WO2021201098A1 - 環状パッキン材、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル - Google Patents
環状パッキン材、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル Download PDFInfo
- Publication number
- WO2021201098A1 WO2021201098A1 PCT/JP2021/013832 JP2021013832W WO2021201098A1 WO 2021201098 A1 WO2021201098 A1 WO 2021201098A1 JP 2021013832 W JP2021013832 W JP 2021013832W WO 2021201098 A1 WO2021201098 A1 WO 2021201098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrochemical
- plate
- electrochemical element
- gas
- metal
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 146
- 238000012856 packing Methods 0.000 title claims description 92
- 239000000446 fuel Substances 0.000 title claims description 70
- 239000007787 solid Substances 0.000 title claims description 27
- 238000005868 electrolysis reaction Methods 0.000 title description 4
- 239000007769 metal material Substances 0.000 claims abstract description 72
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 51
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 51
- 239000003792 electrolyte Substances 0.000 claims description 61
- 238000006243 chemical reaction Methods 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 238000010248 power generation Methods 0.000 claims description 31
- 239000000919 ceramic Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims description 11
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 8
- 239000010445 mica Substances 0.000 claims description 8
- 229910052618 mica group Inorganic materials 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910001374 Invar Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910001026 inconel Inorganic materials 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 251
- 239000007789 gas Substances 0.000 description 155
- 238000000034 method Methods 0.000 description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 238000010304 firing Methods 0.000 description 28
- 238000003487 electrochemical reaction Methods 0.000 description 27
- 239000012212 insulator Substances 0.000 description 26
- 230000000149 penetrating effect Effects 0.000 description 25
- 229910052760 oxygen Inorganic materials 0.000 description 24
- 239000001301 oxygen Substances 0.000 description 24
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 22
- 239000002737 fuel gas Substances 0.000 description 22
- 238000007789 sealing Methods 0.000 description 22
- 239000002994 raw material Substances 0.000 description 21
- 239000001257 hydrogen Substances 0.000 description 19
- 229910052739 hydrogen Inorganic materials 0.000 description 19
- -1 oxygen ions Chemical class 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 238000005507 spraying Methods 0.000 description 17
- 238000002485 combustion reaction Methods 0.000 description 15
- 239000000443 aerosol Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 14
- 238000000151 deposition Methods 0.000 description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 11
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 11
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 11
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 238000010030 laminating Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 239000006200 vaporizer Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 229910017060 Fe Cr Inorganic materials 0.000 description 5
- 229910002544 Fe-Cr Inorganic materials 0.000 description 5
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000003566 sealing material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005495 investment casting Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 239000011819 refractory material Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000002001 electrolyte material Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 3
- 229910002119 nickel–yttria stabilized zirconia Inorganic materials 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010455 vermiculite Substances 0.000 description 3
- 229910052902 vermiculite Inorganic materials 0.000 description 3
- 235000019354 vermiculite Nutrition 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000001540 jet deposition Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000013025 ceria-based material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
- F16J15/0818—Flat gaskets
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
- C25B9/75—Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
- C25B9/77—Assemblies comprising two or more cells of the filter-press type having diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
- F16J15/0887—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0276—Sealing means characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0282—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to, for example, an annular packing material that can be used for an electrochemical module or the like, an electrochemical module provided with the annular packing material, an electrochemical device, an energy system, a solid oxide fuel cell, and a solid oxide fuel cell. Regarding cells.
- a laminated body is formed by laminating a plurality of electrochemical elements (power generation cells).
- a sealing material is provided between the power generation cells to maintain the sealing property of the reaction gas.
- Patent Document 1 As a conventional sealing material, for example, as shown in Patent Document 1 below, a material containing an insulating material such as vermiculite is known in order to block electron conduction between power generation cells and prevent the occurrence of a short circuit. ..
- the sealing material Since the fuel cell stack usually has a high temperature of 500 ° C. or higher during power generation, the sealing material is required to have excellent heat resistance.
- Inorganic materials such as vermiculite have excellent heat resistance, but are easily cured when exposed to high temperatures. Therefore, when the fuel cell stack is repeatedly started and stopped and the temperature changes, the sealing material composed of vermiculite or the like hardens at a high temperature, and the surface pressure decreases due to the decrease in elasticity. As a result, the sealing performance of the sealing material deteriorates, and the reaction gas easily leaks.
- An object of the present invention is an annular packing material that retains high sealing properties and insulating properties even when exposed to temperature changes including a high temperature environment, an electrochemical module provided with the annular packing material, and an electrochemical module. It is an object of the present invention to provide an electrochemical apparatus, an energy system including the electrochemical apparatus, a solid oxide fuel cell including the electrochemical module, and a solid oxide fuel cell including the electrochemical module.
- the characteristic configuration of the annular packing material according to the present invention for achieving the above object is the metal having a metal material composed of a thermal expansion member that expands by heat and an insulating metal oxide layer, and formed in an annular shape.
- the point is that through holes are formed inside the material and the metal oxide layer.
- the surface pressure increases due to the expansion tension of the metal material, so that between the inside and the outside of the metal material and the metal oxide layer (between the inside and outside of the ring). Demonstrates high sealing performance. Further, since the metal material is hard to cure even when exposed to a high temperature, it can withstand long-term use accompanied by temperature changes including a high temperature environment. Furthermore, the insulating property is maintained by the metal oxide layer.
- a further characteristic configuration of the annular packing material according to the present invention is that the metal oxide layer is arranged on at least one side in the thickness direction of the metal material.
- the insulating property can be maintained by the metal oxide layer.
- a further characteristic configuration of the cyclic packing material according to the present invention is that the metal oxide layer contains any one or more of alumina, silica, magnesium oxide, iron oxide, chromium oxide and manganese oxide.
- the metal oxide layer can be constructed from an easily available material.
- a further characteristic configuration of the annular packing material according to the present invention is that the metal material contains any one or more of ferritic stainless steel, austenitic stainless steel, inconel, copper and invar material.
- a metal material can be constructed from easily available materials.
- a further characteristic configuration of the annular packing material according to the present invention is that the cross-sectional shape of the metal material is a ring shape having a closed space inside.
- the gas or liquid sealed in the closed space (internal space) formed inside the ring shape thermally expands, further promoting the expansion of the metal material. Therefore, the surface pressure can be configured to increase, and as a result, even higher sealing performance is exhibited.
- a further characteristic configuration of the annular packing material according to the present invention is that the metal material is bimetal.
- the above-mentioned feature configuration since it is configured to change to a unique shape in response to a temperature change, it can be configured so that the surface pressure increases due to the shape change when exposed to a high temperature environment. As a result, even higher sealing performance is exhibited.
- a further characteristic configuration of the annular packing material according to the present invention is that the cross-sectional shape of the metal material is a flat plate shape, a triangular shape, a saw blade shape, a corrugated shape, a circular shape, an elliptical shape, a substantially C shape, and a substantially D shape. The point is that any one or more of the shapes are provided.
- the characteristic configuration of the electrochemical module according to the present invention for achieving the above object is a plurality of electrochemical elements including an electrolyte layer and first and second electrodes arranged on both sides of the electrolyte layer, respectively.
- the electrochemical elements are laminated with each other via a metal substrate, and the annular packing material is arranged between the adjacent metal substrates.
- the metal material is hard to cure even at high temperature, so that it can withstand long-term use, and further.
- the surface pressure rises due to the expansion force of the metal material and high sealing performance is exhibited, so that the sealing property between adjacent metal substrates is sufficiently ensured.
- the metal oxide layer is formed, the insulating property between adjacent metal substrates is also maintained.
- a further characteristic configuration of the electrochemical module according to the present invention is that the coefficient of thermal expansion of the metal material is different from the coefficient of thermal expansion of the metal substrate.
- the surface pressure can be increased by utilizing the coefficient of thermal expansion generated by the difference in thermal expansion between the metal substrate and the metal material when exposed to a high temperature environment. Even higher sealing performance is demonstrated.
- a further characteristic configuration of the electrochemical module according to the present invention is that the annular packing material is arranged between the metal substrate and the annular packing material in a state where the ceramic paste is applied to at least a part of the surface thereof. There is a point.
- the minute gap between the annular packing material and the metal substrate is closed by the ceramic paste. As a result, even higher sealing performance is exhibited.
- a further characteristic configuration of the electrochemical module according to the present invention is that the ceramic paste contains mica.
- the ceramic paste contains mica. As a result, it has been confirmed by experiments that high sealing performance is exhibited.
- the characteristic configuration of the electrochemical apparatus according to the present invention for achieving the above object is to generate the above-mentioned electrochemical module and a reducing component to be supplied to the electrochemical module, or to generate a reduction in the electrochemical module. It has at least a fuel converter that converts a gas containing a sex component.
- a fuel converter such as a reformer is used based on natural gas supplied using an existing raw material fuel supply infrastructure such as city gas. It is possible to realize an electrochemical device equipped with an electrochemical module which can be configured to generate hydrogen and has excellent durability, reliability and performance. In addition, since it becomes easy to construct a system for recycling unused fuel gas distributed from the electrochemical module, a highly efficient electrochemical device can be realized.
- a gas containing water vapor or carbon dioxide is circulated in the electrode layer, and a voltage is applied between the electrode layer and the counter electrode layer.
- the electrons e in the electrode layer - the water molecules H 2 O or carbon dioxide molecules CO 2 reacts, becomes 2 hydrogen molecules H 2 and carbon monoxide CO and oxygen ions O.
- Oxygen ions O 2- is generated, to move to the counter electrode the electrode layer through the electrolyte layer.
- the oxygen ion O 2- emits an electron to become the oxygen molecule O 2 .
- the characteristic configuration of another electrochemical device according to the present invention for achieving the above object is the above-mentioned electrochemical module, a power converter that extracts electric power from the electrochemical module, or distributes electric power to the electrochemical module. It is in the point of having.
- the power converter takes out the electric power generated by the electrochemical module or distributes the electric power to the electrochemical module.
- the electrochemical module acts as a fuel cell or an electrolytic cell. Therefore, according to the above configuration, it is possible to provide an electrochemical device capable of converting chemical energy such as fuel into electric energy or improving the efficiency of converting electric energy into chemical energy such as fuel.
- an inverter when used as a power converter, the electric output obtained from an electrochemical module having excellent durability, reliability, and performance can be boosted by the inverter, or direct current can be converted to alternating current. Therefore, it is preferable because the electric output obtained by the electrochemical module can be easily used.
- it is used for electrolysis it is preferable because it is possible to construct an electrochemical device capable of obtaining DC power from an AC power source and supplying DC power to an electrochemical element or an electrochemical module.
- the characteristic configuration of the energy system according to the present invention for achieving the above object is that it has the above-mentioned electrochemical device and an exhaust heat utilization unit that reuses the heat discharged from the above-mentioned electrochemical device.
- the above-mentioned feature configuration since it has an electrochemical device and an exhaust heat utilization unit that reuses the heat discharged from the electrochemical device, it is excellent in durability, reliability and performance, and also has excellent energy efficiency.
- the system can be realized. It is also possible to realize a hybrid system having excellent energy efficiency by combining it with a power generation system that generates electricity by utilizing the combustion heat of unused fuel gas discharged from an electrochemical device.
- the characteristic configuration of the solid oxide fuel cell according to the present invention for achieving the above object is that the above-mentioned electrochemical module is provided and a power generation reaction is generated in the electrochemical module.
- the power generation reaction can be performed as a solid oxide fuel cell equipped with an electrochemical module having excellent durability, reliability and performance, so that the solid oxide fuel has high durability and high performance. You can get a battery.
- the solid oxide fuel cell can be operated in a temperature range of 650 ° C. or higher during rated operation, the raw material is converted to hydrogen in a fuel cell system using a hydrocarbon gas such as city gas as the raw material. It is more preferable because a system can be constructed in which the heat required at the time can be covered by the exhaust heat of the fuel cell, and the power generation efficiency of the fuel cell system can be improved. Further, a solid oxide fuel cell operated in a temperature range of 900 ° C.
- a solid oxide fuel cell operated in the following temperature range is more preferable because the effect of suppressing Cr volatilization can be further enhanced.
- the characteristic configuration of the solid oxide type electrolytic cell according to the present invention for achieving the above object is that the above-mentioned electrochemical module is provided and an electrolytic reaction is caused in the electrochemical module.
- gas can be generated by an electrolytic reaction as a solid oxide type electrolytic cell equipped with an electrochemical element having excellent durability, reliability and performance, so that it is a highly durable and high-performance solid.
- An oxide type electrolytic cell can be obtained.
- FIG. 9 is a cross-sectional view taken along the line XX in FIG.
- FIG. 9 is a cross-sectional view taken along the line XI-XI in FIG.
- FIG. 9 is a cross-sectional view taken along the line XI-XI in FIG.
- FIG. 9 is a cross-sectional view taken along the line XII-XII in FIG. 9 is a cross-sectional view taken along the line XIII-XIII in FIG.
- FIG. 9 is a cross-sectional view taken along the line XIV-XIV in FIG.
- the electrochemical module M the electrochemical device, and the energy system according to the embodiment of the present invention will be described.
- the side of the electrolyte layer as viewed from the electrode layer is referred to as “upper” and “upper”
- the side of the first plate-like body is referred to as “lower” and “lower side”.
- the same effect can be obtained even if the electrochemical module M is installed vertically or horizontally, so that "upper” and “lower” may be read as “left” and "right”, respectively.
- the electrochemical module M is a substantially rectangular container (housing, first sandwiching body, second) in which the electrochemical element laminate (laminate) S and the electrochemical element laminate S are housed. It is equipped with a holding body) 200.
- the electrochemical element A (FIG. 4) is an element that generates electric power by utilizing a power generation reaction, and is formed in a plate shape extending from the front side of the paper surface to the back side of the paper surface in the cross-sectional view of FIG.
- the electrochemical element laminate S is configured by laminating a plurality of flat plate-shaped electrochemical elements A in the upper and lower stacking directions in the cross-sectional view of FIG.
- SOFC Solid Oxide Fuel Cell
- the electrochemical module M discharges the first gas after the reaction in the first gas supply unit 61 that supplies the first gas to the electrochemical element laminate S and the electrochemical element laminate S from the outside of the container 200.
- the first gas discharge unit 62 is provided.
- the container 200 is provided with a second gas supply unit 71, and supplies the second gas to the electrochemical element laminate S from the outside of the container 200.
- the second gas after the reaction is discharged to the outside from the second gas discharge unit 72 provided in the container 200.
- the first gas is a reducing component gas such as a fuel gas
- the second gas is an oxidizing component gas such as air.
- the electrochemical module M is provided with opening plate members (non-rigid members) 240 on both side surfaces of the electrochemical element laminate S in the cross-sectional view of FIG.
- the plate member 240 with an opening is a plate-shaped member extending along the stacking direction of the electrochemical element A corresponding to both side surfaces of the electrochemical element laminate S, and causes an electrical short circuit in the electrochemical module M. Insulating materials such as mica are preferred to prevent this.
- the plate member 240 with openings is formed with a plurality of openings 240a penetrating along the plane direction of the electrochemical element laminate S.
- the electrochemical element laminate S receives the fuel gas from the first gas supply unit 61, and receives the air from the second gas supply unit 71 through the opening 240a of the plate member 240 with an opening, and receives the fuel gas. And oxygen in the air is electrochemically reacted to generate electricity.
- the fuel gas after the electrochemical reaction is discharged to the outside from the first gas discharge unit 62. Further, the air after the electrochemical reaction is guided to the second gas discharge section 72 through the opening 240a of the plate member 240 with an opening, and is discharged to the outside from the second gas discharge section 72.
- the veneer member 240 with an opening is provided adjacent to both side surfaces of the electrochemical element laminate S, but it is not essential and either one may be provided, or both may be omitted. You may.
- the upper insulator 210T, the upper flat plate member 220T, and the upper plate (first sandwiching body) are placed on the upper part of the electrochemical element laminate S in this order from the side of the electrochemical element laminate S to the outside.
- the lower insulator 210B, the lower flat plate member 220B, and the lower plate (second sandwiching) are placed in the lower part of the electrochemical element laminate S in this order from the side of the electrochemical element laminate S to the outside. Body) 230B.
- the electrochemical element laminate S will be described in detail later.
- Insulators Insulators, flat plate members, plates and containers Below, insulators (upper and lower insulators 210T and 210B) 210, flat plate members (upper and lower flat plate members 220T and 220B) 220, plates (upper and lower plates)
- insulators upper and lower insulators 210T and 210B
- flat plate members upper and lower flat plate members 220T and 220B
- plates upper and lower plates
- the lower plates 230T and 230B) 230 and the container 200 will be further described.
- the upper insulator 210T is a plate-shaped member, and is arranged so as to cover the upper plane (first plane) of the electrochemical element laminate S.
- the upper insulator 210T is formed of, for example, ceramics or hard mica, and electrically insulates the electrochemical element laminate S from the outside.
- the upper flat plate member 220T is arranged above the upper insulator 210T.
- the upper flat plate-shaped member 220T is an elastic member, and in the present embodiment, it is formed in a corrugated shape, for example, in the cross-sectional view of FIG.
- the waveform extends along the plane of the electrochemical element laminate S. Therefore, the upper flat plate member 220T is arranged so that the top of the waveform is in contact with the upper insulator 210T.
- the plate thickness of the corrugated upper flat plate member 220T is not limited to this, but is, for example, about 0.1 mm to 1 mm.
- the amplitude (height) of the waveform is not limited to this, but is, for example, about 1 mm to 10 mm. The role of the upper flat plate member 220T will be described later.
- the upper plate 230T is a plate-shaped member, is arranged above the upper flat plate-shaped member 220T, and is made of a ceramic material having high bending strength at high temperatures, for example, 99 alumina.
- the upper plate 230T comes into contact with at least a part of the upper flat member 220T.
- the corrugated top of the upper flat member 220T comes into contact with the upper plate 230T.
- the upper plate 230T together with the lower plate 230B, receives a predetermined tightening pressure from the container 200, and receives a predetermined tightening pressure from the container 200, and receives an electrochemical element laminate S, a pair of upper and lower insulators 210T and 210B, and upper and lower flat plate members 220T and 220B. Is sandwiched between.
- the tightening pressure is a pressure per unit area such as per 1 mm 2.
- the lower insulator 210B is arranged so as to cover the lower plane (second plane) of the electrochemical element laminate S.
- the lower flat plate member 220B is arranged below the lower insulator 210B, and the lower plate 230B is arranged below the lower flat plate member 220B.
- the lower insulator 210B, the lower flat plate member 220B, and the lower plate 230B are the same as the upper insulator 210T, the upper flat plate member 220T, and the upper plate 230T, respectively.
- the corrugated top of the lower flat plate member 220B comes into contact with the lower plate 230B, and the top 220Bb comes into contact with the lower insulator 210B.
- the container 200 containing the electrochemical element laminate S is a substantially rectangular parallelepiped container.
- the container 200 includes a box-shaped upper lid (first holding body) 201 having an opening at the bottom and a lower lid (second holding body) 203 having an opening at the top.
- a connecting portion 202 is provided on the end surface of the upper lid 201 facing the lower lid 203, and a connecting portion 205 is provided on the end surface of the lower lid 203 facing the upper lid 201.
- the depth of the lower lid 203 in the vertical direction is deeper than the depth of the upper lid 201.
- the upper lid 201 and the lower lid 203 need only be able to form a space inside as a unit, and the relationship of depth is not limited to this.
- the depth of the upper lid 201 may be deeper than the depth of the lower lid 203.
- a second gas supply portion 71 and a second gas discharge portion 72 are formed on each of the pair of side walls facing each other of the lower lid 203.
- the second gas supply unit 71 and the second gas discharge unit 72 are formed on the lower lid 203.
- the formation positions of the second gas supply unit 71 and the second gas discharge unit 72 are not limited to this, and may be formed at any position of the container 200.
- the second gas supply unit 71 and the second gas discharge unit 72 may be formed on, for example, the upper lid 201.
- the upper lid 201 has an opening 201c that is one size smaller than the outer edge of the upper lid 201. Then, in the cross-sectional view of FIG. 1, the inner end portion facing the electrochemical element laminate S is branched into the first end portion 201a and the second end portion 201b adjacent to the opening 201c.
- the first end portion 201a extends inward in the container 200 in a predetermined length in the plane direction, and the second end portion 201b branches from the first end portion 201a and has a predetermined length below the container 200. It is extending.
- the first end portion 201a and the second end portion 201b form approximately 90 ° in cross-sectional view, and form an L-shaped corner portion.
- the L-shaped corners are formed along the outer edge on the inner side of the outer edge of the upper lid 201 shown in FIG. 2 in a top view.
- an opening 201c slightly smaller than the outer edge of the upper lid 201 is formed on the upper surface of the upper lid 201 by the end of the first end portion 201a.
- the lower lid 203 has a first end portion 203a and a second end portion 203b forming an L-shaped corner portion forming approximately 90 ° in the cross-sectional view shown in FIG. Then, as shown in FIG. 1, an opening 203c that is one size smaller than the outer edge of the lower lid 203 is formed by the end of the first end portion 203a.
- the upper ends of the pair of veneer members 240 with openings, the upper insulator 210T, and the upper portion are formed.
- the flat plate member 220T and the upper plate 230T are fitted. Specifically, in the upper plate 230T along the plane direction of the electrochemical element laminate S, the upper surface of the outer peripheral end portion contacts the lower surface of the first end portion 201a (a part of the inner surface of the L-shaped corner portion). Is supported.
- the outer surface of the upper end of the plate member 240 with an opening along the side surface of the electrochemical element laminate S is in contact with the inner side surface of the second end portion 201b (a part of the inner surface of the L-shaped corner portion). It is supported.
- the upper flat plate member 220T and the upper insulator 210T are supported by an L-shaped corner portion composed of a first end portion 201a and a second end portion 203b via an upper plate 230T and an opening plate member 240.
- the lower end of the pair of plate members with openings 240, the lower insulator 210B, the lower plate-shaped member 220B, and the lower plate 230B Is fitted.
- the upper surface of the electrochemical element laminate S is supported by the upper lid 201 via the upper plate 230T, the upper flat plate member 220T, and the upper insulator 210T.
- the lower surface of the electrochemical element laminate S is supported by the lower lid 203 via the lower plate 230B, the lower flat plate member 220B, and the lower insulator 210B.
- the upper lid 201 and the lower lid 203 include the electrochemical element laminate S, the upper and lower insulators 210T and 210B, the upper and lower flat plate members 220T and 220B, the upper and lower plates 230T and 230B, and the like. And, in a state of being sandwiched from the lower part, the connecting portion 202 and the connecting portion 205 are connected by being welded, for example. At the time of this connection, the upper lid 201 and the lower lid 203 are connected by applying a predetermined load to the electrochemical element laminate S or the like.
- an opening 203e is formed on the side surface of the lower lid 203. Therefore, a part of the side surface of the electrochemical element laminate S is exposed from the opening 203e.
- the weight of the container 200 can be reduced and the materials required for the container 200 can be reduced.
- side insulation made of a material such as mica A body (not shown) is installed between the electrochemical element laminate S and the side surface of the upper lid 201 or the lower lid 203.
- the electrochemical element laminate S and the upper and lower insulators 210T and 210B are tightened at predetermined positions via the upper and lower flat plate members 220T and 220B. It is loaded with pressure and is sandwiched between the upper and lower plates 230T and 230B.
- the flat plate-shaped member 220 is formed of a heat-expanding member that expands due to heat in the present embodiment.
- the coefficient of thermal expansion (coefficient of thermal expansion, the same applies hereinafter) of the flat plate-shaped member 220 is preferably larger than the coefficient of thermal expansion of the members constituting the electrochemical element laminate S, the container 200, and the like.
- Examples of the material of such a flat plate-shaped member 220 include austenitic stainless steel.
- the coefficient of thermal expansion of austenitic stainless steel is relatively large.
- the coefficient of thermal expansion of aluminum is about 23.8 ⁇ 10 -6 / ° C
- the coefficient of thermal expansion of austenitic stainless steel is as large as the coefficient of thermal expansion of aluminum.
- the coefficient of thermal expansion of austenitic stainless steel is about 17.3 ⁇ 10 -6 / ° C for SUS303 and SUS304, and about 16 ⁇ 10 -6 / ° C for SUS316.
- the material of the flat plate-shaped member 220 is not limited to this, and it is preferable to select a member having a coefficient of thermal expansion larger than that of the container 200 or the like and having excellent corrosion resistance.
- the coefficient of thermal expansion of the container 200 is preferably smaller than the coefficient of thermal expansion of the flat plate member 220.
- the container 200 is arranged adjacent to the flat plate member 220 via the plate 230. Then, the lower lid 203 and the upper lid 201 of the container 200 are coupled to each other to apply a tightening pressure to the electrochemical element laminate S via the flat plate-shaped member 220.
- Examples of the material of such a container 200 include ferrite stainless steel, martensitic stainless steel, and a composite of these and ceramics. These materials have a smaller coefficient of thermal expansion than austenitic stainless steel, and the coefficient of thermal expansion of ferritic stainless steel is about 11 ⁇ 10 -6 / ° C. for SUS430.
- the coefficient of thermal expansion of martensitic stainless steel is about 10.4 ⁇ 10-6 / ° C for SUS403 and SUS420J1 and about 10.1 ⁇ 10-6 / ° C for SUS410 and SUS440C.
- the container 200 is not limited to this, and it is preferable to select a material having a coefficient of thermal expansion smaller than that of the flat plate member 220 and having excellent corrosion resistance.
- the material of the electrochemical element laminate S is preferably the same material as that of the container 200.
- the materials of the electrochemical element laminate S and the container 200 preferably have a coefficient of thermal expansion similar to that of the container 200.
- the substrate and container 200 of the electrochemical element laminate S expand to the same extent during power generation when the electrochemical element A becomes high temperature, for example. Therefore, for example, the difference in thermal expansion between the substrate of the electrochemical element A and the container 200 can be suppressed to be small, and damage to the substrate can be suppressed.
- the container 200 can be manufactured using, for example, a lost wax casting method, but is not limited to this.
- a lost wax casting method for example, a hollow model corresponding to the outer shape of the container 200 is manufactured by using a thermoplastic substance such as beeswax or pine fat.
- This model is covered with a refractory material such as silica sand or lime powder.
- the model coated with the refractory material is heated to elute the model composed of the thermoplastic substance.
- a cavity corresponding to the model imitating the shape of the container 200 is formed inside the refractory material.
- the container 200 having the upper lid 201 and the lower lid 203 is manufactured by the lost wax casting method.
- the upper lid 201 and the lower lid 203 may be manufactured separately.
