JP6797739B2 - 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 - Google Patents

負極活物質、混合負極活物質材料、及び負極活物質の製造方法 Download PDF

Info

Publication number
JP6797739B2
JP6797739B2 JP2017076133A JP2017076133A JP6797739B2 JP 6797739 B2 JP6797739 B2 JP 6797739B2 JP 2017076133 A JP2017076133 A JP 2017076133A JP 2017076133 A JP2017076133 A JP 2017076133A JP 6797739 B2 JP6797739 B2 JP 6797739B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
salt
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017076133A
Other languages
English (en)
Other versions
JP2018060771A (ja
Inventor
貴一 廣瀬
貴一 廣瀬
広太 高橋
広太 高橋
拓史 松野
拓史 松野
玲子 酒井
玲子 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to KR1020197008769A priority Critical patent/KR102335477B1/ko
Priority to US16/332,136 priority patent/US11165058B2/en
Priority to EP17855494.5A priority patent/EP3522271A4/en
Priority to PCT/JP2017/030044 priority patent/WO2018061536A1/ja
Priority to CN201780057138.7A priority patent/CN109792047B/zh
Priority to TW106129125A priority patent/TWI726143B/zh
Priority to TW110111252A priority patent/TWI744207B/zh
Publication of JP2018060771A publication Critical patent/JP2018060771A/ja
Application granted granted Critical
Publication of JP6797739B2 publication Critical patent/JP6797739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、負極活物質、混合負極活物質材料、及び負極活物質の製造方法に関する。
近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm〜50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1〜1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm−1及び1580cm−1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
特開2001−185127号公報 特開2002−042806号公報 特開2006−164954号公報 特開2006−114454号公報 特開2009−070825号公報 特開2008−282819号公報 特開2008−251369号公報 特開2008−177346号公報 特開2007−234255号公報 特開2009−212074号公報 特開2009−205950号公報 特許第2997741号明細書
上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いる場合、Liをドープしたケイ素材を用いることで高い初期効率及び容量維持率を得ることができるが、その一方で、Liをドープしたケイ素材は水系溶媒に対する安定性が低く、負極作製時に作製するケイ素材を混合した水系負極スラリーの安定性が低下してしまうため、工業的に不向きであった。
本発明は前述のような問題に鑑みてなされたもので、二次電池の負極作製時に作製するスラリーを安定化することができ、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極活物質、及び、この負極活物質を含む混合負極活物質材料を提供することを目的とする。また、負極作製時に作製するスラリーを安定化することができ、初期充放電特性及びサイクル特性を向上させることができる負極活物質の製造方法を提供することも目的とする。
上記目的を達成するために、本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子が、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子が、Li化合物を含有し、前記負極活物質粒子が、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩を含み、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩を含むことを特徴とする負極活物質を提供する。
本発明の負極活物質は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物粒子がLi化合物を含むことにより、充電時に発生する不可逆容量を低減することができる。これにより、電池の初回効率及びサイクル特性を向上できる。また、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩と、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを負極活物質粒子が含むことで、水系溶媒中に負極活物質等を分散させたスラリー(水系負極スラリー)の作製時に、負極活物質粒子中のLi化合物からのLiイオンの溶出が抑えられ、水系負極スラリーの安定性が向上する。
このとき、前記ポリアクリル酸の塩及び前記カルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の総量が、前記負極活物質粒子の総量に対して0.1質量%以上5質量%以下の範囲のものであることが好ましい。
ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の総量が、負極活物質粒子の総量に対して0.1質量%以上であれば、負極活物質粒子中のLi化合物からのLiイオンの溶出がより抑えられ、水系負極スラリーの安定性がより向上する。また、このような塩の総量が、負極活物質粒子の総量に対して5質量%以下であれば、電池容量の低下を防止できる。
またこのとき、前記ポリアクリル酸の塩及び前記カルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩が、アンモニウム塩であることが好ましい。
このようなものであれば、負極活物質粒子中のLi化合物からのLiイオンの溶出がより抑えられるため、水系負極スラリーの安定性がより向上する。
また、前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩の総量が、前記負極活物質粒子の総量に対して0.1質量%以上5質量%以下の範囲のものであることが好ましい。
上記の金属塩の総量が、負極活物質粒子の総量に対して0.1質量%以上であれば、負極活物質粒子中のLi化合物からのLiイオンの溶出がより抑えられ、水系負極スラリーの安定性がより向上する。また、金属塩の総量が、負極活物質粒子の総量に対して5質量%以下であれば、電池容量の低下を防止できる。
また、前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩が、硝酸塩、リン酸塩、塩酸塩、又は硫酸塩のいずれかのものであることが好ましい。
このようなものであれば、負極活物質粒子中のLi化合物からのLiイオンの溶出がより抑えられるため、水系負極スラリーの安定性がより向上する。
また、前記負極活物質粒子に含まれる前記ポリアクリル酸の塩及び前記カルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の質量基準の含有量の合計が、前記負極活物質粒子に含まれる前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩の質量基準の含有量の合計よりも小さいものであることが好ましい。
