JP6763817B2 - 水素ガス製造装置、及び水素ガス製造方法 - Google Patents
水素ガス製造装置、及び水素ガス製造方法 Download PDFInfo
- Publication number
- JP6763817B2 JP6763817B2 JP2017083557A JP2017083557A JP6763817B2 JP 6763817 B2 JP6763817 B2 JP 6763817B2 JP 2017083557 A JP2017083557 A JP 2017083557A JP 2017083557 A JP2017083557 A JP 2017083557A JP 6763817 B2 JP6763817 B2 JP 6763817B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- tank
- hydrogen gas
- valve
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 180
- 238000004519 manufacturing process Methods 0.000 title claims description 57
- 239000007789 gas Substances 0.000 claims description 295
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 206
- 238000001179 sorption measurement Methods 0.000 claims description 175
- 229910021529 ammonia Inorganic materials 0.000 claims description 103
- 238000000354 decomposition reaction Methods 0.000 claims description 69
- 230000008929 regeneration Effects 0.000 claims description 64
- 238000011069 regeneration method Methods 0.000 claims description 64
- 239000002994 raw material Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 42
- 230000006837 decompression Effects 0.000 claims description 41
- 239000000446 fuel Substances 0.000 claims description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 13
- 238000007599 discharging Methods 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000003463 adsorbent Substances 0.000 description 25
- 239000012535 impurity Substances 0.000 description 22
- 238000011084 recovery Methods 0.000 description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 229910021536 Zeolite Inorganic materials 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 239000010457 zeolite Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000274 adsorptive effect Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000001165 gas chromatography-thermal conductivity detection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
かかるPSA装置においては、再生工程等で排出されるオフガスには、水素ガスが含まれることが知られている。特許文献2は、再生工程等にあるPSA装置から排出されるオフガスを燃焼させて発生する熱量を、アンモニア分解装置に供給して、アンモニアの分解反応に必要な熱量を供給できること開示している。
