JP6792384B2 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
JP6792384B2
JP6792384B2 JP2016175255A JP2016175255A JP6792384B2 JP 6792384 B2 JP6792384 B2 JP 6792384B2 JP 2016175255 A JP2016175255 A JP 2016175255A JP 2016175255 A JP2016175255 A JP 2016175255A JP 6792384 B2 JP6792384 B2 JP 6792384B2
Authority
JP
Japan
Prior art keywords
support pedestal
substrate
optical element
optical
optical module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016175255A
Other languages
English (en)
Other versions
JP2018040968A (ja
Inventor
今井 雅彦
雅彦 今井
羽鳥 伸明
伸明 羽鳥
臼杵 達哉
達哉 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Photonics Electronics Technology Research Association
Original Assignee
Fujitsu Ltd
Photonics Electronics Technology Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Photonics Electronics Technology Research Association filed Critical Fujitsu Ltd
Priority to JP2016175255A priority Critical patent/JP6792384B2/ja
Publication of JP2018040968A publication Critical patent/JP2018040968A/ja
Application granted granted Critical
Publication of JP6792384B2 publication Critical patent/JP6792384B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は光モジュールに関するもので、例えば、光導波路を設けた基板に光素子を実装する光モジュールに関するものである。
データ処理の大容量化・高速化への需要が高まり、光通信システムに用いられる光モジュールの開発が行われている。光通信システムは伝送距離が長く、大容量の情報送信や通信速度が速い等の利点があり、将来、有望な通信システムである。
光モジュールは光ファイバや光導波路の光伝送路と半導体レーザ等の発光素子或いはフォトダイオード等の受光素子を光学的に結合して形成しており、高性能化、小型化、低コスト化等が要求されている。この時、高効率に光導波路または光ファイバと光素子を光学的に結合した状態で実装するためには±1.0μm程度の高精度な高さや水平度等の位置合わせ精度が要求される。
位置合わせ方法としてパッシブアライメント法があり、基板と光素子にマーカーを設け画像認識により精度の良い位置合わせを実現する方法である。しかし、パッシブアライメント法は水平方向の位置合わせは精度良く比較的容易に作製可能であるが、高さ方向の位置合わせは困難である。
そこで、光伝送路を形成した基板に光素子を支持するための支持台座を形成し、光素子と光伝送路のコア層の高さ方向の位置ずれを抑制することが提案されている(例えば、特許文献1参照)。
図11は、従来の光モジュール70の説明図である。基板71上に下部クラッド層72、コア層73及び上部クラッド層74からなる光導波路を設け、光素子搭載領域のクラッド層72,74及び基板71の一部を除去し、この光素子搭載領域に半導体レーザ80を搭載する。この時、コア層と半導体レーザ80の活性層の位置合わせのために、基板71を加工して高さ調整したのち、支持台座75及びアライメントマーク76を設けている。
また、支持台座形成方法においては、支持台座材料に可変形部材と固定材を用いて可変形部材の荷重量に応じて可変形部材の変形量を調整し、高さ方向の位置を調整することが提案されている(例えば、特許文献2参照)。或いは、光導波路形成層の間に薄膜のエッチングストッパ膜を設け、光導波路形成層の一部分を除去する際にエッチングストッパ膜厚が高さ方向位置の基準面とし、露出した導波路端面に光素子を光学的に結合させることも提案されている(例えば、特許文献3参照)。
特開平05−196844号公報 特開2007−133011号公報 特開平09−304663号公報
しかし、このような支持台座を用いた場合にも光素子結合における光素子搭載後の光軸ずれが発生するという問題がある。このような光軸ずれの原因の1つとして支持台座上への異物付着による高さ方向の位置ずれがあり、図12を参照して説明する。図12は従来の光モジュールにおける高さずれの問題の説明図である。
