と、連結管9とを有して構成される。
<ガスマニホールド、連結管>
ガスマニホールド8は、金属製の中空の直方体である。一方のガスマニホールド8の側面に、4つの電気化学素子Qが接続され、電気化学素子Qの他方の端に他方のガスマニホールド8が接続されている。ガスマニホールド8と電気化学素子Qとの接続は、ガスマニホールド8の内部の空間と、金属支持体1の筒の内部の空間とが連通する形態で行われる。また、金属支持体1とガスマニホールド8(の側面)との間に接合部位を形成している。
連結管9は、金属製の両端が開放された円筒である。連結管9は、ガスマニホールド8の上面に溶接により接続されている。連結管9とガスマニホールド8との接続は、連結管9の内部の空間と、ガスマニホールド8の内部の空間とが連通する形態で行われる。また、連結管9とガスマニホールド8との接合は、溶接により行われる。
セルユニットUを以上の様に構成することで、一方のガスマニホールド8の連結管9に供給された気体が、ガスマニホールド8の内部の空間を通って、金属支持体1の筒の内部に供給され、気体通流許容領域Pを通って電極層Aに供給され、電気化学反応部Rでの反応に用いられる。残余の気体は、金属支持体1の筒の内部から、他方のガスマニホールド8の内部へ流入し、連結管9から流出する。
ガスマニホールド8および連結管9の材料としては、上述の金属支持体1と同様のものを用いることができる。またガスマニホールド8および連結管9の表面に、金属支持体1と同様の拡散防止膜を形成すると、Cr飛散を抑制することができ好適である。
なお、ガスマニホールド8および連結管9は、セルユニットUおよび後述する電気化学モジュールMを構成するのに充分な強度を有すれば良く、例えば、0.1mm〜2mm程度、好ましくは0.1mm〜1mm程度、より好ましくは0.1mm〜0.5mm程度の厚みのものを用いることができる。また、ガスマニホールド8および連結管9には、焼結金属や発泡金属等を用いることもできるが、この場合は気体が透過しないように表面コーティングなどの処理を施せばよい。
<有突起集電板>
有突起集電板3は、金属製の長方形の板である。本実施形態では、図6に示す様に、複数の凸凹構造部位3aが、有突起集電板3の板の面から上下方向に突出して形成されている。凹凸構造部位3aは、頂点がなだらかな円錐形状である。図6に示される有突起集電板3の断面から分かるとおり、上方向に突出する凹凸構造部位3aと下方向に突出する凹凸構造部位3aとが隣接して形成されている。
有突起集電板3は、図4および図5に示される様に、4つの電気化学素子Qと平行な状態で、電気化学素子Qの下側に配置される。有突起集電板3は、4つの接続部材3cにより、一対のガスマニホールド8に固定される。有突起集電板3と接続部材3cとの間、および接続部材3cとガスマニホールド8との間は、溶接により接続される。
有突起集電板3の材料としては、上述の金属支持体1と同様のものを用いることができる。また有突起集電板3の表面に、金属支持体1と同様の拡散防止膜を形成すると、Cr飛散を抑制することができ好適である。以上の様に構成される有突起集電板3は、プレス成形により低コストで製造することが可能である。
また有突起集電板3は、セルユニットUおよび後述する電気化学モジュールMを構成するのに充分な強度を有すれば良く、例えば、0.1mm〜2mm程度、好ましくは0.1mm〜1mm程度、より好ましくは0.1mm〜0.5mm程度の厚みのものを用いることができる。また、有突起集電板3には、焼結金属や発泡金属等を用いることもできる。
図5に示す通り、セルユニットUは複数積層されて電気化学モジュールMを形成する。その際に有突起集電板3は、他のセルユニットUの対極電極層Cに接続される。詳しくは、有突起集電板3の凹凸構造部位3aの頂点が、下側に位置するセルユニットUの対極電極層Cに対して接合される。これにより、一方のセルユニットUの電極層Aと、他方のセルユニットUの対極電極層Cとが、電気的に接続される。
<電気化学モジュール>
続いて、本実施形態に係る電気化学モジュールMについて図4および図5に基づいて説明する。電気化学モジュールMは、上述のセルユニットUが複数積層した状態で配置されて構成される。
詳しくは電気化学モジュールMは、上述のセルユニットUを、ガスケット6を挟んで複数積層して構成される。ガスケット6は、一方のセルユニットUの連結管9と、他方のセルユニットUの連結管9との間に配置される。そしてガスケット6は、一方のセルユニットUの金属支持体1、ガスマニホールド8、連結管9および有突起集電板3と、他方のセルユニットUの金属支持体1、ガスマニホールド8、連結管9および有突起集電板3との間を、電気的に絶縁する。ガスケット6は、併せて、連結管9を通流する気体が漏出したり混合したりしないよう、セルユニットUの接続部位(連結管9の接続部位)を気密に保つ。ガスケット6は、以上の電気的絶縁および気密保持が可能なように、例えばバーミキュライトや雲母、アルミナ等を材料として形成される。
