JP2013214703A - レーザ装置及び光音響計測装置 - Google Patents

レーザ装置及び光音響計測装置 Download PDF

Info

Publication number
JP2013214703A
JP2013214703A JP2012206754A JP2012206754A JP2013214703A JP 2013214703 A JP2013214703 A JP 2013214703A JP 2012206754 A JP2012206754 A JP 2012206754A JP 2012206754 A JP2012206754 A JP 2012206754A JP 2013214703 A JP2013214703 A JP 2013214703A
Authority
JP
Japan
Prior art keywords
wavelength
laser
light
pass filter
photoacoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012206754A
Other languages
English (en)
Other versions
JP2013214703A5 (ja
Inventor
Tadashi Kasamatsu
直史 笠松
Kazuhiro Hirota
和弘 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012206754A priority Critical patent/JP2013214703A/ja
Priority to PCT/JP2013/053385 priority patent/WO2013132976A1/ja
Publication of JP2013214703A publication Critical patent/JP2013214703A/ja
Publication of JP2013214703A5 publication Critical patent/JP2013214703A5/ja
Priority to US14/337,761 priority patent/US20140336482A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Plasma & Fusion (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Lasers (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】第1及び第2の波長の光を出射可能なレーザ装置において、高コスト化を招くことなくレーザ効率を高める。
【解決手段】フラッシュランプ52は、レーザロッド51に励起光を照射する。光共振器は、レーザロッド51を挟んで対向する一対のミラー53、54を含む。波長切替部56は、第1の波長以上の波長の光を透過させるロングパスフィルタを含む。波長切替部56は、出射すべきレーザ光の波長が第1の波長であるとき、ロングパスフィルタを光共振器の光路上に挿入する。
【選択図】図2

