JP6834363B2 - 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池 Download PDF

Info

Publication number
JP6834363B2
JP6834363B2 JP2016215681A JP2016215681A JP6834363B2 JP 6834363 B2 JP6834363 B2 JP 6834363B2 JP 2016215681 A JP2016215681 A JP 2016215681A JP 2016215681 A JP2016215681 A JP 2016215681A JP 6834363 B2 JP6834363 B2 JP 6834363B2
Authority
JP
Japan
Prior art keywords
transition metal
aqueous electrolyte
lithium
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016215681A
Other languages
English (en)
Other versions
JP2018073751A (ja
Inventor
弘将 村松
弘将 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016215681A priority Critical patent/JP6834363B2/ja
Publication of JP2018073751A publication Critical patent/JP2018073751A/ja
Application granted granted Critical
Publication of JP6834363B2 publication Critical patent/JP6834363B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用正極活物質、その正極活物質を含有する非水電解質二次電池用電極及び非水電解質二次電池に関する。
従来、リチウム二次電池に代表される非水電解質二次電池用の正極活物質として、α−NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されていた。しかし、LiCoOの放電容量は120〜130mAh/g程度であった。前記Meとして、地球資源として豊富なMnを用いることが望まれてきた。しかし、リチウム遷移金属複合酸化物をLiMeO(Meは遷移金属)で表したときのMeとしてMnを含有させた場合、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できないため、充放電サイクル性能が著しく劣るという問題があった。
そこで、遷移金属(Me)中のMnのモル比Mn/Meが0.5以下であり、遷移金属(Me)に対するLiのモル比Li/Meがほぼ1である「LiMeO型」活物質が種々提案され、一部実用化されている。例えば、リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2やLiNi1/3Co1/3Mn1/3を含有する正極活物質は150〜180mAh/gの放電容量を有する。
一方、上記のようないわゆる「LiMeO型」活物質に対し、Me中のMnのモル比Mn/Meが0.5を超え、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meが1より大きいリチウム遷移金属複合酸化物を含む、いわゆる「リチウム過剰型」活物質も知られている。(例えば、特許文献1、2、4〜8参照)。
特許文献1には、「α−NaFeO型結晶構造を有し、組成式Li1+αMe1−α(MeはCo、Ni及びMnを含む遷移金属元素、α>0)で表され、前記遷移金属元素Meに対するLiのモル比Li/Meが1.2〜1.6であるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質であって、前記遷移金属元素Me中のCoのモル比Co/Meが0.02〜0.23であり、前記遷移金属元素Me中のMnのモル比Mn/Meが0.62〜0.72であり、電位5.0V(vs.Li/Li)まで電気化学的に酸化したとき、エックス線回折図上空間群R3−mに帰属される単一相として観察されるものであることを特徴とする非水電解質二次電池用正極活物質。」(請求項1)と記載されている。
そして、実施例においては、Li1.13Co0.11Ni0.16Mn0.60をはじめ、種々の組成の活物質が示されている(段落[0086]、[0119]表2参照)。
特許文献2には、「層状構造を有し、下記式(1)で表される組成の化合物と、アスペクト比の平均値が16以上62以下である柱状のLi及びVの複合酸化物と、が混在していることを特徴とする活物質。
LiNiCoMn ・・・(1)
[上記式(1)中、元素MはAl、Si、Zr、Ti、Fe、Mg、Nb、Ba及びVからなる群から選ばれる少なくとも1種の元素であり、1.9≦(a+b+c+d+y)≦2.1、1.0<y≦1.3、0<a≦0.3、0<b≦0.25、0.3≦c≦0.7、0≦d≦0.1、1.9≦x≦2.1。]」(請求項1)が記載されている。
そして、実施例においては、組成がLi1.2Ni0.17Co0.08Mn0.55であるリチウム化合物(正極活物質)とVとを混合し、370℃〜750℃で熱処理して、Li及びVの複合酸化物と前記リチウム化合物とが混在した活物質を得たことが示されている(段落[0054]〜[0056]、[0062]〜[0065]、[0072]表1参照)。
また、X線回折測定による(003)面と(104)面の回折ピークの半値幅、又はこれらの比であるFWHM003/FWHM104を規定したリチウム遷移金属複合酸化物を含有する非水電解質二次電池用正極活物質が公知である(例えば、特許文献3〜7参照)。
特許文献3には、「集電体と、前記集電体に保持された活物質粒子を含む活物質層とを備え、前記活物質粒子は、リチウム遷移金属酸化物の一次粒子が複数集合した二次粒子であって、該二次粒子の内側に形成された中空部と、該中空部を囲む殻部とを有する中空構造を構成しており、前記二次粒子には、外部から前記中空部まで貫通する貫通孔が形成されており、ここで前記活物質粒子の粉末X線回折パターンにおいて、(003)面により得られる回折ピークの半値幅Aと、(104)面により得られる回折ピークの半値幅Bとの比(A/B)が次式:(A/B)≦0.7を満たす、リチウム二次電池。」(請求項1)、「前記リチウム遷移金属酸化物は、以下の一般式:
Li1+xNiCoMn(1−y−z)αβ2
(式(1)中のx,y,z,αおよびβは、0≦x≦0.2、0.1<y<0.9、0.1<z<0.4、0.0005≦α≦0.01、0≦β≦0.01を全て満足する実数であり、Mは、存在しないか或いはZr、Mg、Ca、Na、Fe、Cr、Zn、Si、Sn、Al、BおよびFから成る群から選択される1種又は2種以上の元素である。)
で示される層状結晶構造の化合物である、請求項1・・・に記載のリチウム二次電池。」(請求項6)が記載されている。
そして、段落[0073]〜[0082]、[0089]表1には、Ni:Co:Mnのモル比が0.33:0.33:0.33の原料100モル%に対してW添加量が0〜0.7モル%になるように調節して得られた複合水酸化物粒子と、炭酸リチウムとを、Li/Meが約1.15となるように混合して焼成することにより、ミラー指数(003)の回折面により得られるピークの半値幅Aと、ミラー指数(104)の回折面により得られるピークの半値幅Bとの比(A/B)が0.38〜1.12の範囲にあるリチウム遷移金属複合酸化物よりなる、中空構造又は中実構造を備える活物質粒子を製造したことが記載されている。
特許文献4には、「層状構造を有し、下記式(1)で表される組成を有し、粉末X線回折図における(003)面の半値幅FWHM003と(104)面の半値幅FWHM104との比が下記式(2)で表され、かつ、平均一次粒子径が0.2μm〜0.5μmであることを特徴とする活物質。
LiNiCoMn ・・・(1)
[上記式(1)中、元素MはAl,Si,Zr,Ti,Fe,Mg,Nb,Ba及びVからなる群から選ばれる少なくとも1種の元素であり、1.9≦(a+b+c+d+y)≦2.1、1.0<y≦1.3、0<a≦0.3、0<b≦0.25、0.3≦c≦0.7、0≦d≦0.1、1.9≦x≦2.1である。]
FWHM003/FWHM104≦0.57 ・・・(2)」(請求項1)が記載され、[0019]には、「また、上記半値幅について、より好ましくは2θ=18.6°±1°における回折ピーク(003)面のピーク半値幅FWHM003が0.13以下であり、2θ=36.8°±1°における回折ピーク(010)面のピーク半値幅FWHM010が0.15以下であり、更に2θ=44.5°±1°における回折ピーク(104)面のピーク半値幅FWHM104が0.20以下であり、これらの範囲を満たすと高い放電容量が得られる。」と記載されている。