[1] PSA方式によって原料ガスから水素ガスを製造する装置であって、アンモニアを分解して、窒素ガスと水素ガスとを含む原料ガスを生成するアンモニア分解装置と、二つ以上の吸着塔と、前記アンモニア分解装置から前記吸着塔に前記原料ガスを供給する原料ガス供給ラインと、前記吸着塔に接続され、脱圧工程または再生工程にある吸着塔から排出されるオフガスを挿通するオフガス排出ラインと、前記オフガス排出ラインに設けられ、前記オフガスを貯留する第1のタンクと、前記オフガス排出ラインのうち、前記第1のタンクの二次側の部分に設けられた第2のタンクと、前記オフガス排出ラインのうち、前記第1のタンクと前記第2のタンクとの間に設けられた昇圧手段と、前記第1のタンクと前記第2のタンクとを結ぶ返送ラインと、前記オフガス排出ラインで挿通されるオフガスを、前記アンモニア分解装置の燃料として再利用する燃料ラインと、を有する、水素ガス製造装置。
[2] 前記オフガス排出ラインと、前記返送ラインによって、前記第1のタンクと前記第2のタンクとの間で循環された前記オフガスを、前記アンモニア分解装置の燃料として再利用する[1]に記載の水素ガス製造装置。
[3] [1]又は[2]に記載の水素ガス製造装置を用いた水素ガス製造方法であって、前記吸着塔内を減圧して、吸着塔内に残存する原料ガスをオフガスとして排出する脱圧工程と、前記吸着塔内に水素ガスを導入して、吸着塔内に残存する原料ガスと、前記水素ガスとをオフガスとして排出する再生工程と、前記オフガスを、前記第1のタンクと、前記第2のタンクとの間で循環させて混合する工程と、前記オフガスを、前記アンモニア分解装置の燃料として再利用する工程と、を含み、前記再利用する工程で再利用される前記オフガスに含まれる水素ガスの濃度の変動が抑制されている水素ガス製造方法。
「原料ガス」とは、アンモニアを分解して得られる水素ガスを含む混合ガスを意味する。原料ガスには、水素ガスの他に、不純物(窒素ガス、メタンガス、一酸化炭素ガス、二酸化炭素ガス等)が含まれている。
「再生ガス」とは、再生工程で吸着塔内に残存する不純物等を排出するために導入される、精製された水素ガスを意味する。
「オフガス」とは、脱圧工程、または再生工程にある吸着塔内から排出されるガスを意味する。
「吸着工程」とは、原料ガスに含まれる不純物を高圧下で吸着塔内に吸着させて、精製された水素ガスを回収する工程を意味する。
「脱圧工程」とは、吸着工程後の吸着塔内を減圧し、吸着塔内に残存する原料ガスを排出する工程を意味する。
「再生工程」とは、真空ポンプで吸着塔内に残存する原料ガスを排出する工程を意味する。再生工程の中でも、単に真空ポンプで吸着塔内に残存する原料ガスを排出する工程を「排気工程」と記し、真空ポンプによる排出を行いながら、吸着工程で精製した水素ガスの一部を吸着塔内に導入して、不純物を排出する工程を「排気再生工程」と記す。
「減圧均圧工程」とは、吸着工程を終えて脱圧工程を行う前の吸着塔が、再生工程を終えて吸着工程を行う前の吸着塔内に、水素ガスを導出すること工程を意味する。
「加圧均圧工程」とは、再生工程を終えて吸着工程を行う前の吸着塔が、吸着工程を終えて脱圧工程を行う前の吸着塔から、水素ガスを導入される工程を意味する。
「加圧工程」とは、加圧均圧工程が終了した吸着塔に精製された水素ガスを導入して吸着塔内を加圧する工程であり、次の吸着行程の準備のための工程である。
まず、本発明を適用した一実施形態である水素ガス製造装置1の構成について説明する。
図1は、水素ガス製造装置1の構成の一例を示す模式図である。図1に示すように、水素ガス製造装置1は、アンモニア供給源2、アンモニア分解装置3と、アンモニア除去装置4と、PSA装置5と、空気供給源6と、ラインL1〜L6とを備えている。
以下に水素ガス製造装置1の各構成要素に関して説明する。
2NH3→N2+3H2 ・・・(1)
アンモニア除去装置4は、アンモニア分解反応によって得られる原料ガスに含まれている未反応のアンモニアを除去する。アンモニア除去装置4は、アンモニア吸着剤、及び分離膜等の公知の分離・精製機構9を有している。
PSA装置5は、ラインL3を介して供給される原料ガス中に含まれる水素ガスを精製する装置である。PSA装置5は、少なくとも二つ以上の吸着塔を有している。
前記原料ガスには、水素ガスの他、窒素ガス、及びメタンガス塔の不純物が含まれている。PSA装置5は、かかる不純物を原料ガスから除去して、水素ガスを精製する。
ラインL5は、PSA装置5の排気工程、排気再生工程、または脱圧工程にある吸着塔から排出されるオフガスを、アンモニア分解装置3に導入し、前記アンモニア分解装置の燃料として再利用する燃料ラインである。
ラインL6は、一端が空気供給源6と接続され、他端がラインL5と接続されている。
空気供給源6は、ラインL6を介して、ラインL5に空気を導出し、オフガスに酸素ガスを混入することによって、オフガスをアンモニア分解装置3の実用的な燃料とする。
図2は、本発明を適用した一実施形態であるPSA装置5の構成の一例を示す系統図である。
図2に示すように、PSA装置5は、原料ガス供給ライン510、オフガス排出ライン520、脱圧ライン530、水素ガス回収ライン540、再生ガス導入ライン550、均圧・加圧ライン560、第1乃至第4の吸着塔570A〜570D、真空ポンプ522、第1のタンク523、昇圧ポンプ524、第2のタンク525、バルブVA−1〜VA−6,VB−1〜VB−6,VC−1〜VC−6,VD−1〜VD−6,バルブV、及び返送ライン580を備え概略構成されている。