光モジュールにおける高さずれの原因として異物の付着が考えられる。付着する異物は支持台座形成後のチップ化でのダイシング工程で発生する切削屑やバンプ下地膜形成のためのメタルリフトオフプロセスによるバリ等の基板面への再付着により発生する。この異物の大きさは1μm〜3μm程度であり、各光素子の高さ方向の位置決め精度である±1.0μm以下に対して有意に大きい。したがって、支持台座上に異物が付着することで高さ方向位置決め精度が±1.0μm以上になってしまい、光素子搭載後、光結合効率が低下し歩留り低下の原因となる。
図12(a)は異物が付着した場合の説明図であり、支持台座75に異物79が付着すると、搭載した半導体レーザ80が傾いて、光導波路のコア層73と半導体レーザ80のMQW活性層83の位置ずれが発生し、光結合が十分行われなくなる。なお、図における符号81,82及び84は、それぞれ半導体基板、n型クラッド層及びp型クラッド層である。
支持台座上に異物が付着してしまうと洗浄等で異物を除去するのは難しいため、支持台座上に異物が付着すること自体を抑制する必要がある。抑制方法としては、支持台座を加工し、支持台座接触面を小さくすることで異物の付着が抑制可能である。しかし、支持台座接触面に異物を付着させないためには光素子との支持台座接触面積は極力小さくするのが望ましい。また、異物大きさを考慮すると、数μm程度、例えば、3μm以上の支持台座高さが必要となる。しかしながら、異物の付着を抑制するために支持台座接触面を小さくする程、台座形状のアスペクト比(支持台座高さ:支持台座接触面の長さ)が大きくなってしまう。
アスペクト比が大きくなることで機械的強度が小さくなるため光素子搭載時の荷重により破損し易くなり、高さ方向位置ずれが起こる課題が生じるので、その事情を図12(b)を参照して説明する。
図12(b)は、支持台座75のアスペクト比を高めた場合の問題点の説明図であり、支持台座75のアスペクト比を高めると機械的強度は小さくなる。機械的強度が小さくなると支持台座の一部が破損され破損台座85となることで、搭載した半導体レーザ80が傾いて、光導波路のコア層73と半導体レーザ80のMQW活性層83の位置ずれが発生し、光結合が十分行われなくなる。
一方、強度を大きくするには、アスペクト比を小さくしなければならないが、アスペクト比と機械的強度はトレードオフの関係であり、両方を満たすことは困難であった。
したがって、光モジュールにおいて、異物の最大径である3μm以上の高さを有する支持台座の光素子との接触面積を小さくするとともに、機械的強度を大きくすることを目的とする。
一つの態様では、光モジュールは、基板と前記基板上に下部クラッド層、コア層及び上部クラッド層を順次設けた光導波路と、前記光導波路を形成した領域以外に設けた前記コア層と光学的に結合する光素子を搭載する光素子搭載領域と、前記光素子搭載領域において前記光素子を支持する前記基板を加工した支持台座と、前記支持台座に搭載した前記光素子とを有し、前記支持台座の高さが3μm以上であり、前記支持台座が、最小幅部分の幅が1μm以下で且つ前記光素子との接触面の面積が前記支持台座の前記基板側の面積と同じ場合に比べて大きい機械的強度が得られる形状であり、前記支持台座と前記基板との間に、前記基板を加工した支持台座土台をさらに有する。
一つの側面として、異物の最大径である3μm以上の高さを有する支持台座の光素子との接触面積を小さくするとともに、機械的強度を大きくすることが可能になる。
本発明の実施の形態の光モジュールの説明図である。 本発明の実施例1の光モジュールの説明図である。 本発明の実施例1の光モジュールの支持台座の製造工程の説明図である。 本発明の実施例2の光モジュールの説明図である。 本発明の実施例3の光モジュールの説明図である。 本発明の実施例3の光モジュールの支持台座の製造工程の説明図である。 本発明の実施例4の光モジュールの説明図である。 本発明の実施例5の光モジュールの説明図である。 本発明の実施例5の光モジュールの支持台座の製造工程の説明図である。 本発明の実施例6の光モジュールの支持台座の製造工程の説明図である。 従来の光モジュールの説明図である。 従来の光モジュールにおける高さズレの問題の説明図である。
ここで、図1を参照して、本発明の実施の形態の光モジュールを説明する。図1は本発明の実施の形態の光モジュールの説明図である。基板11上に下部クラッド層12、コア層13及び上部クラッド層14を順次設けた光導波路を形成した領域以外にコア層13と光学的に結合する光素子18を搭載する光素子搭載領域を設ける。光素子搭載領域には、光素子18を支持する基板11を加工した支持台座土台15を設け、この支持台座土台15上に支持台座16を設ける。支持台座16の高さは実測した異物の最大径の3μm以上とし、支持台座16の最小幅部分の幅は実効的に位置ずれを起こす異物の最小径の1μm以下とする。或いは、光素子18との接触面の面積が支持台座16の支持台座土台15との接触面の面積と同じ場合に比べて大きい機械的強度が得られる形状とする。なお、支持台座土台15の間の空間には光素子18をマウントする際の半田を設ける半田形成領域19を設ける。