このようなものであれば、負極活物質粒子中のLi化合物からのLiイオンの溶出がより抑えられるため、水系負極スラリーの安定性がより向上する。
また、前記負極活物質粒子がLi化合物として、LiSi、LiSiO、LiSiOのうち少なくとも1種以上を含むことが好ましい。
リチウム化合物として上記のようなリチウムシリケートを含むものとすることで、充電時に発生する不可逆容量を低減することができ、電池の初回効率及びサイクル特性を向上できる。
また、前記ケイ素化合物粒子は、Cu−Kα線を用いたX線回折スペクトルにおけるSi(111)結晶面に起因するピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。
ケイ素化合物粒子が上記のケイ素結晶性を有する負極活物質をリチウムイオン二次電池の負極活物質として用いれば、より良好なサイクル特性及び初期充放電特性が得られる。
また、本発明の負極活物質は、前記ケイ素化合物粒子において、29Si−MAS−NMR スペクトルから得られる、ケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として−96〜−150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることが好ましい。
ケイ素化合物粒子において、SiO成分を基準としてSi及びLiSiOの量がより多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる負極活物質となる。
また、前記負極活物質粒子はメジアン径が3μm以上15μm以下であることが好ましい。
負極活物質粒子のメジアン径が3μm以上であれば、質量当たりの表面積の増加により電池不可逆容量が増加することを抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。
このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られる。
また、前記炭素材の平均厚さは5nm以上5000nm以下であることが好ましい。
炭素材の平均厚さが5nm以上であれば導電性向上が得られる。また、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池に用いることにより、ケイ素化合物粒子を十分な量確保できるので、電池容量の低下を抑制することができる。
また、上記目的を達成するために、本発明は、上記の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料を提供する。
このように、負極活物質層を形成する材料として、本発明の負極活物質(ケイ素系負極活物質)とともに炭素系活物質を含むことで、負極活物質層の導電性を向上させることができるとともに、充電に伴う膨張応力を緩和することが可能となる。また、ケイ素系負極活物質を炭素系活物質に混合することで電池容量を増加させることができる。
また、上記目的を達成するために、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、前記ケイ素化合物粒子にLiを挿入し、Li化合物を含有させる工程と、により負極活物質粒子を作製し、前記負極活物質粒子に、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩とMg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを含ませる工程とを含み、前記ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩と、前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを含んだ前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法を提供する。
負極活物質粒子に上記のような塩を含ませて、負極活物質を製造することで、負極作製時に作製する水系負極スラリーを特に安定化することができ、かつ、リチウムイオン二次電池の負極活物質として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
本発明の負極活物質は、負極作製時に作製する水系負極スラリーを特に安定化することができ、かつ、二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、この負極活物質を含む混合負極活物質材料においても同様の効果が得られる。また、本発明の負極活物質の製造方法であれば、負極作製時に作製する水系スラリーを安定化することができ、かつ、リチウムイオン二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。 酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例である。 熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例である。 本発明の負極活物質を含むリチウム二次電池の構成例(ラミネートフィルム型)を表す図である。 負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフである。
以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。特に、Liをドープしたケイ素材は初期充放電特性及びサイクル特性が良好となるものの、このようなケイ素材を含む水系負極スラリーの安定性が低下するという問題があり、炭素系活物質を用いたリチウムイオン二次電池と同等のスラリー安定性、初期充放電特性、及びサイクル特性を有する負極活物質を提案するには至っていなかった。
そこで、本発明者らは、二次電池に用いた場合、高電池容量となるとともに、スラリー安定性、サイクル特性、及び初回効率が良好となる負極活物質を得るために鋭意検討を重ね、本発明に至った。
本発明の負極活物質は、負極活物質粒子を含む。また、この負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有しており、このケイ素化合物粒子は、Li化合物を含有している。また、負極活物質粒子は、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩を含む。さらに、負極活物質粒子は、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩を含む。
このような負極活物質は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物粒子がLi化合物を含むことにより、充電時に発生する不可逆容量を低減することができる。これにより、電池の初回効率及びサイクル特性を向上できる。また、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩と、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを両方とも負極活物質粒子が含むことで、水系溶媒中に負極活物質等を分散させたスラリー(水系負極スラリー)の作製時に、負極活物質粒子中のLi化合物からのLiイオンの溶出が抑えられ、水系負極スラリーの安定性が向上する。負極活物質粒子が、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩のみ単独で含んでいても水系負極スラリーの安定性は向上しない。また、負極活物質粒子が、上記の少なくとも1種の金属塩のみ単独で含んでいても水系負極スラリーの安定性を向上させる効果は小さい。
<非水電解質二次電池用負極>
次に、本発明の負極活物質を含む非水電解質二次電池用負極について説明する。図1は非水電解質二次電池用負極(以下、「負極」とも呼称する)の構成の一例を示す断面図である。
[負極の構成]
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。
また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。
[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有するケイ素化合物粒子を含む。
また、負極活物質層12は、本発明の負極活物質と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