- a pair of plate members 240 with openings are arranged on both side surfaces of the electrochemical element laminate S, and an insulator 210, a flat plate member 220, and a plate 230 are arranged on the upper plane and the lower portion of the electrochemical element laminate S. They are housed in the lower lid 203 in a state of being arranged in order on a flat surface.
- the lower lid 203 is covered with the upper lid 201, the position is adjusted so that a predetermined tightening pressure is applied to the electrochemical element laminate S, and the lower lid 203 and the upper lid 201 are joined by welding or the like. As a result, the electrochemical module M is assembled.
- the container 200 when the container 200 is manufactured by the lost wax casting method, it is possible to achieve cost reduction by thinning, refining, and mass production. Further, by forming the box-shaped container 200, in the present embodiment, it is possible to provide a space for a manifold of air supplied from the second gas supply unit 71 to the electrochemical element laminate S.
- the container 200 is formed by using the predetermined material Y1
- the main part of the electrochemical element laminate S is formed by using the predetermined material Y2 such as a substrate
- the flat plate member 220 is formed by using the predetermined material Y3. It is assumed that it is formed.
- the coefficient of thermal expansion of material Y3 is larger than the coefficient of thermal expansion of material Y1 and material Y2.
- the flat plate-shaped member 220 has a spring constant of K20 at room temperature (20 ° C.).
- the spring constant K20 is calculated using, for example, the plate thickness of the flat plate member 220, the amplitude (height) of the corrugated shape, the pitch of the waves, and the like.
- the spring constant is K700 at the temperature at the time of power generation by the electrochemical element A (for example, 700 ° C.). K700 is, for example, about 75% of K20.
- P the tightening pressure per unit area required by the electrochemical element laminate S during power generation (for example, 700 ° C.).
- P is not limited to this, but is, for example, about 1 to 3 kgf / cm 2 .
- the thermal expansion length of the container 200 is changed to LA in the weighting direction (here, the stacking direction of the electrochemical element A).
- the thermal expansion length of the electrochemical element laminate S be LB
- the thermal expansion length of the flat plate member 220 be LC.
- the difference in the thermal expansion lengths of the container 200, the electrochemical element laminate S, and the flat plate member 220 may be calculated as the difference ⁇ G in the thermal expansion length.
- ⁇ G LA ⁇ (LB + LC).
- the lower lid 203 and the upper lid 201 give the flat plate-shaped member 220 the compression displacement L calculated above.
- the bond distance and the like are adjusted and sealed by welding or the like. As a result, a predetermined tightening pressure can be applied to the electrochemical element laminate S.
- the flat plate-shaped member 220 made of the thermal expansion member is arranged on the upper plane and the lower plane of the electrochemical element laminate S, and from the upper and lower plates 230.
- a predetermined tightening pressure is applied to elastically support the electrochemical element laminate S.
- At least one of the electrochemical element laminate S, the container 200, and the like is generated by the electrochemical element A from a low temperature state (for example, about 20 ° C. at room temperature) where the electrochemical element A does not generate electricity. Occasionally, it expands when it reaches a high temperature (for example, about 650 ° C to about 950 ° C). At this time, if a thermal expansion difference occurs between the electrochemical element laminate S and the container 200, the distance between the electrochemical element laminate S and the container 200 is when power is generated (high temperature) and when power is not generated (low temperature). Time) and different.
- a low temperature state for example, about 20 ° C. at room temperature
- a high temperature for example, about 650 ° C to about 950 ° C.
- the flat plate-shaped member 220 is a thermal expansion member, the flat plate-shaped member 220 also thermally expands when the electrochemical element A becomes hot during power generation. Therefore, even when the distance between the electrochemical element laminate S and the container 200 fluctuates due to thermal expansion, the flat plate-shaped member 220 has the elastic force generated by the thermal expansion of the flat plate-shaped member 220 itself and the compression given in advance. Utilizing the elastic force due to the displacement L, an appropriate tightening pressure is applied to the electrochemical element laminate S with the plate 230 as a pressing surface.
- the fluctuation of the distance between the electrochemical element laminate S and the container 200 due to thermal expansion can be supplemented by the fluctuation due to thermal expansion of the flat plate member 220. Therefore, an appropriate tightening pressure is applied to the electrochemical element laminate S even after the above-mentioned interval fluctuates.
- the space between the electrochemical element laminate S and the container 200, which has increased due to thermal expansion is compensated for by the thermal expansion of the flat plate member 220, and an appropriate tightening pressure is applied to the electrochemical element laminate S. do.
- the flat plate-shaped member 220 is arranged along the plane of the electrochemical element laminate S and the plane of the plate 230, an appropriate tightening pressure is applied to the electrochemical element even after the above-mentioned interval fluctuates. It is applied substantially uniformly along the plane of the laminated body S. Therefore, in the electrochemical module M, it is possible to suppress a decrease in the contact area between the electrochemical elements A and reduce the internal resistance. Further, since the electrochemical elements A can be appropriately brought into contact with each other to maintain the airtightness, it is possible to suppress the leakage of fuel gas or the like to the outside of the electrochemical element A, and it is possible to suppress the deterioration of the sealing property of the reaction gas. ..
- the coefficient of thermal expansion of the flat plate-shaped member 220 is larger than the coefficient of thermal expansion of the members constituting the container 200.
- austenitic stainless steel is adopted as the material of the flat plate member 220
- ferritic stainless steel, martensitic stainless steel, or a composite of these and ceramics is adopted as the material of the container 200.
- the material of the electrochemical element laminate S the same material as that of the container 200 is adopted.
- the distance between the electrochemical element laminate S and the container 200 at the high temperature is wider than that at the low temperature. For example, when the amount of thermal expansion of the container 200 is relatively large, the distance between the electrochemical element laminate S and the container 200 is further increased.
- the coefficient of thermal expansion of the flat plate-shaped member 220 is larger than the coefficient of thermal expansion of the members constituting the container 200. Therefore, the distance between the electrochemical element laminate S and the container 200, which has been expanded due to the expansion of the container 200, can be complemented by the thermal expansion of the flat plate member 220. That is, even when the distance between the electrochemical element laminate S and the container 200 fluctuates in a direction that greatly expands due to thermal expansion, the above-mentioned distance can be complemented by the flat plate-shaped member 220 that expands further.
- an appropriate tightening pressure is electrochemically applied by the elastic force due to the compressive displacement given to the flat plate member 220 in advance and the elastic force generated by the thermal expansion of the flat plate member 220 itself.
- the load can be applied substantially uniformly along the plane of the element laminate S.
- the amount of thermal expansion of the container 200 can be kept small, for example, when the temperature becomes high during power generation. As a result, it is possible to keep the spread of the distance between the electrochemical element laminate S and the container 200 due to thermal expansion small. Therefore, even when the coefficient of thermal expansion of the flat plate member 220 is relatively small, an appropriate tightening pressure can be applied substantially uniformly along the plane of the electrochemical element laminate S after the above-mentioned interval fluctuates. .. Further, when the amount of thermal expansion of the container 200 is small, the expansion of the container 200 can suppress the displacement and damage of the substrate and the like of the electrochemical element A.
- the flat plate-shaped member 220 is formed in a corrugated shape. Therefore, the tops of the corrugations of the flat plate-shaped member 220 are alternately in contact with the flat surface of the plate 230 and the flat surface of the electrochemical element laminate S via the insulator 210 at a plurality of dispersed locations.
- the flat member 220 is loaded due to the fluctuation of the distance.
- the pressing force also fluctuates.
- This fluctuating pressing force is elastically received in a state of being substantially uniformly dispersed along the plane of the electrochemical element laminate S and the plane of the plate 230 via the flat plate member 220. This is because, as described above, the flat plate-shaped member 220 is in contact with the plane of the electrochemical element laminate S and the plane of the plate 230 at a plurality of dispersed locations.
- the flat plate-shaped member 220 thermally fluctuates, the fluctuation of the distance between the electrochemical element laminate S and the container 200 is received by the thermal expansion and elasticity of the flat plate-shaped member 220 itself at the above-mentioned plurality of locations.
- the plate-shaped member 220 applies an appropriate tightening pressure in the lamination direction to the electrochemical element laminate S. It can be applied almost uniformly along a plane. As a result, in the electrochemical module M, an increase in internal resistance can be suppressed, a decrease in the sealing property of the reaction gas can be suppressed, and miniaturization and weight reduction can be achieved.
- the electrochemical element laminate S is composed of SOFC which is an electrochemical element.
- the temperature of SOFC during power generation is as high as about 650 ° C to about 950 ° C. Therefore, the amount of expansion of the electrochemical element laminate S and the container 200 or the like changes from a low temperature during non-power generation (for example, about 20 ° C. at room temperature) to a high temperature during power generation (for example, about 650 ° C. to about 950 ° C.). By becoming the state of, it becomes large.
- the flat plate-shaped member 220 can apply an appropriate tightening pressure to the electrochemical element laminate S with the plate 230 as a pressing surface by utilizing the fluctuation of the elastic force due to the thermal expansion of the flat plate-shaped member 220 itself. Therefore, even in SOFC or the like in which power generation is performed in a high temperature region, an appropriate tightening pressure can be applied to the electrochemical element laminate S by applying this embodiment.
- the miniaturization of the electrochemical module M will be further explained.
- a large tightening bolt using a spring is attached to the outside of the electrochemical module M as a tightening member. Need to be placed.
- the protrusion of the electrochemical module M facilitates heat dissipation during power generation. Since the flat plate-shaped member 220 of the present embodiment is arranged inside the electrochemical module M, the heat dissipation surface can be reduced and the power generation efficiency of the electrochemical module M can be improved.
- the tightening pressure is adjusted by the flat plate-shaped member 220, the tightening pressure is higher than that in the case where the tightening pressure of the electrochemical element laminate S is adjusted by using a plurality of large tightening bolts or the like.
- the time and effort required for adjustment can be greatly reduced.
- the flat plate-shaped member 220 of the present embodiment when tightening the electrochemical element laminate S using a plurality of large tightening bolts, it is necessary to adjust the pressure while controlling the torque of the plurality of bolts.
- the flat plate-shaped member 220 of the present embodiment the flat plate-shaped member 220 applies a tightening pressure substantially uniformly to the flat surface of the electrochemical element laminate S, so that the complicated torque management as described above is unnecessary. Is.
- the electrochemical module M includes a container 200 (upper lid 201 and lower lid 203) containing the electrochemical element laminate S, and an internal flow from the outside of the container 200 via the supply path 4.
- the first gas supply section 61 that supplies the first gas to the passage A1, the first gas discharge section 62 that discharges the first gas after the reaction, and the second gas that is supplied to the flow section A2 from the outside of the container 200.
- a second gas supply unit 71, a second gas discharge unit 72 that discharges the second gas after the reaction, and an output unit 8 that obtains an output associated with the electrochemical reaction in the electrochemical reaction unit 3 are provided in the container 200.
- a distribution chamber 9 for distributing and supplying the second gas supplied from the second gas supply unit 71 to the flow unit A2 is provided.
- the distribution chamber 9 is a space located on the side of the electrochemical element laminate S on the side where the second gas is supplied to the electrochemical element laminate S, and the flow portion A2 is formed with an opening on the space side. It communicates with the space.
- the electrochemical element laminate S is housed in a state of being sandwiched between a pair of current collectors 81 and 82 with respect to the container 200, and an output unit 8 is extended to the current collectors 81 and 82 to form a container. At least one of the current collectors 81 and 82 is electrically insulated from the container 200, and the first gas is airtight to the container 200 while being freely connected to an external power supply destination. It is housed so that it becomes.
- the electrochemical module M supplies fuel gas from the first gas supply unit 61 and air from the second gas supply unit 71, so that the fuel gas is generated as shown by the broken line arrows in FIGS. 1 and 4. Enter and air enters as shown by the solid line arrow.
- the fuel gas supplied from the first gas supply unit 61 is guided to the supply path 4 from the first penetration portion 41 of the top electrochemical element A of the electrochemical element laminate S, and is guided to the supply path 4 by the first annular packing material 42 (details). Will be passed through the internal flow path A1 of all the electrochemical elements A from the supply path 4 partitioned by (described later). Further, the air supplied from the second gas supply unit 71 temporarily flows into the distribution chamber 9 and then flows to the flow unit A2 formed between the electrochemical elements A.
- the corrugated second plate-shaped body 2 part is the first plate-shaped body 1 (plate-shaped).
- An internal flow path A1 is formed between the first plate-shaped body 1 and the second plate-shaped body 2 at a portion protruding from the support 10 (a part of an example of a metal substrate), and adjacent electrochemicals are formed. It contacts the electrochemical reaction unit 3 of the element A to enable electrical connection.
- the portion where the corrugated second plate 2 comes into contact with the first plate 1 is electrically connected to the first plate 1, and the electricity of the electrochemical element A adjacent to the second plate 2 is electrically connected.
- a flow section A2 is formed between the chemical reaction section 3 and the flow section A2.
- FIG. 18 shows an electrochemical element A having a cross section including the internal flow path A1 and an electrochemical element A having a cross section including the flow portion A2 side by side for convenience.
- the fuel gas supplied from the section 61 reaches the distribution section A12 (see FIGS. 9, 12, and 15), spreads and flows along the width direction on one end side via the distribution section A12, and flows through the internal flow path A1.
- each sub-flow path A11 is reached (see FIGS. 9, 11, and 15).
- the first gas can be evenly distributed from the distribution unit A12 to the plurality of subchannels A11, and the electrochemical output can be evenly generated in each electrochemical element.
- the fuel gas that has entered the internal flow path A1 can enter the electrode layer (first electrode) 31 and the electrolyte layer 32 via the gas flow allowance portion 1A. Further, the fuel gas, together with the fuel gas that has undergone the electrochemical reaction, further advances through the internal flow path A1, passes through the merging portion A13 and the second penetrating portion 51, and is provided by the second annular packing material 52 (details will be described later). Proceeding to the formed discharge path 5, the fuel gas that has undergone the electrochemical reaction from the other electrochemical element A is discharged from the first gas discharge unit 62 to the outside of the container 200.
- the air supplied from the second gas supply section 71 can enter the flow section A2 via the distribution chamber 9 and enter the counter electrode layer (second electrode) 33 and the electrolyte layer 32. Further, the air, together with the air that has undergone the electrochemical reaction, further advances along the electrochemical reaction unit 3 through the flow section A2, and is discharged from the second gas discharge section 72 to the outside of the container 200.
- the electric power generated in the electrochemical reaction unit 3 according to the flow of the fuel gas and air is generated by the contact between the electrochemical reaction unit 3 of the adjacent electrochemical element A and the second plate-shaped body 2 between the current collectors 81 and 82. It is connected in series between them, and the combined output is taken out from the output unit 8.
- the configuration of the electrochemical element laminate S will be described in detail later.
- the flat plate-shaped member 220 is a thermal expansion member that expands due to heat.
- the flat plate-shaped member 220 may be any member as long as it can apply a tightening pressure substantially uniformly to the plane of the electrochemical element laminate S when the electrochemical element laminate S and the container 200 or the like expand or contract. It is not limited to the expansion member.
- the flat plate-shaped member 220 may be a member having a small coefficient of thermal expansion but having a certain degree of elasticity.
- the elastic flat plate-shaped member 220 is arranged along the upper plane and the lower plane of the electrochemical element laminate S. Then, the flat plate-shaped member 220 is subjected to a predetermined tightening pressure from the container 200 via the upper and lower plates 230 to elastically support the electrochemical element laminate S.
- the distance between the electrochemical element laminate S and the container 200 may fluctuate before and after the expansion of the electrochemical element laminate S or the like. There is sex. Since the flat plate-shaped member 220 has an elastic force, even if the distance between the electrochemical element laminate S and the container 200 fluctuates, the electrochemical element laminate S is elastically sandwiched in the container 200 by the elastic force. .. That is, the flat plate-shaped member 220 receives the tightening pressure from the container 200 and elastically sandwiches the electrochemical element laminate S between the pair of plates 230.
- the flat plate-shaped member 220 is caused by the fluctuation of the distance.
- the pressing force applied to the load also fluctuates. This fluctuating pressing force is applied substantially along the plane of the electrochemical element laminate S and the plane of the plate 230 by the flat plate member 220 arranged along the plane of the electrochemical element laminate S and the plane of the plate 230. It is elastically received in a state of being dispersed almost uniformly.
- the plate-shaped member 220 applies an appropriate tightening pressure in the lamination direction to the electrochemical element laminate S. It can be applied almost uniformly along a plane. In this way, the flat plate-shaped member 220 is arranged along the plane of the electrochemical element laminate S and the plate 230 between the plane of the electrochemical element laminate S and the plane of the plate 230, and is stored in the container 200. With this simple configuration, the electrochemical module M can be configured in consideration of expansion of the electrochemical element laminate S or the like.
- the flat plate-shaped member 220 When the flat plate-shaped member 220 is a member having a small coefficient of thermal expansion, the flat plate-shaped member 220 has a coefficient of thermal expansion when the flat plate-shaped member 220, the electrochemical element laminate S, and the like are housed in the container 200 and assembled. It is preferable to increase the tightening pressure as compared with the case of a member having a large size. In this case, a large repulsive force is generated in the flat plate member 220 due to a large tightening pressure during assembly. Therefore, even if the distance between the electrochemical element laminate S and the container 200 is widened due to the expansion of the electrochemical element laminate S or the like and the tightening pressure is reduced to some extent, an appropriate tightening pressure can be applied to the electrochemical element laminate S. can.
- the upper and lower flat plate-shaped members 220T and 220B are provided, but only one of the flat plate-shaped members 220 may be provided.
- the clamping pressure can be applied to the electrochemical element laminated body S from the upper and lower parts by the flat plate-shaped members 220, so that the electrochemical element laminated body It is preferable because the tightening pressure can be applied more uniformly to the flat surface of S.
- the flat plate-shaped member 220 has a corrugated shape, but the present invention is not limited to this, and other configurations can be adopted in which the electrochemical element laminate S, the plate 230, and the like are dispersedly contacted at a plurality of locations.
- the flat plate-shaped member 220 may have a metal honeycomb shape.
- the flat plate-shaped member 220 may be in contact with only one of the flat surface of the electrochemical element laminate S and the flat surface of the plate 230 at a plurality of dispersed locations.
- the flat plate-shaped member 220 is in contact with the flat surface of the electrochemical element laminate S at a plurality of dispersed locations, and may be in surface contact with the flat surface of the plate 230.
- the flat plate-shaped member 220 disperses and receives the load force due to the expansion of the electrochemical element laminate S or the like at the portion in contact with the electrochemical element laminate S or the like.
- the flat plate-shaped member 220 is in surface contact with the flat surface of the electrochemical element laminate S, and may be in surface contact with the flat surface of the plate 230 at a plurality of locations.
- the flat plate-shaped member 220 disperses and receives the load force due to the expansion of the electrochemical element laminate S or the like at the portion in contact with the flat surface of the plate 230.
- the coefficient of thermal expansion of the flat plate-shaped member 220 is larger than the coefficient of thermal expansion of the members constituting the container 200.
- the distance between the electrochemical element laminate S and the container 200 generated by thermal expansion can be complemented by the expansion of the flat plate-shaped member 220, and the relationship is not limited to such a coefficient of thermal expansion.
- the coefficient of thermal expansion of the flat plate-shaped member 220 may be about the same as or smaller than the coefficient of thermal expansion of the members constituting the container 200.
- the flat plate member 220 includes an electrochemical element laminate S and a container caused not only by a temperature change accompanying power generation but also by a change in, for example, vibration, external pressure, humidity, and outside air temperature applied to the electrochemical module M. It can also accept expansion and contraction of 200 and the like.
- the electrochemical module M is provided with a functional layer such as an insulator 210 having an insulating property.
- the electrochemical module M may be provided with a separate functional layer in addition to or instead of the functional layer shown above.
- the lower lid 203 and the upper lid 201 are joined by welding.
- the connection between the lower lid 203 and the upper lid 201 is not limited to welding, and may be connected by, for example, bolts.
- the electrochemical element laminate S is formed by laminating a plurality of electrochemical elements A.
- the electrochemical element A will be described with reference to FIGS. 9 to 18.
- the electrochemical element A has an internal flow path A1 formed between the facing surfaces of the conductive first plate-shaped body 1 and the conductive second plate-shaped body 2.
- the plate-shaped support 10 is provided, and the plate-shaped support 10 is a plate-shaped support 10 in at least a part of the first plate-shaped body 1 and the second plate-shaped body 2 constituting the plate-shaped support 10.
- an electrochemical reaction unit 3 having a shaped electrolyte layer 32 and a film-shaped counter electrode layer 33 in the order described (see FIGS. 13 to 17).
- a first gas which is one of a reducing component gas such as fuel gas and an oxidizing component gas such as air, is supplied to the internal flow path A1 from the outside in the surface penetrating direction.
- a first penetrating portion 41 forming the supply path 4 is provided on one end side to form a discharge path 5 for discharging the first gas that has passed through the internal flow path A1 to the outside in the surface penetrating direction of the plate-shaped support.
- the second penetrating portion 51 is provided on the other end side (see FIGS. 9, 11, 16, and 17). It is also understood that the supply path 4 and the like and the discharge path 5 and the like are symmetrical and have the same structure.
- the first plate-like body 1 plays a role of maintaining the strength of the electrochemical element A by supporting the electrochemical reaction unit 3 having the electrode layer 31, the electrolyte layer 32, and the counter electrode layer 33.
- a material having excellent electron conductivity, heat resistance, oxidation resistance and corrosion resistance is used.
- ferritic stainless steel, austenitic stainless steel, nickel-based alloy and the like are used.
- an alloy containing chromium is preferably used.
- the first plate-like body 1 uses an Fe—Cr based alloy containing 18% by mass or more and 25% by mass or less of Cr, but is an Fe—Cr based alloy containing 0.05% by mass or more of Mn.
- Alloys Fe—Cr alloys containing 0.15% by mass or more and 1.0% by mass or less of Ti, Fe—Cr alloys containing 0.15% by mass or more and 1.0% by mass or less of Zr, Ti and Zr Fe-Cr alloy containing 0.15% by mass or more and 1.0% by mass or less of the total content of Ti and Zr, Fe-containing 0.10% by mass or more and 1.0% by mass or less of Cu.
- a Cr-based alloy is particularly preferable.
- the second plate-shaped body 2 is overlapped with the first plate-shaped body 1 and the peripheral edge portion 1a is welded and integrated to form the plate-shaped support 10 (see FIGS. 10 to 17).
- the second plate-shaped body 2 may be divided into a plurality of parts with respect to the first plate-shaped body 1, and conversely, a state in which the first plate-shaped body 1 is divided into a plurality of pieces with respect to the second plate-shaped body 2. It may be. Further, when integrating, other means such as adhesion and fitting can be adopted instead of welding, and if the internal flow path can be formed by partitioning from the outside, the integration is performed at a portion other than the peripheral edge portion 1a. You may.
- the first plate-shaped body 1 has a gas flow allowance portion 1A provided with a large number of a plurality of through holes 11 provided so as to penetrate the front surface side surface and the back surface side surface (see FIGS. 13 to 17).
- the through hole 11 can be provided in the first plate-shaped body 1 by laser processing or the like.
- the through hole 11 has a function of allowing gas to permeate from the back surface to the front surface of the first plate-like body 1.
- the gas flow allowance portion 1A is preferably provided in a region smaller than the region in which the electrode layer 31 is provided in the first plate-shaped body 1.
- a metal oxide layer 12 (described later, see FIG. 18) as a diffusion suppressing layer is provided on the surface of the first plate-like body 1. That is, a diffusion suppression layer is formed between the first plate-shaped body 1 and the electrode layer 31 described later.
- the metal oxide layer 12 is provided not only on the surface of the first plate-like body 1 exposed to the outside but also on the contact surface (interface) with the electrode layer 31. It can also be provided on the inner surface of the through hole 11.
- the metal oxide layer 12 can suppress elemental mutual diffusion between the first plate-like body 1 and the electrode layer 31.
- the metal oxide layer 12 is mainly a chromium oxide.
- the metal oxide layer 12 containing chromium oxide as a main component suppresses the diffusion of chromium atoms and the like of the first plate-like body 1 into the electrode layer 31 and the electrolyte layer 32.
- the thickness of the metal oxide layer 12 may be any thickness as long as it can achieve both high diffusion prevention performance and low electrical resistance.
- the metal oxide layer 12 can be formed by various methods, but a method of oxidizing the surface of the first plate-like body 1 to form a metal oxide is preferably used. Further, a metal oxide layer 12 is spray-coated on the surface of the first plate-like body 1 by a spray coating method (spattering method, aerosol deposition method, aerosol gas deposit method, powder jet deposit method, particle jet deposition method, cold spray).
- the metal oxide layer 12 may contain a highly conductive spinel phase or the like.
- the first plate-shaped body 1 has a plurality of through holes 11 provided so as to penetrate the front surface and the back surface.
- the through hole 11 can be provided in the first plate-shaped body 1 by mechanical, chemical, or optical drilling.
- the through hole 11 has a function of allowing gas to permeate from the back surface to the front surface of the first plate-like body 1. It is also possible to use a porous metal in order to give the first plate-like body 1 gas permeability.
- a sintered metal, a foamed metal, or the like can be used for the first plate-shaped body 1.
- the second plate-shaped body 2 includes a plurality of auxiliary flow paths A11, A11 .... It is formed in the shape of a corrugated plate forming the internal flow path A1 (see FIGS. 9 and 13). Further, the second plate-like body 2 is formed in a corrugated shape on both the front and back surfaces, and the opposite surface of the surface forming the internal flow path A1 is electrically connected to the electrochemical reaction unit 3 of the adjacent electrochemical element A. A passage formed in the vicinity of a portion where the corrugated second plate-shaped body 2 is in contact with the first plate-shaped body 1 functions as a flow portion A2.
- a plurality of the sub-channels A11 are provided in parallel along the long side of the rectangular plate-shaped support 10, and are provided in a supply path 4 provided at one end and a discharge path 5 provided at the other end. It constitutes an internal flow path A1 to reach. Further, the connection point between the first penetrating portion 41 and the internal flow path A1 is formed to bulge downward from the contact portion with the first plate-shaped body 1, and the first gas supplied from the first penetrating portion 41 is supplied.
- a distribution portion A12 for distributing to each of the sub-flow passages A11 is provided (see FIG. 9), and the connection portion between the second penetration portion 51 and the internal flow path A1 bulges downward from the contact portion with the first plate-like body 1.
- the material of the second plate-shaped body 2 is preferably a heat-resistant metal, from the viewpoint of reducing the difference in thermal expansion from the first plate-shaped body 1 and ensuring the reliability of bondability such as welding. , It is more preferable that the same material as the first plate-shaped body 1 is used.