そして、段落[0050]〜[0053]、[0059]〜[0062]、[0064]表1には、Li1.2Ni0.17Co0.07Mn0.56等の組成を有し、FWHM003/FWHM104が0.449〜0.570であるリチウム化合物(活物質)が記載されている。
特許文献5には、「Li硝酸塩、並びに水に可溶なM及びM’の金属塩を原料として調製された複合酸化物であって、
X(LiMO)・(1−X)LiM’O(ここで、0<X<1、Mは、少なくともNiを含む1種以上の平均原子価3価の金属を示し、M’は、少なくともMnを含む1種以上の平均原子価4価の金属を示す。)で表される組成を有し、
X線回折測定における21°付近の超格子に由来する回折ピーク強度をI(21°)、(003)面、(101)面、及び(104)面の結晶面回折強度をそれぞれI(003)、I(101)、I(104)とした時、0<I(21°)/I(003)≦0.06、2.0≦I(003)/I(104)≦5.0、及び0.4≦I(101)/I(104)≦0.5を同時に満たす、複合酸化物。」(請求項1)、「前記(003)面及び(104)面の半価幅をそれぞれH(003)、H(104)とした時、0.05°≦H(003)≦0.2°、0.25°≦H(104)≦0.4°を同時に満たす、請求項1記載の複合酸化物。」(請求項2)が記載されている。
そして、段落[0080]〜[0089]表1、段落[0096]表2には、Li1.2Ni0.235Co0.04Mn0.525等の組成を有し、(003)面のピークの半値幅が0.115°〜0.226°、(104)面のピークの半値幅が0.228°〜0.422°である複合酸化物が記載されている。
特許文献6には、「α−NaFeO型結晶構造を有するナトリウム含有リチウム遷移金属複合酸化物の固溶体を含むリチウム二次電池用活物質であって、前記固溶体の化学組成式が、Li1+x−yNaCoNiMn2+d(0<y≦0.1、0.4≦c≦0.7、x+a+b+c=1、0.1≦x≦0.25、−0.2≦d≦0.2)を満たし、かつ、六方晶(空間群P312)に帰属可能なX線回折パターンを有し、ミラー指数hklにおける(003)面の回折ピークの半値幅が0.30°以下であり、かつ、(114)面の回折ピークの半値幅が0.50°以下であることを特徴とするリチウム二次電池用活物質。」(請求項1)が記載されている。
また、段落[0052]には、「結晶化の度合いを示すものとして先に述べたX線回折ピークの半値幅がある。本発明において、低温特性を改善するためには、空間群P312に帰属されるX線回折パターンにおいて(003)面の回折ピークの半値幅を0.30゜以下とし、かつ、(114)面の回折ピークの半値幅を0.50゜以下とすることが必要である。(003)面の回折ピークの半値幅は0.17°〜0.30゜が好ましく、(114)面の回折ピークの半値幅は0.35°〜0.50゜が好ましい。」と記載されている。
そして、段落[0074]〜[0092]、[0102]表1、[0103]表2には、Li1.09Na0.01Co0.1Ni0.25Mn0.55等の組成を有し、(003)面の回折ピークの半値幅が0.17〜0.32°、(114)面の回折ピークの半値幅が0.35〜0.54°である複合酸化物が記載されている。
特許文献7には、「α−NaFeO構造を有するリチウム遷移金属複合酸化物を含む正極活物質であって、前記リチウム遷移金属複合酸化物は、遷移金属(Me)がCo、Ni及びMnを含み、Liと遷移金属(Me)のモル比(Li/Me)が1<Li/Meであり、Mnと遷移金属(Me)のモル比(Mn/Me)が0.5<Mn/Meであり、Ceを含有することを特徴とするリチウム二次電池用正極活物質。」(請求項1)及び「CuKα管球を用いたX線回折パターン解析において、(104)面に帰属される回折ピークの半値幅(FWHM)が0.269≦FWHM≦0.273であることを特徴とする請求項1又は請求項2に記載の正極活物質。」(請求項3)が記載されている。
また、段落[0031]には、「本発明に係るリチウム遷移金属複合酸化物は、X線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに(003)面に帰属される回折ピークの半値幅を0.202°〜0.265°の範囲内とすることが好ましい。また、(104)面に帰属される回折ピークの半値幅を0.265°〜0.285°の範囲内とすることが好ましい。こうすることにより、正極活物質の初期効率を高めることが可能となる。」と記載されている。
そして、実施例1〜5には、出発物質のリチウム遷移金属複合酸化物Li1.18Co0.10Ni0.17Mn0.55を、硫酸セリウムを含む酸溶液に投入した後、吸引ろ過して乾燥し、さらに熱処理することで、Ceを含み、(104)面に帰属される回折ピークの半値幅FWHM(104)が0.269°〜0.273°であるリチウム遷移金属複合酸化物を得ることが示されている(段落[0079]〜[0082]、[0097]表1)。
特許文献8には、「層状構造のLiMnOを含み、W、Mo、V、およびCrからなる群から選択される1つ以上の多価の酸化数の元素と、フルオロ化合物がドーピングされた正極活物質。」(請求項1)が記載されている。
そして、実施例においては、Ni:Co:Mnのモル比が2:2:6となるように製造された遷移金属混合溶液のpHを11に維持して遷移金属水酸化物を沈殿させて前駆体を得て、これにLiCO、LiF及びWClを種々の量混合し、750℃又は700℃で焼成してリチウム金属複合酸化物を得ることが示されている(段落[0063]〜[0065]、[0074]〜[0086]、[0087]表1、[0088]表2参照)。
WO2012/091015 特開2013−206558号公報 特開2013−51172号公報 特開2013−206552号公報 特開2014−10909号公報 WO2012/039413 特開2016−126935号公報 特開2014−116303号公報
上記のいわゆる「リチウム過剰型」活物質の放電容量は、特許文献1、7に記載されるように、概して、いわゆる「LiMeO型」活物質よりも大きい。
しかし、「リチウム過剰型」の活物質には、これを用いた非水電解質二次電池の初期充放電効率(以下「初期効率」という。)が低いという課題があった。
特許文献1、2には、リチウム二次電池の初期効率を高くすることが示されているが、X線回折測定による(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が0.45以下であり、かつ前記FWHM(104)が0.40°以上であるリチウム遷移金属複合酸化物を含む正極活物質は具体的に示されていないから、このような正極活物質の初期効率は予測し得るものではない。特許文献1の実施例においては、Co、Ni及びMnを含む遷移金属元素の共沈炭酸塩前駆体と炭酸リチウムを混合して焼成することにより、リチウム遷移金属複合酸化物を合成したことが示されている(段落[0083]〜[0086]、[0109]、[0119]表2、[0120]表3参照)。特許文献1の実施例に記載された合成条件で得られた正極活物質は、X線回折測定による(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が1.2以上である。
特許文献3、4には、X線回折測定による(104)面の回折ピークの半値幅が0.40°以上であるリチウム遷移金属複合酸化物を含む正極活物質は開示されておらず、リチウム二次電池の初期効率を向上させることについても記載がない。また、特許文献3には、Me中のMnのモル比Mn/Meが0.5を超える「リチウム過剰型」のリチウム遷移金属複合酸化物は具体的に示されていない。
特許文献5には、X線回折測定による(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が0.45以下であり、かつ前記FWHM(104)が0.40°以上であるリチウム遷移金属複合酸化物を含む正極活物質は具体的に示されておらず、リチウム二次電池の初期効率を向上させることについても記載がない。
特許文献6、7には、リチウム二次電池の初期効率を高くすることが示されているが、X線回折測定による(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が0.45以下であるリチウム遷移金属複合酸化物を含む正極活物質は具体的に示されていないから、このような正極活物質の初期効率は予測し得るものではない。また、特許文献7には、リチウム遷移金属複合酸化物のFWHM(104)を0.40°以上とすることは開示されていない。