また、混合負極活物質材料は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であることが好ましい。ケイ素系負極活物質と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であれば、電池容量を確実に向上させることが可能となる。
また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
また、本発明の負極活物質において、ケイ素化合物粒子は、Li化合物として、LiSi、LiSiO、及びLiSiOのうち少なくとも1種以上を含有していることが好ましい。このようなものは、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。
また、ケイ素化合物粒子のバルク内部にLiSi、LiSiO、及びLiSiOは少なくとも1種以上存在することで電池特性が向上するが、2種類以上のLi化合物を共存させると電池特性がより向上する。なお、これらのリチウムシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)又はXPS(X−ray photoelectron spectroscopy:X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR−MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
また、上記の通り、本発明の負極活物質は、負極活物質粒子が、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩を含み、さらに、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩も含んでいる。このとき、本発明の負極活物質では、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の総量が、負極活物質粒子の総量に対して0.1質量%以上5質量%以下の範囲であることが好ましい。例えば、負極活物質粒子が、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる塩が2種類以上含むときは、該2種類以上の塩の質量の合計が、負極活物質粒子の総量に対して0.1質量%以上5質量%以下であることが好ましい。また、上記塩を1種類のみ含む場合には、その塩の質量が負極活物質粒子の質量に対して0.1質量%以上5質量%以下であることが好ましい。このように、上記塩の総量が、負極活物質粒子の総量に対して0.1質量%以上の範囲であることで、負極活物質粒子中のLi化合物からのLiイオンの溶出がより十分に抑えられ、水系負極スラリーの安定性が一層向上する。また、上記塩の総量が、負極活物質粒子の総量に対して5質量%以下の範囲であれば、電池容量が低下することがない。
また、本発明の負極活物質では、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩の総量が、負極活物質粒子の総量に対して0.1質量%以上5質量%以下の範囲で含まれていることが好ましい。上記同様、負極活物質粒子が、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩を2種類以上含むときは、2種類以上の金属塩の質量の合計が、負極活物質粒子の総量に対して0.1質量%以上5質量%以下であることが好ましい。また、金属塩を1種類のみ含む場合には、その金属塩の質量が負極活物質粒子の質量に対して0.1質量%以上5質量%以下であることが好ましい。このように、金属塩の総量が、負極活物質粒子の総量に対して0.1質量%以上の範囲であることで、負極活物質粒子中のLi化合物からのLiイオンの溶出がより十分に抑えられ、水系負極スラリーの安定性が一層向上する。また、金属塩の総量が、負極活物質粒子の総量に対して5質量%以下の範囲であれば、電池容量が低下することがない。
また、特に、本発明では、負極活物質粒子に含まれるポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の質量基準の含有量の合計が、負極活物質粒子に含まれるMg及びAlから選ばれる少なくとも1種の金属を含む金属塩の質量基準の含有量の合計よりも小さいことが好ましい。金属塩をポリアクリル酸の塩等よりも多く含むことで、水系負極スラリーの安定性がより向上する。
また、本発明では、ポリアクリル酸の塩又はカルボキシメチルセルロースの塩として、カルボキシメチルセルロースのアンモニウム塩(CMC−NH)、ポリアクリル酸のリチウム塩(PAA−Li)、及びポリアクリル酸のアンモニウム塩(PAA−NH)などから少なくとも1種類を選択できる。この中でも特に、ポリアクリル酸の塩又はカルボキシメチルセルロースの塩が、アンモニウム塩であることが好ましい。このようなものであれば、水系負極スラリーの安定性をより向上させることができるためである。
また、本発明では、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩が、硝酸塩、リン酸塩、塩酸塩、又は硫酸塩のいずれかのものであることが好ましい。このようなものを含めば、水系負極スラリーの安定性をより向上させることができるためである。より具体的には、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩として、Mg(NO、MgCl、MgSO、Mg(PO、AlCl、Al(NO、及びAlPOなどから、少なくとも1種類の金属塩を選択できる。
また、ポリアクリル酸の塩又はカルボキシメチルセルロースの塩、及びMg及びAlから選ばれる少なくとも1種の金属を含む金属塩は弱アルカリ性のものであること好ましい。弱アルカリ性の塩を用いれば、酸性の塩を用いる場合よりもLiシリケートからLiが溶出しにくい。
また、ケイ素化合物粒子は、Cu−Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。このピークは、結晶性が高い時(半値幅が狭い時)2θ=28.4±0.5°付近に現れる。ケイ素化合物粒子におけるケイ素化合物のケイ素結晶性は低いほどよく、特に、Si結晶の存在量が少なければ、電池特性を向上でき、さらに、安定的なLi化合物が生成できる。
また、本発明の負極活物質は、ケイ素化合物粒子において、29Si−MAS−NMRスペクトルから得られる、ケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として−96〜−150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすことが好ましい。ケイ素化合物粒子において、SiO成分を基準とした場合にケイ素成分又はLiSiOの量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。なお、29Si−MAS−NMRの測定条件は上記と同様でよい。
また、負極活物質粒子のメジアン径(D50:累積体積が50%となる時の粒子径)が3μm以上15μm以下であることが好ましい。メジアン径が上記の範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、粒子が割れにくくなるからである。メジアン径が3μm以上であれば、質量当たりの表面積を小さくでき、電池不可逆容量の増加を抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
また、本発明の負極活物質において、負極活物質粒子は、表層部に炭素材を含むことが好ましい。負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質を二次電池の負極活物質として用いた際に、電池特性を向上させることができる。
また、負極活物質粒子の表層部の炭素材の平均厚さは、5nm以上5000nm以下であることが好ましい。炭素材の平均厚さが5nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。
この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。
炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。
また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素材料を混合した後に、有機溶剤や水などに分散させ塗布する方法である。
[負極の製造方法]
負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にLiを挿入し、Li化合物を含有させる。このようにして、負極活物質粒子を作製する。次に、作製した負極活物質粒子に、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩とMg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを含ませる。そして、この負極活物質粒子を用いて、負極活物質を製造する。
