JP6776115B2 - 処理装置および処理方法 - Google Patents

処理装置および処理方法 Download PDF

Info

Publication number
JP6776115B2
JP6776115B2 JP2016249008A JP2016249008A JP6776115B2 JP 6776115 B2 JP6776115 B2 JP 6776115B2 JP 2016249008 A JP2016249008 A JP 2016249008A JP 2016249008 A JP2016249008 A JP 2016249008A JP 6776115 B2 JP6776115 B2 JP 6776115B2
Authority
JP
Japan
Prior art keywords
oxygen saturation
subject
correction amount
blood vessel
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016249008A
Other languages
English (en)
Other versions
JP2018102359A (ja
Inventor
信人 末平
信人 末平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016249008A priority Critical patent/JP6776115B2/ja
Priority to US15/841,820 priority patent/US10849537B2/en
Publication of JP2018102359A publication Critical patent/JP2018102359A/ja
Application granted granted Critical
Publication of JP6776115B2 publication Critical patent/JP6776115B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/708Breast positioning means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、処理装置および処理方法に関する。
近年、光イメージング技術の一つとして、光音響トモグラフィー(Photoacoustic Tomography)が提案されている。この原理は以下のようなものである。まず、パルスレーザ光などの光を被検体に照射して被検体内を伝搬・拡散させる。すると、その光エネルギーを吸収した被検体内の吸収体が熱膨張して光音響波が発生する。音響波探触子でその光音響波を検出し、検出した信号を再構成することで、光音響画像が得られる。
特許文献1は、近赤外光を用いた光音響装置が開示している。近赤外光は血液によく吸収されるため、光音響装置では血管の分布に関する情報を取得できる。また、複数の波長の光を用いることによって血管の酸素飽和度に関する情報を取得できる。
特開2014−094225号公報
このように、光音響装置を用いることで、被検体の光学特性に関する情報、例えば血管の分布や酸素飽和度の情報を得られる。また、特許文献1のような光音響装置においては、背景の光学係数が分かれば正確に酸素飽和度を算出できるとされている。
ここで通常、同じ血管から分岐する血管のそれぞれにおける酸素飽和度は、互いに近い値になると想定される。しかし、光音響装置が実際に算出した酸素飽和度の値を見ると、同じ血管から分岐する血管であっても、場所に依存して値が変動することがある。さらに、光音響装置が実際に算出した酸素飽和度の値を見ると、正常であれば95〜99%の範囲内で一定とされる動脈の酸素飽和度が、その範囲を超えた値として算出されることがある。このように、光音響装置の算出値が必ずしも実際の酸素飽和度値を反映できていない可能性があり、算出精度の向上が求められている。
本発明は上記課題に鑑みてなされたものである。本発明は、光音響装置により算出される酸素飽和度の値の精度を向上させることを目的とする。
本発明は、以下の構成を提供する。すなわち、
被検体に複数の波長の光が照射されて発生した音響波に由来する信号を用いて、前記被検体の内部の酸素飽和度分布を示す画像データを取得する処理部を備える画像処理装置であって、
前記処理部は、
前記信号を用いた画像再構成により生成された、前記被検体の血管の特定位置における酸素飽和度に関する情報を取得し、
前記血管の前記特定位置における酸素飽和度に関する情報を補正するための第1の補正量を取得し、
前記第1の補正量に基づいて前記被検体の前記特定位置ではない部分の酸素飽和度に
関する情報を補正するための第2の補正量を取得する
ことを特徴とする処理装置である。
本発明はまた、以下の構成を提供する。すなわち、
被検体に複数の波長の光が照射されて発生した音響波に由来する信号を用いて、前記被検体の内部の酸素飽和度に関する情報分布を示す画像データを取得する処理方法であって、
前記信号を用いた画像再構成により生成された、前記被検体の血管の特定位置における酸素飽和度を取得する工程と、
前記血管の前記特定位置における酸素飽和度に関する情報を補正するための第1の補正量を取得する工程と、
前記第1の補正量に基づいて前記被検体の前記特定位置ではない部分の酸素飽和度に関する情報を補正するための第2の補正量を取得する工程と、
を有することを特徴とする処理方法である。
本発明によれば、光音響装置により算出される酸素飽和度の値の精度を向上させることができる。
本発明の光音響装置の構成を示す図 本発明の処理を示すフローチャート 本発明が提供する解析画面を示す図 解析画面における血管の位置を説明する図 本発明における周辺部の補正量を決める方法を説明する図