特許文献8には、W、Mo、V、およびCrからなる群から選択される1つ以上の多価の酸化数の元素と、LiFとがドーピングされたリチウム遷移金属複合酸化物が記載されている。しかし、前記ドーピングによっては電池の初期効率は向上していない(段落[0088]表2参照)。また、X線回折測定による(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が0.45以下であり、かつ前記FWHM(104)が0.40°以上であるリチウム遷移金属複合酸化物を含む正極活物質は開示されていない。
本発明は、非水電解質二次電池において、初期効率を向上させることを課題とする。
上記課題を解決するために、本発明の一側面は、「リチウム遷移金属複合酸化物を含む非水電解質二次電池用活物質であって、前記リチウム遷移金属複合酸化物は、α−NaFeO構造を有し、遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含み、Meに対するMnのモル比Mn/Meが0.5<Mn/Meであり、Meに対するCoのモル比Co/Meが0≦Co/Me≦0.20であり、Meに対するLiのモル比Li/Meが1<Li/Meであり、空間群R3−mに帰属可能なX線回折パターンを有し、Cu−Kα線を用いたX線回折測定による、ミラー指数hklにおける(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が0.45以下であり、前記(104)面の回折ピークの半値幅(FWHM(104))が0.40°以上である、非水電解質二次電池用正極活物質。」を採用する。
本発明の他の一側面は、「リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質の製造に用いる遷移金属水酸化物前駆体の製造方法であって、反応槽に、遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含有する溶液と共に、アルカリ金属水酸化物、錯化剤、及び0.1〜0.5Mの還元剤を含有するアルカリ溶液を加えて、前記反応槽の溶液のpHを10.5以下として、Meに対するMnのモル比Mn/Meが0.5<Mn/Meである遷移金属水酸化物前駆体を共沈させる、リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質の製造に用いる遷移金属水酸化物前駆体の製造方法。」である。
本発明の他の一側面は、「前記製造方法によって製造された遷移金属水酸化物前駆体と、リチウム化合物とを混合して、750〜940℃で焼成する、α−NaFeO型結晶構造を有し、Liと遷移金属(Me)のモル比(Li/Me)が1より大きいリチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質の製造方法。」である。
本発明の他の一側面は、前記正極活物質を含有する非水電解質二次電池用電極であり、前記電極を備えた非水電解質二次電池である。
本発明によれば、非水電解質二次電池の初期効率を向上させることができる。
本発明の一態様に係る非水電解質二次電池を示す外観斜視図 本発明の一態様に係る非水電解質二次電池を複数個集合した蓄電装置を示す概略図
[正極活物質及びリチウム遷移金属複合酸化物]
本発明の一実施形態(以下、「本実施形態」という。)に係る非水電解質二次電池用正極活物質は、リチウム遷移金属複合酸化物を含む正極活物質である。
前記リチウム遷移金属複合酸化物の組成は、高い放電容量が得られる点から、Mn及びNi、又はMn、Ni及びCoを含む遷移金属元素Me、並びに、Liを含有し、Li1+αMe1−α(α>0)と表記することができる、いわゆる「リチウム過剰型」である。
本実施形態においては、組成式Li1+αMe1−α(α>0)で表されるリチウム遷移金属複合酸化物において、(1+α)/(1−α)で表される遷移金属元素Meに対するLiのモル比Li/Meは、1.1以上1.4未満とすることが好ましく、1.1以上1.3以下とすることがより好ましく、1.1以上1.2以下とすることが特に好ましい。この範囲であると、初期効率の高い非水電解質二次電池を得ることができる。
遷移金属元素Meに対するMnのモル比Mn/Meは0.5より大きい。0.51以上0.7未満が好ましく、0.51〜0.60がより好ましい。この範囲であると、初期効率の高い非水電解質二次電池を得ることができる。
リチウム遷移金属複合酸化物に含有されるCoは、初期効率を向上させる効果があるが、Coが多すぎると、前駆体のタップ密度が低くなり、ピーク微分細孔容積が大きくなる。また、希少資源であることからコスト高である。したがって、遷移金属元素Meに対するCoのモル比Co/Meは0.20以下とすることが好ましく、0でもよい。
遷移金属元素Meに対するNiのモル比Ni/Meは0.2〜0.5が好ましく、0.25〜0.4がより好ましい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能であり、体積当たりの放電容量が向上する。
上記のような組成のリチウム遷移金属複合酸化物を用いることによって、初期効率の高い非水電解質二次電池を得ることができる。
本実施形態に係るリチウム遷移金属複合酸化物は、前記リチウム及び遷移金属元素に加えて、さらにRu、Te、Ce、Ta又はS元素を含むことが好ましい。リチウム遷移金属複合酸化物がこれらの元素を含むことにより、正極活物質として用いた際の非水電解質二次電池の初期効率が向上する。
Ru、Te、Ce、Ta又はS元素の含有量は特に限定されないが、含有量の増加による初期効率の向上効果と、原料コストの上昇とを考慮して、Ni、Co及びMnの合計量に対して1〜10mol%とすることが好ましく、1〜7mol%とすることがより好ましい。
本実施形態に係るリチウム遷移金属複合酸化物は、上記元素以外に、本発明の効果を損なわない範囲で、Na,K等のアルカリ金属、Mg,Ca等のアルカリ土類金属、Cr,Zn等の3d遷移金属に代表される遷移金属など少量の他の金属を含有することができる。
本実施形態に係るリチウム遷移金属複合酸化物は、α−NaFeO構造を有している。合成後(充放電を行う前)の上記リチウム遷移金属複合酸化物は、空間群P312あるいはR3−mに帰属される。このうち、空間群P312に帰属されるものには、CuKα管球を用いたエックス線回折図上、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも充電を行い、結晶中のLiが脱離すると結晶の対称性が変化することにより、上記超格子ピークが消滅して、上記リチウム遷移金属複合酸化物は空間群R3−mに帰属されるようになる。ここで、P312は、R3−mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3−mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3−m」は本来「R3m」の「3」の上にバー「−」を施して表記する。
本実施形態に係るリチウム遷移金属複合酸化物は、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに、(104)面に帰属される回折ピークの半値幅に対する(003)面に帰属される回折ピークの半値幅の比、即ち、FWHM(003)/FWHM(104)の値が0.45以下である。この値は、0.43以下であることが好ましい。
なお、2θ=18.6°±1°の回折ピークは、空間群P312及びR3−mではミラー指数hklにおける(003)面に指数付けされ、2θ=44.1°±1°の回折ピークは、空間群P312では(114)面、空間群R3−mでは(104)面に指数付けされる。従って、空間群P312に帰属されるものについては、本明細書において(104)と記載された部分は(114)と読み替えるものとする。
前記FWMH比は、結晶構造における全方位からの結晶化度に対するc軸方向に沿った結晶化度の指標である。FWHM(003)/FWHM(104)が小さいことは、c軸方向の結晶成長度合いが大きいことを意味する。この場合、層間からのLiイオンの脱挿入が円滑に行われ、電池の初期効率が向上する。
FWHM(003)/FWHM(104)の下限は特に限定されないが、結晶粒界と電解液との接触面積の増加によるMnの溶出を抑制する面からは、0.35以上であることが好ましい。
本実施形態に係るリチウム遷移金属複合酸化物は、前記FWHM(104)の値が0.40°以上である。この値は、0.46°以上であることが好ましい。
前記FWHM(104)は、全方位からの結晶化度の指標であり、小さいほど結晶化が進んでいることを意味する。FWHM(104)が0.40°以上であると、結晶化が進みすぎておらず、結晶子が大きくなっていないため、Liイオンの拡散が十分に行われ、電池の初期効率が向上する。
FWHM(104)の上限は特に限定されないが、Liイオンの輸送効率の面からは、1.00°以下とすることが好ましく、0.96°以下とすることがより好ましく、0.65°以下とすることが特に好ましい。
(半値幅の測定)