より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃〜1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。
発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕し、粉末化を行う。このようにして得られた粉末を分級しても良い。本発明では、粉砕工程及び分級工程時にケイ素化合物粒子の粒度分布を調整することができる。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で制御できる。
ここで、ケイ素化合物粒子の表層に炭素材の層を生成しても良い。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。
先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは950℃以下である。分解温度を1200℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれは、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。
次に、上記のように作製したケイ素活物質粒子に、Liを挿入し、Li化合物を含有させる。このときに、Li化合物として、LiSi、LiSiO、LiSiOのうち少なくとも1種以上を含有させることが好ましい。これらのようなLiシリケートを得るために、Liの挿入は、酸化還元法により行うことが好ましい。
酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aにケイ素活物質粒子を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませても良い。リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bにケイ素活物質粒子を浸漬することで、ケイ素活物質粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又はこれらの混合溶媒を使用できる。または溶液Aに浸漬させた後、得られたケイ素活物質粒子を400〜800℃不活性ガス下で熱処理しても良い。熱処理することにLi化合物を安定化することができる。その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は純水などで洗浄する方法などで洗浄しても良い。
溶液Aに用いるエーテル系溶媒としては、ジエチルエーテル、tert−ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、又はこれらの混合溶媒等を用いることができる。この中でも特にテトラヒドロフラン、ジオキサン、1,2−ジメトキシエタンを用いることが好ましい。これらの溶媒は、脱水されていることが好ましく、脱酸素されていることが好ましい。
また、溶液Aに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができ、直鎖ポリフェニレン化合物としては、ビフェニル、ターフェニル、及びこれらの誘導体のうち1種類以上を用いることができる。
溶液Bに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができる。
また、溶液Bのエーテル系溶媒としては、ジエチルエーテル、tert−ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、及びテトラエチレングリコールジメチルエーテル等を用いることができる。
ケトン系溶媒としては、アセトン、アセトフェノン等を用いることができる。
エステル系溶媒としては、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、及び酢酸イソプロピル等を用いることができる。
アルコール系溶媒としては、メタノール、エタノール、プロパノール、及びイソプロピルアルコール等を用いることができる。
アミン系溶媒としては、メチルアミン、エチルアミン、及びエチレンジアミン等を用いることができる。
その他にも、熱ドープ法によって、ケイ素活物質粒子にLiを挿入してもよい。熱ドープ法による改質では、例えば、ケイ素活物質粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃〜750℃の範囲で加熱し改質を行う。またこの場合、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄してもよい。
なお、熱ドープ法によって改質を行った場合、ケイ素化合物粒子から得られる29Si−MAS−NMRスペクトルは酸化還元法を用いた場合とは異なる。図2に酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例を示す。図2において、−75ppm近辺に与えられるピークがLiSiOに由来するピークであり、−80〜−100ppmに与えられるピークがSiに由来するピークである。なお、−80〜−100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。
また、図3に熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si−MAS−NMRスペクトルの一例を示す。図3において、−75ppm近辺に与えられるピークがLiSiOに由来するピークであり、−80〜−100ppmに与えられるピークがSiに由来するピークである。なお、−80〜−100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。なお、XPSスペクトルから、LiSiOのピークを確認できる。
次に、作製した負極活物質粒子に、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩とMg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを含ませる。負極活物質粒子にこれらの塩を含ませるには、以下のような手法を用いることができる。
例えば、以下のような湿式混合法を用いることができる。湿式混合法では、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩とMg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを分散させた溶液を負極活物質粒子の表面に噴霧し、噴霧後に負極活物質粒子を乾燥させることによって、負極活物質粒子の表面に上記の塩を含ませることができる。
より具体的には、例えば、ポリアクリル酸の塩とリン酸アルミニウムとを水溶媒に分散した水溶液を負極活物質粒子に噴霧し、負極活物質粒子を乾燥させることができる。水溶媒にはポリアクリル酸の塩は溶解するが、リン酸アルミニウムは溶解しないため、水溶媒中のこれらの塩の間でカチオン又はアニオンの交換はほとんど起こらない。よって、溶媒に分散させる際に、負極活物質粒子の質量に応じて上記それぞれの塩の質量を調整することで、負極活物質粒子中のそれぞれの塩の濃度を調節することができる。また、その他にも、カルボキシメチルセルロースの塩と金属塩とを分散したエタノールなどの有機溶媒を負極活物質粒子に噴霧し、負極活物質粒子を乾燥させてもよい。
また、上記のような湿式混合法の他に乾式混合法を用いてもよい。この場合、公知の処理装置(ホソカワミクロン ノビルタ(R)NOB、ホソカワミクロン ナウタミキサ(R)DBX等)を使用することによって、負極活物質粒子と、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩と、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを乾式混合し、負極活物質粒子の表面に上記の塩のそれぞれを付着させることができる。
以上のようにして作製した負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。
<リチウムイオン二次電池>
次に、本発明の負極活物質を含むリチウムイオン二次電池について説明する。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
[ラミネートフィルム型のリチウムイオン二次電池の構成]
図4に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