- the plate-shaped support 10 (an example of a metal support) composed of the first plate-shaped body 1 and the second plate-shaped body 2 as described above has an electrode layer 31, an electrolyte layer 32, a counter electrode layer 33, and the like on the upper surface thereof. It is formed. That is, the electrode layer 31, the electrolyte layer 32, the counter electrode layer 33, and the like are supported by the plate-shaped support 10, and the electrochemical element A having high strength and excellent reliability and durability can be realized. can. Further, the metallic plate-shaped support 10 is preferable because it has excellent workability. Further, even if an inexpensive metal is used for the plate-shaped support 10, a plate-shaped support 10 having high strength can be formed, so that the expensive electrode layer 31, the electrolyte layer 32, etc. can be made into a thin layer, and the material cost and material cost can be increased. It is preferable to realize a low-cost electrochemical element A in which the processing cost is suppressed.
- the electrode layer 31 can be provided in a thin layer state on the front surface of the first plate-like body 1 and in a region larger than the region where the through hole 11 is provided. ..
- the thickness thereof can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to secure sufficient electrode performance while reducing the amount of expensive electrode layer material used to reduce costs.
- the entire region provided with the through hole 11 is covered with the electrode layer 31. That is, the through hole 11 is formed inside the region where the electrode layer 31 is formed in the first plate-shaped body 1. In other words, all the through holes 11 are provided facing the electrode layer 31.
- the electrode layer 31 has a plurality of pores inside and on the surface thereof in order to have gas permeability. That is, the electrode layer 31 is formed as a porous layer.
- the electrode layer 31 is formed so that its density is, for example, 30% or more and less than 80%.
- As the size of the pores a size suitable for the smooth reaction to proceed when the electrochemical reaction is carried out can be appropriately selected.
- the density is a ratio of the material constituting the layer to the space, and can be expressed as (1-porosity), and is equivalent to the relative density.
- the material of the electrode layer 31 for example, a composite material such as NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO 2 , and Cu-CeO 2 can be used.
- GDC, YSZ, and CeO 2 can be referred to as composite aggregates.
- the electrode layer 31 is provided with a low temperature firing method (for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range higher than 1100 ° C.) or a spray coating method (spraying method, aerosol deposition method, aerosol gas).
- It is preferably formed by a deposit method, a powder jet deposit method, a particle jet deposit method, a cold spray method, or the like), a PVD method (a sputtering method, a pulse laser deposit method, or the like), a CVD method, or the like.
- These processes which can be used in the low temperature range, give a good electrode layer 31 without using, for example, firing in a high temperature range higher than 1100 ° C. Therefore, the elemental mutual diffusion between the first plate-shaped body 1 and the electrode layer 31 can be suppressed without damaging the first plate-shaped body 1, and the electrochemical element A having excellent durability can be realized.
- it is more preferable to use the low temperature firing method because the handling of the raw material becomes easy.
- the intermediate layer 34 can be formed as a thin layer on the electrode layer 31 while covering the electrode layer 31.
- the thickness thereof can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, and more preferably about 4 ⁇ m to 25 ⁇ m. With such a thickness, it is possible to secure sufficient performance while reducing the amount of the material used for the expensive intermediate layer 34 to reduce the cost.
- Examples of the material of the intermediate layer 34 include YSZ (yttria-stabilized zirconia), SSZ (scandium-stabilized zirconia), GDC (gadolium-doped ceria), YDC (yttrium-doped ceria), and SDC (samarium-doped ceria). Ceria) and the like can be used. In particular, ceria-based ceramics are preferably used.
- the intermediate layer 34 is provided with a low temperature firing method (for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range higher than 1100 ° C.) or a spray coating method (spraying method, aerosol deposition method, aerosol gas deposition). It is preferably formed by a method, a powder jet deposit method, a particle jet deposit method, a cold spray method, or the like), a PVD method (a sputtering method, a pulse laser deposit method, or the like), a CVD method, or the like. These film formation processes that can be used in the low temperature region provide the intermediate layer 34 without using firing in a high temperature region higher than, for example, 1100 ° C.
- a low temperature firing method for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range higher than 1100 ° C.
- a spray coating method spray coating method
- spray coating method spray coating
- the elemental mutual diffusion between the first plate-shaped body 1 and the electrode layer 31 can be suppressed without damaging the first plate-shaped body 1, and the electrochemical element A having excellent durability can be realized. Further, it is more preferable to use the low temperature firing method because the handling of the raw material becomes easy.
- the intermediate layer 34 preferably has oxygen ion (oxide ion) conductivity. Further, it is more preferable to have mixed conductivity of oxygen ions (oxide ions) and electrons. The intermediate layer 34 having these properties is suitable for application to the electrochemical element A.
- the electrolyte layer 32 is formed as a thin layer on the intermediate layer 34 in a state of covering the electrode layer 31 and the intermediate layer 34. It can also be formed in the state of a thin film having a thickness of 10 ⁇ m or less. Specifically, the electrolyte layer 32 is provided over (straddling) the intermediate layer 34 and the first plate-like body 1. By forming the electrolyte layer 32 in this way and joining the electrolyte layer 32 to the first plate-like body 1, the overall electrochemical element can be made excellent in robustness.
- the electrolyte layer 32 is provided on the front surface of the first plate-like body 1 in a region larger than the region where the through hole 11 is provided. That is, the through hole 11 is formed inside the region where the electrolyte layer 32 is formed in the first plate-like body 1.
- gas leakage from the electrode layer 31 and the intermediate layer can be suppressed.
- gas leakage can be suppressed without providing a separate member such as a gasket.
- the entire periphery of the electrode layer 31 is covered by the electrolyte layer 32, but the electrolyte layer 32 may be provided above the electrode layer 31 and the intermediate layer 34, and a gasket or the like may be provided around the electrode layer 31.
- the materials of the electrolyte layer 32 include YSZ (yttria-stabilized zirconia), SSZ (scandium-stabilized zirconia), GDC (gadolium-doped ceria), YDC (yttrium-doped ceria), and SDC (samarium-doped ceria).
- LSGM sinrontium-magnesium-added lanthanum gallate
- other electrolyte materials that conduct oxygen ions and perovskite-type oxides and other electrolyte materials that conduct hydrogen ions can be used.
- zirconia-based ceramics are preferably used.
- the operating temperature of the SOFC using the electrochemical element A can be made higher than that of ceria-based ceramics and various hydrogen ion conductive materials.
- a material such as YSZ that can exhibit high electrolyte performance even in a high temperature range of about 650 ° C. or higher is used as the material of the electrolyte layer 32, and city gas, LPG, or the like is used as the raw material of the system.
- the electrolyte layer 32 includes a low temperature firing method (for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.) or a spray coating method (spraying method, aerosol deposition method, aerosol gas deposition). It can be formed by the method, powder jet deposit method, particle jet deposition method, cold spray method, etc.), PVD method (sputtering method, pulse laser deposition method, etc.), CVD (chemical vapor deposition) method, etc. preferable.
- a low temperature firing method for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
- a spray coating method spray coating method
- aerosol deposition method aerosol gas deposition
- These film formation processes that can be used in a low temperature range provide an electrolyte layer 32 that is dense and has high airtightness and gas barrier properties without using firing in a high temperature range exceeding, for example, 1100 ° C. Therefore, damage to the first plate-shaped body 1 can be suppressed, and mutual diffusion of elements between the first plate-shaped body 1 and the electrode layer 31 can be suppressed, and the electrochemical element A having excellent performance and durability can be obtained. realizable.
- it is preferable to use a low-temperature firing method, a spray coating method, or the like because a low-cost element can be realized. Further, it is more preferable to use the spray coating method because an electrolyte layer having a high density, airtightness and gas barrier property can be easily obtained in a low temperature range.
- the electrolyte layer 32 is densely configured in order to shield gas leaks from the anode gas and the cathode gas and to exhibit high ionic conductivity.
- the density of the electrolyte layer 32 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
- the electrolyte layer 32 is a uniform layer, its density is preferably 95% or more, and more preferably 98% or more.
- the electrolyte layer 32 is composed of a plurality of layers, it is preferable that at least a part of the electrolyte layer 32 includes a layer having a density of 98% or more (dense electrolyte layer), which is 99%.
- the above-mentioned layer (dense electrolyte layer).
- a dense electrolyte layer is contained as a part of the electrolyte layer, even when the electrolyte layer is formed in a plurality of layers, an electrolyte layer having a high density, airtightness and gas barrier property is formed. This is because it can be made easier.
- the reaction prevention layer 35 can be formed on the electrolyte layer 32 in a thin layer state.
- the thickness thereof can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, and more preferably about 3 ⁇ m to 15 ⁇ m. With such a thickness, it is possible to secure sufficient performance while reducing the amount of expensive anti-reaction layer material used to reduce costs.
- the material of the reaction prevention layer may be any material that can prevent a reaction between the component of the electrolyte layer 32 and the component of the counter electrode layer 33, and for example, a ceria-based material or the like is used.
- the material of the reaction prevention layer 35 a material containing at least one of the elements selected from the group consisting of Sm, Gd and Y is preferably used. It is preferable that at least one of the elements selected from the group consisting of Sm, Gd and Y is contained, and the total content of these elements is 1.0% by mass or more and 10% by mass or less.
- the reaction prevention layer 35 is formed by appropriately using a method capable of forming at a treatment temperature of 1100 ° C. or lower, damage to the first plate-like body 1 is suppressed, and the first plate-like body 1 and the electrode layer 31 are formed. It is preferable because it is possible to suppress mutual diffusion of elements and realize an electrochemical element A having excellent performance and durability.
- a low temperature firing method for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
- a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition method, a powder.
- a jet deposit method, a particle jet deposit method, a cold spray method, or the like), a PVD method (a sputtering method, a pulse laser deposit method, or the like), a CVD method, or the like can be appropriately used.
- a low-temperature firing method, a spray coating method, or the like because a low-cost element can be realized.
- it is more preferable to use the low temperature firing method because the handling of the raw material becomes easy.
- the counter electrode layer 33 can be formed on the electrolyte layer 32 or the reaction prevention layer 35 in a thin layer state.
- the thickness thereof can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to secure sufficient electrode performance while reducing the amount of expensive counter electrode layer material used to reduce costs.
- a composite oxide such as LSCF or LSM, a ceria oxide, or a mixture thereof can be used as the material of the counter electrode layer 33.
- the counter electrode layer 33 contains a perovskite-type oxide containing two or more kinds of elements selected from the group consisting of La, Sr, Sm, Mn, Co and Fe.
- the counter electrode layer 33 constructed by using the above materials functions as a cathode.
- the counter electrode layer 33 is formed by appropriately using a method capable of forming at a treatment temperature of 1100 ° C. or lower, damage to the first plate-shaped body 1 can be suppressed, and the first plate-shaped body 1 and the electrode layer can be formed. It is preferable because the element mutual diffusion with 31 can be suppressed and the electrochemical element A having excellent performance and durability can be realized.
- a low temperature firing method for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
- a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposit method, a powder.
- a jet deposit method, a particle jet deposit method, a cold spray method, or the like), a PDV method (a sputtering method, a pulse laser deposit method, or the like), a CVD method, or the like can be appropriately used.
- a low-temperature firing method, a spray coating method, or the like because a low-cost element can be realized.
- it is more preferable to use the low temperature firing method because the handling of the raw material becomes easy.
- the electrochemical element A is used as a power generation cell of a solid oxide fuel cell.
- a fuel gas containing hydrogen as the first gas is supplied to the electrode layer 31 from the back surface of the first plate-like body 1 through the through hole 11, and the second gas is supplied to the counter electrode layer 33 which is the counter electrode of the electrode layer 31. Is supplied, and is maintained at an operating temperature of, for example, about 700 ° C. Then, oxygen O 2 contained in the air in the counter electrode layer 33 reacts with the electron e ⁇ to generate oxygen ion O 2-.
- the oxygen ion O 2- moves through the electrolyte layer 32 to the electrode layer 31.
- hydrogen H 2 contained in the supplied fuel gas reacts with oxygen ion O 2- to generate water H 2 O and electron e ⁇ .
- hydrogen H 2 contained in the fuel gas distributed in the electrode layer 31 emits electrons e ⁇ to generate hydrogen ions H +.
- the hydrogen ion H + moves through the electrolyte layer 32 to the counter electrode layer 33.
- oxygen O 2 contained in air reacts with hydrogen ions H + and electrons e ⁇ to generate water H 2 O.
- the electrode layer 31 functions as a fuel electrode (anode) of the fuel cell
- the counter electrode layer 33 functions as an air electrode (cathode).
- the electrochemical reaction unit 3 includes an intermediate layer 34 between the electrode layer 31 and the electrolyte layer 32. Further, a reaction prevention layer 35 is provided between the electrolyte layer 32 and the counter electrode layer 33.
- the electrochemical element laminate S has a plurality of electrochemical elements A, and with respect to the adjacent electrochemical elements A, a plate-shaped support 10 constituting one electrochemical element A and another A first plate in which the plate-shaped support 10 constituting one electrochemical element A faces each other and the electrochemical reaction unit 3 in the plate-shaped support 10 constituting one electrochemical element A is arranged.
- the outer surface of the second plate-like body 2 different from the shape 1 and the outer surface of the first plate-like body 1 in the plate-like support 10 constituting the other electrochemical element A are electrically connected.
- a plurality of electrochemical elements A are laminated and arranged in a form in which a passage portion A2 through which the second gas flows is formed along the two outer surfaces between the two outer surfaces. ..
- a method of applying surface pressure to the contact surface or interposing a highly electrically conductive material to reduce the contact resistance is adopted. It is possible.
- the electrochemical reaction part of each electrochemical element faces upward.
- the above-mentioned configuration is formed by aligning the first penetrating portions 41 and the second penetrating portions 51 with the first annular packing material 42 and the second annular packing material 52 interposed therebetween. It becomes.
- the plate-shaped support 10 has a first penetrating portion that forms a supply path 4 for supplying a first gas, which is one of a reducing component gas and an oxidizing component gas, to the internal flow path A1 from the outside in the surface penetrating direction.
- a first gas which is one of a reducing component gas and an oxidizing component gas
- 41 is provided on one end side in the longitudinal direction of the rectangular plate-shaped support 10, and in the flow portion A2, with the passage portion A2 of the first penetrating portion 41 formed on both outer surfaces of the plate-shaped support 10.
- a first annular packing material 42 is provided as a partitioning annular packing material, and the first through portion 41 and the first annular packing material 42 form a supply path 4 for supplying the first gas to the internal flow path A1.
- An annular bulging portion a is provided on the side surface of the first plate-shaped body 1 opposite to the internal flow path A1 around the contact portion of the first annular packing material 42. The positioning of the first annular packing material 42 in the direction along the surface of the first plate-like body 1 is facilitated.
- the plate-shaped support 10 has a second penetrating portion 51 at the other end, which forms a discharge path 5 for discharging the first gas that has passed through the internal flow path A1 to the outside in the surface penetrating direction of the plate-shaped support 10.
- the second penetrating portion 51 is provided on the side and is configured to allow the first gas to flow in a state of being partitioned from the second gas, and is formed on both outer surfaces of the plate-shaped support 10 in the passing portion A2.
- a second annular packing material 52 as an annular packing material for partitioning the second through portion 51 from the flow portion A2 is provided, and the internal flow path A1 is passed through the second through portion 51 and the second annular packing material 52.
- a discharge path 5 for discharging the first gas is formed.
- the annular packing materials 42 and 52 in the present embodiment include metal materials 42a and 52a made of heat-expanding members and insulating metal oxide layers 42b and 52b.
- the metal materials 42a and 52a and the metal oxide layers 42b and 52b are formed in an annular shape in a top view, and through holes 42c and 52c are formed inside the metal materials 42a and 52a and the metal oxide layers 42b and 52b.
- the sealing area sealed by 52b is annular.
- the annular packing materials 42 and 52 communicate the first and second through portions 41 and 51 with each other by the through holes 42c and 52c, and seal between the adjacent electrochemical elements A by a sealing region.
- the metal materials 42a and 52a are formed of an annular flat plate, and the entire surface including the upper surface and the lower surface of the metal materials 42a and 52a is formed. It is covered with metal oxide layers 42b and 52b.
- the planar outer shape of the annular packing materials 42 and 52 is not limited to an annular shape, and may have any shape as long as it is an annular shape.
- the ring includes any shape such as a circle, an ellipse, a square, and a polygon.
- Examples of the constituent materials of the metal materials 42a and 52a include ferritic stainless steel, austenitic stainless steel, Inconel, copper, and Invar material.
- the metal materials 42a and 52a may include at least one selected from the group consisting of ferritic stainless steel, austenitic stainless steel, Inconel, copper, and Invar material.
- the metal materials 42a and 52a are bimetals 420a and 520a in which metals 421a and 521a having a small coefficient of thermal expansion and metals 422a and 522a having a large coefficient of thermal expansion are bonded together by, for example, rolling. You may.
- the bimetals 420a and 520a are formed by laminating two types of metal plates having different coefficients of thermal expansion, and change into a unique shape in response to a temperature change.
- bimetals 420a and 520a are used as the metal materials 42a and 52a, as the temperature of the bimetals 420a and 520a itself rises, for example, from the flat plate shape shown in FIG. 21, the arc shape as shown in FIG. 22 It is desirable that the structure is such that warpage occurs and the width in the thickness direction becomes large (T> t).
- an inverse material coefficient of thermal expansion 0.2 ⁇ 10 -5 / ° C.
- SUS316 coefficient of thermal expansion 1.8 ⁇ 10 ⁇ ° C.
- the T becomes 0.68 mm when the temperature of the bimetal 420a and 520a itself rises to 700 ° C.
- the vertical cross-sectional shapes of the metal materials 42a and 52a of the annular packing materials 42 and 52 are flat plate shape (see FIG. 20), corrugated shape (see FIG. 23), triangular shape (see FIG. 24), and circular shape (see FIG. 25). ), Elliptical shape (not shown), saw blade shape (see FIG. 26), substantially C-shaped shape (see FIG. 27), and approximately D-shaped shape (see FIG. 27). It is preferable to have.
- the vertical cross-sectional shape of the metal materials 42a and 52a is a ring shape having a closed space (internal space) 42d and 52d inside. That is, the metal materials 42a and 52a are formed in a ring shape over the entire circumference in a vertical cross-sectional view, and the closed spaces 42d and 52d partitioned from the outside are sealed inside the ring-shaped portion. It is formed in a state.
- the closed spaces 42d and 52d are formed in an annular shape over the entire circumference of the metal materials 42a and 52a in a top view.
- a gas or liquid is sealed in the closed spaces 42d and 52d, and when exposed to a high temperature environment, the gas or liquid sealed in the closed spaces 42d and 52d thermally expands to further metal.
- the materials 42a, 52a can be configured to promote expansion and thus increase the surface pressure, resulting in even higher sealing performance.
- the vertical cross-sectional shapes of the metal materials 42a and 52a shown in FIG. 28 are substantially D-shaped, but are not limited to such vertical cross-sectional shapes, for example, circular shape, elliptical shape, triangular shape, and rectangular shape. It may be formed in a shape or the like.
- Examples of the constituent materials of the metal oxide layers 42b and 52b include alumina, silica, magnesium oxide, iron oxide, chromium oxide, manganese oxide and the like.
- the metal oxide layers 42b and 52b may contain at least one selected from the group consisting of alumina, silica, magnesium oxide, iron oxide, chromium oxide, and manganese oxide.
- the metal oxide layers 42b and 52b are provided on at least one of the upper surface and the lower surface of the metal materials 42a and 52a when the metal materials 42a and 52a have a flat plate shape, a corrugated shape, a saw blade shape and the like. I just need to be there. Further, even if the metal materials 42a and 52a have other shapes, if the insulating property is ensured, the metal oxide layers 42b and 52b are necessarily covered so as to cover the entire metal materials 42a and 52a. It is not necessary to provide the metal materials 42a and 52a, and the metal materials 42a and 52a may be provided on at least one side in the thickness direction.
- the annular packing materials 42 and 52 according to the present embodiment can be produced by using a known laminating method in which a metal oxide is laminated on the metal materials 42a and 52a.
- a method of laminating the metal oxide layers 42b and 52b by etching the surfaces of the metal materials 42a and 52a to deposit oxides on the surfaces of the metal materials 42a and 52a or a method of laminating the metal oxide layers 42b and 52a on the surface of the metal materials 42a and 52a.
- Examples thereof include a method of laminating the metal oxide layers 42b and 52b by applying, adhering, baking, spray-coating, or spraying the oxide.
- a low-temperature firing method for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
- a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposit method.
- Powder jet deposit method, particle jet deposit method, cold spray method, etc. PVD method (sputtering method, pulse laser deposition method, etc.), CVD method, etc. , 52b is preferable because deterioration of the metal materials 42a and 52a can be suppressed.
- the electrochemical element laminate S in SOFC is placed in an environment where the temperature changes including high temperature.
- the flat plate-shaped member 220 made of the thermal expansion member is arranged on the upper plane and the lower plane of the electrochemical element laminate S, and a predetermined tightening pressure is applied from the upper and lower plates 230.
- the electrochemical element laminate S is elastically supported, and the surface pressure of the annular packing materials 42 and 52 acts on the plate-shaped support 10 to ensure the sealing property.
- due to repeated temperature changes for example, the elasticity of the metal oxide layers 42b and 52b may decrease, and a slight gap may be formed between the annular packing materials 42 and 52 and the plate-shaped support 10. ..
- the annular packing materials 42 and 52 when the elasticity of the metal oxide layers 42b and 52b is reduced and a slight gap is formed between the annular packing materials 42 and 52 and the plate-shaped support 10. Even if there is, when the SOFC is generating power, the surface pressure rises due to the expansion tension of the metal materials 42a and 52a, and high sealing performance is exhibited. Therefore, between the adjacent plate-shaped supports 10, the inside (that is, the supply path 4 and the discharge path 5) and the outside (that is, the flow portion A2) of the metal materials 42a and 52a and the metal oxide layers 42b and 52b Sufficient sealing performance is ensured between them. Further, since the metal materials 42a and 52a are difficult to cure even at a high temperature, they can withstand long-term use. Further, since the annular packing materials 42 and 52 are provided with the metal oxide layers 42b and 52b, the insulating property between the adjacent plate-shaped supports 10 (that is, between the electrochemical elements A) is also maintained.
- the coefficient of thermal expansion of the first plate-shaped body 1 or the second plate-shaped body 2 of the plate-shaped support 10 and the coefficient of thermal expansion of the metal materials 42a and 52a are different from each other. Then, when exposed to a high temperature, the surface pressure rises by utilizing the coefficient of thermal expansion generated by the difference in thermal expansion between the first plate-like body 1 or the second plate-like body 2 and the metal materials 42a and 52a. As a result, even higher sealing performance is exhibited.
- the coefficient of thermal expansion of the metal materials 42a and 52a may be made larger than the coefficient of thermal expansion of the first plate-like body 1 and the second plate-like body 2, and the coefficient of thermal expansion of the metal materials 42a and 52a may be set first. It can be made smaller than the coefficient of thermal expansion of the plate-shaped body 1 or the second plate-shaped body 2. More specifically, by using ferrite-based stainless steel for the first plate-shaped body 1 and the second plate-shaped body 2 and austenitic stainless steel for the metal materials 42a and 52a, the coefficient of thermal expansion of the metal materials 42a and 52a can be determined. It can be made larger than the coefficient of thermal expansion of the single plate-shaped body 1 and the second plate-shaped body 2.
- the metal materials 42a and 52a thermally expand more than the first plate-shaped body 1 and the second plate-shaped body 2, and the first plate-shaped body 1 and the second plate-shaped body 2 Higher sealing performance is exhibited by increasing the surface pressures of the metal materials 42a and 52a with respect to 2.
- the energy system Z includes an electrochemical device 100 and a heat exchanger 190 as an exhaust heat utilization unit that reuses the heat discharged from the electrochemical device 100.
- the electrochemical device 100 includes an electrochemical module M, a fuel supply module, and an inverter (an example of a power converter) 104 as an output unit 8 for extracting electric power from the electrochemical module M.
- the fuel supply module includes a desulfurizer 101, a vaporizer 106, and a reformer 102, and has a fuel supply unit 103 that supplies a fuel gas containing a reducing component to the electrochemical module M.
- the reformer 102 serves as a fuel converter.
- the electrochemical device 100 includes a desulfurizer 101, a reformed water tank 105, a vaporizer 106, a reformer 102, a blower 107, a combustion unit 108, an inverter 104, a control unit 110, and an electrochemical module M.
- the desulfurizer 101 removes (desulfurizes) sulfur compound components contained in hydrocarbon-based raw fuels such as city gas.
- the desulfurization device 101 can be provided to suppress an adverse effect of the sulfur compound on the reformer 102 or the electrochemical element A.
- the vaporizer 106 generates steam from the reformed water supplied from the reformed water tank 105.
- the reformer 102 steam reforms the raw fuel desulfurized in the desulfurization device 101 with the steam generated in the vaporizer 106 to generate a reformed gas containing hydrogen.
- the electrochemical module M uses the reforming gas supplied from the reformer 102 and the air supplied from the blower 107 to cause an electrochemical reaction to generate electricity.
- the combustion unit 108 mixes the reaction exhaust gas discharged from the electrochemical module M with air to burn the combustible components in the reaction exhaust gas.
- the inverter 104 adjusts the output power of the electrochemical module M so that it has the same voltage and frequency as the power received from the commercial system (not shown).
- the control unit 110 controls the operation of the electrochemical device 100 and the energy system Z.
- the reformer 102 reforms the raw material and fuel by using the combustion heat generated by the combustion of the reaction exhaust gas in the combustion unit 108.
- the raw material is supplied to the desulfurizer 101 through the raw material fuel supply path 112 by the operation of the booster pump 111.
- the reformed water in the reformed water tank 105 is supplied to the vaporizer 106 through the reformed water supply path 114 by the operation of the reformed water pump 113.
- the raw material fuel supply path 112 is a portion downstream of the desulfurizer 101 and is merged with the reformed water supply path 114, and the reformed water merged outside the container 200 and the raw material fuel are vaporized in the vaporizer 106. Is supplied to.
- the reformed water is vaporized by the vaporizer 106 to become steam.
- the steam-containing raw material and fuel produced by the vaporizer 106 is supplied to the reformer 102 through the steam-containing raw material and fuel supply path 115.
- the raw material and fuel are steam reformed in the reformer 102 to generate a reformed gas (first gas having a reducing component) containing hydrogen gas as a main component.
- the reformed gas generated by the reformer 102 is supplied to the electrochemical module M through the fuel supply unit 103.
- the reaction exhaust gas is burned in the combustion unit 108, becomes combustion exhaust gas, and is sent from the combustion exhaust gas discharge path 116 to the heat exchanger 190.