リチウム遷移金属複合酸化物の半値幅は、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて測定を行う。具体的には、次の条件及び手順に沿って行う。
線源はCuKα、加速電圧及び電流はそれぞれ30kV及び15mAとする。サンプリング幅は0.01deg、走査時間は14分(スキャンスピードは5.0)、発散スリット幅は0.625deg、受光スリット幅は開放、散乱スリットは8.0mmとする。得られたエックス線回折データについて、Kα2に由来するピークを除去せず、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、空間群R3−mでは(003)面に指数付けされる、エックス線回折図上2θ=18.6±1°に存在する回折ピークについての半値幅FWHM(003)、及び、(104)面に指数付けされる、エックス線回折図上2θ=44±1°に存在する回折ピークについての半値幅FWHM(104)を決定する。
上記半値幅の測定に供する試料は、電極作製前の活物質粉末であれば、そのまま測定に供する。電池を解体して取り出した電極から試料を採取する場合には、電池を解体する前に、次の手順によって電池を放電状態とする。まず、0.1CmAの電流で、正極の電位が4.3V(vs.Li/Li)となる電池電圧まで定電流充電を行い、同じ電池電圧にて、電流値が0.01CmAに減少するまで定電圧充電を行い、充電末状態とする。30分の休止後、0.1CmAの電流で、正極の電位が2.0V(vs.Li/Li)となる電池電圧に至るまで定電流放電を行い、放電末状態とする。金属リチウム電極を負極に用いた電池であれば、当該電池を放電末状態又は充電末状態とした後に電池を解体して電極を取り出せばよいが、金属リチウム電極を負極に用いた電池でない場合は、正極電位を正確に制御するため、電池を解体して電極を取り出した後に、金属リチウム電極を対極とした電池を組立ててから、上記の手順に沿って、放電末状態に調整する。
電池の解体から測定までの作業は露点−60℃以下のアルゴン雰囲気中で行う。取り出した正極板は、ジメチルカーボネートを用いて電極に付着した電解液を十分に洗浄し室温にて一昼夜の乾燥後、アルミニウム箔集電体上の合剤を採取する。この合剤を小型電気炉を用いて600℃で4時間焼成することで導電剤であるカーボンおよび結着剤であるPVdFバインダーを除去し、リチウム遷移金属複合酸化物粒子を取り出す。
本実施形態に係るリチウム遷移金属複合酸化物粒子は、窒素ガス吸着法を用いた吸着等温線からBJH法で求めた全細孔容積が0.05cm/g以下である。全細孔容積は0.04cm/g以下であることが好ましい。また、ピーク微分細孔容積は0.2mm/(g・nm)以下が好ましく、0.18mm/(g・nm)以下がより好ましく、0.12mm/(g・nm)以下が特に好ましい。このような高密度の活物質は、高密度な遷移金属水酸化物前駆体とリチウム化合物を焼成することによって得ることができる。
リチウム遷移金属複合酸化物粒子の全細孔容積を0.05cm/g以下とすることにより、体積当たりの放電容量を高くすることができる。
(全細孔容積及びピーク微分細孔容積の測定)
本明細書において、リチウム遷移金属複合酸化物粒子の全細孔容積及びピーク微分細孔容積は、以下の方法により測定する。被測定試料の粉体を1.00gを測定用のサンプル管に入れ、120℃にて12h真空乾燥することで、測定試料中の水分を十分に除去する。次に、液体窒素を用いた窒素ガス吸着法により、相対圧力P/P0(P0=約770mmHg)が0から1の範囲内で吸着側および脱離側の等温線を測定する。そして、脱離側の等温線を用いてBJH法により計算することにより細孔分布を評価し、ピーク微分細孔容積、及び全細孔容積を求める。
本実施形態に係るリチウム遷移金属複合酸化物粒子は、タップ密度が1.6g/cm以上であることが好ましく、1.7g/cm以上であることがより好ましい。リチウム遷移金属複合酸化物粒子のタップ密度を高くすることにより、体積当たりの放電容量が大きい非水電解質二次電池を得ることができる。
(リチウム遷移金属複合酸化物のタップ密度の測定)
本明細書において、リチウム遷移金属複合酸化物のタップ密度は、以下の方法により測定する。10−2dmのメスシリンダーに被測定試料の粉体を2g±0.2g投入し、REI ELECTRIC CO.LTD.社製のタッピング装置を用いて、300回カウント後の被測定試料の体積を投入した質量で除した値を採用する。
本実施形態に係る非水電解質二次電池用正極活物質は、上記リチウム遷移金属複合酸化物の他、本発明の効果が損なわれない限りにおいて、他の正極活物質を含んでもよく、このような形態も本発明の技術的範囲に属する。
[正極活物質(リチウム遷移金属複合酸化物)の製造方法]
本実施形態のリチウム遷移金属複合酸化物は、遷移金属水酸化物前駆体とリチウム化合物(Li化合物)を混合した後、焼成する方法で好適に製造することができる。リチウム遷移金属複合酸化物がRu、Te、Ce、Ta又はS元素を含む場合には、該各元素の単体又は化合物を、前記共沈前駆体及びリチウム化合物と混合することが好ましい。
前記リチウム遷移金属複合酸化物の製造に用いる遷移金属水酸化物前駆体は、遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きく、結晶形態が高密度の粒状であり、タップ密度が1.3g/cm以上であることが好ましく、1.4g/cm以上であることがより好ましい。
本明細書において、水酸化物前駆体のタップ密度は、リチウム遷移金属複合酸化物のタップ密度と同様の方法で測定する。
本実施形態に係るリチウム遷移金属複合酸化物は「リチウム過剰型」活物質であるから、水酸化物前駆体中の遷移金属元素Meに対するMnのモル比Mn/Meは、0.5より大きい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能である。
また、水酸化物前駆体中の遷移金属元素Meに対するCoのモル比Co/Meは、0.2以下が好ましく、0でもよい。モル比Ni/Meは0.2〜0.5が好ましい。この範囲であると、水酸化物前駆体のタップ密度を向上させることが可能である。
前記遷移金属水酸化物前駆体を製造する場合、アルカリ性を保った反応槽に、遷移金属(Me)を含有する溶液と共に、アルカリ金属水酸化物(水酸化ナトリウム、水酸化リチウム等)、錯化剤、及び、還元剤を含有するアルカリ溶液を加えて、遷移金属水酸化物を共沈させることが好ましい。
錯化剤としては、アンモニア、硫酸アンモニウム、硝酸アンモニウム、フッ化アンモニウム等を用いることができ、アンモニアが好ましい。錯化剤を用いた晶析反応によって、よりタップ密度の大きな前駆体を作製することができる。錯化剤と共に還元剤を用いることが好ましい。還元剤としては、ヒドラジン、水素化ホウ素ナトリウム等を用いることができ、ヒドラジンが好ましい。ここで、アルカリ金属水酸化物(中和剤)には、水酸化ナトリウム又は水酸化リチウムを使用することができる。
水酸化物前駆体を作製するにあたって、Ni,Co,MnのうちMnは酸化されやすく、Ni,Mn、又はNi,Co,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Ni,Mn、又はNi,Co,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に本実施形態の組成範囲においては、Mn比率がNi,Co比率に比べて高いので、水溶液中の溶存酸素を除去することが特に重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO2)等を用いることができる。
溶液中でNi,Mn、又はNi,Co,Mnを含有する化合物を共沈させて水酸化物前駆体を製造する工程におけるpH(反応槽のpH)は限定されるものではないが、8〜14とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを11.5以下とすることが好ましく、11.0より小さくすることがより好ましく、10.5以下とすることが特に好ましい。低いpHで共沈させることにより、タップ密度を大きくすることができる。また、粒子成長速度を促進できるので、原料水溶液滴下終了後の撹拌継続時間を短縮できる。
前記水酸化物前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。
前記水酸化物前駆体の原料水溶液(遷移金属を含有する水溶液)を滴下供給する間、水酸化ナトリウム等のアルカリ金属水酸化物(中和剤)、アンモニア等の錯化剤、及び、ヒドラジン等の還元剤を含有する混合アルカリ溶液を適宜滴下する方法が好ましい。滴下するアルカリ金属水酸化物の濃度は、1.0〜8.0Mであることが好ましい。錯化剤の濃度は、0.05〜2.0Mであることが好ましく、0.6〜1.5Mとすることがより好ましい。還元剤の濃度は、0.02〜1.0Mであることが好ましく、0.1〜0.5Mとすることがより好ましい。