Description

本発明は、レーザ装置に関し、更に詳しくは、第1及び第2の波長の光を出射可能なレーザ装置に関する。また、本発明は、そのようなレーザ装置を含む光音響計測装置に関する。
従来、例えば特許文献1や非特許文献1に示されているように、光音響効果を利用して生体の内部を画像化する光音響画像化装置が知られている。この光音響画像化装置においては、例えばパルスレーザ光等のパルス光が生体に照射される。このパルス光の照射を受けた生体内部では、パルス光のエネルギーを吸収した生体組織が熱によって体積膨張し、音響波が発生する。この音響波を超音波プローブなどで検出し、検出された信号(光音響信号)に基づいて生体内部を可視像化することが可能となっている。光音響画像化方法では、特定の光吸収体において音響波が発生するため、生体における特定の組織、例えば血管等を画像化することができる。
ところで、生体組織の多くは光吸収特性が光の波長に応じて変わり、また一般に、その光吸収特性も組織ごとに特有のものとなっている。例えば図17に、ヒトの動脈に多く含まれる酸素化ヘモグロビン(酸素と結合したヘモグロビン:oxy-Hb)と、静脈に多く含まれる脱酸素化ヘモグロビン(酸素と結合していないヘモグロビンdeoxy-Hb)の光波長ごとの分子吸収係数を示す。動脈の光吸収特性は、酸素化ヘモグロビンのそれに対応し、静脈の光吸収特性は、脱酸素化ヘモグロビンのそれに対応する。この波長に応じた光吸収率の違いを利用して、互いに異なる2種の波長の光を血管部分に照射し、動脈と静脈とを区別して画像化する光音響画像化方法が知られている(例えば特許文献2参照)。
ここで、可変波長レーザに関して、特許文献3には、波長選択素子としてのエタロン又は複屈折フィルタを光共振器内に配置したレーザが記載されている。複屈折フィルタなどの回転角度を調整することで、所望の波長のレーザ光を得ることができる。また、特許文献4には、複数種の波長のレーザ光を容易に切り換えて出力することが可能な多色の固体レーザ装置が記載されている。特許文献4では、特定のピーク波長光だけを選択的に透過させるバンドパスフィルタを、レーザ活性媒体と光共振器ミラーのうちの一方との間の光路上に配置する。バンドパスフィルタを、選択すべきピーク波長の分だけ用意し、用意されたバンドパスフィルタのうちの何れかを光路上に配置することで、複数の波長のレーザ光を切り替えて出射することができる。
特開2005−21380号公報 特開2010−046215号公報 特開2009−231483号公報 特開平10−65260号公報
A High-Speed Photoacoustic Tomography System based on a Commercial Ultrasound and a Custom Transducer Array, Xueding Wang, Jonathan Cannata, Derek DeBusschere, Changhong Hu, J. Brian Fowlkes, and Paul Carson, Proc. SPIE Vol. 7564, 756424 (Feb.23, 2010)
従来、レーザにおける発振波長を制御するためのフィルタとして、複屈折フィルタ(BRF)やバンドパスフィルタ(BPF)が用いられてきた。しかしながら、複屈折フィルタはquartz製で高価であるという問題がある。また、一般にバンドパスフィルタは光透過率が低く、従って出力レーザ光の出力強度も低下するという問題がある。バンドパスフィルタ挿入に伴う出力低下分を補償しようとすると、レーザ装置が大型化するという問題が生じる。
本発明は、上記に鑑み、第1及び第2の波長の光を出射可能なレーザ装置において、低コストで、かつレーザ効率が高いレーザ装置を提供することを目的とする。
また、本発明は、上記レーザ装置を含む光音響計測装置を提供する。
上記目的を達成するために、本発明は、第1の波長と、第1の波長よりも波長が短く、かつ、レーザ利得係数の波長特性でレーザ利得係数が第1の波長におけるレーザ利得係数よりも高い第2の波長とを含む複数の波長の光を出射するレーザ装置であって、レーザ媒質と、レーザ媒質に励起光を照射する励起光源と、レーザ媒質を挟んで対向する一対のミラーを含む光共振器と、第1の波長以上の波長の光を透過させる第1のロングパスフィルタを含み、出射すべきレーザ光の波長が第1の波長であるとき、第1のロングパスフィルタを光共振器の光路上に挿入する波長切替部とを備えたことを特徴とするレーザ装置を提供する。
波長切替部が、出射すべきレーザ光の波長が第2の波長であるときは、第1及び第2の波長の光の双方を透過させることとしてもよい。
波長切替部が、第2の波長以上の波長の光を透過させる第2のロングパスフィルタを更に含むものであり、出射すべきレーザ光の波長が第2の波長であるとき、第2のロングパスフィルタを光共振器の光路上に挿入してもよい。
波長切替部が、第1のロングパスフィルタが配置された第1の領域と、第2のロングパスフィルタが配置された第2の領域とを有し、回転変位に伴って光共振器の光路上に第1の領域及び第2の領域を交互に挿入可能なフィルタ回転体として構成されていてもよい。
レーザ利得係数の波長特性において、第2の波長でレーザ利得係数が最大となり、波長切替部が、少なくとも第2の波長の光を透過する光学部材を更に含むものであり、出射すべきレーザ光の波長が第2の波長であるとき、光学部材を光共振器の光路上に挿入してもよい。
波長切替部が、第1のロングパスフィルタが配置された第1の領域と、光学部材が配置された第2の領域とを有し、回転変位に伴って光共振器の光路上に第1の領域及び第2の領域を交互に挿入可能なフィルタ回転体として構成されていてもよい。
レーザ利得係数の波長特性において、第2の波長でレーザ利得係数が最大となり、波長切替部が、出射すべきレーザ光の波長が第2の波長であるときは、第1のロングパスフィルタを光共振器の光路上から除去する構成を採用してもよい。
出射すべきレーザ光の波長が第2の波長であるとき、光共振器の光路上又は光共振器からの出射光の光路上に、少なくとも第2の波長の光の透過量を低下させる減光部材を挿入する構成としてもよい。この場合、減光部材の光透過率は、レーザ装置から出力される第1の波長の光の光強度と、第2の波長の光の光強度とが同じになるように選定されていることが好ましい。
上記に代えて、一対のミラーのうちのレーザ出力側のミラーの第1の波長の光に対する反射率を、第2の波長の光に対する反射率よりも高くしてもよい。この場合、第1の波長に対する光共振器の実効利得と、第2の波長に対する光共振器の実効利得とが同じになるように、レーザ出力側のミラーの第1の波長の光に対する反射率と第2の波長の光に対する反射率とが選定されていることが好ましい。
出射すべきレーザ光の波長が第1の波長のときと、出射すべきレーザ光の波長が第2の波長のときとで、励起光のレーザ媒質への投入エネルギーが同じであってもよい。
光共振器の光路上に配置されたQスイッチを更に備えた構成を採用してもよい。
本発明は、また、第1の波長と、第1の波長よりも波長が短く、かつ、レーザ利得係数の波長特性でレーザ利得係数が第1の波長におけるレーザ利得係数よりも高い第2の波長とを含む複数の波長の光を出射するレーザ装置であって、レーザ媒質と、該レーザ媒質に励起光を照射する励起光源と、レーザ媒質を挟んで対向する一対のミラーを含む光共振器と、第1の波長以上の波長の光を透過させる第1のロングパスフィルタを含み、出射すべきレーザ光の波長が第1の波長であるとき、第1のロングパスフィルタを光共振器の光路上に挿入する波長切替部とを有するレーザ装置と、第1及び第2の波長のレーザ光が被検体に照射されたときに被検体内で生じた光音響信号を検出し、第1及び第2の波長のそれぞれに対応した第1及び第2の光音響データを生成する検出手段と、第1及び第2の光音響データ間の相対的な信号強度の大小関係を抽出する強度比抽出手段とを備えたことを特徴とする光音響計測装置を提供する。
本発明の光音響計測装置が、第1及び第2の光音響データに基づいて光音響画像を生成する光音響画像構築手段を更に備える構成を採用することができる。
本発明の光音響計測装置が、第1及び第2の光音響データに基づいて信号強度を示す強度情報を生成する強度情報抽出手段を更に備える構成とし、光音響画像構築手段が、光音響画像の各画素の階調値を強度情報に基づいて決定すると共に、各画素の表示色を抽出された大小関係に基づいて決定するものとしてもよい。
第1の光音響データと第2の光音響データとのうちの何れか一方を実部、他方を虚部とした複素数データを生成する複素数化手段と、複素数データからフーリエ変換法により再構成画像を生成する光音響画像再構成手段とを更に備える構成とし、強度比抽出手段が再構成画像から大小関係としての位相情報を抽出し、強度情報抽出手段が再構成画像から強度情報を抽出してもよい。
本発明は、また、第1の波長と、第1の波長よりも波長が長く、かつ、レーザ利得係数の波長特性でレーザ利得係数が第1の波長におけるレーザ利得係数よりも高い第2の波長とを含む複数の波長の光を出射するレーザ装置であって、レーザ媒質と、レーザ媒質に励起光を照射する励起光源と、レーザ媒質を挟んで対向する一対のミラーを含む光共振器と、第1の波長以下の波長の光を透過させる第1のショートパスフィルタを含み、出射すべきレーザ光の波長が第1の波長であるとき、第1のショートパスフィルタを光共振器の光路上に挿入する波長切替部とを備えたことを特徴とするレーザ装置を提供する。
上記の場合、波長切替部に、第2の波長以下の波長の光を透過させる第2のショートパスフィルタを更に含ませ、出射すべきレーザ光の波長が第2の波長であるとき、第2のショートパスフィルタを光共振器の光路上に挿入するようにしてもよい。
本発明のレーザ装置は、第1の波長の光と、第1の波長よりも波長が短い第2の波長の光とを出射可能である。第2の波長におけるレーザ利得係数は、第1波長における利得係数よりも高い。逆にいえば、第1の波長におけるレーザ利得係数は、第2の波長におけるレーザ利得係数よりも低い。本発明では、第1の波長の光を出射するときに、光共振器の光路上に、第1の波長の光以上の第1のロングパスフィルタを挿入する。一般に、ロングパスフィルタは、バンドパスフィルタに比して光透過率が高く、レーザ光率を高くすることができる。また、ロングパスフィルタは、quartz製の複屈折フィルタに比して安価であり、コストを低減できる。
本発明の第1実施形態の光音響計測装置を示すブロック図。 第1実施形態のレーザ光源ユニットの構成を示すブロック図。 (a)及び(b)は、それぞれレーザ光源ユニットにおける光共振器内の構成を示すブロック図。 アレキサンドライトの利得を示すグラフ。 波長切替部の光透過率を示すグラフ。 光共振器の実効利得を示すグラフ。 波長切替部の変形例を示す図。 光音響計測装置の動作手順を示すフローチャート。 本発明の第2実施形態のレーザ装置における波長切替部の構成例を示す図。 第1及び第2のロングパスフィルタの光透過率の波長特性を示すグラフ。 光共振器の実効利得を示すグラフ。 出力ミラーの反射率の波長特性を示すグラフ。 変形例のレーザ光源ユニットにおける光共振器内の構成を示すブロック図。 本発明の第3実施形態の光音響計測装置を示すブロック図。 ショートパスフィルタを含む波長切替部の光透過率を示すグラフ。 光共振器の実効利得を示すグラフ。 酸素化ヘモグロビンと脱酸素化ヘモグロビンの光波長ごとの分子吸収係数を示すグラフ。
以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の第1実施形態のレーザ装置を含む光音響計測装置を示す。光音響計測装置10は、超音波探触子(プローブ)11と、超音波ユニット12と、レーザ光源ユニット(レーザ装置)13とを備える。なお、本発明の実施形態では、音響波として超音波を用いるが、超音波に限定されるものでは無く、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いても良い。
レーザ光源ユニット13は、被検体に照射すべきパルスレーザ光を出射する。レーザ光源ユニット13は、第1及び第2の波長を含む複数の波長のレーザ光を出射する。ここで、第2の波長は第1の波長よりも波長が短い。また、レーザの利得係数の波長特性において、第2の波長における利得係数は第1の波長における利得係数よりも高い。レーザの利得係数は、例えば第2の波長で最大値を取り、第2の波長よりも短い波長の範囲では波長が短くなるに連れて単調に減少していき、第2の波長よりも長い波長範囲では波長が長くなるに連れて単調に減少していく。