以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。よって、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明は、被検体から伝搬する音響波を検出し、被検体内部の特性情報を生成し、取得する技術に関する。よって本発明は、被検体情報取得装置またはその制御方法、音響波受信装置またはその制御方法、あるいは被検体情報取得方法や信号処理方法として捉えられる。本発明はまた、画像処理装置または画像処理方法としても捉えられる。本発明はまた、これらの方法をCPUやメモリ等のハードウェア資源を備える情報処理装置に実行させるプログラムや、そのプログラムを格納した、コンピュータにより読み取り可能な非一時的な記憶媒体としても捉えられる。
本発明の被検体情報取得装置には、被検体に光(電磁波)を照射すると光音響効果により被検体内で発生する音響波を受信して、被検体の特性情報を取得する、光音響イメージング装置を含む。この場合、特性情報とは、受信された光音響波に由来する受信信号を用いて生成される、被検体内の複数位置のそれぞれに対応する特性値の情報である。
光音響測定により取得される特性情報は、光エネルギーの吸収量や吸収率を反映した値である。例えば、単一の波長の光照射によって生じた音響波の発生源、被検体内の初期音圧、あるいは初期音圧から導かれる光エネルギー吸収密度や吸収係数を含む。また、互いに異なる複数の波長により得られる特性情報から、組織を構成する物質の濃度を取得できる。物質濃度として酸素化ヘモグロビン濃度と脱酸素化ヘモグロビン濃度を求めることに
より、酸素飽和度分布を算出できる。また、物質濃度としては、グルコース濃度、コラーゲン濃度、メラニン濃度、脂肪や水の体積分率なども求められる。
被検体内の各位置の特性情報に基づいて、二次元または三次元の特性情報分布が得られる。分布データは画像データとして生成され得る。特性情報は、数値データとしてではなく、被検体内の各位置の分布情報として求めてもよい。すなわち、初期音圧分布、エネルギー吸収密度分布、吸収係数分布や酸素飽和度分布などの分布情報である。
本発明でいう音響波とは、典型的には超音波であり、音波、音響波と呼ばれる弾性波を含む。トランスデューサや音響変換素子等により音響波から変換された電気信号を音響信号とも呼ぶ。ただし、本明細書における超音波または音響波という記載は、それらの弾性波の波長を限定する意図ではない。光音響効果により発生した音響波は、光音響波または光超音波と呼ばれる。光音響波に由来する電気信号を光音響信号とも呼ぶ。
以下の実施形態では、被検体にパルス光を照射し、光音響効果により被検体から音響波を受信し解析する事により被検体内の光吸収体の分布を取得する光音響装置を取り上げる。このような光音響装置は、人や動物の血管疾患や悪性腫瘍などの診断や化学治療の経過観察に好適である。被検体の例として、被検者の乳房や手のような生体の一部、マウスなどヒト以外の動物、無生物、ファントムなどを挙げられる。
<実施例1>
本実施例における光音響装置を図1に示す。図1(a)は、光音響装置の構造を示す模式図であり、探触子ユニット100の断面図と、装置制御部のブロック図とを示す。図1(b)は、探触子ユニット100の上面図である。
(全体的な構成)
探触子ユニット100は、半球容器状の支持体101の内面に沿って、音響波探触子102がスパイラル状に512個配置された構成である。さらに支持体101の底部には、光照射部103から照射された、光音響波を発生させるための計測光が通過する空間105が設けられている。被検体は保持部材106に配置され、計測光はz軸の負の方向から照射される。なお、支持体101の内部や保持部材106の内部には、光音響波の伝達効率を向上させるために、水、油またはジェルなどの音響整合材を満たすことが好ましい。支持体101と被検体の相対的な位置関係は、XYステージのような走査機構(不図示)によって変えることができる。走査機構が支持体101を走査することで、被検体の広い範囲を測定できる。
被検体から伝搬し、音響波探触子102に受信された光音響波は、電気信号に変換されてデータ取得部107に出力される。データ取得部107により増幅やAD変換を施された電気信号をデータ処理部109が再構成することにより、被検体内部の光学特性値分布を反映した三次元の光音響画像が得られる。
また本実施例の光音響装置は、音響波探触子102とは別に、被検体の形態測定に用いられるリニア型の超音波プローブ104を備えている。リニア型の超音波プローブ104は支持体101と共に走査可能な構成となっている。
装置制御部108は、光照射部103の光照射、データ取得部107の受信制御、XYステージの移動、超音波プローブ104の送受信など、装置全体の制御に関する指令を行う。また、装置制御部108はユーザインターフェースを備えており、術者からの指示を元に、測定パラメータの変更、測定の開始・終了、画像の処理方法の選択、患者情報や画像の保存、データの解析などを実行できる。さらに、詳細なデータ処理はデータ処理部1
09で行われ、解析画面などが表示装置110にされる。
(光照射部)
光照射部103は、光音響波を励起する計測光の光源や、計測光を被検体に伝達する光伝送部を備える。光源としては、大出力を得るためにレーザー光源が望ましい。ただし、発光ダイオードやフラッシュランプ等でもよい。レーザーを用いる場合、固体レーザー、ガスレーザー、色素レーザー、半導体レーザーなど様々なものが使用できる。光音響波を効果的に発生させるためには、被検体の熱特性に応じて十分短い時間に光を照射させなければならない。そのため、被検体が生体である場合、パルス幅が10〜50ナノ秒程度のパルス光が好適である。また、パルス光の波長は、被検体内部まで光が伝搬する波長であることが望ましい。具体的には、生体の場合、700nm以上1100nm以下である。