前記原料水溶液の滴下速度は、生成する水酸化物前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、NiやCoと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下速度については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、30ml/min以下が好ましい。放電容量を向上させるためには、滴下速度は10ml/min以下がより好ましく、5ml/min以下が最も好ましい。
また、反応槽内にアンモニア等の錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転および攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、水酸化物前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた水酸化物前駆体を得ることができる。
原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、15h以下が好ましく、10h以下がより好ましく、5h以下が最も好ましい。
また、水酸化物前駆体及びリチウム遷移金属複合酸化物の2次粒子の粒径を好適なものとするための好ましい攪拌継続時間は、制御するpHによって異なる。例えば、pHを8〜14に制御した場合には、撹拌継続時間は0.5〜5hが好ましく、pHを9〜10に制御した場合には、撹拌継続時間は1〜3hが好ましい。
水酸化物前駆体の粒子を、中和剤として水酸化ナトリウム等のナトリウム化合物を使用して作製した場合、その後の洗浄工程において粒子に付着しているナトリウムイオンを洗浄除去する。例えば、作製した水酸化物前駆体を吸引ろ過して取り出す際に、イオン交換水100mlによる洗浄回数を5回以上とするような条件を採用することができる。
前記水酸化物前駆体と混合するLi化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることができる。但し、Li化合物の量については、焼成中にLi化合物の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
前記水酸化物前駆体及びLi化合物と混合するRu、Te、Ce、Ta若しくはSの単体又は化合物としては、Ru、RuO、RuF、RuCl、Te、TeO、TeO、TeCl、LiTeO、CeO、CeSO・5HO、Ce(CO、Ce(NO、Ce(OH)、Ce、CeCl、CeF、Ce、Ta、Ta、TaO、TaO、TaS、TaBr、S等を用いることができる。
遷移金属水酸化物前駆体及びLi化合物の混合物、又はこれにRu、Te、Ce、Ta若しくはSの単体又は化合物をさらに含む混合物を焼成する温度は、活物質の可逆容量に影響を与える。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本実施形態に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど水酸化物前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、水酸化物前駆体とリチウム化合物を混合したものを熱重量分析(DTA−TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を傷めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本実施形態においては、焼成温度は700℃より高くすることが好ましい。十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
また、発明者らは、本実施形態に係る活物質の回折ピークの半値幅を詳細に解析することで750℃までの温度で合成した試料においては格子内にひずみが残存しており、それ以上の温度で合成することでほとんどひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本実施形態に係る活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長しているような合成温度(焼成温度)及びLi/Me比組成を採用することが好ましいことがわかった。これらを電極として形成して充放電を行うことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは30nm以上を保っていることが得られる効果として好ましい。即ち、焼成温度を上記した活物質の酸素放出温度にできるだけ近付けるように選択することにより、はじめて、可逆容量が顕著に大きい活物質を得ることができる。
上記のように、好ましい焼成温度は、活物質の酸素放出温度により異なるから、一概に焼成温度の好ましい範囲を設定することは難しいが、モル比Li/Meが1.1〜1.3である場合に体積当たりの放電容量を充分なものとするために、焼成温度を750〜940℃とすることが好ましく、750〜900℃とすることがより好ましい。
以上のようにして、本実施形態の正極活物質として用いられるリチウム遷移金属複合酸化物は製造される。
以上のようにして、本実施形態の正極活物質として用いられるリチウム遷移金属複合酸化物は製造される。
この方法で製造されたリチウム遷移金属複合酸化物は、α−NaFeO型結晶構造を有し、前記リチウム遷移金属複合酸化物を構成するLiと遷移金属(Me)のモル比(Li/Me)が1より大きく、前記遷移金属(Me)がMn及びNi、又はMn、Ni及びCoを含み、前記遷移金属(Me)中のMnのモル比Mn/Meが0.5より大きい。
[負極活物質]
負極活物質としては、限定されない。リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
正極活物質の粉体および負極活物質の粉体は、平均粒子サイズ100μm以下であることが好ましい。特に、正極活物質の粉体は、非水電解質二次電池の高出力特性を向上する目的で15μm以下であることが好ましい。粉体を所定の形状で得るためには、所定の大きさの前駆体を作製する方法や、粉砕機、分級機などを用いる方法がある。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩などが用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
[その他の電極構成成分]
以上、正極及び負極の主要構成成分である正極活物質及び負極活物質について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。
これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが好ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。
[正極及び負極の作製]
正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。
集電体としては、Al箔、Cu箔等の集電箔を用いることができる。正極の集電箔としてはAl箔が好ましく、負極の集電箔としてはCu箔が好ましい。集電箔の厚みは10〜30μmが好ましい。また、合剤層の厚みはプレス後において、40〜150μm(集電箔厚みを除く)が好ましい。
[非水電解質]
本実施形態に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phthalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より好ましい。
また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質二次電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。
[セパレータ]
セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質二次電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、電子線(EB)照射、又は、ラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行うこと等により、架橋反応を行わせることが可能である。
[非水電解質二次電池の構成]
本実施形態に係る非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。
図1に、本発明の一態様に係る非水電解質二次電池である矩形状の非水電解質二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
[蓄電装置の構成]