例えば、第1の波長(中心波長)として約800nmを考え、第2の波長として約750nmを考える。先に説明した図17を参照すると、ヒトの動脈に多く含まれる酸素化ヘモグロビン(酸素と結合したヘモグロビン:oxy-Hb)の波長750nmにおける分子吸収係数は、波長800nmにおける分子吸収係数よりも低い。一方、静脈に多く含まれる脱酸素化ヘモグロビン(酸素と結合していないヘモグロビンdeoxy-Hb)の波長750nmにおける分子吸収係数は、波長800nmにおける分子吸収係数よりも高い。この性質を利用し、波長800nmで得られた光音響信号に対して、波長750nmで得られた光音響信号が相対的に大きいのか小さいのかを調べることで、動脈からの光音響信号と静脈からの光音響信号とを判別することができる。
なお、第1の波長と第2の波長の選択に関しては、理論上、選択される2波長において光吸収係数に差があればどのような二波長の組み合わせでもよく、上記した約750nmと約800nmの組み合わせには限定されない。扱いやすさなどを考えると、選択される2つの波長は、酸素化ヘモグロビンと脱酸素化ヘモグロビンとで光吸収係数が同じになる波長約800nm(正確には798nm)と、脱酸素化ヘモグロビンの光吸収係数が極大値となる波長約750nm(正確には757nm)との組み合わせが好ましい。第1の波長は、正確に798nmである必要はなく、例えば793nm〜802nmの範囲にあれば実用上問題はない。また、第2の波長は、正確に757nmである必要はなく、例えば極大値(757nm)付近のピークの半値幅である748〜770nmの範囲にあれば実用上問題はない。
レーザ光源ユニット13から出射したレーザ光は、例えば光ファイバなどの導光手段を用いてプローブ11まで導光され、プローブ11から被検体に向けて照射される。レーザ光の照射位置は特に限定されず、プローブ11以外の場所からレーザ光の照射を行ってもよい。被検体内では、光吸収体が照射されたレーザ光のエネルギーを吸収することで超音波(音響波)が生じる。プローブ11は、超音波検出器を含む。プローブ11は、例えば一次元的に配列された複数の超音波検出器素子(超音波振動子)を有し、その一次元配列された超音波振動子により、被検体内からの音響波(光音響信号)を検出する。
超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、複素数化手段24、光音響画像再構成手段25、位相情報抽出手段26、強度情報抽出手段27、検波・対数変換手段28、光音響画像構築手段29、トリガ制御回路30、及び制御手段31を有する。受信回路21は、プローブ11が検出した光音響信号を受信する。AD変換手段22は検出手段であり、受信回路21が受信した光音響信号をサンプリングし、デジタルデータである光音響データを生成する。AD変換手段22は、ADクロック信号に同期して、所定のサンプリング周期で光音響信号のサンプリングを行う。
AD変換手段22は、光音響データを受信メモリ23に格納する。AD変換手段22は、レーザ光源ユニット13から出射されるパルスレーザ光の各波長に対応した光音響データを受信メモリ23に格納する。つまり、AD変換手段22は、被検体に第1の波長のパルスレーザ光が照射されたときにプローブ11で検出された光音響信号をサンプリングした第1の光音響データと、第2の波長のパルスレーザ光が照射されたときにプローブ11で検出された光音響信号をサンプリングした第2の光音響データとを、受信メモリ23に格納する。
複素数化手段24は、受信メモリ23から第1の光音響データと第2の光音響データとを読み出し、何れか一方を実部、他方を虚部とした複素数データを生成する。以下では、複素数化手段24が、第1の光音響データを虚部とし、第2の光音響データを実部とした複素数データを生成するものとして説明する。
光音響画像再構成手段25は、複素数化手段24から複素数データを入力する。光音響画像再構成手段25は、入力された複素数データから、フーリエ変換法(FTA法)により画像再構成を行う。フーリエ変換法による画像再構成には、例えば文献”Photoacoustic Image Reconstruction-A Quantitative Analysis”Jonathan I.Sperl et al. SPIE-OSA Vol.6631 663103 等に記載されている従来公知の方法を適用することができる。光音響画像再構成手段25は、再構成画像を示すフーリエ変換のデータを位相情報抽出手段26と強度情報抽出手段27とに入力する。
位相情報抽出手段26は、各波長に対応した光音響データ間の相対的な信号強度の大小関係を抽出する。本実施形態では、位相情報抽出手段26は、光音響画像再構成手段25で再構成された再構成画像を入力データとし、複素数データである入力データから、実部と虚部とを比較したときに、相対的に、どちらがどれくらい大きいかを示す位相情報を生成する。位相情報抽出手段26は、例えば複素数データがX+iYで表わされるとき、θ=tan−1(Y/X)を位相情報として生成する。なお、X=0の場合はθ=90°とする。実部を構成する第2の光音響データ(X)と虚部を構成する第1の光音響データ(Y)とが等しいとき、位相情報はθ=45°となる。位相情報は、相対的に第2の光音響データが大きいほどθ=0°に近づいていき、第1の光音響データが大きいほどθ=90°に近づいていく。
強度情報抽出手段27は、各波長に対応した光音響データに基づいて信号強度を示す強度情報を生成する。本実施形態では、強度情報抽出手段27は、光音響画像再構成手段25で再構成された再構成画像を入力データとし、複素数データである入力データから、強度情報を生成する。強度情報抽出手段27は、例えば複素数データがX+iYで表わされるとき、(X+Y1/2を、強度情報として抽出する。検波・対数変換手段28は、強度情報抽出手段27で抽出された強度情報を示すデータの包絡線を生成し、次いでその包絡線を対数変換してダイナミックレンジを広げる。
光音響画像構築手段29は、位相情報抽出手段26から位相情報を入力し、検波・対数変換手段28から検波・対数変換処理後の強度情報を入力する。光音響画像構築手段29は、入力された位相情報と強度情報とに基づいて、光吸収体の分布画像である光音響画像を生成する。光音響画像構築手段29は、例えば入力された強度情報に基づいて、光吸収体の分布画像における各画素の輝度(階調値)を決定する。また、光音響画像構築手段29は、例えば位相情報に基づいて、光吸収体の分布画像における各画素の色(表示色)を決定する。光音響画像構築手段29は、例えば例えば位相0°から90°の範囲を所定の色に対応させたカラーマップに用いて、入力された位相情報に基づいて各画素の色を決定する。
ここで、位相0°から45°の範囲は、第2の光音響データが第1の光音響データよりも大きい範囲であるため、光音響信号の発生源は、波長798nmに対する吸収よりも波長756nmに対する吸収の方が大きい脱酸素化ヘモグロビンを主に含む血液が流れている静脈であると考えられる。一方、位相45°から90°の範囲は、第2の光音響データが第1の光音響データよりも小さい範囲であるため、光音響信号の発生源は、波長798nmに対する吸収よりも波長756nmに対する吸収の方が小さい酸素化ヘモグロビンを主に含む血液が流れている動脈であると考えられる。
そこで、カラーマップとして、例えば位相が0°が青色で、位相が45°に近づくに連れて無色(白色)になるように色が徐々に変化すると共に、位相90°が赤色で、位相が45°に近づくに連れて白色になるように色が徐々に変化するようなカラーマップを用いる。この場合、光音響画像上で、動脈に対応した部分を赤色で表わし、静脈に対応した部分を青色で表わすことができる。強度情報を用いずに、階調値は一定として、位相情報に従って動脈に対応した部分と静脈に対応した部分との色分けを行うだけでもよい。画像表示手段14は、光音響画像構築手段29が生成した光音響画像を表示画面上に表示する。
次いで、レーザ光源ユニット13の構成を詳細に説明する。図2は、レーザ光源ユニット13の構成を示す。レーザ光源ユニット13は、レーザロッド51、フラッシュランプ52、ミラー53、54、Qスイッチ55、波長切替部56、及び駆動手段57を有する。レーザロッド51は、レーザ媒質である。レーザロッド51には、例えばアレキサンドライト結晶を用いることができる。アレキサンドライト結晶の第1の波長(800nm)におけるレーザ利得係数は、第2の波長(750nm)におけるレーザ利得係数よりも低い。フラッシュランプ52は、励起光源であり、レーザロッド51に励起光を照射する。フラッシュランプ52以外の光源を、励起光源として用いてもよい。
ミラー53、54は、レーザロッド51を挟んで対向しており、ミラー53、54により光共振器が構成される。ミラー54が出力側であるものとする。光共振器内には、Qスイッチ55及び波長切替部56が挿入される。Qスイッチ55により、光共振器内の挿入損失を損失大(低Q)から損失小(高Q)へと急速に変化させることで、パルスレーザ光を得ることができる。波長切替部56は、光共振器内で発振する光の波長を第1の波長と第2の波長との間で切り替える際に使用される。波長切替部56は、第1の波長の光以上の波長の光を透過させる第1のロングパスフィルタを含む。
駆動手段57は、波長切替部56を駆動する。駆動手段57は、レーザ光源ユニット13から出射すべきレーザ光の波長が第1の波長であるとき、波長切替部56を駆動して、第1のロングパスフィルタを光共振器の光路上に挿入させる。この場合、波長切替部56は、レーザロッド51から出射した光のうち、第1の波長よりも短い波長の成分の通過を阻止する。駆動手段57は、出射すべきレーザ光の波長が第2の波長であるときは、例えば第1のロングパスフィルタを光共振器の光路上から除去するように、波長切替部56を駆動する。この場合、波長切替部56は、第1及び第2の波長を含む、例えばレーザロッド51から出射した光の全ての波長成分を透過させる。
図1に戻り、制御手段31は、超音波ユニット12内の各部の制御を行う。トリガ制御回路30は、レーザ光源ユニット13に、フラッシュランプ52(図2)の発光を制御するためのフラッシュランプトリガ信号を出力し、フラッシュランプ52からレーザロッド51に励起光を照射させる。トリガ制御回路30は、フラッシュランプトリガ信号の出力後、Qスイッチ55にQスイッチトリガ信号を出力する。Qスイッチ55が、Qスイッチトリガ信号に応答して光共振器内の挿入損失を損失大から損失小に急激に変化させることで(Qスイッチがオンすることで)、出力ミラー54からパルスレーザ光が出射する。
トリガ制御回路30は、Qスイッチトリガ信号のタイミング、すなわちパルスレーザ光の出射タイミングに合わせて、AD変換手段22にサンプリングトリガ信号(ADトリガ信号)を出力する。AD変換手段22は、サンプリングトリガ信号にと基づいて光音響信号のサンプリングを開始する。
続いて、レーザ光源ユニット13における波長切替について説明する。図3(a)及び(b)は、それぞれレーザ光源ユニット13における光共振器内の構成を示す。波長切替部56は、例えば波長800nm以上の光を透過させるロングパスフィルタとして構成させる。例えばロングパスフィルタの透過率が50%となる波長をカットオフ波長と定義すると、波長切替部56には、波長800nmよりも少し短い波長をカットオフ波長とするロングパスフィルタが用いられる。例えばロングパスフィルタは、波長800nm付近において、波長が800nmよりも短い波長範囲では全透過(光透過率ほぼ100%)と呼べるほど光透過率が高くなく、波長が800nmになると初めて光がほぼ全透過すると言えるような波長特性となるような光透過率の波長特性を有する。
図3(a)は、波長切替部(ロングパスフィルタ)56が光共振器の光路上に挿入された状態を示す。駆動手段57は、出射すべきレーザ光の波長が第1の波長(800nm)のとき、例えばモータなどによりロングパスフィルタ56の位置を変位させ、ロングパスフィルタ56を光共振器の光路上に挿入する。一方、図3(b)は、ロングパスフィルタ56が光共振器の光路上から除去された状態を示す。駆動手段57は、出射すべきレーザ光の波長が第2の波長(750nm)のときは、モータなどによりロングパスフィルタ56を光共振器の光路上外に移動させる。
図4は、アレキサンドライトの利得を示す。アレキサンドライトの利得係数g(λ,T)は、下記式で表わされる。
Figure 2013214703