光素子18との接触面の面積が支持台座16の支持台座土台15との接触面の面積と同じ場合に比べて大きい機械的強度が得られる形状とする場合には、支持台座16の支持台座土台15との接触面の面積が光素子18との接触面の面積より7倍以上大きい形状にすれば良い。そのためには、マスクパターンを用いた支持台座形成工程において、等方性エッチングを用いれば良い。なお、支持台座土台15は必須ではなく、支持台座土台15を設けることなく、基板11を直接加工して支持台座16を形成しても良い。その場合には、支持台座16の基板側の面積が光素子18との接触面の面積より7倍以上大きい形状にすれば良い。
或いは、支持台座16を、基板11を加工した支持台座土台15上に複数枚の壁状部材を組み合わせて形成しても良い。典型的には、複数枚の壁状部材を、T字型壁状部材或いはH字型壁状部材とするが、隔壁部材の組み合わせは任意である。例えば、十字型、L字型、N型、#型等でも良い。
或いは、複数枚の壁状部材により包囲空間を形成した枠状支持台座でも良く、この場合には、複数枚の壁状部材上に異物が載置しないように、壁状部材と光素子18との接触面幅を異物の最小径の1μm以下とすれば良い。
この様な包囲空間を、マトリクス状に配置しても良く、典型的には、光素子搭載領域を最小幅が1μmの桟により包囲空間を形成したメッシュ状支持台座としても良い。
複数枚の壁状部材の光素子18との接触面側の面積を、複数枚の壁状部材の支持台座土台15との接触面側の面積より小さくしても良く、そのためには、複数枚の壁状部材の光素子18との接触面側に絶縁物サイドウォールを設ければ良い。絶縁物サイドウォールを用いた場合には、光素子18との接触面は絶縁物サイドウォールの先端部のみとなるので、光素子18との接触面積を大幅に低減することができる。この場合、絶縁物サイドウォール形成後のシリコンエッチング量で支持台座16の高さを調整できるため高さを有する支持台座16を容易に作製できる。
Siフォトニクス技術を用いても良く、その場合には、基板11として単結晶シリコン層/絶縁膜/単結晶シリコン基板構造のSOI基板の単結晶シリコン基板を用い、下部クラッド層12としてSOI基板の絶縁膜を用いる。コア層としては、SOI基板の単結晶シリコン層を加工して形成すれば良い。
光素子18としては、半導体レーザ、半導体光増幅素子或いは半導体受光素子が一般的であるが、半導体レーザが最も典型的なものである。特に、コア層13を複数本平行に配置することによって、半導体レーザアレイと光結合させることができる。
本発明の実施の形態においては、支持台座16の高さを実測した異物の最大径の3μm以上とし、支持台座16の最小幅部分の幅は実効的に位置ずれを起こす異物の最小径の1μm以下としている。さらに、支持台座16の光素子18との接触面の面積を支持台座16の支持台座土台15との接触面の面積と同じ場合に比べて大きい機械的強度が得られる壁状部材の組み合わせ形状或いは角錐台形状等の形状にしているため、支持台座のアスペクト比を大きくしても機械的強度を十分保つことができる。
本発明の実施の形態においては、支持台座16の加工プロセスにおいては高精度で安定したプロセスで作製できるため、プロセス工程による支持台座高さのばらつきはほとんど生じることがない。
次に、図2及び図3を参照して、本発明の実施例1の光モジュールを説明する。図2は本発明の実施例1の光モジュールの説明図である。まず、SOI基板を利用して下部クラッド層となるBOX層22上に設けた単結晶Si層を加工してSi細線コア23を形成し、その上にSiO膜を設けて上部クラッド層24とする。次いで、光素子搭載領域の上部クラッド層24乃至BOX層22を除去してSi基板21を露出する。
次いで、Si細線コア23と半導体レーザ25の光軸調整のため露出したSi基板21のエッチングを行ったのち、支持台座形成用ブロック及びアライメントマーク36を形成する。次いで、支持台座形成用ブロックを加工してT字型支持台座34を形成する。この時、支持台座形成用ブロックの残部が支持台座土台35となる。次いで、このT字型支持台座34上に半導体レーザ25をパッシブアライメント法により搭載することで、光モジュール20が得られる。なお、支持台座土台35の間の領域には半導体レーザ25をマウントする際の半田を設ける半田形成領域26を設ける。
図3は、本発明の実施例1の光モジュールの支持台座の形成工程の説明図である。まず、Si基板21を加工した高さが7μm程度で、100μm×30μm程度の支持台座形成用ブロック30上に、T字状のレジパターン31を設ける。この時、T字状のレジパターン31の線幅を1μm以下にする。なお、T字状パターンの寸法は任意であるが、ここでは、線幅を0.5μmとし、水平部の長さを60μmとし、垂直部の付け根の長さを30μmとする。
次いで、図3(b)に示すように、反応性イオンエッチングにより異方性エッチングを行うことにより高さが3μm以上の壁状部材32,33を形成する。ここでは、壁状部材32,33の高さを5μmとする。この時の壁状部材32,33の形状は垂直形状が望ましいが、テーパ形状でも構わない。