本実施形態は、上記の非水電解質二次電池を複数個集合した蓄電装置としても実現することができる。本発明の一態様に係る蓄電装置を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
(実施例1)
<水酸化物前駆体の作製工程>
反応晶析法を用いて、次の手順で水酸化物前駆体を作製した。まず、硫酸ニッケル6水和物315.4g、硫酸コバルト7水和物168.6g、及び硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:15:55となる1.0Mの硫酸塩水溶液を作製した。次に、5Lの反応槽に2Lのイオン交換水を注ぎ、窒素ガスを30minバブリングさせることにより、イオン交換水中に含まれる酸素を除去した。反応槽の温度は50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を1500rpmの回転速度で攪拌しながら、反応層内に対流が十分おこるように設定した。前記硫酸塩原液を1.3ml/minの速度で反応槽に50hr滴下した。ここで、滴下の開始から終了までの間、4.0Mの水酸化ナトリウム、0.6Mのアンモニア、及び0.3Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.55(±0.1)を保つように制御すると共に、反応液の一部をオーバーフローにより排出することにより、反応液の総量が常に2Lを超えないように制御した。滴下終了後、反応槽内の攪拌をさらに1h継続した。攪拌の停止後、室温で12h以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した水酸化物前駆体粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、水酸化物前駆体を作製した。
<焼成工程>
前記水酸化物前駆体2.168gに、水酸化リチウム1水和物1.278gと、二酸化ルテニウム0.112gとを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Ni,Co,Mn,Ru)のモル比が120:100、(Ni,Co,Mn):Ruのモル比が100:3である混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2.5gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から800℃まで10時間かけて昇温し、800℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1に係るリチウム遷移金属複合酸化物を作製した。
(実施例2)
焼成工程において、前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gと亜テルル酸リチウム0.158gとを加え、Li:(Ni,Co,Mn)のモル比が120:100、(Ni,Co,Mn):Teのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、実施例2に係るリチウム遷移金属複合酸化物を作製した。
(実施例3)
焼成工程において、前記水酸化物前駆体2.144gに、水酸化リチウム1水和物1.264gと硫酸セリウム5水和物0.335gとを加え、Li:(Ni,Co,Mn,Ce)のモル比が120:100、(Ni,Co,Mn):Ceのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、実施例3に係るリチウム遷移金属複合酸化物を作製した。
(実施例4)
焼成工程において、前記水酸化物前駆体2.120gに、水酸化リチウム1水和物1.249gと五酸化タンタル0.182gとを加え、Li:(Ni,Co,Mn,Ta)のモル比が120:100、(Ni,Co,Mn):Taのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、実施例4に係るリチウム遷移金属複合酸化物を作製した。
(実施例5)
焼成工程において、前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gと硫黄0.053gとを加え、Li:(Ni,Co,Mn)のモル比が120:100、(Ni,Co,Mn):Sのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、実施例5に係るリチウム遷移金属複合酸化物を作製した。
(実施例6)
焼成工程において、前記水酸化物前駆体2.315gに、水酸化リチウム1水和物1.214gを加え、Li:(Ni,Co,Mn)のモル比が110:100で、添加元素を含まない混合粉体を調製したこと以外は、実施例1と同様にして、実施例6に係るリチウム遷移金属複合酸化物を作製した。
(実施例7)
水酸化物前駆体の作製工程において、硫酸ニッケル6水和物262.8g、硫酸コバルト7水和物224.9g、及び硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が25:20:55となる1.0Mの硫酸塩水溶液を作製し、前記硫酸塩水溶液の滴下開始から終了までの間、4.0Mの水酸化ナトリウム、1.5Mのアンモニア、及び0.2Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.8(±0.1)を保つように制御したこと、焼成工程において、前記水酸化物前駆体2.315gに、水酸化リチウム1水和物1.214gを加え、Li:(Ni,Co,Mn)のモル比が110:100で、添加元素含まない混合粉体を調製し、焼成温度を900℃としたこと以外は、実施例1と同様にして、実施例7に係るリチウム遷移金属複合酸化物を作製した。
(実施例8)
水酸化物前駆体の作製工程において、硫酸ニッケル6水和物315.4g、硫酸コバルト7水和物112.4g、及び硫酸マンガン5水和物578.6gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が30:10:60となる1.0Mの硫酸塩水溶液を作製したこと、焼成工程において、前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.297gを加え、Li:(Ni,Co,Mn)のモル比が120:100で、添加元素含まない混合粉体を調製したこと以外は、実施例1と同様にして、実施例8に係るリチウム遷移金属複合酸化物を作製した。
(実施例9)
水酸化物前駆体の作製工程において、硫酸ニッケル6水和物420.6g、硫酸コバルト7水和物56.2g、及び硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が40:5:55となる1.0Mの硫酸塩水溶液を作製し、前記硫酸塩水溶液の滴下開始から終了までの間、4.0Mの水酸化ナトリウム、1.5Mのアンモニア、及び0.5Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に9.7(±0.1)を保つように制御したこと、焼成工程において、前記水酸化物前駆体2.315gに、水酸化リチウム1水和物1.214gを加え、Li:(Ni,Co,Mn)のモル比が110:100で、添加元素含まない混合粉体を調製したこと以外は、実施例1と同様にして、実施例9に係るリチウム遷移金属複合酸化物を作製した。
(実施例10)
水酸化物前駆体の作製工程において、硫酸ニッケル6水和物473.1g、及び硫酸マンガン5水和物530.4gを秤量し、これらの全量をイオン交換水4Lに溶解させ、Ni:Co:Mnのモル比が45:0:55となる1.0Mの硫酸塩水溶液を作製し、前記硫酸塩水溶液の滴下開始から終了までの間、4.0Mの水酸化ナトリウム、1.25Mのアンモニア、及び0.4Mのヒドラジンからなる混合アルカリ溶液を適宜滴下することにより、反応槽中のpHが常に10.2(±0.1)を保つように制御したこと、焼成工程において、前記水酸化物前駆体2.283gに、水酸化リチウム1水和物1.209gと二酸化ルテニウム0.112gとを加え、Li:(Ni,Co,Mn,Ru)のモル比が110:100、(Ni,Co,Mn):Ruのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、実施例10に係るリチウム遷移金属複合酸化物を作製した。
(比較例1)
焼成工程において、前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.294gを加え、Li:(Ni,Co,Mn)のモル比が120:100で、添加元素を含まない混合粉体を調製したこと以外は、実施例1と同様にして、比較例1に係るリチウム遷移金属複合酸化物を作製した。
(比較例2)