正負極リードは、例えば、外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。
外装部材25は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1−uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。
[負極]
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2−ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4−フルオロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどが挙げられる。
溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製でき、該作製した負極を用いてリチウムイオン二次電池を製造することができる。
最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。
次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体21を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池20を製造することができる。
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1−1)
以下の手順により、図4に示したラミネートフィルム型のリチウムイオン二次電池20を作製した。
最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N−メチル−2−ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
次に負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOのxの値は0.5であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。
続いて、炭素被膜を被覆したケイ素化合物粒子(負極活物質粒子)に対して酸化還元法によりリチウムを挿入し改質を行った。まず、負極活物質粒子を、リチウム片と、芳香族化合物であるナフタレンとをテトラヒドロフラン(以下、THFと呼称する)に溶解させた溶液(溶液C)に浸漬した。この溶液Cは、THF溶媒にナフタレンを0.2mol/Lの濃度で溶解させたのちに、このTHFとナフタレンの混合液に対して10質量%の質量分のリチウム片を加えることで作製した。また、負極活物質粒子を浸漬する際の溶液の温度は20℃で、浸漬時間は20時間とした。その後、負極活物質粒子を濾取した。以上の処理により負極活物質粒子にリチウムを挿入した。
続いて、得られたケイ素化合物粒子をアルゴン雰囲気下600℃で24時間熱処理を行いLi化合物の安定化を行った。
次に、負極活物質粒子に、カルボキシメチルセルロースのアンモニウム塩(CMC−NH)とリン酸アルミニウム(AlPO)を分散したエタノールを噴霧し、負極活物質粒子を乾燥させた。負極活物質粒子のCMC−NHの含有量は1質量%、AlPOの含有量は2質量%であった。
次に、負極作製用の負極活物質粒子(ケイ素系負極活物質)と、炭素系活物質を2:8の質量比で配合し、負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。
次に、作製した負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。
ここで、負極活物質粒子を含む水系スラリーの安定性を評価するために、作製した負極合剤スラリーの一部を二次電池の作製用のものとは別に30g取り出し、20℃で保存し、負極合剤スラリー作製後からガス発生迄の時間を測定した。
また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。
次に、溶媒(4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。
以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。
サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。
初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。
(実施例1−2〜実施例1−3、比較例1−1、1−2)
ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1−1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1−1〜1−3、比較例1−1、1−2における、SiOで表されるケイ素化合物のxの値を表1中に示した。
このとき、実施例1−1〜1−3及び比較例1−1、1−2のケイ素系活物質粒子は以下のような性質を有していた。負極活物質粒子中のケイ素系活物質粒子のメジアン径は8μmであった。ケイ素化合物粒子の内部には、LiSi及びLiSiOが含まれていた。また、ケイ素化合物は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が2.257°であり、Si(111)結晶面に起因する結晶子サイズは3.77nmであった。また、表面に被覆された炭素材の平均厚さは50nmであった。
また、上記の全ての実施例及び比較例において、29Si−MAS−NMR スペクトルから得られるケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域のピークが発現した。また、上記全ての実施例、比較例で、29Si−MAS−NMR スペクトルから得られるケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、−96〜−150ppmで与えられるSiO領域のピーク強度値Bとの関係がA>Bであった。
実施例1−1〜1−3、比較例1−1、1−2の評価結果を表1に示す。
Figure 0006797739
表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲外の場合、電池特性が悪化した。例えば、比較例1−1に示すように、酸素が十分にない場合(x=0.3)、初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例1−2に示すように、酸素量が多い場合(x=1.8)は導電性の低下が生じ実質的にケイ素酸化物の容量が発現しないため、評価を停止した。また、実施例1−1〜1−3ではガス発生までの時間が2日以上となり、水系負極スラリー安定性が高いことが分かった。なお、比較例1−2ではガス発生までの時間の測定は行わなかった。
(実施例2−1〜実施例2−2)
ケイ素化合物粒子の内部に含ませるリチウムシリケートの種類を表2のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
(比較例2−1)
ケイ素化合物粒子にLiを挿入しなかったこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
実施例2−1〜実施例2−2、比較例2−1の結果を表2に示す。
Figure 0006797739
ケイ素化合物粒子がLiSiO、LiSiOのような安定したリチウムシリケートを含むことで、容量維持率、初期効率がバランスよく向上した。特に、2種類のリチウムシリケートを含む場合に、容量維持率、初期効率がよりバランスよく向上した。また、実施例1−2、2−1、2−2では、ガス発生までの時間が1日以上となり、十分な水系負極スラリーの安定性が得られた。一方で、比較例2−1のように、ケイ素化合物粒子がLi化合物を含有していない場合、ガス発生はないものの、初期効率が著しく低下してしまった。
(実施例3−1〜実施例3−38)
カルボキシメチルセルロース(CMC)の塩の含有量と、金属塩の種類と、金属塩の含有量とを表3のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
実施例3−1〜実施例3−38の結果を表3に示す。
Figure 0006797739
表3から分かるように、カルボキシメチルセルロースの塩と、Mg又はAlを含む金属塩の両方が負極活物質粒子に含まれている場合に、ガス発生までの時間が高くなり、水系負極スラリーの安定性が向上した。また、カルボキシメチルセルロースの塩と、Mg又はAlを含む金属塩の含有量は、それぞれ、0.1質量%以上であれば、十分な水系負極スラリーの安定性が得られた。また、実施例3−10〜3−14のように、カルボキシメチルセルロースの塩の含有量よりも金属塩の含有量が少ない実施例よりも、実施例3−1〜3−4、3−15〜3−26、3−35〜3−38といった、カルボキシメチルセルロースの塩の含有量よりも金属塩の含有量が多い実施例において、ガス発生までの時間がより増加した。