次いで、図3(c)に示すように、レジストパターン31を除去することによって、壁状部材32と壁状部材33を組み合わせたT字型支持台座34が得られ、支持台座形成用ブロック30の残部が支持台座土台35となる。この実施例1のT字型支持台座34においては、2枚の壁状部材32,33を組み合わせているので、機械的強度を一枚の壁状部材に比べて大幅に向上することができる。
また、T字型支持台座34の線幅を1μm以下にしているので、サイズが1μm〜3μmの異物がT字型支持台座34の頂部に付着しようとしても、安定に付着できないので、その後の洗浄工程で容易に除去することができる。また、T字型支持台座34の深さを3μm以上にしているので、 サイズが1μm〜3μmの異物がT字型支持台座34の近傍に付着しても、T字型支持台座34の高さを超えることはない。したがって、異物が半導体レーザ25の搭載に影響を与えることはないので、高さ方向の位置ずれが発生することはない。
次に、図4を参照して、本発明の実施例2の光モジュールを説明するが、支持台座の形状が異なるだけで、製造工程は同じであるので、最終構造のみを説明する。図4の本発明の実施例2の光モジュールの説明図である。まず、SOI基板を利用して下部クラッド層となるBOX層22上に設けた単結晶Si層を加工してSi細線コア23を形成し、その上にSiO膜を設けて上部クラッド層24とする。次いで、光素子搭載領域の上部クラッド層24乃至BOX層22を除去してSi基板21を露出する。
次いで、Si細線コア23と半導体レーザ25の光軸調整のため露出したSi基板21のエッチングを行ったのち、支持台座形成用ブロック及びアライメントマーク36を形成する。次いで、支持台座形成用ブロックを加工してH字型支持台座37を形成する。この時、支持台座形成用ブロックの残部が支持台座土台35となる。次いで、このH字型支持台座37上に半導体レーザ25をパッシブアライメント法により搭載することで、光モジュール20が得られる。なお、支持台座土台35の間の領域には半導体レーザ25をマウントする際の半田を設ける半田形成領域26を設ける。
この場合のH字型支持台座37の線幅を1μm以下にするとともに、高さを3μm以上とする。なお、H字型支持台座37の寸法は任意であるが、ここでは、線幅を0.5μmとし、高さを5μmとし、2本の縦方向の長さを60μmとし、横方向の長さを30μmとする。この時の壁状部材の形状は垂直形状が望ましいが、テーパ形状でも構わない。
この実施例2においては、3枚の壁状部材を組み合わせてH字型支持台座37を形成しているので、T字型支持台座より機械的強度を高めることができる。また、H字型支持台座37の線幅を1μm以下にしているので、サイズが1μm〜3μmの異物がH字型支持台座37の頂部に付着しようとしても、安定に付着できないので、その後の洗浄工程で容易に除去することができる。また、H字型支持台座37の深さを3μm以上にしているので、サイズが1μm〜3μmの異物がH字型支持台座37の近傍に付着しても、H字型支持台座37の高さを超えることはない。したがって、異物が半導体レーザ25の搭載に影響を与えることはないので、高さ方向の位置ずれが発生することはない。
次に、図5及び図6を参照して、本発明の実施例3の光モジュールを説明する。図5は本発明の実施例3の光モジュールの説明図である。まず、SOI基板を利用して下部クラッド層となるBOX層22上に設けた単結晶Si層を加工してSi細線コア23を形成し、その上にSiO膜を設けて上部クラッド層24とする。次いで、光素子搭載領域の上部クラッド層24乃至BOX層22を除去してSi基板21を露出する。
次いで、Si細線コア23と半導体レーザ25の光軸調整のため露出したSi基板21のエッチングを行ったのち、支持台座形成用ブロック及びアライメントマーク36を形成する。次いで、支持台座形成用ブロックを加工して枠状支持台座46を形成する。この時、支持台座形成用ブロックの残部が支持台座土台47となる。次いで、この枠状支持台座46上に半導体レーザ25をパッシブアライメント法により搭載することで、光モジュール20が得られる。なお、支持台座土台47の間の領域には半導体レーザ25をマウントする際の半田を設ける半田形成領域26を設ける。
図6は、本発明の実施例3の光モジュールの支持台座の形成工程の説明図である。まず、Si基板21を加工した高さが7μm程度で、100μm×30μm程度の支持台座形成用ブロック40上に、枠状のレジストパターン41を設ける。この時、枠状のレジストパターン41の線幅を1μm以下にする。なお、枠状のレジストパターン41の寸法は任意であるが、包囲空間を形成する内枠の寸法B,Bの内の最小寸法が3μm以上になるようにする。ここでは、図6(c)に示すように、線幅を0.5μmとし、A、A、B、Bを夫々、30μm、60μm、29μm、59μmとする。
次いで、図6(b)に示すように、反応性イオンエッチングにより異方性エッチングを行うことにより高さが3μm以上の壁状部材42〜45を形成する。ここでは、壁状部材42〜45の高さを5μmとする。
次いで、図6(c)に示すように、レジストパターン41を除去することによって、4枚の壁状部材42〜45で囲まれた枠状支持台座46が得られ、支持台座形成用ブロック40の残部が支持台座土台47となる。この実施例3の枠状支持台座46においては、4枚の壁状部材42〜45を組み合わせているので、機械的強度をH字型支持台座に比べて向上することができる。