- a combustion catalyst unit 117 (for example, a platinum-based catalyst) is arranged in the combustion exhaust gas discharge path 116, and reducing components such as carbon monoxide and hydrogen contained in the combustion exhaust gas are burned and removed.
- the heat exchanger 190 generates hot water by exchanging heat between the flue gas generated by combustion in the combustion unit 108 and the supplied cold water. That is, the heat exchanger 190 operates as an exhaust heat utilization unit that reuses the heat discharged from the electrochemical device 100.
- a reaction exhaust gas utilization unit that utilizes the reaction exhaust gas discharged from the electrochemical module M (without being burned) may be provided. Further, at least a part of the reaction exhaust gas circulated from the first gas discharge unit 62 to the outside of the container 200 is merged with any part of 100, 101, 103, 106, 112, 113, 115 in FIG. 29 and recycled. You may.
- the reaction exhaust gas contains residual hydrogen gas that was not used in the reaction in the electrochemical element A. In the reaction exhaust gas utilization section, the residual hydrogen gas is used to utilize heat by combustion and power generation by a fuel cell or the like, so that energy can be effectively utilized.
- the metal oxide layers 42b and 52b are laminated along the surfaces of the metal materials 42a and 52a.
- the thicknesses of the metal oxide layers 42b and 52b are uniform.
- the vertical cross-sectional shape of the metal materials 42a and 52a is a corrugated shape.
- the cross-sectional shapes (surface shapes) of the metal oxide layers 42b and 52b are also corrugated.
- the vertical cross-sectional shapes of the annular packing materials 42 and 52 are also corrugated. That is, the vertical cross-sectional shape of the annular packing material may be the same as the vertical cross-sectional shape of the metal materials 42a and 52a.
- the cross-sectional shapes of the metal materials 42a and 52a are other shapes (for example, triangular shape (see FIG. 24), saw blade shape (see FIG. 26), substantially C shape (see FIG. 27), and substantially D shape (see FIG. 27).
- the thicknesses of the metal oxide layers 42b and 52b may be uniform, and the vertical cross-sectional shapes of the metal materials 42a and 52a and the vertical cross-sectional shapes of the annular packing materials 42 and 52 are the same. good.
- the thicknesses of the metal oxide layers 42b and 52b do not have to be uniform.
- the vertical cross-sectional shape of the annular packing material may be different from the vertical cross-sectional shape of the metal materials 42a and 52a.
- the plate-shaped support 10 (of the metal substrate) has the first and second annular packing materials 42 and 52 coated with the ceramic paste on at least a part of the surface thereof.
- An example may be arranged between the annular packing materials 42 and 52.
- the ceramic paste may be applied to the entire surface of the annular packing materials 42 and 52.
- the ceramic paste may be applied only to the front surface or the back surface of the annular packing materials 42 and 52.
- the ceramic paste is a paste that enhances the airtightness (sealing property) of the joint, for example, a gasket paste.
- the ceramic paste contains ceramic as a main component and is made into a paste with a viscous agent.
- the main component of the ceramic paste may be a metal oxide or an inorganic polymer.
- the main component of the ceramic paste may be mica, silica, or alumina.
- the ceramic paste may be water soluble.
- the electrochemical element A does not have to be laminated in the electrochemical module M.
- a plurality of electrochemical elements A may be arranged in an assembled state.
- the electrochemical element laminate S the electrochemical element A may not be laminated.
- a plurality of electrochemical elements A may be arranged in an assembled state.
- the electrochemical element laminate S may be referred to as an "electrochemical element aggregate”.
- Test packing of Experimental Example 1 is a vermiculite-glass-based composite packing, which is a commercially available product.
- the test packing of Experimental Example 2 is a ring-shaped packing material shown in FIG. 32 coated with a ceramic paste containing mica as a main component.
- the metal material of the annular packing material is a ring-shaped stainless corrugated plate, and the material thereof is SUS430.
- the thickness of the metal material is 0.1 mm.
- the metal oxide layer of the cyclic packing material is alumina.
- the thickness of the metal oxide layer is 1 ⁇ m to 2 ⁇ m.
- the metal oxide layer is laminated on the surface of the metal material by the spray coating method.
- the result of the measurement test of the amount of gas leak is shown in FIG. 33.
- the test packing of Experimental Example 1 had a gas leak amount of 2.1 ml / min.
- the amount of gas leak was 0.0 ml / min, which was below the measurement limit.
- the amount of gas leak was 0.0 ml / min, which was below the measurement limit. Since the amount of gas leak at room temperature is large, the test at 750 ° C. was omitted for the test packing of Experimental Example 1.
- the test packing of Experimental Example 2 is an example of the present invention.
- the test packing of Experimental Example 1 is a comparative example.
- the flat plate member 220 is applied to the electrochemical module M in which the electrochemical element A is SOFC.
- the above-mentioned flat plate-shaped member 220 can also be applied to a SOEC (Solid Oxide Electrolyzer Cell), a secondary battery, and the like.
- the electrochemical element A is used for the solid oxide fuel cell as the electrochemical device 100, but the electrochemical element A uses a solid oxide electrolytic cell or a solid oxide. It can also be used for oxygen sensors and the like. Further, the electrochemical element A is not limited to being used in combination as the electrochemical element laminate S or the electrochemical module M, but can also be used alone. That is, in the above embodiment, the configuration capable of improving the efficiency of converting chemical energy such as fuel into electric energy has been described. That is, in the above embodiment, the electrochemical element A and the electrochemical module M are operated as a fuel cell, hydrogen gas is circulated in the electrode layer 31, and oxygen gas is circulated in the counter electrode layer 33.
- the oxygen molecule O 2 reacts with the electron e ⁇ in the counter electrode layer 33 to generate the oxygen ion O 2-.
- the oxygen ion O 2- moves through the electrolyte layer 32 to the electrode layer 31.
- hydrogen molecule H 2 reacts with oxygen ion O 2- to generate water H 2 O and electron e ⁇ .
- an electromotive force is generated between the electrode layer 31 and the counter electrode layer 33, and power generation is performed.
- the electrochemical element A and the electrochemical module M are operated as electrolytic cells, a gas containing water vapor or carbon dioxide is circulated in the electrode layer 31, and a voltage is generated between the electrode layer 31 and the counter electrode layer 33. It is applied.
- the electron e ⁇ reacts with the water molecule H 2 O and the carbon dioxide molecule CO 2 to form the hydrogen molecule H 2 or carbon monoxide CO and the oxygen ion O 2- .
- Oxygen ion O 2- moves through the electrolyte layer 32 to the counter electrode layer 33.
- oxygen ion O 2- emits an electron to become oxygen molecule O 2 .
- a fuel converter 25 (FIG. 31) can be provided.
- the fuel supply unit (not shown) allows the hydrocarbons and the like generated by the fuel converter 25 to be taken out of the system / apparatus and used separately as fuel. Further, hydrogen and carbon monoxide can be converted into chemical raw materials by the fuel converter 25 and used.
- FIG. 31 shows an example of the energy system Z and the electrochemical device 100 when the electrochemical reaction unit 3 is operated as an electrolytic cell (an electrolytic reaction is generated by the electrochemical element A).
- the supplied water and carbon dioxide are electrolyzed in the electrochemical reaction unit 3 to generate hydrogen, carbon monoxide and the like. Further, hydrocarbons and the like are synthesized in the fuel converter 25.
- the heat exchanger 24 of FIG. 31 is operated as an exhaust heat utilization unit that exchanges heat with water and vaporizes the reaction heat generated by the reaction occurring in the fuel converter 25, and the heat exchanger 23 in FIG. 31 is electrochemical. Energy efficiency can be improved by configuring the exhaust heat utilization unit to preheat by exchanging heat between the exhaust heat generated by the element A and water vapor and carbon dioxide.
- the power converter 93 distributes electric power to the electrochemical element A.
- the electrochemical element A acts as an electrolytic cell as described above. Therefore, according to the above configuration, it is possible to provide the electrochemical device 100, the energy system Z, and the like that can improve the efficiency of converting electric energy into chemical energy such as fuel.
- a composite material such as NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO 2 , or Cu-CeO 2 is used as the material of the electrode layer 31, and the counter electrode
- a composite oxide such as LSCF or LSM was used.
- the electrochemical element A configured in this way supplies hydrogen gas to the electrode layer 31 to form a fuel electrode (anode), supplies air to the counter electrode layer 33 to form an air electrode (cathode), and forms a solid oxide fuel cell. It can be used as a fuel cell.
- the electrode layer 31 can be an air electrode and the counter electrode layer 33 can be a fuel electrode.
- a composite oxide such as LSCF or LSM is used as the material of the electrode layer 31, and NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO 2 , CuO-CeO 2 or Cu are used as the material of the counter electrode layer 33.
- -Use a composite material such as CeO 2.
- air is supplied to the electrode layer 31 to form an air electrode
- hydrogen gas is supplied to the counter electrode layer 33 to form a fuel electrode
- the electrochemical element A is a solid oxide type. It can be used as a fuel cell.
- the electrode layer 31 is arranged between the first plate-shaped body 1 and the electrolyte layer 32, and the counter electrode layer 33 is placed on the opposite side of the first plate-shaped body 1 from the electrolyte layer 32. Placed. It is also possible to arrange the electrode layer 31 and the counter electrode layer 33 in reverse. That is, it is also possible to arrange the counter electrode layer 33 between the first plate-shaped body 1 and the electrolyte layer 32, and to arrange the electrode layer 31 on the side opposite to the first plate-shaped body 1 when viewed from the electrolyte layer 32. .. In this case, it is also necessary to change the supply of gas to the electrochemical element A.
- the order of the electrode layer 31 and the counter electrode layer 33, and which of the first gas and the second gas is one or the other of the reducing component gas and the oxidizing component gas is determined by the electrode layer 31 and the counter electrode layer 33.
- Various forms can be adopted as long as the first gas and the second gas are arranged so as to be supplied in a form in which the first gas and the second gas react appropriately.
- the electrochemical reaction unit 3 is provided on the side of the first plate-like body 1 opposite to the second plate-like body 2 so as to cover the gas flow allowance portion 1A. It may be provided on the second plate-shaped body 2 side of the one-plate-shaped body 1. That is, the present invention holds even if the electrochemical reaction unit 3 is arranged in the internal flow path A1.
- a pair of the first penetrating portion 41 and the second penetrating portion 51 are provided at both ends of the rectangular plate-shaped support, but the present invention is not limited to the form provided at both ends. Two or more pairs may be provided. Further, the first penetrating portion 41 and the second penetrating portion 51 do not need to be provided in pairs. Therefore, one or more of each of the first penetrating portion 41 and the second penetrating portion 51 can be provided. Further, the plate-shaped support is not limited to a rectangular shape, and various shapes such as a square shape and a circular shape can be adopted.
- the plate-shaped support 10 is composed of the first plate-shaped body 1 and the second plate-shaped body 2.
- the first plate-shaped body 1 and the second plate-shaped body 2 may be composed of separate plate-shaped bodies, or may be composed of one plate-shaped body as shown in FIG. May be good.
- the first plate-like body 1 and the second plate-like body 2 are overlapped by bending one plate-like body.
- the peripheral portion 1a is welded or the like to integrate the first plate-shaped body 1 and the second plate-shaped body 2.
- the first plate-shaped body 1 and the second plate-shaped body 2 may be composed of a series of seamless plate-shaped bodies, and are molded as shown in FIG. 30 by bending the series of plate-shaped bodies. You may.
- the second plate-shaped body 2 may be composed of one member or may be composed of two or more members.
- the first plate-shaped body 1 may be composed of one member or may be composed of two or more members.
- the second plate-shaped body 2 forms an internal flow path A1 together with the first plate-shaped body 1.
- the internal flow path A1 has a distribution section A12, a plurality of sub-flow paths A11, and a confluence section A13.
- the first gas supplied to the distribution section A12 is distributed and supplied to each of the plurality of subchannels A11, and merges at the confluence section A13 at the outlets of the plurality of subchannels A11. Therefore, the first gas flows along the gas flow direction from the distribution unit A12 toward the merging unit A13.
- the plurality of sub-channels A11 are formed by forming a corrugated plate-like portion of the second plate-like body 2 from the distribution portion A12 to the portion other than the confluence portion A13. Then, as shown in FIG. 13, the plurality of sub-channels A11 are configured in a corrugated shape in a cross-sectional view in the flow crossing direction intersecting the gas flow direction of the first gas. Such a plurality of sub-channels A11 are formed by extending a corrugated sheet along the gas flow direction shown in FIG.
- the plurality of subchannels A11 may be formed of a series of wavy plate-like bodies between the distribution portion A12 and the confluence portion A13, or may be composed of two or more wavy plate-like bodies.
- the plurality of subchannels A11 may be composed of, for example, two or more wavy plate-like bodies separated along the direction along the gas flow direction, or may be separated along the direction along the flow crossing direction2. It may be composed of the above-mentioned wavy plate-like body.
- the plurality of sub-channels A11 are formed into a waveform by repeatedly forming peaks and valleys having the same shape.