本実施例では、固体レーザーであるチタンサファイアレーザーを用い、波長は760nmおよび800nmとする。複数波長の光を用いることで波長ごとの吸収係数の違いを利用して、酸素飽和度に関する情報の算出が可能となる。光の照射のタイミング、波形、強度等は装置制御部108によって制御される。レーザーは10Hzで2波長を交互に照射することができる。装置制御部108は、探触子ユニット100の走査と光照射および音響波受信のタイミングを連動させて適切に受信データを取得し、不図示のメモリに保存する。
光学系としては、バンドルファイバ、ミラー、プリズム、レンズなどが好適である。その他、光を所望の形状および強度で被検体に照射できるものであれば、どのような光学部品を用いてもよい。
(光音響用の音響波探触子)
音響波探触子102は、光音響波を受信する素子である。代表的にはPZT(圧電セラミックス)やCMUT(容量性マイクロマシン探触子)があり、本実施例では、素子としてCMUTを用いる。音響波探触子102は単素子で、φ3mmの開口を持ち、帯域は0.5MHz〜4MHzであり、装置の分解能は0.5mmである。低周波数帯域を含むことによって、太さ3mm程度の血管であっても良好な画像が取得できる。すなわち、血管の中が抜けてリング状に見えるような状況が発生し難くなる。サンプリング周波数は40MHzで、2048サンプリングを行う。また、取得するデータは符号付きの12ビットとする。
(データ取得部)
音響波探触子102によって電気信号に変換された信号は、データ取得部107に伝送され、増幅器により増幅され、A/D変換器でデジタル信号に変換され、不図示の記憶手段(例えばフラッシュメモリ、HDDなど)にデータとして保存される。このとき、データ取得部107または装置制御部108が備える記憶手段を用いても良いし、外部の記憶装置を用いてもよい。すなわち本発明は、光音響装置に関する発明としても捉えられるし、光音響装置が取得して記憶手段に保存したデータを処理する情報処理装置または情報処理方法に関する発明としても捉えられる。データ取得部107は、典型的には増幅器、A/D変換器、FPGAチップなどで構成される。
(装置制御部)
装置制御部108は、CPUやGPUなどのプロセッサー、ROMやRAMなどのメモリ、通信装置、ユーザインターフェースなどの資源を備え、メモリに展開されたプログラムの各ステップに従って動作する情報処理装置である。装置制御部108の各機能は、複数の装置を組み合わせて実現してもよい。ユーザインターフェースとしては、マウス、キーボード、タッチパネルなどの、ユーザーが情報を入力する入力装置や、音声や画像によ
る提示装置などがある。
(リニア型の超音波プローブ)
リニア型の超音波プローブ104は、被検体に超音波を送受信して、形態画像やドップラ画像を得る。本実施例ではリニア型の超音波プローブとして、256個のPZT素子を配置されたプローブを用いる。素子の帯域は5MHz〜10MHzである。また、サンプリング周波数は40MHzで2048サンプリングを行う。リニア型の超音波プローブ104を設ける代わりに、探触子ユニット100を用いて超音波の送信とエコー波の受信を行ってもよい。
(支持体)
支持体101としては、音響整合材の重量や、走査機構による移動に対する耐久性を持つように、ある程度の強度を持つ部材が好ましい。典型的には金属や樹脂が用いられる。また本実施例では、半球容器状の支持体101を用いる。これにより、複数の音響波探触子102それぞれの感度の高い方向(指向軸)が集まる高感度領域が形成されるので、被検体の特性情報分布の精度が向上する。図1(b)に示すように、本実施例では複数の音響波探触子102を3次元スパイラル状に配置しているが、配置方法はこれに限られない。支持体の形状は半球に限られず、リニア状、平面状、お椀状などでも良い。
(保持部材)
保持部材106としては、被検体を支持する強度を備えるとともに、光と音響波を透過させる特性を有するものを用いる。好ましい材質として、ポリエチレンテレフタラートやアクリルなどがある。また、薄いゴムやフィルムなども利用できる。保持部材106を被検体に沿った形状にすることが好ましい。例えば被検体が乳房であれば、カップ状の保持部材106を用いる。
(データ処理部)
データ処理部109は、記憶手段に保存された光音響信号を用いた画像再構成により、被検体内部の光音響画像および機能画像である酸素飽和度画像を生成する。その他、光量分布の計算や背景の光学係数取得に必要な情報処理、信号補正など所望の処理を実施する。データ処理部109はプロセッサーやメモリなどを備える情報処理装置により構成できる。プロセッサーで動作するプログラムの各モジュールによりデータ処理部の各機能を実現できる。なお、装置制御部108とデータ処理部109を共通の情報処理装置により構成しても良い。データ処理部109は、本発明の処理部に相当する。
光音響画像や酸素飽和度画像は、表示装置110であるディスプレイに表示される。ディスプレイとしては、高解像度でカラー表示のできる30型、コントラスト比1000:1以上が望ましい。液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなど任意のディスプレイを、表示装置110として利用できる。
(画像再構成)
詳細な画像再構成はデータ処理部109にて行われる。画像再構成は、ユニバーサルバックプロジェクション法や整相加算法など既知の再構成手法を用いる。ここでは、ユニバーサルバックプロジェクション法を用いる。光音響測定で発生する初期音圧分布P(r)は数式(1)で表わされる。
Figure 0006776115
このとき投影データに相当する項b(r,t)を、数式(2)に示す。ここで、p(r)は音響波探触子102で検出される光音響信号、rはそれぞれの音響波探触子102の位置、tは時間、Ωは音響波探触子102の立体角である。データ取得部107で取得したデータを数式(1)に基づいて処理をすることにより初期音圧分布P(r)を得ることができる。
Figure 0006776115
次に、吸収係数分布は、初期音圧分布P(r)から算出できる。吸収体に光が照射された時に発生する音圧P(r)は、数式(3)で表される。
Figure 0006776115