また、枠状支持台座46の線幅を1μm以下にしているため、サイズが1μm〜3μmの異物が枠状支持台座46の頂部に付着しようとしても、安定に付着できないので、その後の洗浄工程で容易に除去することができる。また、枠状支持台座46の包囲空間を形成する内枠の最小寸法を3μm以上とし、深さを3μm以上にしているので、サイズが1μm〜3μmの異物が包囲空間内に付着しても、枠状支持台座46の高さを超えることはない。したがって、異物が半導体レーザ25の搭載に影響を与えることはなく、高さ方向の位置ずれが発生することはない。
次に、図7を参照して、本発明の実施例4の光モジュールを説明するが、支持台座の形状が異なるだけで、製造工程は実施例3と同じであるので、最終構造のみを説明する。図7は本発明の実施例3の光モジュールの説明図である。まず、SOI基板を利用して下部クラッド層となるBOX層22上に設けた単結晶Si層を加工してSi細線コア23を形成し、その上にSiO膜を設けて上部クラッド層24とする。次いで、光素子搭載領域の上部クラッド層24乃至BOX層22を除去してSi基板21を露出する。
次いで、露出したSi基板21を加工して、高さが7μm程度で、100μm×30μm程度の支持台座形成用ブロック及びアライメントマーク36を形成し、支持台座形成用ブロックの上にメッシュ状のレジストパターンを設ける。この時、メッシュ状のレジストパターンの線幅を1μm以下にする。なお、メッシュ状のレジストパターンの寸法は任意であるが、包囲空間を形成する内枠の寸法の内の最小寸法が3μm以上になるようにする。
次いで、反応性イオンエッチングにより異方性エッチングを行うことにより高さが3μm以上の壁状部材により包囲空間を有するメッシュ状支持台座48を形成する。この時、支持台座形成用ブロックの残部が支持台座土台49となる。ここでは、壁状部材の高さを5μmとする。次いで、このメッシュ状支持台座48上に半導体レーザ25をパッシブアライメント法により搭載することで、光モジュール20が得られる。なお、支持台座土台49の間の領域には半導体レーザ25をマウントする際の半田を設ける半田形成領域26を設ける。なお、図においては、作図の都合上、実際の寸法の関係を無視している。
この実施例4においては、格子状桟によってメッシュ状支持台座48を形成しているので、機械的強度を飛躍的に向上することができる。また、格子状桟の線幅を1μm以下にしているので、サイズが1μm〜3μmの異物が格子状桟の頂部に付着しようとしても、安定に付着できないので、その後の洗浄工程で容易に除去することができる。また、メッシュ状支持台座48の包囲空間を形成する内枠の最小寸法を3μm以上とし、深さを3μm以上にしているので、サイズが1μm〜3μmの異物が包囲空間内に付着しても、メッシュ状支持台座48の高さを超えることはない。したがって、異物が半導体レーザ25の搭載に影響を与えることはなく、高さ方向の位置ずれが発生することはない。
次に、図8及び図9を参照して、本発明の実施例5の光モジュールを説明する。図8はの本発明の実施例5の光モジュールの説明図である。まず、SOI基板を利用して下部クラッド層となるBOX層22上に設けた単結晶Si層を加工してSi細線コア23を形成し、その上にSiO膜を設けて上部クラッド層24とする。次いで、光素子搭載領域の上部クラッド層24乃至BOX層22を除去してSi基板21を露出する。
次いで、Si細線コア23と半導体レーザ25の光軸調整のため露出したSi基板21のエッチングを行ったのち、支持台座形成用ブロック及びアライメントマーク36を形成する。次いで、支持台座形成用ブロックを加工して角錐台状支持台座54を形成する。次いで、この角錐台状支持台座54上に半導体レーザ25をパッシブアライメント法により搭載することで、光モジュール20が得られる。なお、支持台座土台55の間の領域には半導体レーザ25をマウントする際の半田を設ける半田形成領域26を設ける。なお、図8においては、角錐台状支持台座54を3×2として示しているが、その数及び配置は任意である。
図9は、本発明の実施例5の光モジュールの支持台座の形成工程の説明図である。まず、図9(a)に示すように、Si基板21を加工した高さが7μm程度で、100μm×30μm程度の支持台座形成用ブロック50上に、開口部52を有するXeFガスに対してエッチング耐性が大きいレジストまたはTi膜からなるマスクパターン51を設ける。この時、マスクパターン51の寸法は任意であるが、包囲空間を形成する内枠の寸法A,Aの内の最小寸法がサイドエッチング量を見込んだ最終値が3μm以上になるようにし、且つ、図9(c)に示した角錐台状支持台座54の頂面の最小幅部の寸法を1μm以下する。また、線幅B,Bもサイドエッチング量を見込んで線幅B,B下の支持台座形成用ブロック50がエッチングされる値に決定する。ここでは、A、A、B、Bを夫々、5μm、5μm、11μm、11μmとする。