そして上述の通り、有突起集電板3が、一方のセルユニットUの金属支持体1と、対極電極層Cとを電気的に接続している。そうすると、一方のセルユニットUの電極層Aと、他方のセルユニットUの対極電極層Cとが、金属支持体1および有突起集電板3を介して電気的に接続されることになる。したがって本実施形態に係るセルユニットUでは、各セルユニットUの電気化学反応部Rが、電気的に直列に接続される。
また一のセルユニットUにおいては、4つの電気化学素子Qの金属支持体1は、ガスマニホールド8により互いに電気的に接続されている。また4つの電気化学素子Qの対極電極層Cは、他のセルユニットUの有突起集電板3により互いに電気的に接続されている。従って、一のセルユニットUにおいては、各セルユニットUの電気化学反応部Rが、電気的に並列に接続される。
電気化学モジュールMにおける気体の通流について図4および図5に基づいて説明する。説明は、電気化学反応部Rを燃料電池として動作させる場合を例として行う。
一方のガスマニホールド8の連結管9に、水素ガスHが供給される。そうすると水素ガスHは、ガスマニホールド8の内部を通って金属支持体1の内部に流れ込み、気体通流許容領域Pに供給される。そして水素ガスHは気体通流許容領域Pの貫通孔1aを通流して、電極層Aに供給される。残余のガスは、反応排ガスJとして金属支持体1の内部から他方のガスマニホールド8の内部へ流入し、連結管9から排出される。
酸素ガスKは、一方のガスマニホールド8の側から、金属支持体1の中心軸と平行に供給される。そうすると酸素ガスKは、上下に積層されたガスマニホールド8の隙間、および連結管9の間を通って、電気化学素子Qの周囲に流入し、対極電極層Cに接触する。もって対極電極層Cに酸素が供給される。残余のガスは、他方のガスマニホールド8の側から流出する。このとき、電気化学素子Qの有突起集電板3に覆われた部位にも、凹凸構造部位3aの間を通って酸素ガスKが流れて、対極電極層Cに酸素ガスKが接触する。
〔第2実施形態〕
第2実施形態に係る電気化学素子について図7および図8に基づいて説明する。本実施形態に係る電気化学素子Qでは、金属支持体1の全体が金属製のメッシュにより形成され、気体の通流が可能となっている。つまり筒形状の金属支持体1の全体が、気体通流許容領域Pとなっている。
そして電極層Aが、金属支持体1の外側1eの全体を覆って設けられている。電解質層Bが、電極層Aの全体を覆って設けられている。すなわち、電極層Aおよび電解質層Bが、気体通流許容領域Pの全体を覆って設けられている。
本実施形態に係る電気化学素子Qを上述のセルユニットUに適用するにあたっては、金属支持体1の両端をガスマニホールド8に溶接で接合した上で、電解質層Bとガスマニホールド8の間をガラスシール材等によって封止する。これにより、金属支持体1の筒形状の内部を流れる気体が外部に漏れ出すことを抑制し、すなわちガスシール性を高め、性能を高めることができる。
〔第3実施形態〕
上述の実施形態では、ある電気化学素子を構成する金属支持体1は、有突起集電板を介して他の電気化学素子の対極電極層に接続されている。電気化学素子間の接続としては、図9に示すように、ある電気化学素子の金属支持体の、電気化学反応部が形成されていない表面が、別の電気化学素子の対極電極層に、有突起集電板を介さずに電気的な接続がなされていてもよい。この場合、金属支持体と対極電極層の間は直接接していてもよいし、導電性セラミックスや金属等の導電性部材を介して電気的に接続されていてもよい。
〔第4実施形態〕
上述の実施形態では、一つの金属支持体上に一つの電気化学反応部を形成したが、電気化学反応部は複数形成されていてもよい。この場合、一の電気化学反応部を形成する電極層と、他の電気化学反応部を形成する対極電極層とが、後述の電子伝導層を介して電気的に接続されることで、いわゆる横縞型SOFCとして使用可能である。
この際、金属支持体の表面に絶縁被膜を形成してもよい。金属支持体の表面に絶縁被膜を形成して、電極層との間を絶縁できる構成とすると、セル間の電子リークを抑え、高性能な電気化学素子となる。なお、絶縁被膜は、金属支持体の表面に、絶縁性の高いシリカやアルミナなどを含む金属酸化物被膜をスパッタリング法やPLD法、CVD法、スプレーコーティング法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。また、金属支持体1の材料として、SiとAlのうち少なくとも一方が1重量%〜5重量%程度含有されている金属材料を用い、焼成処理によって、その表面にシリカやアルミナを含む絶縁被膜を形成することもできる。
なお、絶縁被膜の抵抗値としては、1kΩ・cm2程度以上あればよく、10kΩ・cm2程度以上あれば、電気化学素子を燃料電池として動作させた場合でも十分な起電力と電流量を確保でき好適である。
<電子伝導層>