(実施例3−39〜実施例3−43)
カルボキシメチルセルロースをポリアクリル酸(PAA)の塩に変更し、金属塩の種類と、金属塩の含有量とを表4のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
実施例3−39〜実施例3−43の結果を表4に示す。なお、表中の「PAA−NH」とは、ポリアクリル酸のアンモニウム塩を意味する。
Figure 0006797739
表4から分かるように、カルボキシメチルセルロースの塩を用いた場合と同様、ポリアクリル酸の塩と、Mg又はAlを含む金属塩との両方が負極活物質粒子に含まれている場合に、ガス発生までの時間が増加し、水系負極スラリーの安定性が向上した。
(比較例3−1)
負極活物質粒子の改質後に、ポリアクリル酸の塩、カルボキシメチルセルロースの塩、Mgを含む金属塩、及びAlを含む金属塩のいずれの塩も負極活物質粒子に含有させなかったこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
(比較例3−2〜比較例3−7)
負極活物質粒子の改質後に、ポリアクリル酸の塩又はカルボキシメチルセルロースの塩のみを負極活物質粒子に含有させ、金属塩は含有させなかった以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
(比較例3−8〜比較例3−14)
負極活物質粒子の改質後に、ポリアクリル酸の塩又はカルボキシメチルセルロースの塩は負極活物質粒子に含有させず、金属塩のみを含有させた以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
比較例3−1〜3−14の結果を表5に示す。なお、表5中の「PAA−Li」はポリアクリル酸のリチウム塩を意味する。
Figure 0006797739
比較例3−2〜3−7から分かるように、ポリアクリル酸の塩又はカルボキシメチルセルロースの塩のみを負極活物質粒子に含有させた場合、ガス発生までの時間は、比較例3−1と同じとなり、スラリーの安定性の向上効果が得られなかった。また、金属塩のみを負極活物質粒子に含有させた場合、ガス発生までの時間は、比較例3−1〜比較例3−7よりは増加するが、表3、4に示した実施例には劣る結果となった。
(実施例4−1)
負極活物質粒子にポリアクリル酸の塩又はカルボキシメチルセルロースの塩と、金属塩とを含有させる方法を、湿式混合法から、ホソカワミクロン ノビルタ(R)NOBを用いた乾式混合法に変更した以外、実施例1−2と同様の手順で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。具体的には、負極活物質粒子100gにCMC−NHを1g、AlPOを2g加え、ノビルタを用いた処理(ノビルタ処理)を30秒行った。
(実施例4−2)
負極活物質粒子にポリアクリル酸の塩又はカルボキシメチルセルロースの塩と、金属塩とを含有させる方法を、湿式混合法から、ホソカワミクロン ナウタミキサ(R)DBXを用いた乾式混合法に変更した以外、実施例1−2と同様の手順で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。具体的には、負極活物質粒子100gにCMC−NHを1g、AlPOを2g加え、ナウタミキサを用いた混合を1時間行った。
実施例4−1〜4−2の結果を表6に示す。
Figure 0006797739
乾式混合法を用いた場合、湿式混合法を用いた場合よりも、ガス発生までの時間がさらに増加した。
(実施例5−1〜5−9)
ケイ素化合物粒子の結晶性を表7のように変化させたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。なお、ケイ素化合物粒子中の結晶性は、原料の気化温度の変更、又は、ケイ素化合物粒子の生成後の熱処理で制御できる。なお、実施例5−9では半値幅を20°以上と算出しているが、解析ソフトを用いフィッティングした結果であり、実質的にピークは得られていない。よって、実施例5−9のケイ素化合物は、実質的に非晶質であると言える。
Figure 0006797739
特に半値幅が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い初期効率及び容量維持率が得られた。
(実施例6−1)
ケイ素化合物をSi及びLiシリケート領域の最大ピーク強度値Aと上記SiO領域に由来するピーク強度値Bとの関係がA<Bのものとしたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。この場合、改質時にリチウムの挿入量を減らすことで、LiSiOの量を減らし、LiSiOに由来するピークの強度Aを小さくした。
Figure 0006797739
表8から分かるように、ピーク強度の関係がA>Bである場合の方が、電池特性が向上した。
(実施例7−1〜7−6)
ケイ素化合物粒子のメジアン径を表9のように変化させたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。
Figure 0006797739
ケイ素化合物のメジアン径が3μm以上であれば、維持率及び初期効率がより向上した。これは、ケイ素化合物の質量当たりの表面積が大すぎず、副反応が起きる面積を小さくできたためと考えられる。一方、メジアン径が15μm以下であれば、充電時に粒子が割れ難く、充放電時に新生面によるSEI(固体電解質界面)が生成し難いため、可逆Liの損失を抑制することができる。また、ケイ素系活物質粒子のメジアン径が15μm以下であれば、充電時のケイ素化合物粒子の膨張量が大きくならないため、膨張による負極活物質層の物理的、電気的破壊を防止できる。
(実施例8−1〜8−4)
ケイ素系活物質粒子の表面に被覆された炭素材の平均厚さを表10のように変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性、初回効率、及び水系負極スラリーの安定性を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
Figure 0006797739
表10からわかるように、炭素層の膜厚が5nm以上で導電性が向上するため、容量維持率及び初期効率を向上させることができる。一方、炭素層の膜厚が5000nm以下であれば、電池設計上、ケイ素化合物粒子の量を十分に確保できるため、電池容量が低下することが無い。
(実施例9−1)
負極活物質中のケイ素系活物質粒子の質量の割合を変更したこと以外、実施例1−2と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
図5に、負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフを示す。図5中のAで示すグラフは、本発明の負極の負極活物質において、ケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。一方、図5中のBで示すグラフは、Liをドープしていないケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。図5から分かるように、ケイ素化合物の割合が6質量%以上となると、電池容量の増加率は従来に比べて大きくなり、体積エネルギー密度が、特に顕著に増加する。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
10…負極、 11…負極集電体、 12…負極活物質層、
20…リチウム二次電池(ラミネートフィルム型)、 21…巻回電極体、
22…正極リード、 23…負極リード、 24…密着フィルム、
25…外装部材。

Claims (12)

  1. 負極活物質粒子を含む負極活物質であって、
    前記負極活物質粒子が、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
    前記ケイ素化合物粒子が、Li化合物を含有し、
    前記負極活物質粒子が、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩を含み、Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩を含み、
    前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩は、Mg(NO 、MgCl 、MgSO 、Mg (PO 、AlCl 、Al(NO 、及びAlPO から選択される、少なくとも1種類の金属塩であり、