Γは弾性特性値であるグリューナイセン(Gruneisen)係数であり、体積膨張係数(β)と音速(c)の二乗の積を比熱(Cp)で割ったものである。μは吸収体での吸収係数である。また、Φ(r)は局所的な領域で吸収体に照射された光量である。数式(3)を吸収係数について解くことによって、吸収係数分布μ(r)を得ることができる。なお、背景の光学係数は、吸収体の吸収係数より十分小さいため吸収係数分布には表れない。
光量分布Φ(r)は、深さ方向に一様に減衰するような場合、例えば数式(4)のように変数zを用いて表すことができる。
Figure 0006776115

Φは、表面での入射光の光量である。μeffは、被検体内での平均的な等価減衰係数で、被検体内の背景の散乱係数μbsや吸収係数μbaを反映したものであり、例えば数式(5)のように表わされる。
Figure 0006776115
なお、被検体内の背景の散乱係数や吸収係数は、例えば近赤外分光装置などによって測定することができる。ただし、均質媒体を仮定したときの数値を算出するため皮膚、脂肪層、乳腺層、血管など様々な構造を有する乳房において正確に算出することは難しい。本発明においては、あらかじめ取得した背景の光学係数分布から性別、年齢、体重などに応じた値を選択しても良い。動脈と静脈が判別できる程度の画像が得られればよく、その後に補正をするためである。
次に、吸収係数分布からヘモグロビン分布を求める方法を示す。吸収体の吸収係数μa(λ)は、単位体積当たりの酸化ヘモグロビンCHbOと還元ヘモグロビンCHbRの吸
収によって決まる。酸化ヘモグロビンと還元ヘモグロビンの吸収係数をそれぞれの波長でEHbO(λ),EHbR(λ),EHbO(λ),EHbR(λ)とすると、数式(6)のように表わされる。なお、左辺は数式(3)によって得た吸収係数分布である。
Figure 0006776115
数式(6)から酸化ヘモグロビンと還元ヘモグロビンについて変形するとそれぞれ数式(7)のようになる。
Figure 0006776115
なお、総ヘモグロビン(tHb)は酸化ヘモグロビンと還元ヘモグロビンを合わせた量であるため数式(8)のように表わされる。
Figure 0006776115
また、酸素飽和度StOは、総ヘモグロビンに示す酸化ヘモグロビンの割合であるため数式(9)のように表わされる。
Figure 0006776115
(処理のフロー)
本発明の処理のフローチャートを図2に示す。
S1工程で、測定が開始される。この状態では、被検体が保持部材106に接触するように挿入されている。また、保持部材106と被検体の間には空気が入らないように密着し、被検体周辺には音響整合材である水が充填されている。なお、光音響画像を取得する前に超音波プローブ104で超音波測定を行ってもよい。超音波画像により、被検体の病変部などの座標を特定するためである。また、パルスオキシメータなどの光学測定によって酸素飽和度を測定しても良い。一般的な透過型のパルスオキシメータを用いて指における酸素飽和度を測定する。ただし、これに限られたものでなく反射型のパルスオキシメータによりその他の部位を測定しても良い。
S2工程で、光音響測定が行われる。まず、術者が装置制御部108のユーザインター
フェースから測定の指示を出す。それにより、走査機構であるXYステージが支持体101を所望の位置に移動させる。そして、光照射部103からパルス光を照射し、これと同期して音響波探触子102が光音響波を受信する。パルス光の照射の際には、支持体101をスパイラル状に移動させながら、760nmと800nmの2波長の光を交互に照射する。最終的に、それぞれの波長で1024の位置で光音響波を取得する。撮像範囲は選択により、直径80、120、160mmとすることができる。なお、交互に異なる波長を照射して2波長分の光音響画像を得る方が、それぞれの波長で2回測定して得る光音響画像に比べて、体動などによる波長間の位置ずれの影響が抑制される。光音響波から変換され、さらにデジタル化された電気信号は、記憶装置に記憶される。
S3工程で、光音響画像から機能画像が生成される。データ処理部109は、まず、記憶装置から受信データを読み出して画像再構成を行い、波長ごとの初期音圧分布を得る。続いて、初期音圧分布と光量分布を用いて波長ごとの吸収係数分布を得る。そして、機能画像である酸素飽和度画像を得る。なお、機能画像は、初期音圧分布などにフィルタを用いてノイズ成分を除去した後の信号を用いて算出することができる。フィルタとしては一般的な平滑化フィルタ、ガウシアンフィルタ、メディアンフィルタ、バイラテラルフィルタ等を用いる。局所的なノイズに左右されることを防ぐためである。また、酸素飽和度は、吸収係数分布において、閾値以上の部分を選択的に表示することが望ましい。これにより血管の位置のみを表示することができる。
なお、光量分布は、被検体の背景の光学係数、および、被検体の形態情報を用いた計算により取得できる。形態情報については、本実施例の場合は超音波プローブ104が取得した超音波エコーデータに基づいて算出できる。また、再構成により得られた初期音圧分布画像から、被検体の境界を抽出しても良い。さらにまた、保持部材106に被検体を収める場合、簡易的に保持部材106の形状を被検体形状としても良い。
S4工程で、被検体において動脈だと判明している位置(特定位置)の設定が行われる。これについて図3に示される解析画面300を用いて説明する。解析画面300は表示装置110に表示され、機能画像表示部分301、ポインタ305、ポインタの中心のx座標、y座標を示す補助線303および304、ポインタ部分のヒストグラム302、酸素飽和度に関する表示部306,307等から構成される。ヒストグラム302は、ポインタに含まれる12×12画素それぞれにおける酸素飽和度値(%)の数値範囲ごとに、出現頻度を積み上げたものである。