次いで、図9(b)に示すように、XeFガスを用いた等方性気相エッチングにより支持台座形成用ブロック50をエッチング凹部53の深さが3μm以上になるようにエッチングする。XeFガスを用いた等方性エッチングにより支持台座接触面より支持台座底面の方が大きな角錐台状支持台座形を形成することができる。シリコンエッチング量Cとサイドエッチング量Cは縦横方向に同等のエッチング量となり、形成される溝径D,Dはエッチングホール径A,Aと2倍のサイドエッチング量により決定される。ここでは、エッチング凹部53の最深深さを5μmとする。
次いで、図9(c)に示すように、剥離液または希HF溶液を用いてマスクパターン51を除去することによって、エッチング凹部53で分離された角錐台状支持台座54が得られ、支持台座形成用ブロック50の残部が支持台座土台55となる。この実施例5においては、等方性エッチングを用いて光素子搭載面より支持台座土台55側の底面積が大きな角錐台状支持台座54を形成しているので、機械的強度を十分向上することができる。ここでは、等方性エッチングを用いて角錐台状支持台座54を形成しているが、SFガスやHBrガスを用いた異方性エッチングにより角錐台状台座を形成しても構わない。
この時、角錐台状支持台座54の頂面の最小幅部の寸法を1μm以下にしているので、サイズが1μm〜3μmの異物が角錐台状支持台座54の頂部に付着しようとしても、安定に付着できないので、その後の洗浄工程で容易に除去することができる。また、角錐台状支持台座54の近傍にサイズが1μm〜3μmの異物が包囲空間内に付着しても、角錐台状支持台座54の高さを超えることはない。したがって、異物が半導体レーザ25の搭載に影響を与えることはないので、高さ方向の位置ずれが発生することはない。なお、支持台座は角錐台状に限られものではなく、円錐台状でも良い。
次に、図10を参照して、本発明の実施例6の光モジュールを説明するが、支持台座の形状が異なるだけで、基本的な構造は実施例3と同じであるので、支持台座の製造工程のみを説明する。図10は本発明の実施例6の光モジュールの支持材台の製造工程の説明図である。まず、図10(a)に示すように、Si基板21を加工した高さが7μm程度で、100μm×30μmの支持台座形成用ブロック60上に、最小幅寸法が3μm以上のSiパターン61を形成する。ここでは、Siパターン61のサイズを5μm×5μmとし、高さを0.2μmとする。
次いで、図10(b)に示すように、全面にSiO膜を堆積したのち、異方性エッチングを行うことにより、Siパターン61の側面にSiO膜からなるサイドウォール62を形成する。サイドウォール62の膜厚を厚くすれば機械的強度を大きくできるが、光導波路端面にもサイドウォールが成膜されるため光透過性を考慮すると1.0μm以下にするのが望ましい。
次いで、図10(c)に示すように、支持台座形成領域以外をレジストパターン(図示は省略)で覆った状態でサイドウォール62をマスクとして支持台座形成用ブロック60を3μm以上の深さにエッチングする。ここでは、サイドウォール62とSiとのエッチング選択比が高いHBrをエッチングガスとして用い、エッチング深さを5μmとする。その後、レジストパターンを除去する。その結果、4枚の壁状部材63上にサイドウォール62を有し、包囲空間64を有する支持台座65が得られる。この時、支持台座形成用ブロック60の残部が支持台座土台66となる。シリコン壁状部材形状は垂直形状が望ましいが包囲空間を形成する内枠底辺の最小寸法を3μm以上にすればテーパ形状でも構わない。
支持台座65の半導体レーザとの接触面はサイドウォール62の頂部だけであるので、接触面積を大幅に低減することができ、このサイドウォール62の頂部にサイズが1μm〜3μmの異物が付着することはない。また、包囲空間64の最小寸法を3μm以上とし、深さを3μm以上にしているので、サイズが1μm〜3μmの異物が包囲空間64内に付着しても、支持台座65の高さを超えることはない。したがって、異物が半導体レーザ25の搭載に影響を与えることはないので、高さ方向の位置ずれが発生することはない。なお、サイドウォールはSiO膜ではなくSiN膜等の他の皮膜でも良い。また、Siパターン61の平面形状も矩形に限られるものではなく、円形等の他の形状でも良い。
上記の実施例1乃至実施例6の光モジュールの支持台座形成における加工領域(支持台座土台サイズ)、支持台座の加工サイズ(パターン幅、高さ)、設置数(単数または複数)は光素子との接触面幅が1μm以下、凹幅及び高さが3μm以上の条件を満たし、光素子搭載に必要なはんだ形成領域を確保できていれば任意に設定可能である。
ここで、実施例1乃至実施例6を含む本発明の実施の形態に関して、以下の付記を付す。
(付記1)基板と前記基板上に下部クラッド層、コア層及び上部クラッド層を順次設けた光導波路と、前記光導波路を形成した領域以外に設けた前記コア層と光学的に結合する光素子を搭載する光素子搭載領域と、前記光素子搭載領域において前記光素子を支持する前記基板を加工した支持台座と、前記支持台座に搭載した前記光素子とを有し、前記支持台座の高さが3μm以上であり、前記支持台座の最小幅部分の幅が1μm以下で且つ前記光素子との接触面の面積が前記支持台座の前記基板側の面積と同じ場合に比べて大きい機械的強度が得られる形状である光モジュール。
(付記2)前記支持台座と前記基板との間に、前記基板を加工した支持台座土台をさらに有する付記1に記載の光モジュール。