ここでpは反転分布率(上準位数/添加濃度)の関数である。pは励起エネルギーに比例する。Ezplは零フォノンエネルギーである。アレキサンドライトの利得G(λ)は、lrodはアレキサンドライトロッドの長さとして、下記式で表わされる。
G(λ)=exp[g(λ,T)×lrod])
図4に示すように、アレキサンドライトのレーザ利得G(λ)は、波長750nm付近でピークとなり、波長750nmを超える波長範囲では、波長が長くなるにつれて低下していく。
図5は、波長切替部56の光透過率を示す。同図において、グラフ(a)は波長切替部56に用いられるロングパスフィルタの光透過率の波長特性を示し、グラフ(b)は光共振器の光路上から波長切替部56が除去された状態(図3(b))における波長切替部56の位置の光透過率の波長特性を示す。波長切替部(ロングパスフィルタ)56は、グラフ(a)に示すように、波長800nmの光を例えば99.8%という高い光透過率で透過させる一方、波長750nmの光をほとんど透過させない。光共振器の光路上からロングパスフィルタが除去されたときは、光共振器の光路上に特に光を遮るものが存在しないので、波長750nmの光も波長800nmの光も、ほぼそのまま(100%)透過する。
図5には、比較例として、波長800nmの光を選択的に透過させるバンドパスフィルタの光透過率の波長特性をグラフ(c)で示す。グラフ(c)に示すような光透過率の波長特性を有するバンドパスフィルタを用いた場合も、ロングパスフィルタを用いた場合と同様に、波長800nmの光は透過させ、波長750nmの光は遮断させることができる。しかしながら、バンドパスフィルタの光透過率はせいぜい75%程度であり、ロングパスフィルタの光透過率と比べると光透過性が悪く、ロングパスフィルタを用いた場合に比べて、透過できる光の量が低下する。
光共振器内の全損失は、上記の光透過率をT(λ)、R、Rをそれぞれミラー53、54の反射率、Lを光共振器の内部ロスとして、下記式で表わすことができる。
Loss(λ)=|−lnRT(λ)+L|/2
光共振器の実効利得geffは、アレキサンドライトの利得から光共振器内の全損失を引いたものとなる。
図6は、光共振器の実効利得を示す。図6において、グラフ(a)は光共振器の光路上に図5のグラフ(a)に示す波長特性のロングパスフィルタを挿入した場合の実効利得を表し、グラフ(b)はロングパスフィルタが除去された場合の実効利得を表している。ロングパスフィルタが挿入されない場合(図3(b))、図6にグラフ(b)で示すように、実効利得は、アレキサンドライトのレーザ利得の波長特性(図4)と同様に、波長750nm付近で最大となる。レーザ発振は、実効利得>0のポイント(波長、励起パワー)で起こる。励起パワーを増加していったとき、最初に実効利得が0よりも大きくなるのは、実効利得が最も高い波長750nmである。従って、光共振器の光路上にロングパスフィルタが挿入されていないとき、光共振器は、実効利得の波長特性におけるピーク位置の波長750nmで発振する。
一方、光共振器の光路上にロングパスフィルタが挿入される場合(図3(a))、ロングパスフィルタのカットオフ波長よりも短波長側では、光共振器内の損失が大きいために実効利得が低く、実効利得が最大となるのは、ロングパスフィルタが初めて高い光透過率で光を透過させる波長800nm付近となる。従って、ロングパスフィルタが挿入されているとき、光共振器は、実効利得の波長特性におけるピーク位置の波長800nmで発振する。
なお、上記では、光共振器の光路上にロングパスフィルタを挿入するか、光路上からロングパスフィルタを除去するかに応じて、発振波長を800nmと750nmとの間で切り替えることとしたが、これには限定されない。例えば波長切替部56が、ロングパスフィルタに加えて、少なくとも750nmの波長の光を透過する光学部材を有し、出射すべきレーザ光の波長が750nmであるとき、その光学部材を光共振器の光路上に挿入するようにしてもよい。
図7は、波長切替部56の変形例を示す。この例では、波長切替部56は、回転変位に伴って、ロングパスフィルタを光共振器の光路上に挿入し、ロングパスフィルタを光共振器の光路上から除去するフィルタ回転体として構成される。波長切替部(フィルタ回転体)56aは、ロングパスフィルタが配置された第1の領域61と、全波長帯域の光をほぼそのまま透過する光学部材が配置された第2の領域62とを有する。例えば回転変位位置0°から180°までの領域がロングパスフィルタが配置された第1の領域61に対応し、回転変位位置180°から360°までの領域が光学部材が配置された第2の領域62に対応する。
フィルタ回転体56aは、例えば駆動手段57(図2)であるサーボモータの出力軸に取り付けられ、サーボモータの回転に従って回転駆動される。フィルタ回転体56aの回転変位は、サーボモータの出力軸に取り付けられたスリット入りの回転板と透過型フォトインタラプタとを含むロータリーエンコードを用いることで検出できる。例えば所定時間の間にロータリーエンコーダーで検出されるサーボモータの回転軸の回転変位量が所定の量に保たれるようにサーボモータに供給する電圧などを制御することで、フィルタ回転体56aを一定の速度で回転させることができる。フィルタ回転体56aを連続的に回転駆動することで、光共振器の上にロングパスフィルタと光学部材とを交互に挿入することができる。
上記の光学部材には、ガラスなどの光透過率が高い光学部材を用いることができる。光学部材には、少なくとも波長750nmの光を反射しないような反射防止膜、例えば波長700nm−800nmの範囲の光を反射しない反射防止膜が形成されていることが好ましい。第1の領域61が光共振器の光路上に位置するとき、第1の領域61に配置されたロングパスフィルタが波長800nmよりも短い波長帯域の光をカットすることで、波長800nmよりも短い波長帯域の光共振器の実効利得が低くなり、波長800nmのレーザ光を得ることができる。一方、第2の領域62が光共振器の光路上に位置するとき、第2の領域62は特に特定波長帯域の光をカットしないため、アレキサンドライトの利得係数が最大となる波長750nmのレーザ光を得ることができる。
引き続き、動作手順について説明する。図8は、光音響計測装置10の動作手順を示す。駆動手段57(図2)は、波長切替部56を駆動し、波長800nm以上の光を透過するロングパスフィルタを光共振器の光路上に挿入させる(ステップS1)。駆動手段57は、例えば図3(a)に示すように、ロングパスフィルタとして構成される波長切替部56を光共振器の光路上に挿入する。あるいは、波長切替部56が図6に示すようにロングパスフィルタが配置された第1の領域61と、光学部材が配置された第2の領域62とを有するフィルタ回転体56aとして構成されているとき、駆動手段57は、光共振器の光路上に第1の領域61が挿入されるようにフィルタ回転体56aを回転駆動する。
トリガ制御回路30(図1)は、光音響信号の受信準備が整うと、第1の波長(800nm)のパルスレーザ光を出射させるべく、レーザ光源ユニット13にフラッシュランプトリガ信号を出力する(ステップS2)。レーザ光源ユニット13のフラッシュランプ52は、フラッシュランプトリガ信号に応答して点灯し、レーザロッド51の励起が開始される(ステップS3)。
トリガ制御回路30は、フラッシュランプ52の点灯後、所定のタイミングでQスイッチトリガ信号を出力し、Qスイッチ55をオンにする(ステップS4)。Qスイッチ55がオンになることで、レーザ光源ユニット13は、波長800nmのパルスレーザ光を出射する。なお、トリガ制御回路30は、波長切替部56が図6に示すようなフィルタ回転体で構成され、かつ、そのフィルタ回転体が連続的に回転駆動されている場合には、フィルタ回転体が第1の領域61を光共振器の光路上に挿入しているタイミングでQスイッチをONにすればよい。
レーザ光源ユニット13から出射した波長800nmのパルスレーザ光は、例えばプローブ11まで導光され、プローブ11から被検体に照射される。被検体内では、光吸収体が照射されたパルスレーザ光のエネルギーを吸収することで、光音響信号が発生する。プローブ11は、被検体内で発生した光音響信号を検出する。プローブ11で検出された光音響信号は、受信回路21にて受信される。
トリガ制御回路30は、Qスイッチトリガ信号を出力するタイミングに合わせて、AD変換手段22にサンプリングトリガ信号を出力する。AD変換手段22は、受信回路21で受信された光音響信号を、所定のサンプリング周期でサンプリングする(ステップS5)。AD変換手段22でサンプリングされた光音響信号は、受信メモリ23に第1の光音響データとして格納される。
駆動手段57は、波長800nmのパルスレーザ光の出射後、波長切替部56を駆動し、ロングパスフィルタを光共振器の光路上から除去する(ステップS6)。駆動手段57は、例えば図3(b)に示すように、ロングパスフィルタとして構成される波長切替部56を光共振器の光路外に移動させる。あるいは、波長切替部56が図6に示すようにロングパスフィルタが配置された第1の領域61と、光学部材が配置された第2の領域62とを有するフィルタ回転体56aとして構成されているとき、駆動手段57は、光共振器の光路上に第2の領域62が挿入されるようにフィルタ回転体56aを回転駆動する。
トリガ制御回路30は、光音響信号の受信準備が整うと、第2の波長(750nm)のパルスレーザ光を出射させるべく、レーザ光源ユニット13にフラッシュランプトリガ信号を出力する(ステップS7)。レーザ光源ユニット13のフラッシュランプ52は、フラッシュランプトリガ信号に応答して点灯し、レーザロッド51の励起が開始される(ステップS8)。
トリガ制御回路30は、フラッシュランプ52の点灯後、所定のタイミングでQスイッチトリガ信号を出力し、Qスイッチ55をオンにする(ステップS9)。Qスイッチ55がオンになることで、レーザ光源ユニット13は、波長750nmのパルスレーザ光を出射する。なお、トリガ制御回路30は、波長切替部56が図6に示すようなフィルタ回転体で構成され、かつ、そのフィルタ回転体が連続的に回転駆動されている場合には、フィルタ回転体が第2の領域62を光共振器の光路上に挿入しているタイミングでQスイッチをONにすればよい。
レーザ光源ユニット13から出射した波長750nmのパルスレーザ光は、例えばプローブ11まで導光され、プローブ11から被検体に照射される。被検体内では、光吸収体が照射されたパルスレーザ光のエネルギーを吸収することで、光音響信号が発生する。プローブ11は、被検体内で発生した光音響信号を検出する。プローブ11で検出された光音響信号は、受信回路21にて受信される。
トリガ制御回路30は、Qスイッチトリガ信号を出力するタイミングに合わせて、AD変換手段22にサンプリングトリガ信号を出力する。AD変換手段22は、受信回路21で受信された光音響信号を、所定のサンプリング周期でサンプリングする(ステップS10)。AD変換手段22でサンプリングされた光音響信号は、受信メモリ23に第2の光音響データとして格納される。
第1及び第2の光音響データが受信メモリに格納されることで、1フレーム分の光音響画像の生成に必要なデータが揃う。なお、光音響画像を生成する範囲が複数の部分領域に分割されているような場合は、部分領域ごとに、ステップS1からS10までの処理を実行すればよい。
複素数化手段24は、受信メモリ23から第1の光音響データと第2の光音響データとを読み出し、第1の光音響画像データを虚部とし、第2の光音響画像データを実部とした複素数データを生成する(ステップS11)。光音響画像再構成手段25は、ステップS11で複素数化された複素数データから、フーリエ変換法(FTA法)により画像再構成を行う(ステップS12)。
位相情報抽出手段26は、再構成された複素数データ(再構成画像)から位相情報を抽出する(ステップS13)。位相情報抽出手段26は、例えば再構成された複素数データがX+iYで表わされるとき、θ=tan−1(Y/X)を位相情報として抽出する(ただし、X=0の場合はθ=90°)。強度情報抽出手段27は、再構成された複素数データから強度情報を抽出する(ステップS14)。強度情報抽出手段27は、例えば再構成された複素数データがX+iYで表わされるとき、(X+Y1/2を強度情報として抽出する。
検波・対数変換手段28は、ステップS14で抽出された強度情報に対して検波・対数変換処理を施す。光音響画像構築手段29は、ステップS13で抽出された位相情報と、ステップS14で抽出された強度情報に対して検波・対数変換処理を施したものとに基づいて、光音響画像を生成する(ステップS15)。光音響画像構築手段29は、例えば強度情報に基づいて光吸収体の分布画像における各画素の輝度(階調値)を決定し、位相情報に基づいて各画素の色を決定することで、光音響画像を生成する。生成された光音響画像は、画像表示手段14に表示される。