術者は解析画面300において、入力装置を用いて、最大値投影に用いる深さ方向の画像の枚数、最大値投影のための深さ方向の開始位置、画像の拡大、縮小機能などを設定できる。ここでの最大値投影とは、xy平面の各点において、z方向における最大の吸収係数値を取得し、その最大の吸収係数値を示す位置における酸素飽和度値を取得し、取得した酸素飽和度値をxy平面上に並べることを言う。このようにすることで、吸収係数の高い血管位置における酸素飽和度が選択的に表示される。以後、このような画像を「酸素飽和度の投影画像」とも呼ぶ。
本実施例では画像の解像度に関し、一画素(ピクセルまたはボクセル)を幅0.0625mmとしている。また画像化領域に関しては、50×50mmの範囲を表示させている。また、ポインタ部分は12×12画素で構成され、術者が入力装置によって移動させることができる。さらに、ポインタ部分の酸素飽和度の平均値および分散値をそれぞれ表示部306,307に表示させることができる。
図4(a)は、図3の機能画像表示部分301に表示される、酸素飽和度の投影画像の一例である。ここでは、被検体の皮膚の所定の領域において、皮膚表面から所定の深さ(
ここでは10mm)までの範囲を対象として、各位置での深さ方向における吸収係数の最大値を求め、吸収係数が最大値を示す深さにおける酸素飽和度値を求めた。図4(a)は、乳房を正面から見たCoronal方向の模式図である。
図4(b)は、動脈において選択した複数の特定位置(マーキング404〜406)を示す図である。図4(a)の中心から領域401の方向に内胸動脈があり、領域403の方に乳頭がある。ここでは酸素飽和度の投影画像を白黒画像で示しているが、酸素飽和度の0%を青色、100%を赤色に対応させて、酸素飽和度に応じてグラデーション表示を行うカラーマップを用いることも好ましい。
光音響画像から動脈を特定するときは、次のような情報(1)〜(5)を用いる。
(1)動脈と静脈は対になっている。
動脈から出た血液は体内の組織を通って静脈に戻るためである。2本の血管が近接する場合(例えば両者の距離が10mm以内)、一方が動脈で他方が静脈と推定できる。当然、一本の血管から分岐する場合は同種の血管であると判断できる。被験体が乳房の場合、内胸動脈から血管が直接分岐している部分において、動脈と静脈が並走した伴行部分が観察されることがある。これは動静脈が対となっている典型例で、どちらかが確実に動脈であるため特に注目する場所である。図4(a)においては、領域401が伴行部分に相当する。領域402、領域403においても、動脈と静脈が対になっていると判断できる。ただし、実際にこれらの動脈と静脈の間で血液の流れがあることを保証するものではない。
(2)動脈と静脈では、動脈の酸素飽和度が高い。
酸素飽和度値は、動脈において95%〜99%程度、静脈において60〜80%程度とされている。これらの範囲内の数値を示す血管はそれぞれ動脈および静脈と推定できる。ただし、実際の測定では形状、背景の光学係数、ノイズなどの影響により、算出値がこの範囲に収まらないことがある。しかし、このような場合でも、浅い位置にある対となった動脈と静脈の酸素飽和度の相対的な大きさは逆転しにくい。数式(4)で表わされるように光量分布の誤差は、深くなるほど大きくなるためである。例えば、対になった血管の一方の酸素飽和度が105%で、他方が90%程度になっている場合、相対的に酸素飽和度値の高い血管が動脈と推定できる。なお、酸素飽和度値の算出値の実際の値からの誤差は、被検体の表面に近い部位のほうが小さい。そこで、対になった血管のうち、表面に近い側の血管の酸素飽和度値を基準として比較を行うと良い。
(3)動脈と静脈を比べると一般的に動脈の方が細い。
例えば距離10mm以内に2本の血管が近くにある場合、細い方が動脈と推定できる。ただし、酸素飽和度の値を優先的に用いて判断をする。
(4)連続する部分は同種である。
例えば、画像中に管状の吸収体があり、血管であるということは推定できているものの、部分的にノイズが多くて動脈か静脈かの判断ができない場合がある。あるいは、対になった血管が伴行している部分においては、2本の血管の酸素飽和度値が近い値(例えば95%)として算出されてしまう場合がある。この原因は不明であるが、可能性として血管径が1mm程度の場合で近接することによる信号の混入が考えられる。また、実際の光量分布が仮定した物理モデルと異なっている可能性、血管が近接しているため動脈の酸素を消費しないまま静脈に戻るため正しい値である可能性も考えられる。これらの場合でも、連続する1本の血管は動脈か静脈のいずれかであり、途中で種類が切り替わることがないという事実を利用すれば、動脈を特定できる。すなわち、管状の吸収体の一部に動脈か静脈かを判定できない部分があったとしても、同じ管状の吸収体の他の部分で動脈であることを特定できていれば、その管状吸収体の全体が動脈であると判断できる。乳房の場合、
内胸動脈、外側胸動脈など特定の動脈から分岐しているので、連続している部分の一部が動脈であると判断できれば、その他の部分も比較的判断しやすくなる。
(5)静脈と比べると動脈の方が深い位置にある。
画像上深い位置から浅い位置に出た血管が先細りして無くなっているような場合は動脈と推定できる。一方、2〜3mm程度の太さのまま表面に沿うように走っている血管は、静脈と推定できる。なお、深い位置にあるかどうかの判断には、乳房を頭側の平面に投影するAxial画像、それに垂直な頭尾方向と平行な平面に投影するSagittal画像を用いても良い。ただし、酸素飽和度の値を優先的に用いて判断をする。
ところで、本実施例のように装置がリニア型の超音波プローブ104を備えており、所望の位置に超音波プローブ104を移動できる場合、パルスドップラ法によって拍動を観察することによって動脈を特定しても良い。細い血管においてドップラ信号を検出することは難しいが、内胸動脈に近い位置の2mm程度の太さの動脈であればドップラ信号を検出できる場合がある。