- the second plate-shaped body 2 may have a plate-shaped portion in a region where a plurality of sub-channels A11 are formed.
- the plurality of sub-channels A11 may be configured by alternately forming plate-shaped portions and protruding portions. Then, the protruding portion can be a portion through which a fluid such as a first gas flows.
- the portion corresponding to the plurality of sub-channels A11 does not need to be entirely formed in a corrugated shape, and at least a part thereof should be formed in a corrugated shape.
- the second plate-shaped body 2 may have a flat plate shape in a part of the gas flow direction and a corrugated plate shape in the rest between the distribution portion A12 and the merging portion A13, for example. Further, the second plate-shaped body 2 may have a flat plate shape in a part in the flow crossing direction and a corrugated plate shape in the rest.
- the electrochemical device includes an electrochemical module M including a plurality of electrochemical elements A.
- the electrochemical device of the above embodiment can also be applied to a configuration including one electrochemical element.
- the present invention can be suitably used in the field of technology relating to an annular packing material, an electrochemical module, an electrochemical device, an energy system, a solid oxide fuel cell and a solid oxide electrolytic cell.
- Electrode layer 32 Electrolyte layer 33 Counter electrode layer 42 First annular packing material 52 Second annular packing material 42a, 52a Metal material 420a, 520a Bimetal 421a, 521a Metals with small thermal expansion coefficient 422a, 522a Thermal expansion coefficient Large metal 42b, 52b Metal oxide layer 42c, 52c Through hole 42d, 52d Closed space 93 Power converter 100 Electrochemical device 101 Desmelter 102 Reformer 103 Fuel supply unit 104 Inverter 200 Container 220 Flat plate member 230 Plate A Electrochemical element M Electrochemical module S Electrochemical element laminate Z Energy system
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
Abstract
熱により膨張する熱膨張部材からなる金属材料42a,52aと、絶縁性の金属酸化物層42b,52bとを備え、環状に形成された金属材料42a,52a及び金属酸化物層42b,52bの内側に貫通孔42c,52cが形成されている。
Description
本発明は、例えば、電気化学モジュールなどに使用することのできる環状パッキン材、この環状パッキン材を備えた電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セルに関する。
燃料電池セルスタックにおいては、複数の電気化学素子(発電セル)が積層されることにより積層体が構成されている。発電セル間には、反応ガスのシール性を維持するためのシール材が設けられている。
従来のシール材としては、例えば、以下の特許文献1に示されるように、発電セル間の電子伝導を遮断して短絡の発生を防ぐために、バーミキュライトなどの絶縁材料を含むものが知られている。
燃料電池セルスタックは通常、発電時に500℃以上の高温となるため、シール材には優れた耐熱性能が要求される。
バーミキュライトなどの無機材料は優れた耐熱性を有するものの、高温に晒されると硬化し易い。そのため、燃料電池セルスタックの起動停止が繰り返されて温度変化が生じると、バーミキュライトなどで構成されるシール材は高温において硬化して、弾性低下により面圧力が低下する。その結果、シール材のシール性能が低下して、反応ガスが漏洩し易くなる。
本発明の目的は、高温環境を含む温度変化に晒されたとしても、高いシール性と絶縁性を保持する環状パッキン材、この環状パッキン材を備えた電気化学モジュール、この電気化学モジュールを備えた電気化学装置、この電気化学装置を備えたエネルギーシステム、上記電気化学モジュールを備えた固体酸化物形燃料電池、及び上記電気化学モジュールを備えた固体酸化物形電解セルを提供することにある。
上記目的を達成するための本発明に係る環状パッキン材の特徴構成は、熱により膨張する熱膨張部材からなる金属材料と、絶縁性の金属酸化物層とを備え、環状に形成された前記金属材料及び前記金属酸化物層の内側に貫通孔が形成されている点にある。
上記特徴構成によれば、高温環境に晒された場合、金属材料の膨張張力によって面圧力が上昇することで、金属材料及び金属酸化物層の内側と外側との間(環の内外間)における高いシール性能が発揮される。また、金属材料は高温に晒されても硬化し難いため、高温環境を含む温度変化を伴う長期間の使用にも耐えうる。さらに、金属酸化物層によって絶縁性も保持される。
本発明に係る環状パッキン材の更なる特徴構成は、前記金属材料の厚さ方向における少なくとも一方側に、前記金属酸化物層が配置されている点にある。
上記特徴構成によれば、金属酸化物層によって絶縁性を保持できる。
本発明に係る環状パッキン材の更なる特徴構成は、前記金属酸化物層が、アルミナ、シリカ、酸化マグネシウム、酸化鉄、酸化クロム及び酸化マンガンを何れか1つ以上含む点にある。
上記特徴構成によれば、容易に入手可能な素材から金属酸化物層を構成することができる。
本発明に係る環状パッキン材の更なる特徴構成は、前記金属材料が、フェライト系ステンレス、オーステナイト系ステンレス、インコネル、銅及びインバー材を何れか1つ以上含む点にある。
上記特徴構成によれば、容易に入手可能な素材から金属材料を構成することができる。
本発明に係る環状パッキン材の更なる特徴構成は、前記金属材料の断面形状が、内側に閉空間を備えた環形状である点にある。
上記特徴構成によれば、高温環境に晒された場合に、環形状の内側に形成された閉空間(内部空間)に封じられた気体や液体が熱膨張することによってさらに金属材料の膨張が促進され、よって面圧力が上昇するように構成することができ、その結果さらにより高いシール性能が発揮される。
本発明に係る環状パッキン材の更なる特徴構成は、前記金属材料が、バイメタルである点にある。
上記特徴構成によれば、温度変化に応じて特有の形状に変化するように構成されるため、高温環境に晒された場合に形状変化によって面圧力が上昇するように構成することができ、その結果さらにより高いシール性能が発揮される。
本発明に係る環状パッキン材の更なる特徴構成は、前記金属材料の断面形状が、平板形状、三角形状、のこ刃形状、波形形状、円形状、楕円形状、略C字形状及び略D字形状の何れか1つ以上を備える点にある。
上記特徴構成によれば、金属材料の形状として種々の形状を採用することができ、用途が広くなる。
上記目的を達成するための本発明に係る電気化学モジュールの特徴構成は、電解質層と、前記電解質層の両側にそれぞれ配置されている第1電極及び第2電極とを備えた電気化学素子の複数が、前記電気化学素子間に金属基板を介して積層されており、隣接する金属基板の間に、上記環状パッキン材が配置されている点にある。
上記特徴構成によれば、電気化学モジュールが高温を含んだ温度変化するような環境下におかれたとしても、金属材料が高温でも硬化し難いため長期間の使用に耐えることができ、更に、高温環境にさらされた場合に、金属材料の膨張力によって面圧力が上昇して高いシール性能が発揮されるため、隣接する金属基板間のシール性が十分に確保される。また、金属酸化物層が形成されているため、隣接する金属基板間の絶縁性も保持される。
本発明に係る電気化学モジュールの更なる特徴構成は、前記金属材料の熱膨張係数と前記金属基板の熱膨張係数とは異なる熱膨張係数である点にある。
上記特徴構成によれば、高温環境に晒された場合に、金属基板と金属材料の熱膨張差によって生じる熱膨張力を利用することによって面圧力が上昇するように構成することができ、その結果さらにより高いシール性能が発揮される。
本発明に係る電気化学モジュールの更なる特徴構成は、前記環状パッキン材は、その表面の少なくとも一部にセラミックペーストが塗布された状態で前記金属基板と前記環状パッキン材との間に配置されている点にある。
上記特徴構成によれば、環状パッキン材と金属基板との間の微少な隙間がセラミックペーストにより塞がれる。その結果、更に高いシール性能が発揮される。
本発明に係る電気化学モジュールの更なる特徴構成は、前記セラミックペーストが雲母を含有する点にある。
上記特徴構成によれば、セラミックペーストが雲母を含有する。これにより、高いシール性が発揮されることが実験により確認されている。
上記目的を達成するための本発明に係る電気化学装置の特徴構成は、上記の電気化学モジュールと、前記電気化学モジュールに供給する還元性成分を生成する、或いは、前記電気化学モジュールで生成する還元性成分を含有するガスを変換する燃料変換器とを少なくとも有する点にある。
上記特徴構成によれば、電気化学モジュールを燃料電池として動作させる場合、都市ガス等の既存の原燃料供給インフラを用いて供給される天然ガス等を基に、改質器などの燃料変換器により水素を生成するように構成でき、耐久性・信頼性及び性能に優れた電気化学モジュールを備えた電気化学装置を実現できる。また、電気化学モジュールから流通される未利用の燃料ガスをリサイクルするシステムを構築し易くなるため、高効率な電気化学装置を実現できる。
一方、電気化学モジュールを電解セルとして動作させる場合は、電極層に水蒸気や二酸化炭素を含有するガスが流通され、電極層と対極電極層との間に電圧が印加される。そうすると、電極層において電子e-と水分子H2Oや二酸化炭素分子CO2が反応して、水素分子H2や一酸化炭素COと酸素イオンO2-となる。発生した酸素イオンO2-は、電解質層を通って対極電極層へ移動する。そして、対極電極層において、酸素イオンO2-が電子を放出して酸素分子O2となる。以上の反応により、水蒸気を含有するガスが流通する場合には、水分子H2Oが水素H2と酸素O2とに分解され、二酸化炭素分子CO2を含有するガスが流通する場合には、一酸化炭素COと酸素O2とに電気分解される。
したがって、水蒸気と二酸化炭素分子CO2とを含有するガスが流通される場合は、上記電気分解により電気化学モジュールで生成した水素及び一酸化炭素等から炭化水素などの種々の化合物を合成する燃料変換器を設けることができる。これにより、燃料変換器が生成した炭化水素等を電気化学モジュールに流通する、或いは本システム・装置外に取り出して別途燃料や化学原料として利用することが可能となる。
一方、電気化学モジュールを電解セルとして動作させる場合は、電極層に水蒸気や二酸化炭素を含有するガスが流通され、電極層と対極電極層との間に電圧が印加される。そうすると、電極層において電子e-と水分子H2Oや二酸化炭素分子CO2が反応して、水素分子H2や一酸化炭素COと酸素イオンO2-となる。発生した酸素イオンO2-は、電解質層を通って対極電極層へ移動する。そして、対極電極層において、酸素イオンO2-が電子を放出して酸素分子O2となる。以上の反応により、水蒸気を含有するガスが流通する場合には、水分子H2Oが水素H2と酸素O2とに分解され、二酸化炭素分子CO2を含有するガスが流通する場合には、一酸化炭素COと酸素O2とに電気分解される。
したがって、水蒸気と二酸化炭素分子CO2とを含有するガスが流通される場合は、上記電気分解により電気化学モジュールで生成した水素及び一酸化炭素等から炭化水素などの種々の化合物を合成する燃料変換器を設けることができる。これにより、燃料変換器が生成した炭化水素等を電気化学モジュールに流通する、或いは本システム・装置外に取り出して別途燃料や化学原料として利用することが可能となる。
上記目的を達成するための本発明に係る別の電気化学装置の特徴構成は、上記電気化学モジュールと、前記電気化学モジュールから電力を取り出すあるいは前記電気化学モジュールに電力を流通する電力変換器と、を有する点にある。
上記特徴構成によれば、電力変換器は、電気化学モジュールが発電した電力を取り出し、あるいは、電気化学モジュールに電力を流通する。これにより、上記のように電気化学モジュールは、燃料電池として作用し、あるいは、電解セルとして作用する。よって、上記構成によれば、燃料等の化学的エネルギーを電気エネルギーに変換する、あるいは電気エネルギーを燃料等の化学的エネルギーに変換する効率を向上できる電気化学装置を提供することができる。
なお、例えば、電力変換器としてインバータを用いる場合、耐久性・信頼性および性能に優れた電気化学モジュールから得られる電気出力を、インバータによって昇圧したり、直流を交流に変換したりすることができるため、電気化学モジュールで得られる電気出力を利用しやすくなるので好ましい。また、電気分解に供する場合は、交流電源から直流を得て、電気化学素子もしくは電気化学モジュールへ直流の電力供給できる電気化学装置を構築できるので好ましい。
なお、例えば、電力変換器としてインバータを用いる場合、耐久性・信頼性および性能に優れた電気化学モジュールから得られる電気出力を、インバータによって昇圧したり、直流を交流に変換したりすることができるため、電気化学モジュールで得られる電気出力を利用しやすくなるので好ましい。また、電気分解に供する場合は、交流電源から直流を得て、電気化学素子もしくは電気化学モジュールへ直流の電力供給できる電気化学装置を構築できるので好ましい。
上記目的を達成するための本発明に係るエネルギーシステムの特徴構成は、上記電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部と、を有する点にある。
上記特徴構成によれば、電気化学装置と、電気化学装置から排出される熱を再利用する排熱利用部を有するので、耐久性・信頼性および性能に優れ、かつエネルギー効率にも優れたエネルギーシステムを実現することができる。なお、電気化学装置から排出される未利用の燃料ガスの燃焼熱を利用して発電する発電システムと組み合わせてエネルギー効率に優れたハイブリットシステムを実現することもできる。
上記目的を達成するための本発明に係る固体酸化物形燃料電池の特徴構成は、上記の電気化学モジュールを備え、前記電気化学モジュールで発電反応を生じさせる点にある。
上記特徴構成によれば、耐久性・信頼性および性能に優れた電気化学モジュールを備えた固体酸化物形燃料電池として発電反応を行うことができるので、高耐久・高性能な固体酸化物形燃料電池を得る事ができる。なお、定格運転時に650℃以上の温度域で運転可能な固体酸化物形燃料電池であると、都市ガス等の炭化水素系ガスを原燃料とする燃料電池システムにおいて、原燃料を水素に変換する際に必要となる熱を燃料電池の排熱で賄うことが可能なシステムを構築できるため、燃料電池システムの発電効率を高めることができるので、より好ましい。また、定格運転時に900℃以下の温度域で運転される固体酸化物形燃料電池であると、金属支持型電気化学素子からのCr揮発の抑制効果が高められるのでより好ましく、定格運転時に850℃以下の温度域で運転される固体酸化物形燃料電池であると、Cr揮発の抑制効果を更に高められるので更に好ましい。
上記目的を達成するための本発明に係る固体酸化物形電解セルの特徴構成は、上記の電気化学モジュールを備え、前記電気化学モジュールで電解反応を生じさせる点にある。
上記特徴構成によれば、耐久性・信頼性および性能に優れた電気化学素子を備えた固体酸化物形電解セルとして電解反応によるガスの生成を行うことができるので、高耐久・高性能な固体酸化物形電解セルを得る事ができる。
〔実施形態〕
以下に、本発明の実施形態に係る電気化学モジュールM、電気化学装置及びエネルギーシステムについて説明する。なお、層の位置関係などを表す際、例えば電極層から見て電解質層の側を「上」「上側」、第一板状体の側を「下」「下側」などと呼ぶ。また、本発明は電気化学モジュールMを垂直あるいは水平方向に設置しても同じ効果が得られるため、「上」「下」をそれぞれ「左」「右」と読み替えても構わない。
以下に、本発明の実施形態に係る電気化学モジュールM、電気化学装置及びエネルギーシステムについて説明する。なお、層の位置関係などを表す際、例えば電極層から見て電解質層の側を「上」「上側」、第一板状体の側を「下」「下側」などと呼ぶ。また、本発明は電気化学モジュールMを垂直あるいは水平方向に設置しても同じ効果が得られるため、「上」「下」をそれぞれ「左」「右」と読み替えても構わない。
(1)電気化学モジュールMの全体構成
以下に、電気化学モジュールMの全体構成を説明する。図1に示すように、電気化学モジュールMは、電気化学素子積層体(積層体)Sと、電気化学素子積層体Sを内装する概ね直方体状の容器(筐体、第1挟持体、第2挟持体)200とを備えている。電気化学素子A(図4)は発電反応を利用して発電を行う素子であり、図1の断面視において紙面手前から紙面奥方向に沿って延びる板状に形成されている。そして、電気化学素子積層体Sは、複数の平板状の電気化学素子Aが図1の断面視において上下の積層方向に積層されて構成されている。本実施形態では、電気化学素子AとしてSOFC(Solid Oxide Fuel Cell)を例に挙げて説明する。
以下に、電気化学モジュールMの全体構成を説明する。図1に示すように、電気化学モジュールMは、電気化学素子積層体(積層体)Sと、電気化学素子積層体Sを内装する概ね直方体状の容器(筐体、第1挟持体、第2挟持体)200とを備えている。電気化学素子A(図4)は発電反応を利用して発電を行う素子であり、図1の断面視において紙面手前から紙面奥方向に沿って延びる板状に形成されている。そして、電気化学素子積層体Sは、複数の平板状の電気化学素子Aが図1の断面視において上下の積層方向に積層されて構成されている。本実施形態では、電気化学素子AとしてSOFC(Solid Oxide Fuel Cell)を例に挙げて説明する。
また、電気化学モジュールMは、容器200の外部から、第一ガスを電気化学素子積層体Sに供給する第一ガス供給部61と、電気化学素子積層体Sにおいて反応後の第一ガスを排出する第一ガス排出部62とを備えている。
容器200には、図1~図3に示すように、第二ガス供給部71が設けられており、容器200の外部から電気化学素子積層体Sに第二ガスを供給する。電気化学素子積層体Sにおいて反応後の第二ガスは、容器200に設けられた第二ガス排出部72から外部に排出される。
ここでは、第一ガスは例えば燃料ガス等の還元性成分ガスであり、第二ガスは空気等の酸化性成分ガスである。
ここでは、第一ガスは例えば燃料ガス等の還元性成分ガスであり、第二ガスは空気等の酸化性成分ガスである。
また、電気化学モジュールMは、図1の断面視において、電気化学素子積層体Sの両側面に開口付板部材(非硬質部材)240を備えている。開口付板部材240は、電気化学素子積層体Sの両側面に対応して、電気化学素子Aの積層方向に沿って延びる板状部材であり、電気化学モジュールMにおける電気的短絡(ショート)を防止するため、マイカなどの絶縁材料が好ましい。開口付板部材240には、電気化学素子積層体Sの平面方向に沿って貫通する複数の開口240aが形成されている。
よって、電気化学素子積層体Sは、第一ガス供給部61から燃料ガスの供給を受け、第二ガス供給部71から開口付板部材240の開口240aを介して空気の供給を受け、燃料ガス及び空気中の酸素を電気化学反応させて発電する。電気化学反応後の燃料ガスは第一ガス排出部62から外部に排出される。また、電気化学反応後の空気は、開口付板部材240の開口240aを介して第二ガス排出部72に導かれ、第二ガス排出部72から外部に排出される。
なお、ここでは、電気化学素子積層体Sの両側面に隣接して開口付板部材240が設けられているが、必須ではなく、いずれか一方が設けられていてもよいし、両方が省略されてもよい。
また、電気化学モジュールMは、電気化学素子積層体Sの上部に、電気化学素子積層体S側から外側に向かって順に、上部絶縁体210T、上部平板状部材220T、上部プレート(第1挟持体)230Tを備えている。同様に、電気化学モジュールMは、電気化学素子積層体Sの下部に、電気化学素子積層体S側から外側に向かって順に、下部絶縁体210B、下部平板状部材220B、下部プレート(第2挟持体)230Bを備えている。
電気化学素子積層体Sについては、後で詳述する。
電気化学素子積層体Sについては、後で詳述する。
(2)絶縁体、平板状部材、プレート及び容器
以下に、絶縁体(上部及び下部絶縁体210T及び210B)210、平板状部材(上部及び下部平板状部材220T及び220B)220、プレート(上部及び下部プレート230T及び230B)230、容器200についてさらに説明する。
以下に、絶縁体(上部及び下部絶縁体210T及び210B)210、平板状部材(上部及び下部平板状部材220T及び220B)220、プレート(上部及び下部プレート230T及び230B)230、容器200についてさらに説明する。
上部絶縁体210Tは、板状部材であり、電気化学素子積層体Sの上部平面(第1平面)を覆うように配置されている。上部絶縁体210Tは、例えばセラミックスや硬質マイカから形成されており、電気化学素子積層体Sを外部から電気的に絶縁している。
上部平板状部材220Tは、上部絶縁体210Tの上部に配置されている。上部平板状部材220Tは、弾性を有する部材であり、本実施形態では、例えば図1の断面視において波形の形状に形成されている。波形は、電気化学素子積層体Sの平面に沿って延びている。よって、上部平板状部材220Tは、波形の頂部が上部絶縁体210Tと接触するように配置されている。
波形形状の上部平板状部材220Tの板厚は、これに限定されないが、例えば0.1mm~1mm程度である。また、波形の振幅(高さ)は、これに限定されないが、例えば1mm~10mm程度である。
上部平板状部材220Tの役割については後述する。
波形形状の上部平板状部材220Tの板厚は、これに限定されないが、例えば0.1mm~1mm程度である。また、波形の振幅(高さ)は、これに限定されないが、例えば1mm~10mm程度である。
上部平板状部材220Tの役割については後述する。
上部プレート230Tは、板状部材であり、上部平板状部材220Tの上部に配置されており、高温における曲げ強度の高いセラミックス系材料、例えば99アルミナから形成されている。上部プレート230Tは、上部平板状部材220Tの少なくとも一部と接触する。本実施形態では、上部平板状部材220Tの波形の頂部が上部プレート230Tと接触する。
上部プレート230Tは、下部プレート230Bとともに、容器200から所定の締め付け圧力を受けて、電気化学素子積層体Sと、一対の上部及び下部絶縁体210T及び210Bと、上部及び下部平板状部材220T及び220Bとを挟みこんでいる。ここで、締め付け圧力とは、例えば1mm2当たり等の単位面積当たりの圧力である。
下部絶縁体210Bは、電気化学素子積層体Sの下部平面(第2平面)を覆うように配置されている。下部平板状部材220Bは下部絶縁体210Bの下部に、下部プレート230Bは下部平板状部材220Bの下部に配置されている。下部絶縁体210B、下部平板状部材220B及び下部プレート230Bは、それぞれ上部絶縁体210T、上部平板状部材220T及び上部プレート230Tと同様である。なお、下部平板状部材220Bの波形の頂部が下部プレート230Bと接触し、頂部220Bbが下部絶縁体210Bと接触する。
電気化学素子積層体Sを内装する容器200は、図1~図3に示すように、概ね直方体状の容器である。容器200は、下方が開口した箱状の上蓋(第1挟持体)201と、上方が開口した下蓋(第2挟持体)203とを含む。上蓋201の下蓋203と対向する端面には連結部202が設けられており、下蓋203の上蓋201と対向する端面には連結部205が設けられている。連結部202と連結部205とが、例えば溶接されることで、上蓋201と下蓋203とが連結され、内部に直方体状の空間が形成される。
本実施形態では、図1に示すように、下蓋203の上下方向(電気化学素子Aの積層方向)の深さは、上蓋201の深さよりも深い。ただし、上蓋201及び下蓋203は、一体として内部に空間を形成できればよく、深さの関係はこれに限定されない。例えば、上蓋201の深さが下蓋203の深さよりも深くてもよい。
図1~図3に示すように、容器200の上下方向の中央部において、下蓋203の対向する一対の側壁それぞれに第二ガス供給部71及び第二ガス排出部72が形成されている。
なお、ここでは、下蓋203に第二ガス供給部71及び第二ガス排出部72が形成されている。しかし、第二ガス供給部71及び第二ガス排出部72の形成位置はこれに限定されず、容器200のいずれの位置に形成されてもよい。第二ガス供給部71及び第二ガス排出部72は、例えば上蓋201に形成されてもよい。
上蓋201は、図1、図2に示すように、上蓋201の外縁よりも一回り小さい開口201cを有している。そして、図1の断面視において、開口201cに隣接して、電気化学素子積層体Sに面する内方側の端部が第1端部201a及び第2端部201bに分岐している。そして、第1端部201aは容器200の内方に向かって平面方向に所定長さで延びており、第2端部201bは、第1端部201aから分岐して容器200の下方に所定長さで延びている。第1端部201aと第2端部201bとは、断面視において概ね90°を成しており、L字状の角部を構成している。このL字の角部は、図2に示す上蓋201の上面視の外縁の内方側に、外縁に沿って形成されている。これにより、第1端部201aの終端により、図1、図2に示すように前述の通り上蓋201の外縁よりも一回り小さい開口201cが上蓋201の上面に形成されている。
下蓋203は、上蓋201と同様に、図1に示す断面視において、概ね90°を成すL字状の角部を構成する第1端部203a及び第2端部203bを有している。そして、第1端部203aの終端により、図1に示すように、下蓋203の外縁よりも一回り小さい開口203cが形成されている。
図1に示すように、上蓋201の第1端部201a及び第2端部201bが形成するL字の角部には、一対の開口付板部材240の上端と、上部絶縁体210Tと、上部平板状部材220Tと、上部プレート230Tとが嵌め込まれている。具体的には、電気化学素子積層体Sの平面方向に沿う上部プレート230Tは、その外周端部の上面が第1端部201aの下面(L字の角部の内面の一部)に接触して支持されている。また、電気化学素子積層体Sの側面沿った開口付板部材240は、その上端の外面が、第2端部201bの内方側面(L字の角部の内面の一部)に接触して支持されている。上部平板状部材220T及び上部絶縁体210Tは、上部プレート230T及び開口付板部材240を介して、第1端部201a及び第2端部203bからなるL字の角部に支持されている。
同様に、下蓋203の平面方向に対向する一対のL字の角部には、一対の開口付板部材240の下端と、下部絶縁体210Bと、下部平板状部材220Bと、下部プレート230Bとが嵌め込まれている。
そして、電気化学素子積層体Sは、その上面が、上部プレート230T、上部平板状部材220T及び上部絶縁体210Tを介して上蓋201により支持されている。また、電気化学素子積層体Sは、その下面が、下部プレート230B、下部平板状部材220B及び下部絶縁体210Bを介して下蓋203により支持されている。
そして、電気化学素子積層体Sは、その上面が、上部プレート230T、上部平板状部材220T及び上部絶縁体210Tを介して上蓋201により支持されている。また、電気化学素子積層体Sは、その下面が、下部プレート230B、下部平板状部材220B及び下部絶縁体210Bを介して下蓋203により支持されている。
このような構成で、上蓋201及び下蓋203は、電気化学素子積層体S、上部及び下部絶縁体210T及び210B、上部及び下部平板状部材220T及び220B、上部及び下部プレート230T及び230B等を上部及び下部から挟み込んだ状態で、連結部202と連結部205とが、例えば溶接されて連結される。この連結の際に、上蓋201及び下蓋203は、電気化学素子積層体S等に所定の荷重を負荷して連結される。つまり、上蓋201及び下蓋203が連結された状態において、電気化学素子積層体S、上部及び下部絶縁体210T及び210B、上部及び下部平板状部材220T及び220B、上部及び下部プレート230T及び230Bには、所定の荷重が負荷されて締め付けられている。
なお、図3に示すように下蓋203の側面には、開口203eが形成されている。よって、開口203eからは、電気化学素子積層体Sの側面の一部が露出している。そして、前述の開口201c、203cと、開口203eとが容器200に形成されることで、容器200を軽量化し、容器200に必要な材料を削減できる。なお、電気化学素子積層体Sの側面と、上蓋201あるいは下蓋203または両方が接触することで電気的に短絡(ショート)する可能性がある場合は、マイカなどの材料で構成された側面絶縁体(図示せず)が、電気化学素子積層体Sと上蓋201あるいは下蓋203の側面の間に設置される。
(3)平板状部材及びそれに関連する部材の構成及び作用
次に、平板状部材(上部及び下部平板状部材220T及び220B)220及びそれに関連する部材の構成及び作用についてさらに説明する。
次に、平板状部材(上部及び下部平板状部材220T及び220B)220及びそれに関連する部材の構成及び作用についてさらに説明する。
上述の通り、上蓋201及び下蓋203が連結された状態において、電気化学素子積層体S及び上部及び下部絶縁体210T及び210Bは、上部及び下部平板状部材220T及び220Bを介して、所定の締め付け圧力を負荷されて上部及び下部プレート230T及び230Bに挟持されている。
(3-1)平板状部材及びそれに関連する部材の構成
平板状部材220は、本実施形態では、熱により膨張する熱膨張部材から形成されている。平板状部材220の熱膨張率(熱膨張係数、以下同様)は、電気化学素子積層体S及び容器200等を構成する部材の熱膨張率よりも大きいと好ましい。このような平板状部材220の材料としては、例えば、オーステナイト系ステンレスが挙げられる。
平板状部材220は、本実施形態では、熱により膨張する熱膨張部材から形成されている。平板状部材220の熱膨張率(熱膨張係数、以下同様)は、電気化学素子積層体S及び容器200等を構成する部材の熱膨張率よりも大きいと好ましい。このような平板状部材220の材料としては、例えば、オーステナイト系ステンレスが挙げられる。
オーステナイト系ステンレスの熱膨張率は、比較的に大きい。例えば、アルミニウムの熱膨張率が約23.8×10-6/℃であるのに対して、オーステナイト系ステンレスの熱膨張率は、アルミニウムの熱膨張率等と同程度に大きい。オーステナイト系ステンレスの熱膨張率は、SUS303及びSUS304が約17.3×10-6/℃であり、SUS316が約16×10-6/℃である。ただし、平板状部材220の材料はこれに限定されず、熱膨張率が容器200等よりも大きく、かつ耐腐食性に優れる部材が選択されると好ましい。
また、容器200の熱膨張率は、平板状部材220の熱膨張率よりも小さいと好ましい。容器200は、プレート230を介して平板状部材220に隣接して配置されている。
そして、容器200の下蓋203と上蓋201とは、それらが結合されることで、平板状部材220を介して電気化学素子積層体Sに締め付け圧力を負荷する。このような容器200の材料としては、例えば、フェライト系ステンレス、マルテンサイト系ステンレス、又はこれらとセラミックスとの複合体等が挙げられる。これらの材料はオーステナイト系ステンレスよりも熱膨張率が小さく、フェライト系ステンレスの熱膨張率はSUS430が約11×10-6/℃である。また、マルテンサイト系ステンレスの熱膨張率はSUS403及びSUS420J1が約10.4×10-6/℃であり、SUS410及びSUS440Cが約10.1×10-6/℃である。ただし、容器200はこれに限定されず、熱膨張率が平板状部材220よりも小さく、かつ耐腐食性に優れる材料が選択されると好ましい。
そして、容器200の下蓋203と上蓋201とは、それらが結合されることで、平板状部材220を介して電気化学素子積層体Sに締め付け圧力を負荷する。このような容器200の材料としては、例えば、フェライト系ステンレス、マルテンサイト系ステンレス、又はこれらとセラミックスとの複合体等が挙げられる。これらの材料はオーステナイト系ステンレスよりも熱膨張率が小さく、フェライト系ステンレスの熱膨張率はSUS430が約11×10-6/℃である。また、マルテンサイト系ステンレスの熱膨張率はSUS403及びSUS420J1が約10.4×10-6/℃であり、SUS410及びSUS440Cが約10.1×10-6/℃である。ただし、容器200はこれに限定されず、熱膨張率が平板状部材220よりも小さく、かつ耐腐食性に優れる材料が選択されると好ましい。