焼成工程において、前記水酸化物前駆体2.227gに、水酸化リチウム1水和物1.312gと酸化ベリリウム0.021gとを加え、Li:(Ni,Co,Mn,Be)のモル比が120:100、(Ni,Co,Mn):Beのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、比較例2に係るリチウム遷移金属複合酸化物を作製した。
(比較例3)
焼成工程において、前記水酸化物前駆体2.262gに、水酸化リチウム1水和物1.219gとヨウ化リチウム0.379gとを加え、Li:(Ni,Co,Mn)のモル比が120:100、(Ni,Co,Mn):Iのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、比較例3に係るリチウム遷移金属複合酸化物を作製した。
(比較例4)
焼成工程において、前記水酸化物前駆体2.208gに、水酸化リチウム1水和物1.301gと炭酸カリウム0.057gを加え、Li:(Ni,Co,Mn,K)のモル比が120:100、(Ni,Co,Mn):Kのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、比較例4に係るリチウム遷移金属複合酸化物を作製した。
(比較例5)
焼成工程において、前記水酸化物前駆体2.207gに、水酸化リチウム1水和物1.300gと水酸化カルシウム0.063gとを加え、Li:(Ni,Co,Mn,Ca)のモル比が120:100、(Ni,Co,Mn):Caのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、比較例5に係るリチウム遷移金属複合酸化物を作製した。
(比較例6)
焼成工程において、前記水酸化物前駆体2.103gに、水酸化リチウム1水和物1.239gと三酸化二ビスマス0.192gとを加え、Li:(Ni,Co,Mn,Bi)のモル比が120:100、(Ni,Co,Mn):Biのモル比が100:3である混合粉体を調製したこと以外は、実施例1と同様にして、比較例6に係るリチウム遷移金属複合酸化物を作製した。
(比較例7)
焼成工程において、前記水酸化物前駆体2.212gに、水酸化リチウム1水和物1.371gを加え、Li:(Ni,Co,Mn)のモル比が130:100で、添加元素含まない混合粉体を調製し、焼成温度を900℃としたこと以外は、実施例1と同様にして、比較例7に係るリチウム遷移金属複合酸化物を作製した。
(比較例8)
焼成工程において、前記水酸化物前駆体2.315gに、水酸化リチウム1水和物1.093gとフッ化リチウム0.075gとを加え、Li:(Ni,Co,Mn)のモル比が120:100で、添加元素を含まない混合粉体を調製したこと以外は、実施例1と同様にして、比較例8に係るリチウム遷移金属複合酸化物を作製した。
(α−NaFeO型結晶構造の確認)
実施例1〜10及び比較例1〜8に係るリチウム遷移金属複合酸化物が、α−NaFeO型結晶構造を有することは、X線回折測定における構造モデルと回折パターンが一致したことにより確認した。
(半値幅の測定)
実施例1〜10及び比較例1〜8に係るリチウム遷移金属複合酸化物の半値幅は、上述した条件及び手順にしたがって、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて測定を行った。前記エックス線回折装置の付属ソフトである「PDXL」を用いて、空間群R3−mでは(003)面に指数付けされる、エックス線回折図上2θ=18.6°±1°に存在する回折ピークについての半値幅FWHM(003)、及び、(104)面に指数付けされる、エックス線回折図上2θ=44±1°に存在する回折ピークについての半値幅FWHM(104)を決定した。その測定結果より、FWHM(003)/FWHM(104)を求めた。
[非水電解質二次電池用電極の作製]
実施例1〜10及び比較例1〜8に係るリチウム遷移金属複合酸化物をそれぞれ正極活物質として用いて、以下の手順で実施例1〜10及び比較例1〜8に係る非水電解質二次電池用電極を作製した。
N−メチルピロリドンを分散媒とし、活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、正極板を作製した。なお、全ての実施例及び比較例に係る非水電解質二次電池同士で体積当たりの放電容量を求める試験条件が同一になるように、一定面積当たりに塗布されている活物質の塗布厚みを統一した。このようにして作製した非水電解質二次電池用電極は、一部を切り出し、以下の手順で非水電解質二次電池(リチウム二次電池)を作製し、電池特性を評価した。
[非水電解質二次電池の作製及び評価]
正極の単独挙動を正確に観察する目的のため、対極、即ち負極には金属リチウムをニッケル箔集電体に密着させて用いた。ここで、非水電解質二次電池の容量が負極によって制限されないよう、負極には十分な量の金属リチウムを配置した。
電解液として、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)が体積比6:7:7である混合溶媒に濃度が1mol/lとなるようにLiPFを溶解させた溶液を用いた。セパレータとして、ポリアクリレートで表面改質したポリプロピレン製の微孔膜を用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。正極端子及び負極端子の開放端部が外部露出するように電極を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代を注液孔となる部分を除いて気密封止し、前記電解液を注液後、注液孔を封止した。
以上の手順にて作製された非水電解質二次電池は、25℃の下、初期充放電工程に供した。充電は、電流0.1CmA、電圧4.6Vの定電流定電圧充電とし、充電終止条件は電流値が1/5に減衰した時点とした。放電は、電流0.1CmA、終止電圧2.0Vの定電流放電とした。この充放電を2サイクル行った。ここで、充電後及び放電後にそれぞれ10分の休止過程を設けた。前記初期充放電工程における1サイクル目の「(放電電気量)/(充電電気量)×100」で示される百分率を「初期効率(%)」として記録した。
実施例1〜10及び比較例1〜8に係るリチウム遷移金属複合酸化物のNi/Co/Mnのモル比、Li/Me比、焼成温度、添加元素の種類及び添加量、FWHM(003)/FWHM(104)、FWHM(104)、並びに前記リチウム遷移金属複合酸化物をそれぞれ正極活物質として用いた非水電解質二次電池の初期効率を表1に示す。
Figure 0006834363
表1より、α−NaFeO構造を有し、遷移金属(Me)として、Ni及びMn、又はNi、Co及びMnを含み、Li/Me>1で、Mn/Me>0.5であり、FWHM(003)/FWHM(104)が0.45以下であり、FWHM(104)が0.40°以上である実施例1〜10に係るリチウム遷移金属複合酸化物を用いた非水電解質二次電池は、初期効率が高いことが分かる。
他方、比較例1〜6、8のように、リチウム遷移金属複合酸化物のFWHM(003)/FWHM(104)が0.45を超える場合、又は比較例6〜8のように、リチウム遷移金属複合酸化物のFWHM(104)が0.40°未満である場合には、これを用いた非水電解質二次電池の初期効率は低い。
以上のとおりであるから、α−NaFeO構造を有し、遷移金属(Me)として、Ni及びMn、又はNi、Co及びMnを含み、Li/Me>1で、Mn/Me>0.5であり、FWHM(003)/FWHM(104)が0.45以下であり、FWHM(104)が0.40°以上であるという要件を満たすリチウム遷移金属複合酸化物を非水電解質二次電池の正極活物質として用いることにより、初期効率が高い非水電解質二次電池を提供できる。
本発明の一側面に係るリチウム遷移金属複合酸化物を含む正極活物質を用いることにより、初期効率が高い非水電解質二次電池を提供することができるので、この非水電解質二次電池は、ハイブリッド自動車用、電気自動車用の非水電解質二次電池として有用である。
1 非水電解質二次電池(リチウム二次電池)
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (4)

  1. リチウム遷移金属複合酸化物を含む非水電解質二次電池用活物質であって、
    前記リチウム遷移金属複合酸化物は、
    α−NaFeO構造を有し、
    遷移金属元素(Me)としてMn及びNi、又はMn、Ni及びCoを含み、
    Meに対するMnのモル比Mn/Meが0.5<Mn/Meであり、
    Meに対するCoのモル比Co/Meが0≦Co/Me≦0.20であり、
    Meに対するLiのモル比Li/Meが1<Li/Meであり、
    空間群R3−mに帰属可能なX線回折パターンを有し、
    Cu−Kα線を用いたX線回折測定による、ミラー指数hklにおける(104)面の回折ピークの半値幅(FWHM(104))に対する(003)面の回折ピークの半値幅(FWHM(003))の比FWHM(003)/FWHM(104)が0.45以下であり、