血管における特定位置の指定は、術者が上記情報に基づき行い、入力装置を用いて設定しても良いし、データ処理部が上記情報に基づく画像解析を行って設定しても良い。前者の場合、ユーザインターフェースが入力を受け付ける入力装置となる。なお、入力する特定位置が多いほど細かく補正の設定ができる。また、選択する血管は太い方が望ましく、例えば1mm以上とする。細い血管は体動などによる誤差の影響を受けやすく、またノイズの影響を受けやすいからである。このため、所望の太さ以上の血管のみを表示させても良い。太さの判断は、略等しい酸素飽和度の画素が連続しているときに、xyz方向それぞれにおける画素数に基づいて判断できる。
さらに、データ処理部における画像処理によって動脈の位置を抜き出しても良い。動脈の抜き出しは、酸素飽和度画像において動脈位置の開始点を与えて、酸素飽和度の近い点を繋げていくことによって行う。血管が交差している部分、伴行している部分などは、術者が適宜判断して補正しても良い。また、血管像のテンプレート処理を行ってもよい。
動脈である位置の入力は、図4(b)のように画像上にマーキング404〜406を配置することにより行う。マーキングは、図3のように画像上にポインタを表示してマウス等でクリックして配置する。この際、術者は酸素飽和度のヒストグラムや平均値を見ながら適切な位置を設定する。ヒストグラムにおいて、90〜105%の酸素飽和度値を示す画素が、狭い範囲に集中している場合(例えば、酸素飽和度で±1%以内に多数の頻度が積み上がっている場合)は、ポインタのある位置が動脈位置であると判断可能である。逆に出現頻度がばらついているような場合は、ノイズを多く含んでいる、血管以外の部分を含んでいる、動脈と静脈が近接しているなどの理由により、動脈であるとは判断できない。なお、このような場所を設定した場合は、警告表示を出しても良い。
ところで、選定する動脈は正常部位であることが望ましい。正常部であれば、ほぼ均一な数値と考えられるからである。一方、病変部位などでは、酸素分圧の低下により、酸素飽和度が低下することがある。病変部位と正常部位を識別するためには、リニア型の超音波プローブ104で得た3次元の超音波画像や、MRIなどで別途取得した画像に基づいて、腫瘍部位と思われる範囲をマスクし、それ以外の正常部位のみ動脈であることを示すマーキングを設置できるようにしても良い。
S5工程で、動脈位置における補正量を計算する。一般的に動脈の酸素飽和度は体内で変わらないとされている。このため、パルスオキシメータなどの酸素飽和度測定装置を用いた光学測定で測定した値を、動脈の酸素飽和度値とすることができる。動脈位置におけ
る酸素飽和度が102%で、パルスオキシメータの測定値が98%であれば、補正量は−4%となる。この補正量は、動脈の特定位置における補正量であり、本発明の第1の補正量に相当する。なお、局所的なノイズに補正量が左右されないようにするために、補正できる幅に制限をつけても良い。
S6工程で、動脈位置周辺における補正量を計算する。この補正量は、特定位置ではない部分の酸素飽和度を補正するためのものであり、本発明の第2の補正量に相当する。図5を用いて周辺部の補正方法を説明する。この工程では、周辺部に含まれる動脈および静脈の酸素飽和度が補正される。図5(a)は、動脈位置が一箇所の場合である。本実施例では、内胸動脈に近い図4(b)のマーキング404において補正をする。内胸動脈に近い動脈は太いため、酸素飽和度値がより適切であると考えられる。この理由として、S3工程における算出値がパルスオキシメータでされる値に近いと考えられること、光音響装置から算出される酸素飽和度のサンプリング数を増やしてノイズの低減ができることが挙げられる。
図4(b)におけるマーキング404に対応する座標は、座標501(x1,y1)で、補正量はd1(%)である。ここでは、座標(x1,y1)を中心に周辺部の補正量が可及的に少なくなるように、補正を行う。例えば、補正対象となる範囲を動脈の特定位置からの距離が30mm以内の領域とする。これにより、補正の影響を動脈位置の周辺部に留めることができるので、局所的な補正の影響が被検体全体に反映されることがなくなる。なお、酸素飽和度の数値が全体的に一様にシフトしている場合は、補正を被検体の全体に反映させても良い。また、図4(b)のように動脈を抜き出した場合は、動脈位置の補正量を算出した後、最短距離にある動脈の補正量を適用して周辺部を補正しても良い。
図5(b)は、特定された動脈位置が二箇所ある場合である。図4(b)におけるマーキング404と405に対応した座標は、それぞれ座標502(x2,y2,z2)、503(x3,y3,z3)で、補正量はそれぞれd2、d3(%)である。なお、z位置は、xy座標それぞれの位置においてに投影した最大値のある深さである。内胸動脈に近い座標502の方が深く(表面から遠く)、動脈から分岐した座標503の方が浅い(表面に近い)。周辺部の補正量は、z1、z2の位置の補正量に基づく補間処理や補外処理により、求めることができる。補間処理の方法は限定されず、直線で補間しても良いし、指数関数を用いても良い。この場合、同じ深さでは同じ補正量となる。
図5(c)は、特定された動脈位置が三箇所の場合である。図4(b)におけるマーキング404,405,406に対応した座標が、それぞれ座標504(x1,y1)、505(x2,y2)、506(x3,y3)で、補正量がそれぞれd1、d2、d3(%)である。この場合、平面の方程式によってxy平面上の周辺部の補正量を求めることができる。なお、図4(b)のマーキングを増やせばより細かく周辺部の補正量を求めることができる。
ところで、装置の特性上、動脈または静脈で酸素飽和度の値が実際より高めまたは低めに算出されるときは、動脈または静脈の一方のみをさらに補正しても良い。
当然上述した処理は適宜組み合わせても良い。このようにして酸素飽和度の補正を行い、酸素飽和度画像を得ることができる。
最後に、S7工程で、処理を終了する。
以上のように本発明によれば、光音響装置において、場所によらず略一定であるとされる動脈の酸素飽和度を基準にして、酸素飽和度の算出値を妥当な範囲に補正できる。その結果、酸素飽和度分布を示す表示画像の精度を向上させて良好な診断が可能になる。
103:光照射部、108:装置制御部、109:データ処理部