本実施形態のレーザ光源ユニット13は、第1の波長の光と、第1の波長よりも波長が短い第2の波長の光とを出射可能である。第2の波長におけるレーザ利得係数は、第1波長における利得係数よりも高い。逆にいえば、第1の波長におけるレーザ利得係数は、第2の波長におけるレーザ利得係数よりも低い。波長切替部56は、第1の波長以上の波長の光を透過するロングパスフィルタを含んでおり、出射すべきレーザ光の波長が第1の波長であるとき、光共振器の光路上にロングパスフィルタを挿入する。光共振器の光路上にロングパスフィルタが挿入されることで、光共振器の第2の波長における実効利得が低下する。第2の波長から第1の波長にかけて、波長が長くなるに連れてレーザ利得が小さくなっていくとすれば、ロングパスフィルタが挿入された状態において光共振器の実効利得が最も高くなるのは第1の波長となり、光共振器を第1の波長で発振させて、第1の波長のレーザ光を得ることができる。
一方、出射すべきレーザ光の波長が第2の波長であるとき、波長切替部56はロングパスフィルタを光共振器の光路上に挿入しない。この場合、レーザ利得の波長特性においてレーザ利得が第2の波長で最大値をとれば、光共振器を第2の波長で発振させることができ、第2の波長のレーザ光を得ることができる。このように、ロングパスフィルタを光共振器の光路上に挿入するかしないかに応じて、レーザ光の波長を切り替えることができる。一般に、ロングパスフィルタは、バンドパスフィルタに比して光透過率が高く、レーザ効率を低くすることなく、波長の切り替えが可能である。また、ロングパスフィルタは、より安価に製造でき、構成も簡単である。このため、quartz製の複屈折フィルタを用いる場合に比べて、コストを低減できる。
また、本実施形態では、2つの波長で得られた第1の光音響データと、第2の光音響データとの何れか一方を実部、他方を虚部とした複素数データを生成し、その複素数データからフーリエ変換法により再構成画像を生成している。このようにする場合、第1の光音響データと第2の光音響データとを別々に再構成する場合に比して、再構成を効率的に行うことができる。複数の波長のパルスレーザ光を照射し、各波長のパルスレーザ光を照射したときの光音響信号(光音響データ)を用いることで、各光吸収体の光吸収特性が波長に応じて異なることを利用した機能イメージングを行うことができる。
続いて、本発明の第2実施形態を説明する。第1実施形態では、出射すべきレーザ光の波長が第2の波長であるとき、光共振器の光路上にロングパスフィルタが挿入されず、光共振器は波長750nm付近で自然発振(フリーランニング)した。アレキサンドライト結晶は、温度変化などでレーザ利得に変化が生じ、750nmの発振中心波長が数nm程度変化することがある。例えば光音響などの波長の精度が重要な用途では、数nmの波長の変動により信号品質が劣化することがあり、好ましくない。
上記のように、第2の波長のレーザ光は、温度変化などに伴って発振波長に変動が生じる。一方、第1の波長については、発振波長は、波長切替部56が光共振器の光路上に挿入するロングパスフィルタの光透過率の波長特性で決まり、温度変化に伴ってレーザ利得に変化が生じたとしても、光共振器の発振波長は変動しない。本実施形態では、第2の波長以上の波長の光を透過させる別のロングパスフィルタを用い、出射すべきレーザ光の波長が第2の波長であるとき、その別のロングパスフィルタを光共振器の光路上に挿入することで、第2の波長についても発振波長を安定化させる。
本実施形態では、波長切替部56(図2)は、第1の波長以上の光を透過させるロングパスフィルタ(第1のロングパスフィルタ)に加えて、第2の波長以上の波長の光を透過させる第2のロングパスフィルタを有する。波長切替部56は、出射すべきレーザ光の波長が第1の波長であるときは、光共振器の光路上に第1のロングパスフィルタを挿入する。また、出射すべきレーザ光の波長が第2の波長であるときは、光共振器の光路上に第2のロングパスフィルタを挿入する。
図9は、波長切替部の構成例を示す。この例では、波長切替部は、回転変位に伴って、第1又は第2のロングパスフィルタを光共振器の光路上に挿入するフィルタ回転体として構成される。波長切替部(フィルタ回転体)56bは、第1のロングパスフィルタが配置された第1の領域71と、第2のロングパスフィルタが配置された第2の領域72とを有する。例えば回転変位位置0°から180°までの領域が第1のロングパスフィルタが配置された第1の領域71に対応し、回転変位位置180°から360°までの領域が第2のロングパスフィルタが配置された第2の領域72に対応する。駆動手段57は、例えばフィルタ回転体56bを連続的に回転させ、光共振器の光路上に第1のロングパスフィルタと第2のロングパスフィルタとを交互に挿入させる。
図10は、第1及び第2のロングパスフィルタの光透過率の波長特性を示す。同図において、グラフ(a)は第1のロングパスフィルタの光透過率の波長特性を示し、グラフ(b)は第2のロングパスフィルタの光透過率の波長特性を示す。第1のロングパスフィルタの光透過率の波長特性は、第1実施形態で説明したものと同様である(図5のグラフ(a))。第2のロングパスフィルタは、グラフ(b)に示すように、波長750nmの光を例えば99.8%という高い光透過率で透過させる一方、それよりも短い波長域の光をほとんど透過させない。第2のロングパスフィルタは、波長750nm付近において、波長が750nmよりも短い波長範囲では全透過(光透過率ほぼ100%)と呼べるほど光透過率が高くなく、波長が750nmになると初めて光がほぼ全透過すると言えるような波長特性となるような光透過率の波長特性を有する。
図11は、光共振器の実効利得を示す。図6において、グラフ(a)は光共振器の光路上に図10のグラフ(a)に示す波長特性の第1のロングパスフィルタを挿入した場合の実効利得を表し、グラフ(b)は図10のグラフ(b)に示す波長特性の第2のロングパスフィルタを挿入した場合の実効利得を表す。光共振器の光路上に第1のロングパスフィルタが挿入される場合の光共振器の実効利得の波長特性は、第1実施形態で説明したものと同様であり、グラフ(a)に示すように、第1のロングパスフィルタが初めて高い光透過率で光を透過させる波長800nmで実効利得が最大となる。
光共振器の光路上に第2のロングパスフィルタが挿入された場合、第2のロングパスフィルタのカットオフ波長よりも短波長側では、光共振器内の損失が大きいために、図11中に破線で示すフィルタが挿入されない場合の光共振器の実行効率に比して、実効利得が低くなる。波長750nmよりも長波長側では、第2のロングパスフィルタの光透過率が例えば99.8%と高いことから、フィルタが挿入されない場合の光共振器の実行効率とほぼ同じになる。第2のロングパスフィルタが光共振器の光路上に挿入される場合、光共振器の実効利得が最大となるのは、第2のロングパスフィルタが高い光透過率で光を透過させる波長750nm付近となる。
本実施形態では、出射すべきレーザ光の波長が第2の波長であるとき、第2のロングパスフィルタを光共振器の光路上に挿入する。第2のロングパスフィルタを光共振器の光路上に挿入することで、光共振器の実効利得が最大となる波長を第2のロングパスフィルタの光透過率の波長特性に応じて規定することができ、レーザ発振の際の発振波長を制御することができる。このように第2のロングパスフィルタを用いて発振波長を規定することで、第2の波長で自然発振させる場合に比して、波長安定性を高めることができる。その他の効果は第1実施形態と同様である。
ここで、第1の波長(800nm)と第2の波長(750nm)とでは、図4に示したようにレーザの利得値に大きな差がある。この場合、第1の波長と第2の波長とに対する出力ミラー54の反射率が同じであると、第1の波長と第2の波長の間で出力に大きなアンバランスが生じる。例えば、アレキサンドライトレーザの波長750nmでよく用いられる反射率70%のミラーを用いた場合、第1の波長(750nm)では出力を最適化できるが、第2の波長(800nm)では出力が著しく低下するか、或いは発振しないことがある。出力ミラー54の反射率を90%にすれば、波長800nmでは出力を最適化できるものの、今度は波長750nmでは出力が出にくくなる。
上記観点から、出力ミラー54の反射率に波長依存性を持たせ、それぞれの波長において反射率を最適化することが好ましい。図12は、出力ミラーの反射率の波長特性を示す。第1の波長におけるレーザ利得が、第2の波長におけるレーザ利得よりも低いことから、出力ミラー54の第1の波長の光に対する反射率は、第2の波長の光に対する反射率よりも高く設定する。具体的には、レーザロッド51にアレキサンドライト結晶を用いた場合、図12に示すような、波長800nmの光に対する反射率が90%で、波長750nmの光に対する反射率が70%となるような波長特性を持つミラーを用いればよい。出力ミラー54にこのような波長特性を持たせることで、双方の波長において、出力を最適化できる。
なお、上記のように出力ミラー54の反射率を各波長において最適な出力が得られるように設定すると、第1の波長と第2の波長とではレーザ利得に大きな差があることから、第1の波長と第2の波長とで、レーザ光の出力強度(レーザパワー)に大きな差が生じる。波長間でレーザパワーに差が生じると、各波長に対応した光音響信号間の差分を取る際にレーザパワーの差を補正する必要が生じるなど、不都合が生じる。
各波長のレーザパワーを揃えるために、第1の波長に対する光共振器の実効利得と、第2の波長に対する光共振器の実効利得とが同じになるように、出力ミラー54の第1の波長の光に対する反射率と第2の波長の光に対する反射率とを選定しておくとよい。例えばレーザ利得が低い800nmで最適条件となるように、出力ミラー54の波長800nmの光に対する反射率を最適条件である90%に設定する一方、波長750nmの光に対する反射率は最適条件である反射率70%よりも低い反射率に設定する。この場合、波長750nmでは最適条件から外れるが、波長750nmにおけるレーザ利得はもともと高いので、出力ミラー54の反射率が最適条件から外れたとしても、レーザ発振には問題がない。出力ミラー54の反射率を上記のように設定することで、双方の波長のレーザ光の光強度を揃えることができる。
上記では、ミラーの反射率を波長に応じて変えることでレーザ光の光強度を揃える例について説明したが、これに代えて、出射すべきレーザ光の波長が、レーザ利得が高い第2の波長であるときに、光共振器の光路上に、少なくとも第2の波長の光の透過量を低下させる減光部材を挿入するようにしてもよい。図13は、変形例のレーザ光源ユニットにおける光共振器内の構成を示す。この例では、光共振器の光路上に、減光部材として減光フィルタ58が挿入されている。減光フィルタ58は、例えば波長750nmの光に対して80%から90%の透過率を有する。減光フィルタ58は、出射する光の波長が低利得側の800nmであるときには、光共振器の光路上から除去される。減光フィルタ58の光透過率は、レーザ装置から出力される波長800nmの光の光強度と、波長750nmの光の光強度とが同じになるように選定されることが好ましい。
なお、図7に示す例のように、波長切替部56が少なくとも750nmの波長の光を透過する光学部材を有し、出射すべきレーザ光の波長が750nmであるとき、その光学部材が光共振器の光路上に挿入される構成の場合、波長切替部56の光学部材が、減光フィルタ58を兼ねることとしてもよい。また、減光フィルタ58の光透過率は波長依存性を持っていてもよく、減光フィルタ58の波長800nmの光に対する透過率と、波長750nmの光に対する透過率とが異なっていてもよい。例えば減光フィルタ58は、波長800nmの光をほぼ全透過させる一方、波長750nmの光は一部を減衰して透過させる。このようにする場合、減光フィルタ58を光共振器の光路上から抜き差しする必要がなくなる。