    前記(104)面の回折ピークの半値幅(FWHM(104))が0.40°以上である、
    非水電解質二次電池用正極活物質。
  2. 前記リチウム遷移金属複合酸化物が、Ru、Te、Ce、Ta又はS元素を含む、請求項1に記載の非水電解質二次電池用正極活物質。
  3. 請求項1又は2に記載の正極活物質を含有することを特徴とする、非水電解質二次電池用電極。
  4. 請求項3に記載の非水電解質二次電池用電極を備えることを特徴とする、非水電解質二次電池。
JP2016215681A 2016-11-02 2016-11-02 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池 Active JP6834363B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215681A JP6834363B2 (ja) 2016-11-02 2016-11-02 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215681A JP6834363B2 (ja) 2016-11-02 2016-11-02 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2018073751A JP2018073751A (ja) 2018-05-10
JP6834363B2 true JP6834363B2 (ja) 2021-02-24

Family

ID=62115699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215681A Active JP6834363B2 (ja) 2016-11-02 2016-11-02 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP6834363B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147478B2 (ja) * 2018-06-21 2022-10-05 株式会社Gsユアサ 非水電解質二次電池、及び非水電解質二次電池の製造方法
KR102568566B1 (ko) * 2019-02-01 2023-08-22 주식회사 엘지에너지솔루션 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN115548334B (zh) * 2022-12-01 2023-06-06 欣旺达电动汽车电池有限公司 一种正极活性材料及锂离子电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391950B1 (en) * 2001-04-20 2010-08-25 GS Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
CN102119128A (zh) * 2008-08-04 2011-07-06 尤米科尔公司 高度结晶性的锂过渡金属氧化物
KR101820814B1 (ko) * 2010-09-22 2018-01-22 가부시키가이샤 지에스 유아사 리튬 2차 전지용 활물질, 리튬 2차 전지용 전극 및 리튬 2차 전지
JP5682796B2 (ja) * 2012-01-12 2015-03-11 トヨタ自動車株式会社 リチウム二次電池
JP6087075B2 (ja) * 2012-06-27 2017-03-01 旭化成株式会社 複合酸化物及びその製造方法、並びに非水系二次電池
JP6131760B2 (ja) * 2012-08-03 2017-05-24 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP6062818B2 (ja) * 2013-07-24 2017-01-18 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
US10319998B2 (en) * 2013-10-03 2019-06-11 Gs Yuasa International Positive active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery and energy storage apparatus
CN106463715B (zh) * 2014-03-18 2020-08-04 株式会社Lg 化学 正极活性材料和包含其的锂二次电池
JP6460575B2 (ja) * 2015-01-06 2019-01-30 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP2016149328A (ja) * 2015-02-13 2016-08-18 株式会社Gsユアサ リチウム二次電池用負極活物質、リチウム二次電池用負極、及びリチウム二次電池

Also Published As

Publication number Publication date
JP2018073751A (ja) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6825559B2 (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6197939B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6848333B2 (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP5773054B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
KR20130132847A (ko) 비수 전해질 2차 전지용 양극 활물질, 그 양극 활물질의 제조 방법, 비수 전해질 2차 전지용 전극, 비수 전해질 2차 전지및 그 2차 전지의 제조 방법
JP5871187B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
WO2018012385A1 (ja) 非水電解質二次電池用正極活物質、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置
US11545662B2 (en) Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6583662B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2021039120A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、非水電解質二次電池、及び蓄電装置
JP7004959B2 (ja) リチウム遷移金属複合酸化物、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、リチウム遷移金属複合酸化物の製造方法、非水電解質二次電池用正極活物質、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置
JP6834363B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6460575B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP6910595B2 (ja) 非水電解質二次電池
JP6834629B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP2018073752A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6766319B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極及びリチウム二次電池
JP6474033B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP7043989B2 (ja) 非水電解質二次電池用正極活物質、その製造方法、前記活物質を含有する正極、前記正極を備えた非水電解質二次電池、及び前記非水電解質二次電池の製造方法
JP2019149371A (ja) 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP6927367B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極及びリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150