    前記負極活物質粒子がLi化合物として、Li Si 、Li SiO 、Li SiO のうち少なくとも1種以上を含むことを特徴とする負極活物質。
  2. 前記ポリアクリル酸の塩及び前記カルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の総量が、前記負極活物質粒子の総量に対して0.1質量%以上5質量%以下の範囲のものであることを特徴とする請求項1に記載の負極活物質。
  3. 前記ポリアクリル酸の塩及び前記カルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩が、アンモニウム塩であることを特徴とする請求項1又は請求項2に記載の負極活物質。
  4. 前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩の総量が、前記負極活物質粒子の総量に対して0.1質量%以上5質量%以下の範囲のものであることを特徴とする請求項1から請求項3のいずれか1項に記載の負極活物質。
  5. 前記負極活物質粒子に含まれる前記ポリアクリル酸の塩及び前記カルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩の質量基準の含有量の合計が、前記負極活物質粒子に含まれる前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩の質量基準の含有量の合計よりも小さいものであることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  6. 前記ケイ素化合物粒子は、Cu−Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  7. 前記ケイ素化合物粒子において、29Si−MAS−NMR スペクトルから得られる、ケミカルシフト値として−60〜−95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として−96〜−150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  8. 前記負極活物質粒子はメジアン径が3μm以上15μm以下であることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  9. 前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  10. 前記炭素材の平均厚さは5nm以上5000nm以下であることを特徴とする請求項に記載の負極活物質。
  11. 請求項1から請求項10のいずれか1項に記載の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料。
  12. ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、
    ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、
    前記ケイ素化合物粒子にLiを挿入し、Li化合物を含有させる工程と、
    により負極活物質粒子を作製し、
    前記負極活物質粒子に、ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩とMg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを含ませる工程とを含み、
    前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩は、Mg(NO 、MgCl 、MgSO 、Mg (PO 、AlCl 、Al(NO 、及びAlPO から選択される、少なくとも1種類の金属塩であり、
    前記ポリアクリル酸の塩及びカルボキシメチルセルロースの塩から選ばれる少なくとも1種の塩と、前記Mg及びAlから選ばれる少なくとも1種の金属を含む金属塩とを含んだ前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法。
JP2017076133A 2016-09-30 2017-04-06 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 Active JP6797739B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/332,136 US11165058B2 (en) 2016-09-30 2017-08-23 Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
EP17855494.5A EP3522271A4 (en) 2016-09-30 2017-08-23 NEGATIVE ELECTRODE ACTIVE MATERIAL, MIXED NEGATIVE ELECTRODE ACTIVE MATERIAL SUBSTANCE, AND METHOD FOR PRODUCING A NEGATIVE ELECTRODE ACTIVE MATERIAL
PCT/JP2017/030044 WO2018061536A1 (ja) 2016-09-30 2017-08-23 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
CN201780057138.7A CN109792047B (zh) 2016-09-30 2017-08-23 负极活性物质、混合负极活性物质材料及负极活性物质的制备方法
KR1020197008769A KR102335477B1 (ko) 2016-09-30 2017-08-23 부극 활물질, 혼합 부극 활물질 재료 및 부극 활물질의 제조 방법
TW106129125A TWI726143B (zh) 2016-09-30 2017-08-28 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
TW110111252A TWI744207B (zh) 2016-09-30 2017-08-28 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194120 2016-09-30
JP2016194120 2016-09-30

Publications (2)

Publication Number Publication Date
JP2018060771A JP2018060771A (ja) 2018-04-12
JP6797739B2 true JP6797739B2 (ja) 2020-12-09

Family

ID=61908563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076133A Active JP6797739B2 (ja) 2016-09-30 2017-04-06 負極活物質、混合負極活物質材料、及び負極活物質の製造方法

Country Status (5)

Country Link
US (1) US11165058B2 (ja)
EP (1) EP3522271A4 (ja)
JP (1) JP6797739B2 (ja)
CN (1) CN109792047B (ja)
TW (1) TWI726143B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084849B2 (ja) * 2018-11-07 2022-06-15 信越化学工業株式会社 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法
JP7175254B2 (ja) * 2019-12-06 2022-11-18 信越化学工業株式会社 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物
CN111384386A (zh) * 2020-03-25 2020-07-07 长沙矿冶研究院有限责任公司 一种负极活性材料及其制备方法
CN112174154A (zh) * 2020-09-02 2021-01-05 江苏天鹏电源有限公司 一种负极活性物质、负极极片及锂离子二次电池制造方法
CN112201779B (zh) * 2020-10-14 2022-02-08 江西壹金新能源科技有限公司 一种硅基复合材料浆料的制备方法及其应用
KR20220052541A (ko) * 2020-10-21 2022-04-28 에스케이온 주식회사 리튬 이차 전지용 음극 조성물 및 이를 사용해 제조된 리튬 이차 전지