例えば、波長800nmのレーザ光を出射する際に、フラッシュランプ52(図2)からレーザロッド51に30Jのエネルギーを投入すると、レーザ出力100mJのレーザ光が得られたとする。同じ条件で発振波長を750nmに制御すると、レーザロッド51への投入エネルギーが30Jのとき、波長750nmに対する光共振器の実効利得は波長800nmに対する光共振器の利得は高く、レーザ出力は200mJとなる。波長750nmのときのレーザロッド51への投入エネルギー(励起エネルギー)を15Jに制御すれば、レーザ出力は100mJとなり、波長750nmと800nmとでレーザ出力を揃えることはできる。しかし、投入エネルギーを波長ごとに増減させてレーザ出力を保つ場合、波長750nmの光を出射する際に、誤って波長800nmのときの投入エネルギーでレーザロッド51を励起すると、想定していたよりも光強度が高いレーザ光が出射することになり、そのような事態は避けたい。また、特に高速で波長を切り替えることを考えると、フラッシュランプ52を駆動する電源回路の出力を高速に切り換えるための機構も必要になり、電源の追加コストが発生する。
上記のように、波長750nmの光に対するミラーの反射率を低下させ、又は、波長750nmの光出射時に減光フィルタ58を光共振器の光路上に挿入する場合、レーザロッド51への投入エネルギーを一定としつつも、波長750nmと800nmとでレーザ出力を一定に保つことが可能である。例えば、低利得側の波長800nmでレーザ光の光強度が安全規定値以下となるように投入エネルギーが設定されているとき、高利得側の波長750nmで同じ投入エネルギーでレーザ発振を行っても、レーザの安全規定値を超える光強度のレーザ光が出射することを回避することができる。また、投入エネルギーを波長に応じて増減させる必要がないため、電源回路は一定の投入エネルギーとなるようにフラッシュランプ52を駆動すればよく、電源の追加コストは発生しない。
引き続き、本発明の第3実施形態を説明する。図14は、本発明の第3実施形態の光音響計測装置を示す。本実施形態の光音響計測装置10aは、超音波ユニット12aが、図1に示す第1実施形態の光音響計測装置10における超音波ユニット12の構成に加えて、データ分離手段32、超音波画像再構成手段33、検波・対数変換手段34、超音波画像構築手段35、画像合成手段36、及び送信制御回路37を有する。本実施形態の光音響計測装置10は、光音響画像に加えて、超音波画像を生成する点で第1実施形態と相違する。その他の部分は、第1実施形態と同様でよい。
本実施形態では、プローブ11は、光音響信号の検出に加えて、被検体に対する音響波(超音波)の送信、及び送信した超音波に対する被検体からの反射音響波(反射超音波)の検出(受信)を行う。トリガ制御回路30は、超音波画像の生成時は、送信制御回路37に超音波送信を指示する旨の超音波送信トリガ信号を送る。送信制御回路37は、トリガ信号を受けると、プローブ11から超音波を送信させる。プローブ11は、超音波の送信後、被検体からの反射超音波を検出する。
プローブ11が検出した反射超音波は、受信回路21を介してAD変換手段22に入力される。トリガ制御回路30は、超音波送信のタイミングに合わせてAD変換手段22にサンプリグトリガ信号を送り、反射超音波のサンプリングを開始させる。AD変換手段22は、反射超音波のサンプリングデータ(反射超音波データ)を受信メモリ23に格納する。
データ分離手段32は、受信メモリ23に格納された反射超音波データと、第1及び第2の光音響データとを分離する。データ分離手段32は、反射超音波データを超音波画像再構成手段33に渡し、第1及び第2の光音響データを複素数化手段24に渡す。第1及び第2の光音響データに基づく光音響画像の生成は第1実施形態と同様である。データ分離手段32は、分離した反射超音波のサンプリングデータを、超音波画像再構成手段33に入力する。
超音波画像再構成手段33は、プローブ11の複数の超音波振動子で検出された反射超音波(そのサンプリングデータ)に基づいて、超音波画像(反射音響波画像)の各ラインのデータを生成する。超音波画像再構成手段33は、例えばプローブ11の64個の超音波振動子からのデータを、超音波振動子の位置に応じた遅延時間で加算し、1ライン分のデータを生成する(遅延加算法)。
検波・対数変換手段34は、超音波画像再構成手段33が出力する各ラインのデータの包絡線を求め、求めた包絡線を対数変換する。超音波画像構築手段35は、対数変換が施された各ラインのデータに基づいて、超音波画像を生成する。超音波画像再構成手段33、検波・対数変換手段34、及び超音波画像構築手段35は、反射超音波に基づいて超音波画像を生成する超音波画像生成手段を構成する。
画像合成手段36は、光音響画像と超音波画像とを合成する。画像合成手段36は、例えば光音響画像と超音波画像とを重畳することで画像合成を行う。その際、画像合成手段36は、光音響画像と超音波画像とで、対応点が同一の位置となるように位置合わせをすることが好ましい。合成された画像は、画像表示手段14に表示される。画像合成を行わずに、画像表示手段14に、光音響画像と超音波画像とを並べて表示し、或いは光音響画像と超音波画像とを切り替えてすることも可能である。
本実施形態では、光音響計測装置は、光音響画像に加えて超音波画像を生成する。超音波画像を参照することで、光音響画像では画像化することができない部分を観察することができる。その他の効果は、第1実施形態と同様である。
なお、上記各実施形態では、第1の光音響データと第2の光音響データとを複素数化する例について説明したが、複素数化せずに、第1の光音響データと第2の光音響データとを別々に再構成してもよい。さらに、ここでは、複素数化して位相情報を用いて第1の光音響データと第2の光音響データの比を計算しているが、両者の強度情報から比を計算しても同様の効果が得られるまた、強度情報は、第1の再構成画像における信号強度と、第2の再構成画像における信号強度とに基づいて生成できる。
光音響画像の生成に際して、被検体に照射されるパルスレーザ光の波長の数は2つには限られず、3以上のパルスレーザ光を被検体に照射し、各波長に対応する光音響データに基づいて光音響画像を生成してもよい。その場合、例えば位相情報抽出手段26は、各波長に対応する光音響データ間での相対的な信号強度の大小関係を位相情報として生成すればよい。また、強度情報抽出手段27は、例えば各波長に対応する光音響データにおける信号強度を1つにまとめたものを強度情報として生成すればよい。
上記各実施形態では、主に第1の波長が800nmで第2の波長が750nmである例を説明したが、これら波長はレーザ発振が可能な波長帯域の中にあればよく、波長800nmと波長750nmの組み合わせには限定されない。また、第2の波長は、レーザ利得が最大値となる波長には限定されない。例えば第1の波長を800nmとしたとき、利得が最大となる波長750nmから波長800nmまでの間の任意の波長を第2の波長として選定してもよい。その場合は、第2の波長として選定した波長以上の光とを透過するロングパスフィルタを光共振器の光路上に挿入して、レーザ発振波長を第2の波長に制御するようにすればよい。
上記各実施形態では、第1の波長が第2の波長よりも長く、かつ、第1の波長におけるレーザ利得係数が第2の波長におけるレーザ利得係数よりも低い場合にロングパスフィルタを用いて第1の波長と第2の波長とを切り替える例を説明した。これとは逆に、第1の波長が第2の波長よりも短い場合には、第1の波長の光以下の波長の光を透過させるショートパスフィルタ(第1のショートパスフィルタ)を用いることで、第1の波長と第2の波長とを切り替えることができる。例えば、第1の波長を730nmとし、第2の波長を750nmとした場合、波長730nmのレーザ光の出射時に、波長730nm以下の光を透過させるショートパスフィルタを光共振器の光路上に挿入し、波長750nmの光の出射時にはショートパスフィルタを光共振器の光路上から除去することで、波長730nmと波長750nmのレーザ光を切り替えて出射できる。
図15は、ショートパスフィルタを含む波長切替部56の光透過率を示す。同図において、グラフ(a)は波長切替部56(図2)に用いられるショートパスの光透過率の波長特性を示し、グラフ(b)は光共振器の光路上から波長切替部56が除去された状態(図3(b))における波長切替部56の位置の光透過率の波長特性を示す。波長切替部(ショートパスフィルタ)56は、グラフ(a)に示すように、波長800nmの光を例えば99.8%という高い光透過率で透過させる一方、それよりも波長が長い波長750nmの光をほとんど透過させない。光共振器の光路上からショートパスフィルタが除去されたときは、光共振器の光路上に特に光を遮るものが存在しないので、波長730nmの光も波長750nmの光も、ほぼそのまま(100%)透過する。
図16は、光共振器の実効利得を示す。図16において、グラフ(a)は光共振器の光路上に図15のグラフ(a)に示す波長特性のショートパスフィルタを挿入した場合の実効利得を表し、グラフ(b)はショートパスフィルタが除去された場合の実効利得を表している。ショートパスフィルタが挿入されない場合(図3(b))、図16にグラフ(b)で示すように、実効利得は、アレキサンドライトのレーザ利得の波長特性(図4)と同様に、波長750nm付近で最大となる。レーザ発振は、実効利得>0のポイント(波長、励起パワー)で起こる。励起パワーを増加していったとき、最初に実効利得が0よりも大きくなるのは、実効利得が最も高い波長750nmである。従って、光共振器の光路上にショートパスフィルタが挿入されていないとき、光共振器は、実効利得の波長特性におけるピーク位置の波長750nmで発振する。
一方、光共振器の光路上にショートパスフィルタが挿入される場合(図3(a))、ショートパスフィルタのカットオフ波長よりも長波長側では、光共振器内の損失が大きいために実効利得が低く、実効利得が最大となるのは、ショートパスフィルタが初めて高い光透過率で光を透過させる波長730nm付近となる。従って、ショートパスフィルタが挿入されているとき、光共振器は、実効利得の波長特性におけるピーク位置の波長730nmで発振する。
上記では、第2の波長の光の出射時にショートパスフィルタを光共振器の光路上から除去しているが、これに代えて、波長切替部56に第2の波長以下の波長の光を透過させるショートパスフィルタ(第2のショートパスフィルタ)を含ませ、第2の波長の光の出射時に、第2のショートパスフィルタを光共振器の光路上に挿入する構成としてもよい。また、波長切替部56が、ショートパスフィルタとロングパスフィルタとの双方を含む構成をも可能である。例えば、波長切替部56は、波長730nm以下の光を透過するショートパスフィルタと、波長750nm以下の光を透過するショートパスフィルタ又は波長750nm以上の光を透過するロングパスフィルタと、波長800nmの光を透過するロングパスフィルタとを含む。この場合、光共振器の光路上にショートパスフィルタ又はロングパスフィルタを選択的に挿入することで、波長730nm、750nm、800nmの光を切り替えて出射することができる。
上記各実施形態では、主にアレキサンドライトレーザについて説明したが、レーザロッド51(図2)に用いられるレーザ媒質はアレキサンドライトには限定されない。例えばCr:LiSAFやCr:LiCAFなどは750−900nmの波長範囲でレーザ発振が可能であり、レーザロッド51に、Cr:LiSAFやCr:LiCAFなどを用いてもよい。また、Ti:Sapphireは700−1000nmの波長範囲でレーザ発振が可能であり、レーザロッド51にTi:Sapphireを用いてよい。図13では、減光部材である減光フィルタ58を光共振器内に配置しているが、これには限定されず、光共振器からの出射光の光路上に減光部材58を配置する構成とすることも可能である。
上記各実施形態では、レーザ装置が光音響計測装置の一部を構成する例について説明したが、これには限定されない。本発明のレーザ装置を、光音響計測装置とは異なる装置に用いることも可能である。レーザ装置がパルスレーザ光を出射しないものである場合、Qスイッチ55(図2)は省略することができる。
以上、本発明をその好適な実施形態に基づいて説明したが、本発明のレーザ装置及び光音響計測装置は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
10:光音響計測装置
11:プローブ
12:超音波ユニット
13:レーザ光源ユニット
14:画像表示手段
21:受信回路
22:AD変換手段
23:受信メモリ
24:複素数化手段
25:光音響画像再構成手段
26:位相情報抽出手段
27:強度情報抽出手段
28:検波・対数変換手段
29:光音響画像構築手段
30:トリガ制御回路
31:制御手段
32:データ分離手段
33:超音波画像再構成手段
34:検波・対数変換手段
35:超音波画像構築手段
36:画像合成手段
37:送信制御回路
51:レーザロッド
52:フラッシュランプ
53、54:ミラー
55:Qスイッチ
56:波長切替部
57:駆動手段