(付記3)前記支持台座が、前記支持台座の前記基板側の面積が前記光素子との接触面の面積より7倍以上大きい形状である付記1または付記2に記載の光モジュール。
(付記4)前記支持台座が、複数枚の壁状部材からなる付記1乃至付記3のいずれか1に記載の光モジュール。
(付記5)前記複数枚の壁状部材が、T字型壁状部材或いはH字型壁状部材である付記4に記載の光モジュール。
(付記6)前記複数枚の壁状部材が、包囲空間を形成し、且つ、前記包囲空間の最小幅部分の幅が3μm以上である付記4に記載の光モジュール。
(付記7)前記支持台座が、前記包囲空間をマトリクス状に有するメッシュ状支持台座である付記6に記載の光モジュール。
(付記8)前記複数枚の壁状部材の前記光素子との接触面側の面積が、前記複数枚の壁状部材の前記基板側の面積より小さい付記5乃至付記7のいずれか1に記載の光モジュール。
(付記9)前記前記複数枚の壁状部材の先端部に絶縁物サイドウォールを有する付記8に記載の光モジュール。
(付記10)前記基板が、単結晶シリコン層/絶縁膜/単結晶シリコン基板構造のSOI基板の前記単結晶シリコン基板であり、前記下部クラッド層が、前記SOI基板の絶縁膜であり、前記コア層が、前記SOI基板の単結晶シリコン層を加工したものである付記1乃至付記9のいずれか1に記載の光モジュール。
(付記11)前記光素子が、半導体レーザである付記1乃至付記10のいずれか1に記載の光モジュール。
10 光モジュール
11 基板
12 下部クラッド層
13 コア層
14 上部クラッド層
15 支持台座土台
16 支持台座
17 アライメントマーク
18 光素子
19 半田形成領域
20 光モジュール
21 Si基板
22 BOX層
23 Si細線コア
24 上部クラッド層
25 半導体レーザ
26 半田形成領域
30,40,50,60 支持台座形成用ブロック
31,41 レジストパターン
32,33,42〜45 壁状部材
34 T字型支持台座
35,47,49,55,66 支持台座土台
36 アライメントマーク
37 H字型支持台座
46 枠状支持台座
48 メッシュ状支持台座
51 マスクパターン
52 開口部
53 エッチング凹部
54 角錐台状支持台座
61 Siパターン
62 サイドウォール
63 壁状部材
64 包囲空間
65 支持台座
70 光モジュール
71 基板
72 下部クラッド層
73 コア層
74 上部クラッド層
75 支持台座
76 アライメントマーク
77 半田形成領域
78 メタル配線
79 異物
80 半導体レーザ
81 半導体基板
82 n型クラッド層
83 MQW活性層
84 p型クラッド層
85 破損台座

Claims (5)

  1. 基板と
    前記基板上に下部クラッド層、コア層及び上部クラッド層を順次設けた光導波路と、
    前記光導波路を形成した領域以外に設けた前記コア層と光学的に結合する光素子を搭載する光素子搭載領域と、
    前記光素子搭載領域において前記光素子を支持する前記基板を加工した支持台座と、
    前記支持台座に搭載した前記光素子と
    を有し、
    前記支持台座の高さが3μm以上であり、
    前記支持台座の最小幅部分の幅が1μm以下で且つ前記光素子との接触面の面積が前記支持台座の前記基板側の面積と同じ場合に比べて大きい機械的強度が得られる形状であり、前記支持台座と前記基板との間に、前記基板を加工した支持台座土台をさらに有する光モジュール。
  2. 前記支持台座が、前記支持台座の前記基板側の面積が前記光素子との接触面の面積より7倍以上大きい形状である請求項1に記載の光モジュール。
  3. 前記支持台座が、前記基板を加工した複数枚の壁状部材からなる請求項1または請求項2に記載の光モジュール。
  4. 前記複数枚の壁状部材が、包囲空間を形成し、且つ、前記包囲空間の最小幅部分の幅が3μm以上である請求項に記載の光モジュール。
  5. 前記複数枚の壁形状材の前記光素子との接触面側の面積が、前記複数枚の壁状部材の前記基板側の面積より小さい請求項または請求項に記載の光モジュール。
JP2016175255A 2016-09-08 2016-09-08 光モジュール Active JP6792384B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175255A JP6792384B2 (ja) 2016-09-08 2016-09-08 光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175255A JP6792384B2 (ja) 2016-09-08 2016-09-08 光モジュール

Publications (2)

Publication Number Publication Date
JP2018040968A JP2018040968A (ja) 2018-03-15
JP6792384B2 true JP6792384B2 (ja) 2020-11-25

Family

ID=61625850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175255A Active JP6792384B2 (ja) 2016-09-08 2016-09-08 光モジュール