CN113437280B (zh) * 2021-08-30 2021-11-30 北京壹金新能源科技有限公司 一种浆料稳定的锂化硅基复合材料及其制备方法和应用
WO2023074099A1 (ja) 2021-10-25 2023-05-04 Dic株式会社 二次電池用複合活物質および二次電池

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4367311B2 (ja) 2004-10-18 2009-11-18 ソニー株式会社 電池
JP4994634B2 (ja) 2004-11-11 2012-08-08 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4911990B2 (ja) 2006-02-27 2012-04-04 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP5108355B2 (ja) 2007-03-30 2012-12-26 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
KR100913177B1 (ko) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
JP5196149B2 (ja) 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5329858B2 (ja) 2008-07-10 2013-10-30 株式会社東芝 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2014103052A (ja) 2012-11-22 2014-06-05 Furukawa Electric Co Ltd:The 非水電解質二次電池用負極及びそれを用いた非水電解質二次電池並びにその製造方法
US10193157B2 (en) * 2013-06-12 2019-01-29 Tdk Corporation Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2015025443A1 (ja) 2013-08-21 2015-02-26 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP6474548B2 (ja) 2014-01-16 2019-02-27 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP6359836B2 (ja) * 2014-02-07 2018-07-18 信越化学工業株式会社 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池
JP6239476B2 (ja) * 2014-09-25 2017-11-29 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP6353329B2 (ja) 2014-09-25 2018-07-04 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
US10446837B2 (en) 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
JP6448525B2 (ja) * 2015-02-26 2019-01-09 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
DE102016208250A1 (de) * 2015-05-19 2016-11-24 Semiconductor Energy Laboratory Co., Ltd. Elektrode, Energiespeichervorrichtung und elektronische Vorrichtung
JP6548959B2 (ja) 2015-06-02 2019-07-24 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに負極活物質粒子の製造方法
KR102335474B1 (ko) * 2016-09-16 2021-12-07 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 혼합 부극 활물질 재료, 및 부극 활물질의 제조 방법
JP6861565B2 (ja) * 2016-09-16 2021-04-21 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法

Also Published As

Publication number Publication date
JP2018060771A (ja) 2018-04-12
CN109792047A (zh) 2019-05-21
CN109792047B (zh) 2023-01-17
EP3522271A4 (en) 2020-05-27
US20190229332A1 (en) 2019-07-25
TWI726143B (zh) 2021-05-01
TW201826599A (zh) 2018-07-16
EP3522271A1 (en) 2019-08-07
US11165058B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
KR102613652B1 (ko) 부극재 및 그 부극재의 제조 방법, 그리고 혼합 부극재
JP7082228B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用混合負極活物質材料、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池用負極の製造方法、及びリチウムイオン二次電池の製造方法
JP6861565B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6797739B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US11316152B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP7098543B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに、非水電解質二次電池用負極材の製造方法
JP6719554B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用混合負極活物質材料、及びリチウムイオン二次電池用負極活物質の製造方法
TWI714758B (zh) 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
CN108292746B (zh) 负极活性物质、混合负极活性物质材料、负极、二次电池
JP6995488B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
KR102335477B1 (ko) 부극 활물질, 혼합 부극 활물질 재료 및 부극 활물질의 제조 방법
JP6766143B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用混合負極活物質材料、及びリチウムイオン二次電池用負極活物質の製造方法
JP6719262B2 (ja) 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP7084849B2 (ja) 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法
KR102335474B1 (ko) 부극 활물질, 혼합 부극 활물질 재료, 및 부극 활물질의 제조 방법
JP6862091B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP7285991B2 (ja) 非水電解質二次電池用負極及びその製造方法
JP7175254B2 (ja) 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物
WO2023140072A1 (ja) 非水電解質二次電池用負極活物質及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6797739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150