Claims (19)

  1. 第1の波長と、前記第1の波長よりも波長が短く、かつ、レーザ利得係数の波長特性でレーザ利得係数が第1の波長におけるレーザ利得係数よりも高い第2の波長とを含む複数の波長の光を出射するレーザ装置であって、
    レーザ媒質と、
    前記レーザ媒質に励起光を照射する励起光源と、
    前記レーザ媒質を挟んで対向する一対のミラーを含む光共振器と、
    第1の波長以上の波長の光を透過させる第1のロングパスフィルタを含み、出射すべきレーザ光の波長が第1の波長であるとき、前記第1のロングパスフィルタを前記光共振器の光路上に挿入する波長切替部とを備えたことを特徴とするレーザ装置。
  2. 前記波長切替部が、出射すべきレーザ光の波長が第2の波長であるときは、第1及び第2の波長の光の双方を透過させることを特徴とする請求項1に記載のレーザ装置。
  3. 前記波長切替部が、前記第2の波長以上の波長の光を透過させる第2のロングパスフィルタを更に含み、出射すべきレーザ光の波長が第2の波長であるとき、前記第2のロングパスフィルタを前記光共振器の光路上に挿入することを特徴とする請求項1又は2に記載のレーザ装置。
  4. 前記波長切替部が、前記第1のロングパスフィルタが配置された第1の領域と、前記第2のロングパスフィルタが配置された第2の領域とを有し、前記回転変位に伴って前記光共振器の光路上に前記第1の領域及び第2の領域を交互に挿入可能なフィルタ回転体として構成されていることを特徴とする請求項3に記載のレーザ装置。
  5. 前記レーザ利得係数の波長特性において、前記第2の波長で前記レーザ利得係数が最大となり、前記波長切替部が、少なくとも前記第2の波長の光を透過する光学部材を更に含み、出射すべきレーザ光の波長が第2の波長であるとき、前記光学部材を前記光共振器の光路上に挿入することを特徴とする請求項1又は2に記載のレーザ装置。
  6. 前記波長切替部が、前記第1のロングパスフィルタが配置された第1の領域と、前記光学部材が配置された第2の領域とを有し、前記回転変位に伴って前記光共振器の光路上に前記第1の領域及び第2の領域を交互に挿入可能なフィルタ回転体として構成されていることを特徴とする請求項5に記載のレーザ装置。
  7. 前記レーザ利得係数の波長特性において、前記第2の波長で前記レーザ利得係数が最大となり、前記波長切替部が、出射すべきレーザ光の波長が第2の波長であるときは、前記第1のロングパスフィルタを前記光共振器の光路上から除去することを特徴とする請求項1又は2に記載のレーザ装置。
  8. 出射すべきレーザ光の波長が第2の波長であるとき、前記光共振器の光路上又は光共振器からの出射光の光路上に、少なくとも第2の波長の光の透過量を低下させる減光部材を挿入することを特徴とする請求項1から7何れかの記載のレーザ装置。
  9. レーザ装置から出力される前記第1の波長の光の光強度と、前記第2の波長の光の光強度とが同じになるように、前記減光部材の光透過率が選定されていることを特徴とする請求項8に記載のレーザ装置。
  10. 前記一対のミラーのうちのレーザ出力側のミラーの前記第1の波長の光に対する反射率が前記第2の波長の光に対する反射率よりも高いことを特徴とする請求項1から7何れかに記載のレーザ装置。
  11. 前記第1の波長に対する前記光共振器の実効利得と、前記第2の波長に対する前記光共振器の実効利得とが同じになるように、前記レーザ出力側のミラーの前記第1の波長の光に対する反射率と前記第2の波長の光に対する反射率とが選定されていることを特徴とする請求項10に記載のレーザ装置。
  12. 出射すべきレーザ光の波長が第1の波長のときと、出射すべきレーザ光の波長が第2の波長のときとで、前記励起光の前記レーザ媒質への投入エネルギーが同じエネルギーであることを特徴とする請求項8から11何れかに記載のレーザ装置。
  13. 前記光共振器の光路上に配置されたQスイッチを更に備えたことを特徴とする請求項1から12何れかに記載のレーザ装置。
  14. 第1の波長と、前記第1の波長よりも波長が短く、かつ、レーザ利得係数の波長特性でレーザ利得係数が第1の波長におけるレーザ利得係数よりも高い第2の波長とを含む複数の波長の光を出射するレーザ装置であって、レーザ媒質と、該レーザ媒質に励起光を照射する励起光源と、前記レーザ媒質を挟んで対向する一対のミラーを含む光共振器と、第1の波長以上の波長の光を透過させる第1のロングパスフィルタを含み、出射すべきレーザ光の波長が第1の波長であるとき、前記第1のロングパスフィルタを前記光共振器の光路上に挿入する波長切替部とを有するレーザ装置と、
    前記第1及び第2の波長のレーザ光が被検体に照射されたときに被検体内で生じた光音響信号を検出し、前記第1及び第2の波長のそれぞれに対応した第1及び第2の光音響データを生成する検出手段と、
    前記第1及び第2の光音響データ間の相対的な信号強度の大小関係を抽出する強度比抽出手段とを備えたことを特徴とする光音響計測装置。
  15. 前記第1及び第2の光音響データに基づいて光音響画像を生成する光音響画像構築手段を更に備えたことを特徴とする請求項14に記載の光音響計測装置。
  16. 前記第1及び第2の光音響データに基づいて信号強度を示す強度情報を生成する強度情報抽出手段を更に備え、
    前記光音響画像構築手段が、前記光音響画像の各画素の階調値を前記強度情報に基づいて決定すると共に、各画素の表示色を前記抽出された大小関係に基づいて決定するものであることを特徴とする特徴とする請求項15に記載の光音響計測装置。
  17. 前記第1の光音響データと前記第2の光音響データとのうちの何れか一方を実部、他方を虚部とした複素数データを生成する複素数化手段と、前記複素数データからフーリエ変換法により再構成画像を生成する光音響画像再構成手段とを更に備え、
    前記強度比抽出手段が前記再構成画像から前記大小関係としての位相情報を抽出し、前記強度情報抽出手段が前記再構成画像から前記強度情報を抽出するものであることを特徴とする請求項16に記載の光音響計測装置。
  18. 第1の波長と、前記第1の波長よりも波長が長く、かつ、レーザ利得係数の波長特性でレーザ利得係数が第1の波長におけるレーザ利得係数よりも高い第2の波長とを含む複数の波長の光を出射するレーザ装置であって、
    レーザ媒質と、
    前記レーザ媒質に励起光を照射する励起光源と、
    前記レーザ媒質を挟んで対向する一対のミラーを含む光共振器と、
    第1の波長以下の波長の光を透過させる第1のショートパスフィルタを含み、出射すべきレーザ光の波長が第1の波長であるとき、前記第1のショートパスフィルタを前記光共振器の光路上に挿入する波長切替部とを備えたことを特徴とするレーザ装置。
  19. 前記波長切替部が、前記第2の波長以下の波長の光を透過させる第2のショートパスフィルタを更に含み、出射すべきレーザ光の波長が第2の波長であるとき、前記第2のショートパスフィルタを前記光共振器の光路上に挿入することを特徴とする請求項18に記載のレーザ装置。
JP2012206754A 2012-03-09 2012-09-20 レーザ装置及び光音響計測装置 Pending JP2013214703A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012206754A JP2013214703A (ja) 2012-03-09 2012-09-20 レーザ装置及び光音響計測装置
PCT/JP2013/053385 WO2013132976A1 (ja) 2012-03-09 2013-02-13 レーザ装置及び光音響計測装置
US14/337,761 US20140336482A1 (en) 2012-03-09 2014-07-22 Laser device and photoacoustic measurement device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012052498 2012-03-09
JP2012052498 2012-03-09
JP2012206754A JP2013214703A (ja) 2012-03-09 2012-09-20 レーザ装置及び光音響計測装置