電子伝導層は、例えば、LaCrO3(ランタンクロマイト)やSrTiO3(ストロンチウムチタネイト)等の導電性を有する金属酸化物により構成することができる。その膜厚は、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは5μm〜20μm程度とすることができる。このような膜厚にすることで、高価な電子伝導層材料の使用量を低減してコストダウンを図りつつ、十分な電子伝導層性能を確保することが可能となる。
〔第5実施形態〕
上述の実施形態では、一方のセルユニットUの連結管9と、他方のセルユニットUの連結管9との間にガスケット6を挟むことで、一方のセルユニットUの金属支持体1、ガスマニホールド8、連結管9および有突起集電板3と、他方のセルユニットUの金属支持体1、ガスマニホールド8、連結管9および有突起集電板3との間を、電気的に絶縁している。セルユニットUを構成するガスマニホールド8と、同一のセルユニットUを構成する金属支持体1との間を電気的に絶縁してもよい。ガスマニホールド8と金属支持体1との間は、上記のように絶縁性のガスケットを介して接続させることで電気的に絶縁してもよいし、ガスマニホールド8または金属支持体1の表面の少なくとも一部に絶縁被膜を形成することで電気的に絶縁してもよい。なお、絶縁被膜は、ガスマニホールド8または金属支持体1の表面に、絶縁性の高いシリカやアルミナなどを含む金属酸化物被膜をスパッタリング法やPLD法、CVD法、スプレーコーティング法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。また、ガスマニホールド8または金属支持体1の材料として、SiとAlのうち少なくとも一方が1重量%〜5重量%程度含有されている金属材料を用い、焼成処理によって、その表面にシリカやアルミナを含む絶縁被膜を形成することもできる。
〔第6実施形態〕
<有突起集電板>
上述の実施形態では有突起集電板3は、頂点がなだらかな円錐形状である凹凸構造部位3aを有していた。有突起集電板3としては、図10に示す形状も可能である。図10に示す第3実施形態に係る有突起集電板3は、長辺に平行に延びる直線に沿って交互に山折り・谷折りされた形状を有している。すなわち、山の部位、谷の部位が凹凸構造部位3aに該当する。そして本実施形態に係る有突起集電板3を上述のセルユニットUに適用する場合には、山の部位の稜線と、電気化学素子Qの金属支持体1の中心軸とが平行になるよう配置すると、有突起集電板3と対極電極層Cとの接続部位を大きくすることができ好適である。なおこのような形状の有突起集電板3は、第1実施形態と同様にプレス成形により低コストで製造することが可能である。
<第7実施形態>
以上説明した電気化学素子Qおよび電気化学モジュールMを用いて、電気化学装置YおよびエネルギーシステムZを構築することができる。
<エネルギーシステム、電気化学装置>
図11には、エネルギーシステムZおよび電気化学装置Yの概要が示されている。
エネルギーシステムZは、電気化学装置Yと、電気化学装置Yから排出される熱を再利用する排熱利用部としての熱交換器53とを有する。
電気化学装置Yは、電気化学モジュールMと、脱硫器31と改質器34とを有し電気化学モジュールMに対して還元性成分を含有する燃料ガスを供給する燃料供給部と、電気化学モジュールMから電力を取り出すインバータ38とを有する。
詳しくは電気化学装置Yは、脱硫器31、改質水タンク32、気化器33、改質器34、ブロア35、インバータ38、制御部39および電気化学モジュールMを有する。
脱硫器31は、都市ガス等の炭化水素系の原燃料に含まれる硫黄化合物成分を除去(脱硫)する。原燃料中に硫黄化合物が含有される場合、脱硫器31を備えることにより、硫黄化合物による改質器34あるいは電気化学素子Qに対する悪影響を抑制することができる。気化器33は、改質水タンク32から供給される改質水から水蒸気を生成する。改質器34は、気化器33にて生成された水蒸気を用いて脱硫器31にて脱硫された原燃料を水蒸気改質して、水素を含む改質ガスを生成する。
電気化学モジュールMは、改質器34から供給された改質ガスと、ブロア35から供給された空気とを用いて、電気化学反応させて発電する。
電気化学モジュールMは、複数の電気化学素子Qを有する。複数の電気化学素子Qは互いに電気的に接続された状態で複数積層して配置される。電気化学素子Qは、改質ガスと、ブロア35から供給された空気とを電気化学反応させて発電する。
インバータ38は、電気化学モジュールMの出力電力を調整して、商用系統(図示省略)から受電する電力と同じ電圧および同じ周波数にする。制御部39は電気化学装置YおよびエネルギーシステムZの運転を制御する。
原燃料は、昇圧ポンプ41の作動により原燃料供給路42を通して脱硫器31に供給される。改質水タンク32の改質水は、改質水ポンプ43の作動により改質水供給路44を通して気化器33に供給される。そして、原燃料供給路42は脱硫器31よりも下流側の部位で、改質水供給路44に合流されており、合流された改質水と原燃料とが気化器33に供給される。