電気化学素子積層体Sの材料は、容器200と同様の材料であるのが好ましい。言い換えれば、電気化学素子積層体S及び容器200の材料は、容器200と同程度の熱膨張率であるのが好ましい。この場合、電気化学素子積層体Sの基板、容器200が、例えば電気化学素子Aが高温となる発電時において同程度に熱膨張する。よって、例えば、電気化学素子Aの基板と容器200との熱膨張差を小さく抑え、基板が破損等するのを抑制できる。
(3-2)電気化学モジュールMの組立方法及び組立時の平板状部材の圧縮変位
(a)電気化学モジュールMの組立方法
次に、上記の電気化学モジュールMの組立方法について説明する。
複数の電気化学素子Aを積層して電気化学素子積層体Sを準備する。電気化学素子積層体Sの構成及び製造方法については後述する。
(a)電気化学モジュールMの組立方法
次に、上記の電気化学モジュールMの組立方法について説明する。
複数の電気化学素子Aを積層して電気化学素子積層体Sを準備する。電気化学素子積層体Sの構成及び製造方法については後述する。
また、電気化学素子積層体Sを収容するための容器200を準備する。容器200は、これに限定されないが、例えばロストワックス鋳造法を用いて製造できる。ロストワックス鋳造法を用いる場合、例えば、蜜蝋や松脂等からなる熱可塑性物質により容器200の外形に対応する空洞する模型を製造する。この模型をケイ砂や石灰粉末等からなる耐火材料で被覆する。その後、耐火材料で被覆された模型を加熱し、熱可塑性物質で構成された模型を溶出する。これにより、耐火材料内部に、容器200の形状を模した模型に対応する空洞が形成される。この空洞に容器200の材料を注入して固化させた後に耐火材料を取り除く。これにより、ロストワックス鋳造法により、上蓋201及び下蓋203を有する容器200が製造される。なお、上蓋201及び下蓋203は別々に製造されてもよい。
次に、例えば、一対の開口付板部材240が電気化学素子積層体Sの両側面に配置され、絶縁体210、平板状部材220及びプレート230が、電気化学素子積層体Sの上部平面及び下部平面に、順に配置された状態で下蓋203内に収容される。この下蓋203を上蓋201で覆い、電気化学素子積層体Sに所定の締め付け圧力が負荷されるように位置調整を行い、下蓋203と上蓋201とを溶接等して結合する。これにより、電気化学モジュールMが組み立てられる。
上記のように、ロストワックス鋳造法を用いて容器200を製造した場合には、薄肉化、精密化及び量産化による低コスト化を達成することができる。
また、箱状の容器200を形成することで、本実施形態では、第二ガス供給部71から電気化学素子積層体Sに供給する空気のマニホールドの空間を設けることができる。
また、箱状の容器200を形成することで、本実施形態では、第二ガス供給部71から電気化学素子積層体Sに供給する空気のマニホールドの空間を設けることができる。
(b)組立時の平板状部材の圧縮変位
上記の電気化学モジュールMの組立時には、下蓋203と上蓋201とを結合する際に電気化学素子積層体Sに所定の締め付け圧力を負荷する。この締め付け圧力は、平板状部材220に所定の圧縮変位Lを与えることで負荷される。
上記の電気化学モジュールMの組立時には、下蓋203と上蓋201とを結合する際に電気化学素子積層体Sに所定の締め付け圧力を負荷する。この締め付け圧力は、平板状部材220に所定の圧縮変位Lを与えることで負荷される。
以下にこの圧縮変位Lについて説明する。
以下では、容器200が所定の材料Y1を用いて形成され、電気化学素子積層体Sが基板などの主要部が所定の材料Y2を用いて形成され、平板状部材220が所定の材料Y3を用いて形成されているものとする。材料Y3の熱膨張率は、材料Y1及び材料Y2の熱膨張率よりも大きい。
以下では、容器200が所定の材料Y1を用いて形成され、電気化学素子積層体Sが基板などの主要部が所定の材料Y2を用いて形成され、平板状部材220が所定の材料Y3を用いて形成されているものとする。材料Y3の熱膨張率は、材料Y1及び材料Y2の熱膨張率よりも大きい。
ここで平板状部材220は、室温(20℃)においてばね定数がK20である。ばね定数K20は、平板状部材220の例えば板厚、波形形状の振幅(高さ)及び波のピッチ等を用いて算出される。
また、電気化学素子Aによる発電時の温度(例えば700℃)においてばね定数がK700である。なお、K700は、K20の例えば約75%である。
また、電気化学素子Aによる発電時の温度(例えば700℃)においてばね定数がK700である。なお、K700は、K20の例えば約75%である。
ここで、電気化学素子積層体Sが発電時(例えば700℃)において必要とする、単位面積当たりの締め付け圧力をPとする。ここで、Pはこれに限定されないが、例えば約1~3kgf/cm2である。電気化学素子積層体Sの面積をSBとすると、加重力Fは、F=P×SBである。
また、室温(20℃)から発電時の高温(例えば700℃)まで温度が上昇した場合において、加重方向(ここでは、電気化学素子Aの積層方向)では、容器200の熱膨張長さをLAとし、電気化学素子積層体Sの熱膨張長さをLBとし、平板状部材220の熱膨張長さをLCとする。
容器200と電気化学素子積層体Sとの熱膨張長さの差分ΔGは、ΔG=LA-LBである。ここで、熱膨張長さの差分ΔGとして、容器200、電気化学素子積層体S及び平板状部材220の熱膨張長さの差分を算出してもよい。この場合、ΔG=LA-(LB+LC)となる。以下では、平板状部材220が熱膨張しないと仮定することで、容器200等が熱膨張した後も、組立時の平板状部材220の圧縮変位Lにより適切な締め付け圧力をより確実に負荷可能なようにΔG=LA-LBを用いる。
ここで、発電時の高温(例えば700℃)において、単位面積当たりの締め付け圧力Pを維持するために、平板状部材220の室温(20)における圧縮変位Lは以下の数式で算出される。
L=P×SB/(K700)+ΔG
L=P×SB/(K700)+ΔG
以上より、電気化学素子積層体S及び平板状部材220等が容器200内に収容された後、下蓋203と上蓋201とは、平板状部材220に上記で算出した圧縮変位Lを与えるように結合距離等が調整されて溶接等により封止される。これにより、電気化学素子積層体Sに所定の締め付け圧力を負荷することができる。
(3-3)平板状部材の作用
上記のように、熱膨張部材からなる平板状部材220は、電気化学素子積層体Sの上部平面及び下部平面に配置されており、上部及び下部プレート230から所定の締め付け圧力を負荷されて、弾性的に電気化学素子積層体Sを支持している。
上記のように、熱膨張部材からなる平板状部材220は、電気化学素子積層体Sの上部平面及び下部平面に配置されており、上部及び下部プレート230から所定の締め付け圧力を負荷されて、弾性的に電気化学素子積層体Sを支持している。
ここで、例えば、電気化学素子積層体S及び容器200等の少なくともいずれかは、電気化学素子Aが発電していない低温(例えば室温で約20℃等)の状態から、電気化学素子Aが発電時に高温(例えば約650℃~約950℃等)の状態となると膨張する。このとき、電気化学素子積層体S及び容器200間で熱膨張差が生じると、電気化学素子積層体Sと容器200との間の間隔が発電時(高温時)と発電していない時(低温時)とで異なる。
上記構成によれば、平板状部材220は熱膨張部材であるため、平板状部材220もまた、電気化学素子Aが発電時に高温になることにより熱膨張する。よって、熱膨張により電気化学素子積層体Sと容器200との間の間隔が変動した場合でも、平板状部材220は、平板状部材220自体の熱膨張によって発生する弾性力とあらかじめ与えられた圧縮変位Lによる弾性力を利用して、プレート230を押圧面として、電気化学素子積層体Sに適切な締め付け圧力を負荷する。
つまり、熱膨張による電気化学素子積層体Sと容器200との間の間隔の変動を、平板状部材220の熱膨張による変動により補完することができる。よって、前述の間隔が変動した後であっても、適切な締め付け圧力を電気化学素子積層体Sに負荷する。例えば、熱膨張により大きくなった電気化学素子積層体Sと容器200との間の間隔を、平板状部材220が熱膨張することにより埋め合わせて、電気化学素子積層体Sに適切な締め付け圧力を負荷する。
そして、平板状部材220は、電気化学素子積層体Sの平面及びプレート230の平面に沿って配置されているため、前述の間隔が変動した後であっても、適切な締め付け圧力を電気化学素子積層体Sの平面に沿って概ね均一に付与する。よって、電気化学モジュールMにおいて、電気化学素子Aどうしの接触面積の低下を抑制し、内部抵抗を低下できる。また、電気化学素子A間を適度に接触させて密閉性が保つことができるため、燃料ガス等が電気化学素子Aの外部に漏出するのを抑制でき、反応ガスのシール性の低下を抑制できる。
このようにして、電気化学素子積層体S等が膨張した際にも、電気化学素子積層体S等を適切に締め付けることが可能な小型、軽量かつ低コストの電気化学モジュールを達成できる。
特に、上記実施形態では、平板状部材220の熱膨張率は、容器200を構成する部材の熱膨張率よりも大きい。この関係を達成するため、平板状部材220の材料として例えばオーステナイト系ステンレスが採用されており、容器200の材料としてフェライト系ステンレス、マルテンサイト系ステンレス、又はこれらとセラミックスとの複合体等が採用されている。また、電気化学素子積層体Sの材料としては、容器200の材料と同一のものが採用されている。
ここで、前述の通り、電気化学素子積層体Sにおいて発電していない低温の状態から、発電時の高温の状態になると、電気化学素子積層体S及び容器200の少なくともいずれかが熱膨張し、電気化学素子積層体Sの熱膨張量と容器200の熱膨張量との差が生じる。そうすると、高温時の電気化学素子積層体Sと容器200との間隔が、低温時よりも拡大する。例えば、容器200の熱膨張量が比較的に大きい場合、電気化学素子積層体Sと容器200との間隔はより拡大する。
本実施形態では、前述の通り、平板状部材220の熱膨張率は容器200を構成する部材の熱膨張率よりも大きい。よって、特に容器200の膨張により拡大した電気化学素子積層体Sと容器200との間隔を、平板状部材220の熱膨張により補完することができる。つまり、熱膨張により電気化学素子積層体Sと容器200との間の間隔が大きく広がる方向に変動した場合でも、さらに大きく熱膨張する平板状部材220によって、前述の間隔を補完できる。よって、この間隔が変動した後であっても、平板状部材220に予め与えられていた圧縮変位による弾性力と平板状部材220自身の熱膨張によって発生する弾性力により適切な締め付け圧力を電気化学素子積層体Sの平面に沿って概ね均一に負荷できる。
なお、容器200の熱膨張率が比較的に小さい場合には、例えば発電時に高温になった場合に、容器200の熱膨張量を小さく抑えることができる。これにより、熱膨張による電気化学素子積層体Sと容器200との間の間隔の広がりを小さく抑えることができる。よって、平板状部材220の熱膨張率が比較的に小さい場合であっても、前述の間隔が変動した後に適切な締め付け圧力を、電気化学素子積層体Sの平面に沿って概ね均一に負荷できる。
また、容器200の熱膨張量が小さい場合、容器200の膨張により電気化学素子Aの基板等の位置ずれ及び破損等を抑制できる。
また、容器200の熱膨張量が小さい場合、容器200の膨張により電気化学素子Aの基板等の位置ずれ及び破損等を抑制できる。
また、上記実施形態では、平板状部材220は波形形状に形成されている。よって、平板状部材220の波形の頂部が交互に、プレート230の平面と、絶縁体210を介して電気化学素子積層体Sの平面とに、分散された複数箇所で接触している。
ここで、電気化学素子積層体S及び容器200の少なくともいずれかの膨張により電気化学素子積層体Sと容器200との間隔が変動すると、この間隔の変動に起因して平板状部材220に負荷される押圧力もまた変動する。この変動した押圧力は、平板状部材220を介して、電気化学素子積層体Sの平面及びプレート230の平面の概ね全体に沿って概ね均一に分散された状態で弾力的に受け止められる。これは、前述の通り、平板状部材220が、電気化学素子積層体Sの平面及びプレート230の平面と、分散された複数箇所で接触しているからである。また、平板状部材220が熱変動する場合には、電気化学素子積層体Sと容器200との間隔の変動を、平板状部材220自身の熱膨張と弾性により前述の複数箇所において受け止める。
よって、電気化学素子積層体S等の膨張により電気化学素子積層体S及び容器200の間隔が変動しても、平板状部材220によって、積層方向の適度な締め付け圧力を電気化学素子積層体Sの平面に沿って概ね均一に付与できる。これにより、電気化学モジュールMにおいて、内部抵抗の増大を抑制し、及び反応ガスのシール性の低下を抑制できるとともに、小型化及び軽量化を達成できる。
また、本実施形態では、電気化学素子積層体Sは電気化学素子であるSOFCから構成されている。SOFCは、発電時の温度が約650℃~約950℃等と高温となる。そのため、電気化学素子積層体S及び容器200等の膨張量は、非発電時の低温(例えば室温で約20℃等)の状態から、発電時の高温(例えば約650℃~約950℃等)の状態となることで、大きくなる。本実施形態では、平板状部材220は、平板状部材220自体の熱膨張による弾性力の変動を利用して、プレート230を押圧面として電気化学素子積層体Sに適切な締め付け圧力を負荷できる。よって、高温領域で発電が行われるSOFC等においても、本実施形態を適用して電気化学素子積層体Sに適切な締め付け圧力を負荷できる。
電気化学モジュールMの小型化についてさらに説明する。例えば、一対の分厚い挟持板の周辺を締め付けて電気化学素子積層体Sに締め付け圧力を負荷する構成の場合には、締め付け部材として、電気化学モジュールMの外部にスプリングを利用した大型の締め付けボルトを配置する必要がある。しかし、上記実施形態では、電気化学モジュールMの内部に平板状部材220を配置するだけでよく、電気化学モジュールMを小型化できる。
また、大型の締め付けボルト等の突起体が電気化学モジュールMの外部に配置されている場合には、このような電気化学モジュールMの突起体によって発電時に放熱され易くなる。本実施形態の平板状部材220は電気化学モジュールMの内部に配置されているため、放熱面を少なくでき、電気化学モジュールMの発電効率を向上できる。
また、本実施形態では、平板状部材220により締め付け圧力が調整されるため、大型の複数の締め付けボルト等を用いて電気化学素子積層体Sの締め付け圧力を調整する場合に比べて、締め付け圧力の調整に要する手間を大幅に削減できる。例えば、大型の複数の締め付けボルトを用いて電気化学素子積層体Sを締め付ける場合は、複数のボルトのトルクを管理しながら圧力の調整を行う必要がある。しかし、本実施形態の平板状部材220を用いる場合には、平板状部材220が電気化学素子積層体Sの平面に概ね均一に締め付け圧力を負荷するため、前述のような複雑なトルク管理が不要である。
(4)電気化学モジュールMの具体的構成
次に、図1及び図4を用いて、電気化学モジュールMの具体的構成について説明する。図1の電気化学素子積層体Sの詳細が図1に示されている。
次に、図1及び図4を用いて、電気化学モジュールMの具体的構成について説明する。図1の電気化学素子積層体Sの詳細が図1に示されている。
図1及び図4に示すように、電気化学モジュールMは、電気化学素子積層体Sを内装する容器200(上蓋201及び下蓋203)と、容器200の外部から供給路4を介して内部流路A1に第一ガスを供給する第一ガス供給部61と、反応後の第一ガスを排出する第一ガス排出部62と、容器200の外部から通流部A2に第二ガスを供給する第二ガス供給部71と、反応後の第二ガスを排出する第二ガス排出部72と、電気化学反応部3における電気化学反応に伴う出力を得る出力部8とを備え、容器200内に、第二ガス供給部71から供給される第二ガスを通流部A2に分配供給する分配室9を備えている。
分配室9は、電気化学素子積層体Sに対して当該電気化学素子積層体Sへ第二ガスを供給する側に位置する空間であり、通流部A2は、空間側に開口形成されて当該空間と連通している。
電気化学素子積層体Sは、容器200に対して、一対の集電体81、82に挟持された状態で内装されており、この集電体81、82に出力部8が延設され、容器200外部の電力供給先に電力供給自在に接続されるとともに、集電体81,82は容器200に対して少なくとも一方が電気的に絶縁され、かつ、第一ガスが容器200に対して気密になるように収容されている。
これにより電気化学モジュールMは、第一ガス供給部61から燃料ガスを供給するとともに、第二ガス供給部71から空気を供給することで、図1、図4破線矢印に示すように燃料ガスが進入し実線矢印に示すように空気が進入する。
第一ガス供給部61から供給された燃料ガスは、電気化学素子積層体Sの最上部の電気化学素子Aの第一貫通部41より供給路4に誘導され、第一環状パッキン材42(詳細については後述する)により区画される供給路4より、すべての電気化学素子Aの内部流路A1に通流する。また第二ガス供給部71から供給された空気は、分配室9に一時流入したのち、各電気化学素子A間に形成される通流部A2に通流する。
ちなみに、第二板状体2(板状支持体10(金属基板の一例)の一部)を基準にすると、波板状の第二板状体2部分が第一板状体1(板状支持体10(金属基板の一例)の一部)から膨出する部分で第一板状体1と第二板状体2との間に内部流路A1が形成されるとともに、隣接する電気化学素子Aの電気化学反応部3に接触して電気接続可能にする。一方、波板状の第二板状体2が第一板状体1と接触する部分が第一板状体1と電気接続し、第二板状体2と隣接する電気化学素子Aの電気化学反応部3との間に通流部A2を形成する。
図18の一部に内部流路A1を含む断面の現れる電気化学素子Aと、通流部A2を含む断面の現れる電気化学素子Aとを便宜的に並べて示す部分があるが、第一ガス供給部61から供給された燃料ガスは、分配部A12に達し(図9,図12,図15参照)、分配部A12を介して一端部側の幅方向に沿って広がって流れ、内部流路A1のうち各副流路A11に達する(図9,図11,図15参照)。この場合、分配部A12から複数の副流路A11に均等に第一ガスを分配でき、各電気化学素子において均等に電気化学出力を生成させることができる。
すると、内部流路A1に進入した燃料ガスは気体通流許容部1Aを介して電極層(第1電極)31、電解質層32に進入できる。また、燃料ガスは、電気化学反応済みの燃料ガスとともに、さらに内部流路A1を進み、合流部A13、第二貫通部51を介して、第二環状パッキン材52(詳細については後述する)によって形成される排出路5に進み、他の電気化学素子Aからの電気化学反応済みの燃料ガスとともに第一ガス排出部62より容器200外に排出される。
一方、第二ガス供給部71から供給された空気は、分配室9を介して通流部A2に進入し、対極電極層(第2電極)33、電解質層32に進入できる。また、空気は、電気化学反応済みの空気とともに、さらに電気化学反応部3に沿って通流部A2を進み第二ガス排出部72より容器200外に排出される。
この燃料ガス及び空気の流れに従って電気化学反応部3で生じた電力は、隣接する電気化学素子Aの電気化学反応部3と第二板状体2との接触により集電体81,82どうしの間で直列に接続され、合成出力が出力部8より取り出される形態となる。電気化学素子積層体Sの構成については、後で詳述する。
(5)平板状部材の変形例
(a)上記では、平板状部材220は、熱により膨張する熱膨張部材である。しかし、平板状部材220は、電気化学素子積層体S及び容器200等の膨張及び収縮時等に、電気化学素子積層体Sの平面に概ね均一に締め付け圧力を負荷できる部材であればよく、熱膨張部材に限定されない。例えば、平板状部材220は、熱膨張率が小さいが、ある程度の弾性を有する部材であってもよい。
(a)上記では、平板状部材220は、熱により膨張する熱膨張部材である。しかし、平板状部材220は、電気化学素子積層体S及び容器200等の膨張及び収縮時等に、電気化学素子積層体Sの平面に概ね均一に締め付け圧力を負荷できる部材であればよく、熱膨張部材に限定されない。例えば、平板状部材220は、熱膨張率が小さいが、ある程度の弾性を有する部材であってもよい。
弾性を有する平板状部材220は、電気化学素子積層体Sの上部平面及び下部平面に、その平面に沿って配置されている。そして、平板状部材220は、容器200から上部及び下部プレート230を介して所定の締め付け圧力を負荷されて、弾性的に電気化学素子積層体Sを支持している。
ここで、電気化学素子積層体S及び容器200の少なくともいずれかが膨張した際に、電気化学素子積層体Sと容器200との間隔は、電気化学素子積層体S等の膨張前後で変動する可能性がある。平板状部材220は弾性力を有しているため、電気化学素子積層体Sと容器200との間隔が変動した場合でも、その弾性力により容器200内に電気化学素子積層体Sを弾性挟持する。つまり、平板状部材220は、容器200から締め付け圧力を受けて一対のプレート230の間に電気化学素子積層体Sを弾性挟持する。
より具体的には、電気化学素子積層体S及び容器200の少なくともいずれかの膨張により電気化学素子積層体Sと容器200との間隔が変動すると、この間隔の変動に起因して平板状部材220に負荷される押圧力もまた変動する。この変動した押圧力は、電気化学素子積層体Sの平面及びプレート230の平面に沿って配置された平板状部材220によって、電気化学素子積層体Sの平面及びプレート230の平面の概ね全体に沿って概ね均一に分散された状態で弾力的に受け止められる。
よって、電気化学素子積層体S等の膨張により電気化学素子積層体S及び容器200の間隔が変動しても、平板状部材220によって、積層方向の適度な締め付け圧力を電気化学素子積層体Sの平面に沿って概ね均一に付与できる。
このように、電気化学素子積層体Sの平面と、プレート230の平面との間に、電気化学素子積層体S及びプレート230の平面に沿って平板状部材220を配置し、容器200に収納するという簡単な構成で、電気化学素子積層体S等の膨張を考慮した電気化学モジュールMを構成できる。
このように、電気化学素子積層体Sの平面と、プレート230の平面との間に、電気化学素子積層体S及びプレート230の平面に沿って平板状部材220を配置し、容器200に収納するという簡単な構成で、電気化学素子積層体S等の膨張を考慮した電気化学モジュールMを構成できる。
なお、平板状部材220が熱膨張率の小さい部材である場合には、容器200に平板状部材220及び電気化学素子積層体S等を収容して組み立てる際に、平板状部材220が熱膨張率の大きい部材である場合よりも締め付け圧力を大きくするのが好ましい。この場合、組み立て時において、大きな締め付け圧力により平板状部材220には大きな反発力が生じている。よって、電気化学素子積層体S等の膨張により電気化学素子積層体S及び容器200の間隔が広がり、締め付け圧力がある程度小さくなっても、電気化学素子積層体Sに適度な締め付け圧力を与えることができる。
(b)上記では、上部及び下部平板状部材220T、220Bが設けられているが、いずれか一方の平板状部材220のみが設けられていてもよい。ただし、上部及び下部平板状部材220T、220Bが設けられている場合には、電気化学素子積層体Sに対して上部及び下部から平板状部材220により締め付け圧力を負荷できるので、電気化学素子積層体Sの平面に対してより均一に締め付け圧力を負荷できるので好ましい。
(c)上記では、平板状部材220は波形形状であるが、これに限定されず、電気化学素子積層体S及びプレート230等と複数箇所において分散して接触する他の構成も採用できる。例えば、平板状部材220はメタルハニカム形状であってもよい。
また、平板状部材220は、電気化学素子積層体Sの平面及びプレート230の平面のいずれかのみと、分散された複数箇所で接触してもよい。
例えば、平板状部材220は、電気化学素子積層体Sの平面と、分散された複数箇所において接触しており、プレート230の平面とは面接触していることもできる。この場合、平板状部材220は、電気化学素子積層体Sと接触した部分で電気化学素子積層体S等の膨張による負荷力を分散して受け止める。
例えば、平板状部材220は、電気化学素子積層体Sの平面と、分散された複数箇所において接触しており、プレート230の平面とは面接触していることもできる。この場合、平板状部材220は、電気化学素子積層体Sと接触した部分で電気化学素子積層体S等の膨張による負荷力を分散して受け止める。
また、例えば、平板状部材220は、電気化学素子積層体Sの平面と面接触しており、プレート230の平面と複数箇所において接触していることもできる。この場合、平板状部材220は、プレート230の平面と接触した部分で電気化学素子積層体S等の膨張による負荷力を分散して受け止める。
(d)上記では、平板状部材220の熱膨張率は、容器200を構成する部材の熱膨張率よりも大きい。しかし、熱膨張により生じた電気化学素子積層体Sと容器200との間の間隔を、平板状部材220の膨張により補完できればよく、このような熱膨張率の関係に限定されない。
例えば、平板状部材220の熱膨張率は、容器200を構成する部材の熱膨張率と同程度であってもよく、あるいは、小さくてもよい。
例えば、平板状部材220の熱膨張率は、容器200を構成する部材の熱膨張率と同程度であってもよく、あるいは、小さくてもよい。
(e)上記では、平板状部材220は、膨張による電気化学素子積層体S及び容器200間の間隔の変動を調整する場合について説明した。しかし、収縮による電気化学素子積層体S及び容器200間の間隔の変動についても、平板状部材220を採用できる。
(f)上記では、平板状部材220は、発電に伴う温度変化だけではなく、例えば、電気化学モジュールMに加わる振動、外圧、湿度及び外気温等の変化によって生じる電気化学素子積層体S及び容器200等の膨張及び収縮を受け止めることもできる。
(g)上記では、電気化学モジュールMは、絶縁性を有する絶縁体210などの機能層が設けられている。電気化学モジュールMは、上記に示す機能層に加えて、あるいは、代えて別途の機能層を設けてもよい。
(h)上記では、下蓋203と上蓋201とは溶接により結合している。しかし、下蓋203と上蓋201との結合は溶接に限られず、例えば、ボルト等により結合されてもよい。
(6)電気化学素子積層体Sの具体的構成
次に、電気化学素子積層体Sの具体的構成を説明する。電気化学素子積層体Sは、複数の電気化学素子Aが積層されて形成されている。図9~図18を用いて電気化学素子Aについて説明する。
次に、電気化学素子積層体Sの具体的構成を説明する。電気化学素子積層体Sは、複数の電気化学素子Aが積層されて形成されている。図9~図18を用いて電気化学素子Aについて説明する。
(電気化学素子)
図9~図17に示すように、電気化学素子Aは、導電性の第一板状体1と導電性の第二板状体2との対向面間に形成された内部流路A1を有する板状支持体10を備え、板状支持体10は、当該板状支持体10を構成する第一板状体1及び第二板状体2の少なくとも一部において、当該板状支持体10の内側である内部流路A1と外側とに亘って気体を透過できる気体通流許容部1Aと、気体通流許容部1Aの全部又は一部を被覆する状態で、膜状の電極層31と膜状の電解質層32と膜状の対極電極層33とを記載順に有する電気化学反応部3とを備える(図13~図17参照)。また、板状支持体10には、表面貫通方向外方から内部流路A1にたとえば燃料ガス等の還元性成分ガス及びたとえば空気等の酸化性成分ガスのうちの一方である第一ガスを供給する供給路4を形成する第一貫通部41を一端部側に備え、内部流路A1を通流した第一ガスを板状支持体の表面貫通方向外方へ排出する排出路5を形成する第二貫通部51を他端部側に備える(図9、図11,図16,図17参照)。尚、供給路4等と排出路5等とは対称形にて同様の構造であることも理解される。
図9~図17に示すように、電気化学素子Aは、導電性の第一板状体1と導電性の第二板状体2との対向面間に形成された内部流路A1を有する板状支持体10を備え、板状支持体10は、当該板状支持体10を構成する第一板状体1及び第二板状体2の少なくとも一部において、当該板状支持体10の内側である内部流路A1と外側とに亘って気体を透過できる気体通流許容部1Aと、気体通流許容部1Aの全部又は一部を被覆する状態で、膜状の電極層31と膜状の電解質層32と膜状の対極電極層33とを記載順に有する電気化学反応部3とを備える(図13~図17参照)。また、板状支持体10には、表面貫通方向外方から内部流路A1にたとえば燃料ガス等の還元性成分ガス及びたとえば空気等の酸化性成分ガスのうちの一方である第一ガスを供給する供給路4を形成する第一貫通部41を一端部側に備え、内部流路A1を通流した第一ガスを板状支持体の表面貫通方向外方へ排出する排出路5を形成する第二貫通部51を他端部側に備える(図9、図11,図16,図17参照)。尚、供給路4等と排出路5等とは対称形にて同様の構造であることも理解される。
(板状支持体)
第一板状体1は、電極層31と電解質層32と対極電極層33とを有する電気化学反応部3を支持して電気化学素子Aの強度を保つ役割を担う。第一板状体1の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス、オーステナイト系ステンレス、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。本実施形態では、第一板状体1は、Crを18質量%以上25質量%以下含有するFe-Cr系合金を用いているが、Mnを0.05質量%以上含有するFe-Cr系合金、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、Cuを0.10質量%以上1.0質量%以下含有するFe-Cr系合金であると特に好適である。
第一板状体1は、電極層31と電解質層32と対極電極層33とを有する電気化学反応部3を支持して電気化学素子Aの強度を保つ役割を担う。第一板状体1の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス、オーステナイト系ステンレス、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。本実施形態では、第一板状体1は、Crを18質量%以上25質量%以下含有するFe-Cr系合金を用いているが、Mnを0.05質量%以上含有するFe-Cr系合金、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、Cuを0.10質量%以上1.0質量%以下含有するFe-Cr系合金であると特に好適である。
第二板状体2は、第一板状体1と重ね合わされた状態で、周縁部1aを溶接一体化されて板状支持体10を構成する(図10~図17参照)。第二板状体2は、第一板状体1に対して複数に分割されていてもよく、逆に第一板状体1が第二板状体2に対して複数に分割された状態であってもよい。また、一体化するに際して、溶接に替え、接着、嵌合等他の手段を採用することができ、内部流路を外部と区画して形成できるのであれば、周縁部1a以外の部分で一体化してもよい。
第一板状体1は、表側の面と裏側の面とを貫通して設けられる複数の貫通孔11を多数設けてなる気体通流許容部1Aを有する(図13~図17参照)。なお、例えば、貫通孔11は、レーザー加工などにより、第一板状体1に設けることができる。貫通孔11は、第一板状体1の裏側の面から表側の面へ気体を透過させる機能を有する。気体通流許容部1Aは、第一板状体1における電極層31が設けられる領域より小さい領域に設けられることが好ましい。
第一板状体1にはその表面に、拡散抑制層としての金属酸化物層12(後述、図18参照)が設けられる。すなわち、第一板状体1と後述する電極層31との間に、拡散抑制層が形成されている。金属酸化物層12は、第一板状体1の外部に露出した面だけでなく、電極層31との接触面(界面)にも設けられる。また、貫通孔11の内側の面に設けることもできる。この金属酸化物層12により、第一板状体1と電極層31との間の元素相互拡散を抑制することができる。例えば、第一板状体1としてクロムを含有するフェライト系ステンレスを用いた場合は、金属酸化物層12が主にクロム酸化物となる。そして、第一板状体1のクロム原子等が電極層31や電解質層32へ拡散することを、クロム酸化物を主成分とする金属酸化物層12が抑制する。金属酸化物層12の厚さは、拡散防止性能の高さと電気抵抗の低さを両立させることのできる厚みであれば良い。
金属酸化物層12は種々の手法により形成されうるが、第一板状体1の表面を酸化させて金属酸化物とする手法が好適に利用される。また、第一板状体1の表面に、金属酸化物層12をスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、スパッタリング法やPLD法等のPVD法、CVD法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層12は導電性の高いスピネル相などを含んでも良い。
金属酸化物層12は種々の手法により形成されうるが、第一板状体1の表面を酸化させて金属酸化物とする手法が好適に利用される。また、第一板状体1の表面に、金属酸化物層12をスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、スパッタリング法やPLD法等のPVD法、CVD法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層12は導電性の高いスピネル相などを含んでも良い。
第一板状体1としてフェライト系ステンレス材を用いた場合、電極層31や電解質層32の材料であるYSZ(イットリア安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近い。従って、低温と高温の温度サイクルが繰り返された場合も電気化学素子Aがダメージを受けにくい。よって、長期耐久性に優れた電気化学素子Aを実現できるので好ましい。なお、第一板状体1は、表側の面と裏側の面とを貫通して設けられる複数の貫通孔11を有する。なお、例えば、貫通孔11は、機械的、化学的あるいは光学的穿孔加工などにより、第一板状体1に設けることができる。貫通孔11は、第一板状体1の裏側の面から表側の面へ気体を透過させる機能を有する。第一板状体1に気体透過性を持たせるために、多孔質金属を用いることも可能である。例えば、第一板状体1は、焼結金属や発泡金属等を用いることもできる。