Publications (2)

Publication Number Publication Date
JP2013214703A true JP2013214703A (ja) 2013-10-17
JP2013214703A5 JP2013214703A5 (ja) 2014-07-10

Family

ID=49116460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206754A Pending JP2013214703A (ja) 2012-03-09 2012-09-20 レーザ装置及び光音響計測装置

Country Status (3)

Country Link
US (1) US20140336482A1 (ja)
JP (1) JP2013214703A (ja)
WO (1) WO2013132976A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146306A1 (ja) * 2014-03-27 2015-10-01 富士フイルム株式会社 レーザ装置及びそれを備えた光音響計測装置
WO2015198570A1 (ja) * 2014-06-24 2015-12-30 富士フイルム株式会社 固体レーザ装置及び光音響計測装置
US12009626B2 (en) 2018-03-29 2024-06-11 Fujifilm Corporation Laser device, multi-wavelength laser device, and photoacoustic measurement apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776115B2 (ja) * 2016-12-22 2020-10-28 キヤノン株式会社 処理装置および処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213676A (ja) * 1994-11-16 1996-08-20 Oki Electric Ind Co Ltd 光ファイバ増幅器
JPH1065260A (ja) * 1996-08-23 1998-03-06 Mitsubishi Cable Ind Ltd 固体レーザ装置
JP2003204102A (ja) * 2002-01-09 2003-07-18 Nidek Co Ltd 眼科用レーザ装置
JP2010017426A (ja) * 2008-07-11 2010-01-28 Canon Inc 生体検査装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416154A (en) * 1981-08-11 1983-11-22 Phillips Petroleum Company Method for measuring the surface area of a solid
DK160590C (da) * 1988-09-12 1991-09-16 Fls Airloq As Fremgangsmaade til detektering af en gasart ved hjaelp af fotoakustisk spektroskopi
US5581356A (en) * 1993-06-14 1996-12-03 Instruments Sa, Inc. High purity tunable forensic light source
US6008889A (en) * 1997-04-16 1999-12-28 Zeng; Haishan Spectrometer system for diagnosis of skin disease
US6424858B1 (en) * 1998-11-12 2002-07-23 John L. Williams Apparatus and method for viewing vasculature of a human being
EP1585440A1 (en) * 2003-01-13 2005-10-19 Glucon Inc. Photoacoustic assay method and apparatus
JP2005150304A (ja) * 2003-11-13 2005-06-09 Toshiba Corp 赤色レーザ装置
WO2011052061A1 (ja) * 2009-10-29 2011-05-05 キヤノン株式会社 光音響装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213676A (ja) * 1994-11-16 1996-08-20 Oki Electric Ind Co Ltd 光ファイバ増幅器
JPH1065260A (ja) * 1996-08-23 1998-03-06 Mitsubishi Cable Ind Ltd 固体レーザ装置
JP2003204102A (ja) * 2002-01-09 2003-07-18 Nidek Co Ltd 眼科用レーザ装置
JP2010017426A (ja) * 2008-07-11 2010-01-28 Canon Inc 生体検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015044874; IEEE PHOTONICS TECHNOLOGY LETTERS VOL.22,NO.10, 20100515, 700-702 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146306A1 (ja) * 2014-03-27 2015-10-01 富士フイルム株式会社 レーザ装置及びそれを備えた光音響計測装置
JP2015191918A (ja) * 2014-03-27 2015-11-02 富士フイルム株式会社 レーザ装置及びそれを備えた光音響計測装置
US10243318B2 (en) 2014-03-27 2019-03-26 Fujifilm Corporation Laser device and photoacoustic measurement device comprising the same
WO2015198570A1 (ja) * 2014-06-24 2015-12-30 富士フイルム株式会社 固体レーザ装置及び光音響計測装置
US12009626B2 (en) 2018-03-29 2024-06-11 Fujifilm Corporation Laser device, multi-wavelength laser device, and photoacoustic measurement apparatus

Also Published As

Publication number Publication date
WO2013132976A1 (ja) 2013-09-12
US20140336482A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5730253B2 (ja) レーザ光源ユニット及び光音響画像生成装置
JP5796896B2 (ja) 断層画像生成装置及び方法
JP5662973B2 (ja) レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
US20140148660A1 (en) Laser source unit, control method thereof, photoacoustic image generation apparatus and photoacoustic image generation method
JP5713968B2 (ja) 光音響画像生成装置及び音響波ユニット
JP5681675B2 (ja) 光音響画像生成装置及び音響波ユニット
US10243318B2 (en) Laser device and photoacoustic measurement device comprising the same
WO2015001876A1 (ja) レーザ装置及び光音響計測装置
WO2013132977A1 (ja) レーザ装置及び光音響計測装置
WO2013132976A1 (ja) レーザ装置及び光音響計測装置
WO2019187514A1 (ja) レーザ装置、多波長レーザ装置及び光音響計測装置
JP2014064733A (ja) 光音響計測装置
US12009626B2 (en) Laser device, multi-wavelength laser device, and photoacoustic measurement apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110