改質水は気化器33にて気化され水蒸気となる。気化器33にて生成された水蒸気を含む原燃料は、水蒸気含有原燃料供給路45を通して改質器34に供給される。改質器34にて原燃料が水蒸気改質され、水素ガスを主成分とする改質ガス(還元性成分を有する第1気体)が生成される。改質器34にて生成された改質ガスは、改質ガス供給路46を通して電気化学モジュールMに供給される。
電気化学モジュールMに供給された改質ガスは、複数積層された電気化学素子Qに供給される。改質ガス中の主に水素(還元性成分)が、電気化学素子Qにて電気化学反応に使用される。反応に用いられなかった残余の水素ガスを含む反応排ガスが、電気化学素子Qから排ガス排出路52により熱交換器53に送られる。
熱交換器53は、電気化学モジュールMからの反応排ガスと、供給される冷水とを熱交換させ、温水を生成する。すなわち熱交換器53は、電気化学装置Yから排出される熱を再利用する排熱利用部として動作する。
なお、排熱利用部の代わりに、電気化学モジュールMから排出される反応排ガスを利用する反応排ガス利用部を設けてもよい。反応排ガスには、電気化学素子Qにて反応に用いられなかった残余の水素ガスが含まれる。反応排ガス利用部では、残余の水素ガスを利用して、燃焼による熱利用や、燃料電池等による発電が行われ、エネルギーの有効利用がなされる。
<他の実施形態>
(1)上述の実施形態では、電気化学素子Qを固体酸化物形燃料電池や固体酸化物形電解セルに用いたが、固体酸化物を利用した酸素センサ等に利用することもできる。
(2)上述の実施形態では、金属支持体1と電解質層Bとの間に電極層Aを配置し、電解質層Bからみて金属支持体1と反対側に対極電極層Cを配置した。電極層Aと対極電極層Cとを逆に配置する構成も可能である。つまり、金属支持体1と電解質層Bとの間に対極電極層Cを配置し、電解質層Bからみて金属支持体1と反対側に電極層Aを配置する構成も可能である。この場合、電気化学素子Qへの気体の供給についても変更する必要がある。例えば電気化学素子Qを燃料電池として動作させる場合、金属支持体1の気体通流許容領域Pを通じて対極電極層Cに酸素を供給し、電極層Aに水素を供給する。
(3)上述の第1実施形態と第2実施形態では、電気化学素子Qを固体酸化物形燃料電池として用いる場合の例として、アノードガスに水素ガスを、カソードガスに酸素ガスを用いる例を示したが、アノードガスに炭化水素原燃料を改質した改質ガスのような水素を主成分とするガスを用い、カソードガスに空気などの酸素を含むガスを用いることもできる。
なお上述の実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
1 :金属支持体
1a :貫通孔
1e :外側
1f :内側
3 :有突起集電板
3a :凹凸構造部位
8 :ガスマニホールド
34 :改質器
38 :インバータ
A :電極層
B :電解質層
C :対極電極層
M :電気化学モジュール
P :気体通流許容領域
Q :電気化学素子
R :電気化学反応部
U :セルユニット
Y :電気化学装置
Z :エネルギーシステム

Claims (13)

  1. 金属支持体と電気化学反応部とを有し、
    前記金属支持体が筒形状であり、前記電気化学反応部は、電極層と、電解質層と、対極電極層とを少なくとも有し、前記金属支持体の表面に配置されており、
    前記電解質層は、前記電極層と前記対極電極層との間に配置されている電気化学素子と、
    有突起集電板とを有するセルユニットを、複数有し、前記セルユニットの前記電気化学素子が互いに電気的に接続されており、
    前記金属支持体の筒の内部に気体を供給する金属製のガスマニホールドを有し、前記金属支持体と前記ガスマニホールドとの間に接合部位が形成されている電気化学モジュールであって、
    前記有突起集電板は、金属製の板であって、凹部または凸部が1つ以上含まれる凹凸構造部位を有し、
    複数のセルユニットが積層される際に、前記有突起集電板が、接続部材により前記ガスマニホールドに接続された状態で、一方のセルユニットの金属支持体と、もう一方のセルユニットの対極電極層とを電気的に接続する電気化学モジュール
  2. 前記有突起集電板が拡散防止膜を有する請求項1に記載の電気化学モジュール
  3. 前記凹凸構造部位が前記もう一方のセルユニットの対極電極層に接続される請求項1または2に記載の電気化学モジュール
  4. 前記電気化学反応部が、前記金属支持体の外側の面に配置されている、請求項1から3のいずれか1項に記載の電気化学モジュール
  5. 前記電極層、前記電解質層、前記対極電極層が、それぞれ薄層として形成されている、請求項1から4のいずれか1項に記載の電気化学モジュール