Country Status (1)

Country Link
JP (1) JP6792384B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10656080B2 (en) 2018-07-06 2020-05-19 Asahi Kasei Microdevices Corporation Gas detection apparatus
US20220268998A1 (en) * 2019-07-25 2022-08-25 Kyocera Corporation Optical circuit board and electronic component mounting structure using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976642B2 (ja) * 1991-11-07 1999-11-10 日本電気株式会社 光結合回路
JP5229617B2 (ja) * 2008-07-11 2013-07-03 日本電気株式会社 光導波路デバイスとその製造方法
KR101199302B1 (ko) * 2009-10-13 2012-11-09 한국전자통신연구원 광 소자 및 그 제조 방법
JP2012182367A (ja) * 2011-03-02 2012-09-20 Nec Corp 部品搭載方法および部品搭載装置
JP2016106237A (ja) * 2013-03-25 2016-06-16 技術研究組合光電子融合基盤技術研究所 光モジュール及び光モジュール製造方法

Also Published As

Publication number Publication date
JP2018040968A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
JP5970081B2 (ja) 光学用途及び他の用途のための、単結晶シリコン及び/または他の材料を用いて形成された構造体
KR101591847B1 (ko) 효율적인 실리콘-온-인슐레이터 격자 결합기
KR100949068B1 (ko) 평면 광파 회로, 그 제조 방법, 및 광 도파관 디바이스
US7514286B2 (en) Method for forming individual semi-conductor devices
US20130308906A1 (en) System and method for dense coupling between optical devices and an optical fiber array
TW201530205A (zh) 積體模組及其形成方法
US9658414B2 (en) Arrangement of photonic chip and optical adaptor for coupling optical signals
JP2007133011A (ja) 光結合構造およびその製造方法、光モジュール
JP2003529213A (ja) 光ファイバと光電子素子との受動的位置合わせのための方法およびデバイス
JP6792384B2 (ja) 光モジュール
EP2807509A1 (en) Glass-silicon wafer-stacked opto-electronic platforms
KR101462389B1 (ko) 웨이퍼를 제조하는 방법
CN103018827B (zh) 一种高q值微型圆形谐振腔器件及其制备方法
JP2007101649A (ja) 光学レンズ,および,光学レンズの製造方法
KR20040013694A (ko) 광도파로 플랫폼 및 그 제조 방법
US8883018B2 (en) Low-loss, wide-band grating coupler and method of making same
KR100757233B1 (ko) 광도파로 플랫폼 및 그 제조 방법
JP2003227904A (ja) 光学素子の製造方法および光学素子
US6912081B2 (en) Optical micro-electromechanical systems (MEMS) devices and methods of making same
JP2011242602A (ja) 光集積素子及びその製造方法
JP6741921B2 (ja) 薄膜部材の湾曲加工方法
CN114779463B (zh) Mems微镜及其制备方法
JP2007019133A (ja) 光電変換装置及びその製造方法、並びに光情報処理装置
JP4967283B2 (ja) 半導体光学装置
JP7321926B2 (ja) サブミクロンのy軸アライメントを有する複数の線形アレイの製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6792384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150