第二板状体2は、第一板状体1の気体通流許容部1Aに対向する領域において、一端部側から他端部側に向かう複数の副流路A11、A11………を備えた内部流路A1を形成する波板状に形成される(図9,図13参照)。また、第二板状体2は、表裏両面とも波板状に形成されており、内部流路A1を区画形成する面の反対面は、隣接する電気化学素子Aの電気化学反応部3に電気的に接続し、波型形状の第二板状体2が第一板状体1と接触する部分の近傍に形成される通路が、通流部A2として機能する。この副流路A11は長方形状に形成される板状支持体10の長辺に沿って複数平行に設けられており、一端部に設けられる供給路4から他端部に設けられる排出路5に至る内部流路A1を構成する。
また、第一貫通部41と内部流路A1との接続箇所は、第一板状体1との接触部分から下方に膨出させてなり、第一貫通部41から供給される第一ガスを副流路A11の夫々に分配する分配部A12を備え(図9参照)、第二貫通部51と内部流路A1の接続箇所は、第一板状体1との接触部分から下方に膨出させてなり、副流路A11のそれぞれを通流した第一ガスを集約して第二貫通部51に導く合流部A13を備える(図9,図11,図12,図14~図17参照、尚、供給路4等と排出路5等とは対称形にて同様の構造であることも理解される)。また、第二板状体2の材料については、耐熱性の金属であることが好ましく、第一板状体1との熱膨張差の低減や、溶接などの接合性の信頼性確保の観点から、第一板状体1と同じ材料でれば、より好ましい。
また、第一貫通部41と内部流路A1との接続箇所は、第一板状体1との接触部分から下方に膨出させてなり、第一貫通部41から供給される第一ガスを副流路A11の夫々に分配する分配部A12を備え(図9参照)、第二貫通部51と内部流路A1の接続箇所は、第一板状体1との接触部分から下方に膨出させてなり、副流路A11のそれぞれを通流した第一ガスを集約して第二貫通部51に導く合流部A13を備える(図9,図11,図12,図14~図17参照、尚、供給路4等と排出路5等とは対称形にて同様の構造であることも理解される)。また、第二板状体2の材料については、耐熱性の金属であることが好ましく、第一板状体1との熱膨張差の低減や、溶接などの接合性の信頼性確保の観点から、第一板状体1と同じ材料でれば、より好ましい。
以上のような第一板状体1及び第二板状体2からなる板状支持体10(金属支持体の一例)は、電極層31、電解質層32及び対極電極層33等がその上面に形成される。つまり、電極層31、電解質層32および対極電極層33等が板状支持体10に支持されることになり、強度が高く、信頼性・耐久性に優れた電気化学素子Aを実現することができる。また、金属性の板状支持体10は加工性に優れており好ましい。さらに、安価な金属を板状支持体10に用いても強度の高い板状支持体10ができるので、高価な電極層31や電解質層32等を薄層とすることが可能となり、材料コストや加工コストを抑制した低コストな電気化学素子Aを実現でき好ましい。
(電気化学反応部)(電極層)
電極層31は、図13~図18に示すように、第一板状体1の表側の面であって貫通孔11が設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔11が設けられた領域の全体が、電極層31に覆われている。つまり、貫通孔11は第一板状体1における電極層31が形成された領域の内側に形成されている。換言すれば、全ての貫通孔11が電極層31に面して設けられている。
電極層31は、図13~図18に示すように、第一板状体1の表側の面であって貫通孔11が設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔11が設けられた領域の全体が、電極層31に覆われている。つまり、貫通孔11は第一板状体1における電極層31が形成された領域の内側に形成されている。換言すれば、全ての貫通孔11が電極層31に面して設けられている。
電極層31は、気体透過性を持たせるため、その内部および表面に複数の細孔を有する。
すなわち電極層31は、多孔質な層として形成される。電極層31は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1-気孔率)と表すことができ、また、相対密度と同等である。
すなわち電極層31は、多孔質な層として形成される。電極層31は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1-気孔率)と表すことができ、また、相対密度と同等である。
電極層31の材料としては、例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用いることができる。これらの例では、GDC、YSZ、CeO2を複合材の骨材と呼ぶことができる。なお、電極層31は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法やパルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1100℃より高い高温域での焼成を用いずに、良好な電極層31が得られる。そのため、第一板状体1を傷めることなく、また、第一板状体1と電極層31との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Aを実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(中間層)
中間層34は、電極層31を覆った状態で、電極層31の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な中間層34の材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層34の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
中間層34は、電極層31を覆った状態で、電極層31の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な中間層34の材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層34の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
中間層34は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃より高い高温域での焼成を用いずに中間層34が得られる。そのため、第一板状体1を傷めることなく、第一板状体1と電極層31との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Aを実現できる。また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
中間層34としては、酸素イオン(酸化物イオン)伝導性を有することが好ましい。また、酸素イオン(酸化物イオン)と電子との混合伝導性を有すると更に好ましい。これらの性質を有する中間層34は、電気化学素子Aへの適用に適している。
(電解質層)
図13~図18に示すように、電解質層32は、電極層31および中間層34を覆った状態で、前記中間層34の上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成することもできる。詳しくは、電解質層32は、中間層34の上と第一板状体1の上とにわたって(跨って)設けられる。このように構成し、電解質層32を第一板状体1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
図13~図18に示すように、電解質層32は、電極層31および中間層34を覆った状態で、前記中間層34の上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成することもできる。詳しくは、電解質層32は、中間層34の上と第一板状体1の上とにわたって(跨って)設けられる。このように構成し、電解質層32を第一板状体1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
また電解質層32は、図13に示すように、第一板状体1の表側の面であって貫通孔11が設けられた領域より大きな領域に設けられる。つまり、貫通孔11は第一板状体1における電解質層32が形成された領域の内側に形成されている。
また電解質層32の周囲においては、電極層31および前記中間層(図示せず)からのガスのリークを抑制することができる。説明すると、電気化学素子AをSOFCの構成要素として用いる場合、SOFCの作動時には、第一板状体1の裏側から貫通孔11を通じて電極層31へガスが供給される。電解質層32が第一板状体1に接している部位においては、ガスケット等の別部材を設けることなく、ガスのリークを抑制することができる。なお、本実施形態では電解質層32によって電極層31の周囲をすべて覆っているが、電極層31および前記中間層34の上部に電解質層32を設け、周囲にガスケット等を設ける構成としてもよい。
電解質層32の材料としては、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)、LSGM(ストロンチウム・マグネシウム添加ランタンガレート)等の酸素イオンを伝導する電解質材料や、ペロブスカイト型酸化物等の水素イオンを伝導する電解質材料を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層32をジルコニア系セラミックスとすると、電気化学素子Aを用いたSOFCの稼働温度をセリア系セラミックスや種々の水素イオン伝導性材料に比べて高くすることができる。例えば電気化学素子AをSOFCに用いる場合、電解質層32の材料としてYSZのような650℃程度以上の高温域でも高い電解質性能を発揮できる材料を用い、システムの原燃料に都市ガスやLPG等の炭化水素系の原燃料を用い、原燃料を水蒸気改質等によってSOFCのアノードガスとするシステム構成とすると、SOFCのセルスタックで生じる熱を原燃料ガスの改質に用いる高効率なSOFCシステムを構築することができる。
電解質層32は、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD(化学気相成長)法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃を越える高温域での焼成を用いずに、緻密で気密性およびガスバリア性の高い電解質層32が得られる。そのため、第一板状体1の損傷を抑制し、また、第一板状体1と電極層31との元素相互拡散を抑制することができ、性能・耐久性に優れた電気化学素子Aを実現できる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、スプレーコーティング法を用いると、緻密で気密性およびガスバリア性の高い電解質層が低温域で容易に得られやすいので更に好ましい。
電解質層32は、アノードガスやカソードガスのガスリークを遮蔽し、かつ、高いイオン伝導性を発現するために、緻密に構成される。電解質層32の緻密度は90%以上が好ましく、95%以上であるとより好ましく、98%以上であると更に好ましい。電解質層32は、均一な層である場合は、その緻密度が95%以上であると好ましく、98%以上であるとより好ましい。また、電解質層32が、複数の層状に構成されているような場合は、そのうちの少なくとも一部が、緻密度が98%以上である層(緻密電解質層)を含んでいると好ましく、99%以上である層(緻密電解質層)を含んでいるとより好ましい。このような緻密電解質層が電解質層の一部に含まれていると、電解質層が複数の層状に構成されている場合であっても、緻密で気密性およびガスバリア性の高い電解質層を形成しやすくできるからである。
(反応防止層)
反応防止層35は、電解質層32の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは3μm~15μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。前記反応防止層の材料としては、電解質層32の成分と対極電極層33の成分との間の反応を防止できる材料であれば良いが、例えばセリア系材料等が用いられる。また反応防止層35の材料として、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有する材料が好適に用いられる。なお、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有し、これら元素の含有率の合計が1.0質量%以上10質量%以下であるとよい。反応防止層35を電解質層32と対極電極層33との間に導入することにより、対極電極層33の構成材料と電解質層32の構成材料との反応が効果的に抑制され、電気化学素子Aの性能の長期安定性を向上できる。反応防止層35の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、第一板状体1の損傷を抑制し、また、第一板状体1と電極層31との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Aを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
反応防止層35は、電解質層32の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは3μm~15μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。前記反応防止層の材料としては、電解質層32の成分と対極電極層33の成分との間の反応を防止できる材料であれば良いが、例えばセリア系材料等が用いられる。また反応防止層35の材料として、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有する材料が好適に用いられる。なお、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有し、これら元素の含有率の合計が1.0質量%以上10質量%以下であるとよい。反応防止層35を電解質層32と対極電極層33との間に導入することにより、対極電極層33の構成材料と電解質層32の構成材料との反応が効果的に抑制され、電気化学素子Aの性能の長期安定性を向上できる。反応防止層35の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、第一板状体1の損傷を抑制し、また、第一板状体1と電極層31との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Aを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(対極電極層)
図13~図18に示すように、対極電極層33を、電解質層32もしくは反応防止層35の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層33の材料としては、例えば、LSCF、LSM等の複合酸化物、セリア系酸化物およびこれらの混合物を用いることができる。特に対極電極層33が、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。以上の材料を用いて構成される対極電極層33は、カソードとして機能する。
図13~図18に示すように、対極電極層33を、電解質層32もしくは反応防止層35の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層33の材料としては、例えば、LSCF、LSM等の複合酸化物、セリア系酸化物およびこれらの混合物を用いることができる。特に対極電極層33が、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。以上の材料を用いて構成される対極電極層33は、カソードとして機能する。
なお、対極電極層33の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、第一板状体1の損傷を抑制し、また、第一板状体1と電極層31との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Aを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
このような電気化学反応部3を構成することで、電気化学反応部3を燃料電池(電気化学発電セル)として機能させる場合には、電気化学素子Aを固体酸化物形燃料電池の発電セルとして用いることができる。例えば、第一板状体1の裏側の面から貫通孔11を通じて第一ガスとしての水素を含む燃料ガスを電極層31へ供給し、電極層31の対極となる対極電極層33へ第二ガスとしての空気を供給し、例えば700℃程度の作動温度に維持する。そうすると、対極電極層33において空気に含まれる酸素O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層32を通って電極層31へ移動する。電極層31においては、供給された燃料ガスに含まれる水素H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。
電解質層32に水素イオンを伝導する電解質材料を用いた場合には、電極層31において流通された燃料ガスに含まれる水素H2が電子e-を放出して水素イオンH+が生成される。その水素イオンH+が電解質層32を通って対極電極層33へ移動する。対極電極層33において空気に含まれる酸素O2と水素イオンH+、電子e-が反応し水H2Oが生成される。
以上の反応により、電極層31と対極電極層33との間に電気化学出力として起電力が発生する。この場合、電極層31は燃料電池の燃料極(アノード)として機能し、対極電極層33は空気極(カソード)として機能する。
電解質層32に水素イオンを伝導する電解質材料を用いた場合には、電極層31において流通された燃料ガスに含まれる水素H2が電子e-を放出して水素イオンH+が生成される。その水素イオンH+が電解質層32を通って対極電極層33へ移動する。対極電極層33において空気に含まれる酸素O2と水素イオンH+、電子e-が反応し水H2Oが生成される。
以上の反応により、電極層31と対極電極層33との間に電気化学出力として起電力が発生する。この場合、電極層31は燃料電池の燃料極(アノード)として機能し、対極電極層33は空気極(カソード)として機能する。
また、図13~図17にて省略したが、図18に示すように、本実施の形態では、電気化学反応部3は電極層31と電解質層32との間に中間層34を備える。さらに、電解質層32と対極電極層33との間には反応防止層35が設けられる。
(電気化学素子積層体)
図4に示すように、電気化学素子積層体Sは、電気化学素子Aを複数有し、隣接する電気化学素子Aに関して、一つの電気化学素子Aを構成する板状支持体10と、他の一つの電気化学素子Aを構成する板状支持体10とが対向する形態で、且つ、一つの電気化学素子Aを構成する板状支持体10における電気化学反応部3が配置される第一板状体1とは別の第二板状体2の外面と、他の一つの電気化学素子Aを構成する板状支持体10における第一板状体1の外面とが電気的に接続される形態で、且つ、これら両外面どうしの隣接間に、当該両外面に沿って第二ガスが通流する通流部A2が形成される形態で、複数の電気化学素子Aが積層配置されている。電気的に接続させるためには、電気伝導性表面部同士を単純に接触させる他、接触面に面圧を印可したり、高電気伝導性の材料を介在させて接触抵抗を下げる方法などが採用可能である。具体的には、長方形状の各電気化学素子が一端部の第一貫通部41と他端部の第二貫通部51とを揃えた状態で、それぞれの電気化学素子の電気化学反応部が上向きになる状態で整列して、各第一貫通部41、第二貫通部51同士の間に第一環状パッキン材42、第二環状パッキン材52を介在して、積層されることにより、上記構成となる。
図4に示すように、電気化学素子積層体Sは、電気化学素子Aを複数有し、隣接する電気化学素子Aに関して、一つの電気化学素子Aを構成する板状支持体10と、他の一つの電気化学素子Aを構成する板状支持体10とが対向する形態で、且つ、一つの電気化学素子Aを構成する板状支持体10における電気化学反応部3が配置される第一板状体1とは別の第二板状体2の外面と、他の一つの電気化学素子Aを構成する板状支持体10における第一板状体1の外面とが電気的に接続される形態で、且つ、これら両外面どうしの隣接間に、当該両外面に沿って第二ガスが通流する通流部A2が形成される形態で、複数の電気化学素子Aが積層配置されている。電気的に接続させるためには、電気伝導性表面部同士を単純に接触させる他、接触面に面圧を印可したり、高電気伝導性の材料を介在させて接触抵抗を下げる方法などが採用可能である。具体的には、長方形状の各電気化学素子が一端部の第一貫通部41と他端部の第二貫通部51とを揃えた状態で、それぞれの電気化学素子の電気化学反応部が上向きになる状態で整列して、各第一貫通部41、第二貫通部51同士の間に第一環状パッキン材42、第二環状パッキン材52を介在して、積層されることにより、上記構成となる。
板状支持体10には、表面貫通方向外方から内部流路A1に還元性成分ガス及び酸化性成分ガスのうちの一方である第一ガスを供給する供給路4を形成する第一貫通部41を長方形状の板状支持体10の長手方向一端部側に備え、通流部A2内において、板状支持体10の両外面に夫々形成される第一貫通部41を通流部A2と区画する環状パッキン材としての第一環状パッキン材42を備え、第一貫通部41及び第一環状パッキン材42により、第一ガスを内部流路A1に供給する供給路4が形成される。尚、第一板状体1における第一環状パッキン材42の接当する部位の周囲には第一板状体1における前記内部流路A1とは反対側面に環状の膨出部aを設けて第一環状パッキン材42の第一板状体1の面に沿う方向での位置決めを容易にしてある。
また、板状支持体10は、内部流路A1を通流した第一ガスを板状支持体10の表面貫通方向外方へ排出する排出路5を形成する第二貫通部51を他端部側に備え、第二貫通部51は、第二ガスと区画された状態で第一ガスを通流させる構成であり、通流部A2内において、板状支持体10の両外面に夫々形成される第二貫通部51を通流部A2と区画する環状パッキン材としての第二環状パッキン材52を備え、第二貫通部51及び第二環状パッキン材52により、内部流路A1を通流した第一ガスを排出する排出路5が形成される。
(7)環状パッキン材
次に、第一、第二環状パッキン材42,52について説明する。
次に、第一、第二環状パッキン材42,52について説明する。
図19及び図20に示すように、本実施形態における各環状パッキン材42,52は、熱により膨張する熱膨張部材からなる金属材料42a,52aと、絶縁性の金属酸化物層42b、52bとを備え、上面視で環状に形成された金属材料42a,52a及び金属酸化物層42b,52bの内側に貫通孔42c,52cが形成されており、金属材料42a,52a及び金属酸化物層42b,52bによりシールされるシール領域が環状である。この各環状パッキン材42,52は、貫通孔42c,52cによって第一、第二貫通部41,51同士を連通し、隣接する電気化学素子Aの間をシール領域によってシールする。
図2に示すように、本実施形態の環状パッキン材42,52は、金属材料42a,52aが円環状の平板で構成されており、金属材料42a,52aの上面と下面を含む全表面が、金属酸化物層42b,52bで覆われている。
尚、環状パッキン材42,52は、その平面外形は円環状に限られず、環状であればどのような形状であってもよい。環状には、円形、楕円形、方形、多角形状等いかなる形状も含まれる。
金属材料42a,52aの構成素材としては、例えば、フェライト系ステンレス、オーステナイト系ステンレス、インコネル、銅、インバー材等が挙げられる。金属材料42a,52aは、フェライト系ステンレス、オーステナイト系ステンレス、インコネル、銅、インバー材からなる群より選択される少なくとも一つを含むようにすると良い。
また、金属材料42a,52aは、図21に示すように、熱膨張係数の小さい金属421a,521aと、熱膨張係数の大きな金属422a,522aとを、例えば圧延によって張り合わせたバイメタル420a,520aであっても良い。バイメタル420a,520aは、熱膨張率が異なる2種類の金属の板を貼り合わせたもので、温度変化に応じて特有の形状に変化するものである。
金属材料42a,52aとしてバイメタル420a,520aを使用する場合、バイメタル420a,520a自体の温度が上昇するに伴って、例えば、図21に示す平板状の形態から、図22に示すように円弧状の反りが発生して厚み方向の幅が大きくなるように構成されていることが望ましい(T>t)。例えば、熱膨張係数の小さい金属421a,521aとしてインバー材(熱膨張率0.2×10-5/℃)、熱膨張係数の大きな金属422a,522aとしてSUS316(熱膨張率1.8×10-5/℃)を用い、tが0.5mmのバイメタル420a,520aであれば、バイメタル420a,520a自体の温度が700℃に上昇した際に、Tが0.68mmとなる。
また、環状パッキン材42,52の金属材料42a,52aの縦断面形状は、平板形状(図20参照)、波形形状(図23参照)、三角形状(図24参照)、円形状(図25参照)、楕円形状(図示せず)、のこ刃形状(図26参照)、略C字形状(図27参照)、略D字形状(図27参照)のうちのいずれか1つ以上を備えていることが好ましい。
また、図28に示すように、金属材料42a,52aの縦断面形状が、内側に閉空間(内部空間)42d,52dを備えた環形状であることが好ましい。つまり、金属材料42a,52aは、縦断面視で、全周に亘って環形状に形成されており、環形状に形成された部分の内側に、外部と区画された閉空間42d,52dが密閉状態で形成されている。なお、閉空間42d,52dは、上面視で、金属材料42a,52aの全周に亘って環状に形成されている。
そして、閉空間42d,52d内には、気体や液体が封入されており、高温環境に晒された場合に、当該閉空間42d,52dに封じられた気体や液体が熱膨張することによってさらに金属材料42a,52aの膨張が促進され、よって面圧力が上昇するように構成することができ、その結果さらにより高いシール性能が発揮される。
なお、図28に示す金属材料42a,52aの縦断面形状は、略D字形状に形成されているが、このような縦断面形状に限らず、例えば、円形状、楕円形状、三角形状、矩形状等に形成するようにしてもよい。
そして、閉空間42d,52d内には、気体や液体が封入されており、高温環境に晒された場合に、当該閉空間42d,52dに封じられた気体や液体が熱膨張することによってさらに金属材料42a,52aの膨張が促進され、よって面圧力が上昇するように構成することができ、その結果さらにより高いシール性能が発揮される。
なお、図28に示す金属材料42a,52aの縦断面形状は、略D字形状に形成されているが、このような縦断面形状に限らず、例えば、円形状、楕円形状、三角形状、矩形状等に形成するようにしてもよい。
金属酸化物層42b,52bの構成素材としては、例えば、アルミナ、シリカ、酸化マグネシウム、酸化鉄、酸化クロム、及び酸化マンガン等が挙げられる。金属酸化物層42b,52bは、アルミナ、シリカ、酸化マグネシウム、酸化鉄、酸化クロム、及び酸化マンガンからなる群より選択される少なくとも一つを含むようにすると良い。
尚、金属酸化物層42b、52bは、金属材料42a,52aが平板形状、波形形状、のこ刃形状などの場合、金属材料42a,52aの上面及び下面のうちの少なくともいずれか一方に設けられていれば良い。また、金属材料42a,52aがその他の形状を有するものであっても、その絶縁性が確保されるのであれば、必ずしも金属材料42a,52aの全体を覆うように金属酸化物層42b,52bを設ける必要はなく、金属材料42a,52aの厚さ方向における少なくとも一方側に設けるようにしても良い。
尚、本実施形態に係る環状パッキン材42,52は、金属材料42a,52aに対して金属酸化物を積層する公知の積層方法を用いて作成することができる。例えば、金属材料42a,52aの表面をエッチングして金属材料42a,52aの表面に酸化物を析出させることによって金属酸化物層42b,52bを積層させる方法や、金属材料42a,52aの表面に金属酸化物を塗布、接着、焼き付け、スプレーコート、又は溶射することによって金属酸化物層42b,52bを積層させる方法等が挙げられる。なお、例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより金属材料42a,52aに金属酸化物層42b,52bを積層すると金属材料42a,52aの劣化を抑制できるので好ましい。
SOFCにおいては、発電時と発電していない時とで大きな温度差があるため、SOFC中の電気化学素子積層体Sは、高温を含んだ温度変化するような環境下におかれる。本実施形態においては、上記のように、熱膨張部材からなる平板状部材220が、電気化学素子積層体Sの上部平面及び下部平面に配置されており、上部及び下部プレート230から所定の締め付け圧力を負荷されて、弾性的に電気化学素子積層体Sを支持しており、環状パッキン材42,52による面圧力が板状支持体10に作用し、シール性が確保されている。しかしながら、温度変化が繰り返されることによって、例えば、金属酸化物層42b、52bの弾性が低下して、環状パッキン材42,52と板状支持体10との間にわずかな隙間が生じる場合がある。
環状パッキン材42,52によれば、金属酸化物層42b、52bの弾性が低下して、環状パッキン材42,52と板状支持体10との間にわずかな隙間が生じたような場合であっても、SOFCが発電中である場合において、金属材料42a,52aの膨張張力によって面圧力が上昇して高いシール性が発揮される。したがって、隣接する板状支持体10間において、金属材料42a,52a及び金属酸化物層42b、52bの内側(即ち、供給路4や排出路5)と外側(即ち、通流部A2)との間におけるシール性が十分に確保される。また、金属材料42a,52aが高温でも硬化し難いため長期間の使用に耐えることができる。更に、環状パッキン材42,52が金属酸化物層42b、52bを備えていることで、隣接する板状支持体10間(即ち、電気化学素子A間)の絶縁性も保たれる。
また、板状支持体10の第一板状体1や第二板状体2の熱膨張率と、金属材料42a、52aの熱膨張率とが異なる熱膨張率となるような材料により形成されていると、高温に晒された場合に、第一板状体1や第二板状体2と金属材料42a、52aとの熱膨張差によって生じる熱膨張力を利用することによって面圧力が上昇するように構成とすることができ、その結果さらにより高いシール性能が発揮される。
具体的には、金属材料42a、52aの熱膨張率を第一板状体1や第二板状体2の熱膨張率よりも大きくしたり、金属材料42a、52aの熱膨張率を第一板状体1や第二板状体2の熱膨張率よりも小さくしたりすることができる。さらに具体的には、第一板状体1及び第二板状体2をフェライト系ステンレスとし、金属材料42a、52aをオーステナイト系ステンレスとすることで、金属材料42a、52aの熱膨張率を第一板状体1及び第二板状体2の熱膨張率よりも大きくすることができる。この場合、高温に晒された場合に、金属材料42a、52aが第一板状体1及び第二板状体2よりも大きく熱膨張して、第一板状体1及び第二板状体2に対する金属材料42a、52aの面圧力が上昇することで、より高いシール性能が発揮される。
具体的には、金属材料42a、52aの熱膨張率を第一板状体1や第二板状体2の熱膨張率よりも大きくしたり、金属材料42a、52aの熱膨張率を第一板状体1や第二板状体2の熱膨張率よりも小さくしたりすることができる。さらに具体的には、第一板状体1及び第二板状体2をフェライト系ステンレスとし、金属材料42a、52aをオーステナイト系ステンレスとすることで、金属材料42a、52aの熱膨張率を第一板状体1及び第二板状体2の熱膨張率よりも大きくすることができる。この場合、高温に晒された場合に、金属材料42a、52aが第一板状体1及び第二板状体2よりも大きく熱膨張して、第一板状体1及び第二板状体2に対する金属材料42a、52aの面圧力が上昇することで、より高いシール性能が発揮される。
(8)エネルギーシステム、電気化学装置
次に、エネルギーシステム、電気化学装置について図29を用いて説明する。
エネルギーシステムZは、電気化学装置100と、電気化学装置100から排出される熱を再利用する排熱利用部としての熱交換器190とを有する。
電気化学装置100は、電気化学モジュールMと、燃料供給モジュールと、電気化学モジュールMから電力を取り出す出力部8としてのインバータ(電力変換器の一例)104とを有する。燃料供給モジュールは、脱硫器101、気化器106及び改質器102からなり、電気化学モジュールMに対して還元性成分を含有する燃料ガスを供給する燃料供給部103とを有する。なお、この場合、改質器102が燃料変換器となる。
次に、エネルギーシステム、電気化学装置について図29を用いて説明する。
エネルギーシステムZは、電気化学装置100と、電気化学装置100から排出される熱を再利用する排熱利用部としての熱交換器190とを有する。
電気化学装置100は、電気化学モジュールMと、燃料供給モジュールと、電気化学モジュールMから電力を取り出す出力部8としてのインバータ(電力変換器の一例)104とを有する。燃料供給モジュールは、脱硫器101、気化器106及び改質器102からなり、電気化学モジュールMに対して還元性成分を含有する燃料ガスを供給する燃料供給部103とを有する。なお、この場合、改質器102が燃料変換器となる。
詳しくは電気化学装置100は、脱硫器101、改質水タンク105、気化器106、改質器102、ブロア107、燃焼部108、インバータ104、制御部110、および電気化学モジュールMを有する。
脱硫器101は、都市ガス等の炭化水素系の原燃料に含まれる硫黄化合物成分を除去(脱硫)する。原燃料中に硫黄化合物が含有される場合、脱硫器101を備えることにより、硫黄化合物による改質器102あるいは電気化学素子Aに対する悪影響を抑制することができる。気化器106は、改質水タンク105から供給される改質水から水蒸気を生成する。改質器102は、気化器106にて生成された水蒸気を用いて脱硫器101にて脱硫された原燃料を水蒸気改質して、水素を含む改質ガスを生成する。