  6. 前記金属支持体が、外側と内側との間での気体の流通を許容する気体流通許容領域を有することを特徴とする、請求項1から5のいずれか1項に記載の電気化学モジュール
  7. 前記気体流通許容領域の外側の面または内側の面が、気密層によって覆われている請求項6に記載の電気化学モジュール
  8. 前記気密層が、少なくとも前記電解質層を含む請求項7に記載の電気化学モジュール
  9. 前記気密層が、少なくとも前記電解質層と電子伝導層とを含む請求項7または8に記載の電気化学モジュール
  10. 前記電極層が、気体透過性を有する多孔質である請求項1〜9のいずれか1項に記載の電気化学モジュール
  11. 請求項1〜10のいずれか1項に記載の電気化学モジュールと、前記電気化学モジュールに対して還元性成分を含有する燃料を供給する燃料供給部とを少なくとも有し、前記電気化学モジュールから電力を取り出すことを特徴とする電気化学装置。
  12. 請求項1〜10のいずれか1項に記載の電気化学モジュールと改質器を少なくとも有し、前記電気化学モジュールに対して還元性成分を含有する燃料ガスを供給する燃料供給部と、前記電気化学モジュールから電力を取り出すインバータとを有する電気化学装置。
  13. 請求項11または12に記載の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部を有するエネルギーシステム。
JP2016072606A 2016-03-31 2016-03-31 電気化学モジュール、電気化学装置およびエネルギーシステム Active JP6839926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072606A JP6839926B2 (ja) 2016-03-31 2016-03-31 電気化学モジュール、電気化学装置およびエネルギーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072606A JP6839926B2 (ja) 2016-03-31 2016-03-31 電気化学モジュール、電気化学装置およびエネルギーシステム

Publications (2)

Publication Number Publication Date
JP2017183224A JP2017183224A (ja) 2017-10-05
JP6839926B2 true JP6839926B2 (ja) 2021-03-10

Family

ID=60007531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072606A Active JP6839926B2 (ja) 2016-03-31 2016-03-31 電気化学モジュール、電気化学装置およびエネルギーシステム

Country Status (1)

Country Link
JP (1) JP6839926B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886730A (zh) * 2018-03-30 2020-11-03 大阪瓦斯株式会社 金属支承型燃料电池和燃料电池模块
CA3107252A1 (en) * 2018-03-30 2019-10-03 Osaka Gas Co., Ltd. Electrochemical module, method for assembling electrochemical module, electrochemical device, and energy system
CA3107247A1 (en) * 2018-03-30 2019-10-03 Osaka Gas Co., Ltd. Electrochemical element stack, electrochemical element, electrochemical module, electrochemical device, and energy system
JP7345267B2 (ja) 2019-03-29 2023-09-15 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
JP7241588B2 (ja) * 2019-03-29 2023-03-17 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914990B2 (ja) * 2003-11-18 2007-05-16 独立行政法人産業技術総合研究所 円筒型燃料電池
JP2006092837A (ja) * 2004-09-22 2006-04-06 Kyocera Corp 燃料電池用集電部材及びその製造方法、並びにこれを用いた燃料電池セルスタック、燃料電池
JP4716700B2 (ja) * 2004-09-29 2011-07-06 京セラ株式会社 燃料電池セルスタック及び燃料電池