Claims (15)

  1. 被検体に複数の波長の光が照射されて発生した音響波に由来する信号を用いて、前記被検体の内部の酸素飽和度分布を示す画像データを取得する処理部を備える画像処理装置であって、
    前記処理部は、
    前記信号を用いた画像再構成により生成された、前記被検体の血管の特定位置における酸素飽和度に関する情報を取得し、
    前記血管の前記特定位置における酸素飽和度に関する情報を補正するための第1の補正量を取得し、
    前記第1の補正量に基づいて前記被検体の前記特定位置ではない部分の酸素飽和度に関する情報を補正するための第2の補正量を取得する
    ことを特徴とする処理装置。
  2. 前記血管は動脈であることを特徴とする請求項1に記載の処理装置。
  3. 前記処理部は、前記第2の補正量を用いて、前記血管の前記特定位置の周辺部の酸素飽和度に関する情報を補正する
    ことを特徴とする請求項1または2に記載の処理装置。
  4. 前記処理部は、前記第2の補正量を用いて、前記血管の前記特定位置から所定の距離に位置する領域の酸素飽和度に関する情報を補正する
    ことを特徴とする請求項3に記載の処理装置。
  5. 前記処理部は、入力装置を用いてなされた術者からの入力に基づいて前記特定位置を設定する
    ことを特徴とする請求項1ないし4のいずれか1項に記載の処理装置。
  6. 前記処理部は、前記画像再構成により得られた画像を解析することにより前記特定位置を設定する
    ことを特徴とする請求項1ないし4のいずれか1項に記載の処理装置。
  7. 前記処理部は、前記被検体の血管において、複数の前記特定位置における酸素飽和度に関する情報を取得する
    ことを特徴とする請求項1ないし6のいずれか1項に記載の処理装置。
  8. 前記処理部は、複数の前記特定位置のそれぞれについて取得された前記第2の補正量に基づく補間処理を行う
    ことを特徴とする請求項7に記載の処理装置。
  9. 前記処理部は、前記特定位置における、画像再構成により生成された酸素飽和度に関する情報と、光学測定により取得された酸素飽和度に基づいて、前記第1の補正量を取得する
    ことを特徴とする請求項1ないし8のいずれか1項に記載の処理装置。
  10. 前記光学測定は、パルスオキシメータにより行われる
    ことを特徴とする請求項9に記載の処理装置。
  11. 前記入力装置は、前記被検体の表面から所定の深さまでの酸素飽和度に関する情報の投影画像に基づく、前記術者による入力を受け付ける
    ことを特徴とする請求項5に記載の処理装置。
  12. 前記被検体に超音波を送受信する超音波プローブをさらに有する
    ことを特徴とする請求項1ないし11のいずれか1項に記載の処理装置。
  13. 前記処理部は、前記超音波プローブによる前記超音波の送受信により取得された前記被検体の形状を用いて画像再構成を行う
    ことを特徴とする請求項12に記載の処理装置。
  14. 前記処理部は、前記超音波プローブを用いて取得されたドップラ信号により前記血管の動脈を検出する
    ことを特徴とする請求項12または13に記載の処理装置。
  15. 被検体に複数の波長の光が照射されて発生した音響波に由来する信号を用いて、前記被検体の内部の酸素飽和度に関する情報分布を示す画像データを取得する処理方法であって、
    前記信号を用いた画像再構成により生成された、前記被検体の血管の特定位置における酸素飽和度を取得する工程と、
    前記血管の前記特定位置における酸素飽和度に関する情報を補正するための第1の補正量を取得する工程と、
    前記第1の補正量に基づいて前記被検体の前記特定位置ではない部分の酸素飽和度に関する情報を補正するための第2の補正量を取得する工程と、
    を有することを特徴とする処理方法。
JP2016249008A 2016-12-22 2016-12-22 処理装置および処理方法 Active JP6776115B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016249008A JP6776115B2 (ja) 2016-12-22 2016-12-22 処理装置および処理方法
US15/841,820 US10849537B2 (en) 2016-12-22 2017-12-14 Processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249008A JP6776115B2 (ja) 2016-12-22 2016-12-22 処理装置および処理方法