電気化学モジュールMは、改質器102から供給された改質ガスと、ブロア107から供給された空気とを用いて、電気化学反応させて発電する。燃焼部108は、電気化学モジュールMから排出される反応排ガスと空気とを混合させて、反応排ガス中の可燃成分を燃焼させる。
インバータ104は、電気化学モジュールMの出力電力を調整して、商用系統(図示省略)から受電する電力と同じ電圧および同じ周波数にする。制御部110は電気化学装置100およびエネルギーシステムZの運転を制御する。
改質器102は、燃焼部108での反応排ガスの燃焼により発生する燃焼熱を用いて原燃料の改質処理を行う。
原燃料は、昇圧ポンプ111の作動により原燃料供給路112を通して脱硫器101に供給される。改質水タンク105の改質水は、改質水ポンプ113の作動により改質水供給路114を通して気化器106に供給される。そして、原燃料供給路112は脱硫器101よりも下流側の部位で、改質水供給路114に合流されており、容器200外にて合流された改質水と原燃料とが気化器106に供給される。
改質水は気化器106にて気化され水蒸気となる。気化器106にて生成された水蒸気を含む原燃料は、水蒸気含有原燃料供給路115を通して改質器102に供給される。改質器102にて原燃料が水蒸気改質され、水素ガスを主成分とする改質ガス(還元性成分を有する第一ガス)が生成される。改質器102にて生成された改質ガスは、燃料供給部103を通して電気化学モジュールMに供給される。
反応排ガスは燃焼部108で燃焼され、燃焼排ガスとなって燃焼排ガス排出路116から熱交換器190に送られる。燃焼排ガス排出路116には燃焼触媒部117(例えば、白金系触媒)が配置され、燃焼排ガスに含有される一酸化炭素や水素等の還元性成分を燃焼除去される。
熱交換器190は、燃焼部108における燃焼で生じた燃焼排ガスと、供給される冷水とを熱交換させ、温水を生成する。すなわち熱交換器190は、電気化学装置100から排出される熱を再利用する排熱利用部として動作する。
なお、排熱利用部の代わりに、電気化学モジュールMから(燃焼されずに)排出される反応排ガスを利用する反応排ガス利用部を設けてもよい。また、第一ガス排出部62より容器200外に流通される反応排ガスの少なくとも一部を図29中の100,101,103,106,112,113,115の何れかの部位に合流させリサイクルしても良い。反応排ガスには、電気化学素子Aにて反応に用いられなかった残余の水素ガスが含まれる。反応排ガス利用部では、残余の水素ガスを利用して、燃焼による熱利用や、燃料電池等による発電が行われ、エネルギーの有効利用がなされる。
〔環状パッキン材の変形例〕
第一、第二環状パッキン材42,52の変形例について説明する。なお、上述の実施形態と同様の構成については、同じ符号を付し、詳細な説明を省略する。
第一、第二環状パッキン材42,52の変形例について説明する。なお、上述の実施形態と同様の構成については、同じ符号を付し、詳細な説明を省略する。
図32に示すように、本例の環状パッキン材42,52では、金属酸化物層42b、52bが、金属材料42a,52aの表面に沿って積層されている。換言すれば、金属酸化物層42b、52bの厚みが、均一である。図示例では、金属材料42a,52aの縦断面形状は波形形状である。金属酸化物層42b、52bの断面形状(表面形状)も、波形形状である。そして、環状パッキン材42,52の縦断面形状も波形形状である。すなわち、環状パッキン材の縦断面形状が、金属材料42a,52aの縦断面形状と同じであってよい。
金属材料42a,52aの断面形状が他の形状(例えば、三角形状(図24参照)、のこ刃形状(図26参照)、略C字形状(図27参照)、略D字形状(図27参照))の場合も、金属酸化物層42b、52bの厚みが均一であってよいし、金属材料42a,52aの縦断面形状と環状パッキン材42,52の縦断面形状とが同じであってよい。
なお、図24,図26-28に示すように、金属酸化物層42b、52bの厚みが、均一でなくてもよい。環状パッキン材の縦断面形状が、金属材料42a,52aの縦断面形状と異なってよい。
〔電気化学素子積層体及び電気化学モジュールの変形例〕
電気化学素子積層体S及び電気化学モジュールMにおいて、第一、第二環状パッキン材42,52が、その表面の少なくとも一部にセラミックペーストが塗布された状態で板状支持体10(金属基板の一例)と環状パッキン材42,52との間に配置されてもよい。環状パッキン材42,52の表面全体にセラミックペーストが塗布されてもよい。環状パッキン材42,52の表側の面または裏側の面のみにセラミックペーストが塗布されてもよい。
電気化学素子積層体S及び電気化学モジュールMにおいて、第一、第二環状パッキン材42,52が、その表面の少なくとも一部にセラミックペーストが塗布された状態で板状支持体10(金属基板の一例)と環状パッキン材42,52との間に配置されてもよい。環状パッキン材42,52の表面全体にセラミックペーストが塗布されてもよい。環状パッキン材42,52の表側の面または裏側の面のみにセラミックペーストが塗布されてもよい。
セラミックペーストは、接合部の気密性(シール性)を高めるペーストであって、例えばガスケットペーストである。セラミックペーストは、セラミックを主成分とし、粘調剤でペースト状にしたものである。セラミックペーストの主成分は、金属酸化物または無機高分子であってもよい。セラミックペーストの主成分が、雲母(マイカ)、シリカ、またはアルミナであってよい。セラミックペーストが水溶性であってよい。
なお、電気化学モジュールMにおいて、電気化学素子Aが積層されていなくてもよい。換言すれば、電気化学モジュールMにおいて、電気化学素子Aが複数集合した状態で配置されてもよい。電気化学素子積層体Sにおいて、電気化学素子Aが積層されていなくてもよい。換言すれば、電気化学素子積層体Sにおいて、電気化学素子Aが複数集合した状態で配置されてもよい。この場合、電気化学素子積層体Sは、「電気化学素子集合体」と呼称されてもよい。
〔気体リーク量の測定試験結果〕
上述の環状パッキン材42,52及びセラミックペーストを用いた場合の気体リーク量の測定試験の結果について、図33の表を参照しながら説明する。
上述の環状パッキン材42,52及びセラミックペーストを用いた場合の気体リーク量の測定試験の結果について、図33の表を参照しながら説明する。
1つの開口部を備える容積1リットルの密閉容器を作成する。開口部を試験用パッキン材で封止する。密閉容器に窒素を供給し、内圧を上昇させる。内圧が試験圧力に到達したら窒素供給を停止し、10分経過後の圧力を測定する。試験圧力と測定圧力との差から、気体リーク量を算出する。試験は、室温及び750℃(実験例2のみ)の環境で行なった。試験圧力は約23kPaであり、電気化学素子積層体S及び電気化学モジュールMにおける通常の使用時圧力の約10倍である。
試験用パッキンとして、以下の2種類を用いた。
〔実験例1〕
実験例1の試験用パッキンは、バーミキュライト-ガラス系複合パッキンであり、市販品である。
実験例1の試験用パッキンは、バーミキュライト-ガラス系複合パッキンであり、市販品である。
〔実験例2〕
実験例2の試験用パッキンは、図32に示す環状パッキン材に、雲母を主成分とするセラミックペーストを塗布したものである。環状パッキン材の金属材料は、リング状のステンレス波板であり、その材質はSUS430である。金属材料の厚さは、0.1mmである。環状パッキン材の金属酸化物層は、アルミナである。金属酸化物層の厚さは、1μmから2μmである。金属酸化物層は、スプレーコート法により金属材料の表面に積層される。
実験例2の試験用パッキンは、図32に示す環状パッキン材に、雲母を主成分とするセラミックペーストを塗布したものである。環状パッキン材の金属材料は、リング状のステンレス波板であり、その材質はSUS430である。金属材料の厚さは、0.1mmである。環状パッキン材の金属酸化物層は、アルミナである。金属酸化物層の厚さは、1μmから2μmである。金属酸化物層は、スプレーコート法により金属材料の表面に積層される。
気体リーク量の測定試験の結果が図33に示される。室温では、実験例1の試験用パッキンでは、気体リーク量が2.1ml/minとなった。これに対し、実験例2の試験用パッキンでは、気体リーク量は0.0ml/minとなり、測定限界以下であった。750℃では、実験例2の試験用パッキンでは、気体リーク量は0.0ml/minとなり、測定限界以下であった。室温での気体リーク量が大きいため、実験例1の試験用パッキンについて750℃の試験は省略された。
実験結果から、実験例2の試験用パッキンを用いることにより、室温でも750℃の高温でも、気体リーク量を極めて小さくできることが確認された。なお、実験例2の試験用パッキンは、本発明の実施例である。実験例1の試験用パッキンは、比較例である。
〔他の実施形態〕
なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
なお上述の実施形態(他の実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
(1)上記実施形態では、電気化学素子AがSOFCである電気化学モジュールMに平板状部材220を適用した。しかし、上記の平板状部材220は、SOEC(Solid Oxide Electrolyzer Cell)及び二次電池等にも適用可能である。
(2)上記の実施形態では、電気化学素子Aを電気化学装置100としての固体酸化物形燃料電池に用いたが、電気化学素子Aは、固体酸化物形電解セルや、固体酸化物を利用した酸素センサ等に利用することもできる。また、電気化学素子Aは、電気化学素子積層体Sや電気化学モジュールMとして複数組み合わせて用いるのに限らず、単独で用いることも可能である。
すなわち、上記の実施形態では、燃料等の化学的エネルギーを電気エネルギーに変換する効率を向上できる構成について説明した。つまり、上記の実施形態では、電気化学素子A及び電気化学モジュールMを燃料電池として動作させ、電極層31に水素ガスが流通され、対極電極層33に酸素ガスが流通される。そうすると、対極電極層33において酸素分子O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層32を通って電極層31へ移動する。電極層31においては、水素分子H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層31と対極電極層33との間に起電力が発生し、発電が行われる。
一方、電気化学素子A及び電気化学モジュールMを電解セルとして動作させる場合は、電極層31に水蒸気や二酸化炭素を含有するガスが流通され、電極層31と対極電極層33との間に電圧が印加される。そうすると、電極層31において電子e-と水分子H2O、二酸化炭素分子CO2が反応し水素分子H2や一酸化炭素COと酸素イオンO2-となる。酸素イオンO2-は電解質層32を通って対極電極層33へ移動する。対極電極層33において酸素イオンO2-が電子を放出して酸素分子O2となる。以上の反応により、水分子H2Oが水素H2と酸素O2とに、二酸化炭素分子CO2を含有するガスが流通される場合は一酸化炭素COと酸素O2とに電気分解される。
水蒸気と二酸化炭素分子CO2を含有するガスが流通される場合は上記電気分解により電気化学素子A及び電気化学モジュールMで生成した水素及び一酸化炭素等から炭化水素などの種々の化合物などを合成する燃料変換器25(図31)を設けることができる。燃料供給部(図示せず)により、この燃料変換器25が生成した炭化水素等を本システム・装置外に取り出して別途燃料として利用することができる。また、燃料変換器25で水素や一酸化炭素を化学原料に変換して利用することもできる。
すなわち、上記の実施形態では、燃料等の化学的エネルギーを電気エネルギーに変換する効率を向上できる構成について説明した。つまり、上記の実施形態では、電気化学素子A及び電気化学モジュールMを燃料電池として動作させ、電極層31に水素ガスが流通され、対極電極層33に酸素ガスが流通される。そうすると、対極電極層33において酸素分子O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層32を通って電極層31へ移動する。電極層31においては、水素分子H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層31と対極電極層33との間に起電力が発生し、発電が行われる。
一方、電気化学素子A及び電気化学モジュールMを電解セルとして動作させる場合は、電極層31に水蒸気や二酸化炭素を含有するガスが流通され、電極層31と対極電極層33との間に電圧が印加される。そうすると、電極層31において電子e-と水分子H2O、二酸化炭素分子CO2が反応し水素分子H2や一酸化炭素COと酸素イオンO2-となる。酸素イオンO2-は電解質層32を通って対極電極層33へ移動する。対極電極層33において酸素イオンO2-が電子を放出して酸素分子O2となる。以上の反応により、水分子H2Oが水素H2と酸素O2とに、二酸化炭素分子CO2を含有するガスが流通される場合は一酸化炭素COと酸素O2とに電気分解される。
水蒸気と二酸化炭素分子CO2を含有するガスが流通される場合は上記電気分解により電気化学素子A及び電気化学モジュールMで生成した水素及び一酸化炭素等から炭化水素などの種々の化合物などを合成する燃料変換器25(図31)を設けることができる。燃料供給部(図示せず)により、この燃料変換器25が生成した炭化水素等を本システム・装置外に取り出して別途燃料として利用することができる。また、燃料変換器25で水素や一酸化炭素を化学原料に変換して利用することもできる。
図31には、電気化学反応部3を電解セルとして動作させる(電気化学素子Aで電解反応を生じさせる)場合のエネルギーシステムZおよび電気化学装置100の一例が示されている。本システムでは供給された水と二酸化炭素が電気化学反応部3において電気分解され、水素及び一酸化炭素等を生成する。更に燃料変換器25において炭化水素などが合成される。図31の熱交換器24を、燃料変換器25で起きる反応によって生ずる反応熱と水とを熱交換させ気化させる排熱利用部として動作させるとともに、図31中の熱交換器23を、電気化学素子Aによって生ずる排熱と水蒸気および二酸化炭素とを熱交換させ予熱する排熱利用部として動作させる構成とすることにより、エネルギー効率を高めることが出来る。また、電力変換器93は、電気化学素子Aに電力を流通する。これにより、上記のように電気化学素子Aは電解セルとして作用する。よって、上記構成によれば、電気エネルギーを燃料等の化学的エネルギーに変換する効率を向上できる電気化学装置100及びエネルギーシステムZ等を提供することができる。
(3)上記の実施形態では、電極層31の材料として例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用い、対極電極層33の材料として例えばLSCF、LSM等の複合酸化物を用いた。このように構成された電気化学素子Aは、電極層31に水素ガスを供給して燃料極(アノード)とし、対極電極層33に空気を供給して空気極(カソード)とし、固体酸化物形燃料電池セルとして用いることが可能である。この構成を変更して、電極層31を空気極とし、対極電極層33を燃料極とすることが可能なように、電気化学素子Aを構成することも可能である。すなわち、電極層31の材料として例えばLSCF、LSM等の複合酸化物を用い、対極電極層33の材料として例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO2、Cu-CeO2などの複合材を用いる。このように構成した電気化学素子Aであれば、電極層31に空気を供給して空気極とし、対極電極層33に水素ガスを供給して燃料極とし、電気化学素子Aを固体酸化物形燃料電池セルとして用いることができる。
(4)上述の実施形態では、第一板状体1と電解質層32との間に電極層31を配置し、電解質層32からみて第一板状体1と反対側に対極電極層33を配置した。電極層31と対極電極層33とを逆に配置する構成も可能である。つまり、第一板状体1と電解質層32との間に対極電極層33を配置し、電解質層32からみて第一板状体1と反対側に電極層31を配置する構成も可能である。この場合、電気化学素子Aへの気体の供給についても変更する必要がある。
すなわち、電極層31と対極電極層33の順や第一ガス、第二ガスのいずれが還元性成分ガス及び酸化性成分ガスの一方または他方であるかについては、電極層31と対極電極層33に対して第一ガス、第二ガスが適正に反応する形態で供給されるよう配置されていれば、種々形態を採用しうる。
すなわち、電極層31と対極電極層33の順や第一ガス、第二ガスのいずれが還元性成分ガス及び酸化性成分ガスの一方または他方であるかについては、電極層31と対極電極層33に対して第一ガス、第二ガスが適正に反応する形態で供給されるよう配置されていれば、種々形態を採用しうる。
(5)また、上述の実施形態では、気体通流許容部1Aを覆って電気化学反応部3を、第一板状体1の第二板状体2とは反対側に設けたが、第一板状体1の第二板状体2側に設けてもよい。すなわち、電気化学反応部3は内部流路A1に配置される構成であっても本発明は成り立つ。
(6)上記実施の形態では、第一貫通部41、第二貫通部51を長方形状の板状支持体の両端部に一対設ける形態としたが、両端部に設ける形態に限らず、また、2対以上設ける形態であってもよい。また、第一貫通部41、第二貫通部51は、対で設けられている必要はない。よって、第一貫通部41、第二貫通部51それぞれが、1個以上設けられることができる。さらに、板状支持体は長方形状に限らず、正方形状、円形状等種々形態を採用することができる。
(7)上記では、板状支持体10は、第一板状体1及び第二板状体2により構成されている。ここで、第一板状体1と第二板状体2とは、別体の板状体から構成されていてもよいし、図30に示すように一の板状体から構成されていてもよい。図30の場合、一の板状体が折り曲げられることで、第一板状体1と第二板状体2とが重ね合される。そして、周縁部1aが溶接等されることで第一板状体1と第二板状体2とが一体化される。なお、第一板状体1と第二板状体2とは一連の継ぎ目のない板状体から構成されていてもよく、一連の板状体が折り曲げられることで図30のように成型されてもよい。
また、後述しているが、第二板状体2が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。同様に、第一板状体1が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。
また、後述しているが、第二板状体2が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。同様に、第一板状体1が一の部材から構成されていてもよいし、2以上の部材から構成されていてもよい。
(8)上記の第二板状体2は、第一板状体1とともに内部流路A1を形成する。内部流路A1は、分配部A12、複数の副流路A11、合流部A13を有している。分配部A12に供給された第一ガスは、図9に示すように、複数の副流路A11それぞれに分配して供給され、複数の副流路A11の出口で合流部A13において合流する。よって、第一ガスは、分配部A12から合流部A13に向かうガス流れ方向に沿って流れる。複数の副流路A11は、第二板状体2のうち分配部A12から合流部A13以外の部分を波板状に形成することで構成されている。そして、図13に示すように、複数の副流路A11は、第一ガスのガス流れ方向に交差する流れ交差方向での断面視において波板状に構成されている。このような複数の副流路A11は、図9に示すガス流れ方向に沿って波板が延びて形成されている。複数の副流路A11は、分配部A12と合流部A13との間で一連の波状の板状体から形成されていてもよいし、2以上の波状の板状体から構成されていてもよい。複数の副流路A11は、例えば、ガス流れ方向に沿う方向に沿って分離した2以上の波状の板状体から構成されていてもよいし、流れ交差方向に沿う方向に沿って分離した2以上の波状の板状体から構成されていてもよい。
また、複数の副流路A11は、図13に示すように同一形状の山及び谷が繰り返し形成されることで波形に構成されている。しかし、第二板状体2は、複数の副流路A11が形成される領域において板状部分を有していてもよい。例えば、複数の副流路A11は、板状部分と突状部分とが交互に形成されることで構成されていてもよい。そして、突状部分を第一ガス等の流体が通流する部分とすることができる。
(9)上記の第二板状体2において複数の副流路A11に相当する部分は、全面が波板状に形成されている必要はなく、少なくとも一部が波板状に形成されていればよい。第二板状体2は、例えば、分配部A12と合流部A13との間において、ガス流れ方向の一部が平板状であり、残りが波板状であってもよい。また、第二板状体2は、流れ交差方向の一部が平板状であり、残りが波板状であってもよい。
(10)上記実施形態において、電気化学装置は、複数の電気化学素子Aを備える電気化学モジュールMを備えている。しかし、上記実施形態の電気化学装置は1つの電気化学素子を備える構成にも適用可能である。
尚、上記の実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、又、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
本発明は、環状パッキン材、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セルに関する技術の分野において好適に利用することができる。
25 燃料変換器
31 電極層
32 電解質層
33 対極電極層
42 第1環状パッキン材
52 第2環状パッキン材
42a,52a 金属材料
420a,520a バイメタル
421a,521a 熱膨張係数の小さい金属
422a,522a 熱膨張係数の大きな金属
42b,52b 金属酸化物層
42c,52c 貫通孔
42d,52d 閉空間
93 電力変換器
100 電気化学装置
101 脱硫器
102 改質器
103 燃料供給部
104 インバータ
200 容器
220 平板状部材
230 プレート
A 電気化学素子
M 電気化学モジュール
S 電気化学素子積層体
Z エネルギーシステム
31 電極層
32 電解質層
33 対極電極層
42 第1環状パッキン材
52 第2環状パッキン材
42a,52a 金属材料
420a,520a バイメタル
421a,521a 熱膨張係数の小さい金属
422a,522a 熱膨張係数の大きな金属
42b,52b 金属酸化物層
42c,52c 貫通孔
42d,52d 閉空間
93 電力変換器
100 電気化学装置
101 脱硫器
102 改質器
103 燃料供給部
104 インバータ
200 容器
220 平板状部材
230 プレート
A 電気化学素子
M 電気化学モジュール
S 電気化学素子積層体
Z エネルギーシステム
Claims (16)
- 熱により膨張する熱膨張部材からなる金属材料と、絶縁性の金属酸化物層とを備え、環状に形成された前記金属材料及び前記金属酸化物層の内側に貫通孔が形成されている環状パッキン材。
- 前記金属材料の厚さ方向における少なくとも一方側に、前記金属酸化物層が配置されている請求項1に記載の環状パッキン材。
- 前記金属酸化物層が、アルミナ、シリカ、酸化マグネシウム、酸化鉄、酸化クロム及び酸化マンガンを何れか1つ以上含む請求項1または2に記載の環状パッキン材。
- 前記金属材料が、フェライト系ステンレス、オーステナイト系ステンレス、インコネル、銅及びインバー材を何れか1つ以上含む請求項1から3の何れか1項に記載の環状パッキン材。
- 前記金属材料の断面形状が、内側に閉空間を備えた環形状である請求項1から4の何れか1項に記載の環状パッキン材。
- 前記金属材料が、バイメタルである請求項1から4の何れか1項に記載の環状パッキン材。
- 前記金属材料の断面形状が、平板形状、三角形状、のこ刃形状、波形形状、円形状、楕円形状、略C字形状及び略D字形状の何れか1つ以上を備える請求項1から6の何れか1項に記載の環状パッキン材。
- 電解質層と、前記電解質層の両側にそれぞれ配置されている第1電極及び第2電極とを備えた電気化学素子の複数が、前記電気化学素子間に金属基板を介して積層されており、隣接する金属基板の間に、請求項1から7の何れか1項に記載の環状パッキン材が配置されている電気化学モジュール。
- 前記金属材料の熱膨張係数と前記金属基板の熱膨張係数とは異なる熱膨張係数である請求項8に記載の電気化学モジュール。
- 前記環状パッキン材は、その表面の少なくとも一部にセラミックペーストが塗布された状態で前記金属基板と前記環状パッキン材との間に配置されている請求項8または9に記載の電気化学モジュール。
- 前記セラミックペーストが雲母を含有する請求項10に記載の電気化学モジュール。
- 請求項8から11の何れか1項に記載の電気化学モジュールと、前記電気化学モジュールに供給する還元性成分を生成する、或いは、前記電気化学モジュールで生成する還元性成分を含有するガスを変換する燃料変換器とを少なくとも有する電気化学装置。
- 請求項8から11の何れか1項に記載の電気化学モジュールと、前記電気化学モジュールから電力を取り出すあるいは前記電気化学モジュールに電力を流通する電力変換器と、を有する電気化学装置。
- 請求項12または13に記載の電気化学装置と、前記電気化学装置から排出される熱を再利用する排熱利用部と、を有するエネルギーシステム。
- 請求項8から11の何れか1項に記載の電気化学モジュールを備え、前記電気化学モジュールで発電反応を生じさせる固体酸化物形燃料電池。
- 請求項8から11の何れか1項に記載の電気化学モジュールを備え、前記電気化学モジュールで電解反応を生じさせる固体酸化物形電解セル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180027497.4A CN115362583A (zh) | 2020-03-31 | 2021-03-31 | 环状填充材料、电化学模块、电化学装置、能量系统、固体氧化物型燃料电池及固体氧化物型电解池 |
US17/916,120 US20230282844A1 (en) | 2020-03-31 | 2021-03-31 | Annular Packing Material, Electrochemical Module, Electrochemical Device, Energy System, Solid Oxide Fuel Cell, and Solid Oxide Electrolysis Cell |
JP2022512621A JPWO2021201098A1 (ja) | 2020-03-31 | 2021-03-31 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-064527 | 2020-03-31 | ||
JP2020064527 | 2020-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021201098A1 true WO2021201098A1 (ja) | 2021-10-07 |
Family
ID=77929511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/013832 WO2021201098A1 (ja) | 2020-03-31 | 2021-03-31 | 環状パッキン材、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230282844A1 (ja) |
JP (1) | JPWO2021201098A1 (ja) |
CN (1) | CN115362583A (ja) |
WO (1) | WO2021201098A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962360U (ja) * | 1982-10-18 | 1984-04-24 | トヨタ自動車株式会社 | 接続部のシ−ル装置 |
JPH05223173A (ja) * | 1992-02-12 | 1993-08-31 | Watanabegiichi Seisakusho:Kk | パッキン |
JPH0644988A (ja) * | 1991-10-11 | 1994-02-18 | Nkk Corp | 燃料電池 |
JP2005520306A (ja) * | 2001-11-21 | 2005-07-07 | コーニング インコーポレイテッド | 固体酸化物燃料電池スタック及びパケットの構造 |
JP2006049073A (ja) * | 2004-08-04 | 2006-02-16 | Mitsubishi Materials Corp | 固体酸化物形燃料電池 |
JP2008004427A (ja) * | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | 燃料電池 |
JP2017180484A (ja) * | 2016-03-28 | 2017-10-05 | 株式会社Subaru | 排気ガス還流装置の連結構造 |
-
2021
- 2021-03-31 WO PCT/JP2021/013832 patent/WO2021201098A1/ja active Application Filing
- 2021-03-31 JP JP2022512621A patent/JPWO2021201098A1/ja active Pending
- 2021-03-31 US US17/916,120 patent/US20230282844A1/en active Pending
- 2021-03-31 CN CN202180027497.4A patent/CN115362583A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5962360U (ja) * | 1982-10-18 | 1984-04-24 | トヨタ自動車株式会社 | 接続部のシ−ル装置 |
JPH0644988A (ja) * | 1991-10-11 | 1994-02-18 | Nkk Corp | 燃料電池 |
JPH05223173A (ja) * | 1992-02-12 | 1993-08-31 | Watanabegiichi Seisakusho:Kk | パッキン |
JP2005520306A (ja) * | 2001-11-21 | 2005-07-07 | コーニング インコーポレイテッド | 固体酸化物燃料電池スタック及びパケットの構造 |
JP2006049073A (ja) * | 2004-08-04 | 2006-02-16 | Mitsubishi Materials Corp | 固体酸化物形燃料電池 |
JP2008004427A (ja) * | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | 燃料電池 |
JP2017180484A (ja) * | 2016-03-28 | 2017-10-05 | 株式会社Subaru | 排気ガス還流装置の連結構造 |
Also Published As
Publication number | Publication date |
---|---|
CN115362583A (zh) | 2022-11-18 |
US20230282844A1 (en) | 2023-09-07 |
JPWO2021201098A1 (ja) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7292259B2 (ja) | 電気化学モジュール、電気化学モジュールの組立方法、電気化学装置及びエネルギーシステム | |
JP7353270B2 (ja) | 電気化学素子、電気化学モジュール、電気化学装置およびエネルギーシステム | |
JP7499902B2 (ja) | 電気化学モジュール、電気化学装置及びエネルギーシステム | |
WO2020203895A1 (ja) | 電気化学モジュール、電気化学装置及びエネルギーシステム | |
WO2020203891A1 (ja) | 弾性体、電気化学モジュール、電気化学装置及びエネルギーシステム | |
WO2021201098A1 (ja) | 環状パッキン材、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル | |
JP7345267B2 (ja) | 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム | |
JP7353226B2 (ja) | 電気化学モジュール、電気化学装置及びエネルギーシステム | |
JP7423381B2 (ja) | 電気化学モジュール、電気化学装置及びエネルギーシステム | |
WO2020203894A1 (ja) | 電気化学モジュール、電気化学装置及びエネルギーシステム | |
CN111902989B (zh) | 电化学模块、电化学模块的组装方法、电化学装置和能源系统 | |
TWI851697B (zh) | 電化學模組、電化學裝置及能源系統 | |
TWI853913B (zh) | 彈性體、電化學模組、電化學裝置及能源系統 | |
JP2022156333A (ja) | 環状スペーサ、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池および固体酸化物形電解セル | |
JP2022156331A (ja) | 金属セパレータ、電気化学ユニット、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び固体酸化物形電解セル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21781207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022512621 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21781207 Country of ref document: EP Kind code of ref document: A1 |