JP4789524B2 (ja) * 2005-07-13 2011-10-12 京セラ株式会社 固体電解質形燃料電池組立体
WO2010030300A1 (en) * 2008-09-11 2010-03-18 The Regents Of The University Of California Metal-supported, segmented-in-series high temperature electrochemical device
JP2010108687A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 集電部材、それを具備するセルスタック装置、燃料電池モジュールおよび燃料電池装置
ES2362516B1 (es) * 2008-12-19 2012-05-23 Ikerlan, S.Coop. Celda tubular de combustible de óxido sólido con soporte met�?lico.
EP2416414B1 (en) * 2009-03-31 2018-01-10 Toto Ltd. Fuel cell aggregate and fuel cell
JP2013222505A (ja) * 2012-04-12 2013-10-28 Toyota Motor Corp 燃料電池およびその製造方法
JP2015022844A (ja) * 2013-07-17 2015-02-02 日本特殊陶業株式会社 燃料電池
JP2015222622A (ja) * 2014-05-22 2015-12-10 株式会社ノーリツ 発電システム

Also Published As

Publication number Publication date
JP2017183224A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6463203B2 (ja) 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
JP6839926B2 (ja) 電気化学モジュール、電気化学装置およびエネルギーシステム
JP7174498B2 (ja) 電気化学素子ユニット、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池ユニットおよび固体酸化物形電解セルユニット
JP6749125B2 (ja) セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム
TWI811327B (zh) 電化學模組,電化學模組之組裝方法,電化學裝置及能源系統
JP6139231B2 (ja) 固体酸化物形電気化学セルスタック構造体および水素電力貯蔵システム
KR20200138159A (ko) 금속 지지형 연료 전지 및 연료 전지 모듈
TWI811328B (zh) 電化學元件、電化學模組、電化學裝置及能源系統
JP7499902B2 (ja) 電気化学モジュール、電気化学装置及びエネルギーシステム
TWI811329B (zh) 電化學元件、電化學模組、電化學裝置及能源系統
JP7224224B2 (ja) 電気化学モジュール、電気化学装置及びエネルギーシステム
JP7345267B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
JP2016048676A (ja) 燃料電池
JP7353226B2 (ja) 電気化学モジュール、電気化学装置及びエネルギーシステム
WO2021201098A1 (ja) 環状パッキン材、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル
JP2022156333A (ja) 環状スペーサ、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池および固体酸化物形電解セル
JP2022156331A (ja) 金属セパレータ、電気化学ユニット、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル
JP2022156329A (ja) 電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル
JP2022156332A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル、並びに電気化学素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6839926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150