Publications (2)

Publication Number Publication Date
JP2018102359A JP2018102359A (ja) 2018-07-05
JP6776115B2 true JP6776115B2 (ja) 2020-10-28

Family

ID=62625232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249008A Active JP6776115B2 (ja) 2016-12-22 2016-12-22 処理装置および処理方法

Country Status (2)

Country Link
US (1) US10849537B2 (ja)
JP (1) JP6776115B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923129B2 (ja) * 2017-06-26 2021-08-18 タカノ株式会社 情報処理装置、プログラム、方法及びシステム
JP2020162746A (ja) * 2019-03-28 2020-10-08 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725217B2 (ja) * 1974-10-14 1982-05-28
JP5473265B2 (ja) 2008-07-09 2014-04-16 キヤノン株式会社 多層構造計測方法および多層構造計測装置
JP5704998B2 (ja) * 2011-04-06 2015-04-22 キヤノン株式会社 光音響装置およびその制御方法
JP2013214703A (ja) * 2012-03-09 2013-10-17 Fujifilm Corp レーザ装置及び光音響計測装置
US8764663B2 (en) * 2012-03-14 2014-07-01 Jeffrey Smok Method and apparatus for locating and distinguishing blood vessel
JP6025513B2 (ja) 2012-11-12 2016-11-16 キヤノン株式会社 被検体情報取得装置およびその制御方法
KR102188148B1 (ko) * 2014-01-17 2020-12-07 삼성메디슨 주식회사 광음향 영상 장치 및 광음향 영상 디스플레이 방법
JP6335612B2 (ja) * 2014-04-23 2018-05-30 キヤノン株式会社 光音響装置、処理装置、処理方法、及びプログラム
US10255661B2 (en) 2014-06-11 2019-04-09 Canon Kabushiki Kaisha Object information acquiring apparatus and image processing method
JP6498036B2 (ja) * 2014-06-13 2019-04-10 キヤノン株式会社 光音響装置、信号処理方法、及びプログラム
JP2017047177A (ja) 2015-09-04 2017-03-09 キヤノン株式会社 被検体情報取得装置および被検体情報取得装置の制御方法
JP2017047178A (ja) 2015-09-04 2017-03-09 キヤノン株式会社 被検体情報取得装置
JP2017047056A (ja) 2015-09-04 2017-03-09 キヤノン株式会社 被検体情報取得装置
JP2017086172A (ja) 2015-11-02 2017-05-25 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP2017164222A (ja) 2016-03-15 2017-09-21 キヤノン株式会社 処理装置および処理方法

Also Published As

Publication number Publication date
US10849537B2 (en) 2020-12-01
US20180177442A1 (en) 2018-06-28
JP2018102359A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6335612B2 (ja) 光音響装置、処理装置、処理方法、及びプログラム
JP6132466B2 (ja) 被検体情報取得装置及び被検体情報取得方法
US10531798B2 (en) Photoacoustic information acquiring apparatus and processing method
JP6598548B2 (ja) 光音響装置
JP2017119094A (ja) 情報取得装置、情報取得方法、及びプログラム
JP7134704B2 (ja) 画像処理装置、画像処理方法、及びプログラム
CN106618489A (zh) 用于获取被检体信息的装置和处理方法
US20150339814A1 (en) Object information acquiring apparatus
JP2015167789A (ja) 被検体情報取得装置および信号処理方法
JP6776115B2 (ja) 処理装置および処理方法
JP2018061725A (ja) 被検体情報取得装置および信号処理方法
US10695006B2 (en) Apparatus and display control method
US10492694B2 (en) Object information acquisition apparatus
JP2018126454A (ja) 被検体情報取得装置および表示方法
JP6486056B2 (ja) 光音響装置および光音響装置の処理方法
EP3329843B1 (en) Display control apparatus, display control method, and program
JP6469133B2 (ja) 処理装置、光音響装置、処理方法、およびプログラム
JP6645693B2 (ja) 被検体情報取得装置およびその制御方法
US20170265749A1 (en) Processing apparatus and processing method
US20200085345A1 (en) Object information acquisition apparatus and method of controlling the same
WO2018003647A1 (en) Information obtaining apparatus and control method for signal processing apparatus
JP2017042603A (ja) 被検体情報取得装置
JP6513121B2 (ja) 処理装置、被検体情報取得装置、光音響画像の表示方法、及びプログラム
US20180299763A1 (en) Information processing apparatus, object information acquiring apparatus, and information processing method
US10438382B2 (en) Image processing apparatus and image processing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R151 Written notification of patent or utility model registration

Ref document number: 6776115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151