第1の供給分岐ライン511Aは、第1の吸着塔570Aの下端と接続された接続管571Aと接続されている。第1の供給分岐ライン511Aは、接続管571Aを介して、第1の吸着塔570Aの下端に原料ガスを供給する。
第2の供給分岐ライン511Bは、第2の吸着塔570Bの下端と接続された接続管571Bと接続されている。第2の供給分岐ライン511Bは、接続管571Bを介して、第2の吸着塔570Bの下端に原料ガスを供給する。
第3の供給分岐ライン511Cは、第3の吸着塔570Cの下端と接続された接続管571Cと接続されている。第3の供給分岐ライン511Cは、接続管571Cを介して、第3の吸着塔570Cの下端に原料ガスを供給する。
第4の供給分岐ライン511Dは、第4の吸着塔570Dの下端と接続された接続管571Dと接続されている。第4の供給分岐ライン511Dは、接続管571Cを介して、第4の吸着塔570Dの下端に原料ガスを供給する。
オフガス排出ライン520は、一端が第1乃至第4の排出分岐ライン521A〜521Dに分岐されており、他端が、ラインL5を介して、アンモニア分解装置3と接続されている。
第1の排出分岐ライン521Aは、接続管571Aと接続されている。第1の排出分岐ライン521Aは、接続管571Aを介して、第1の吸着塔570Aの下端から排出されるオフガスを挿通する。
第2の排出分岐ライン521Bは、接続管571Bと接続されている。第2の排出分岐ライン521Bは、接続管571Bを介して、第2の吸着塔570Bの下端から排出されるオフガスを挿通する。
第3の排出分岐ライン521Cは、接続管571Cと接続されている。第3の排出分岐ライン521Cは、接続管571Cを介して、第3の吸着塔570Cの下端から排出されるオフガスを挿通する。
第4の排出分岐ライン521Dは、接続管571Dと接続されている。第4の排出分岐ライン521Dは、接続管571Dを介して、第4の吸着塔570Dの下端から排出されるオフガスを挿通する。
第2のタンク525は、オフガス排出ライン520のうち、第1のタンク523の二次側の部分に設けられている。昇圧ポンプ524は、オフガス排出ライン520のうち、第1のタンク523と第2のタンク525との間の部分に設けられている。
第2のタンク525は、貯留されたオフガスを燃料ガスとして、ラインL5を介してアンモニア分解装置3に供給する。なお、図示はしないが、第2のタンク525は圧力計を有してもよい。
なお、大気圧程度の圧力とは、大気圧より50PaG小さい圧力値を下限値とし、大気圧より50PaG大きい圧力値を上限値とする数値範囲にある圧力をいう。
第1のタンク523、及び第2のタンク525は、水素ガスが各タンクの外部に漏れるのを防ぐために、気密性を有していることが好ましい。
なお、第2のタンク525内の圧力は、オフガスを一定の圧力に維持しながら貯留しやすくなるため、第1のタンク523内の圧力より高く維持されている。
第2の脱圧分岐ライン531Bは、接続管571Bと接続されている。第2の脱圧分岐ライン531Bは、接続管571Bを介して、第2の吸着塔570Bの下端から排出されるオフガスを挿通する。
第3の脱圧分岐ライン,531Cは、接続管571Cと接続されている。第3の脱圧分岐ライン531Cは、接続管571Cを介して、第3の吸着塔570Cの下端から排出されるオフガスを挿通する。
第4の脱圧分岐ライン,531Dは、接続管571Dと接続されている。第4の脱圧分岐ライン531Dは、接続管571Dを介して、第4の吸着塔570Dの下端から排出されるオフガスを挿通する。
流量調節バルブ532は、脱圧ライン530のうち、第1乃至第4の脱圧分岐ライン531A〜531Dの分岐位置と第1のタンク523との間に設けられている。流量調節バルブ532は、脱圧ライン530が挿通するオフガスの流量を制御する。
第1の回収分岐ライン541Aは、接続管572Aと接続されている。第1の回収分岐ライン541Aは、接続管572Aを介して、第1の吸着塔570Aの上端から精製された水素ガスを回収する。
第3の回収分岐ライン541Cは、接続管572Cと接続されている。第3の回収分岐ライン541Cは、接続管572Cを介して、第3の吸着塔570Cの上端から精製された水素ガスを回収する。
第4の回収分岐ライン541Dは、接続管572Dと接続されている。第4の回収分岐ライン541Dは、接続管572Dを介して、第4の吸着塔570Dの上端から精製された水素ガスを回収する。
第2の導入分岐ライン551Bは、接続管572Bと接続されている。第2の導入分岐ライン551Bは、接続管572Bを介して、第2の吸着塔570Bの上端に再生ガスを導入する。
第3の導入分岐ライン551Cは、接続管572Cと接続されている。第3の導入分岐ライン551Cは、接続管572Cを介して、第3の吸着塔570Cの上端に再生ガスを導入する。
第4の導入分岐ライン551Dは、接続管572Dと接続されている。第4の導入分岐ライン551Dは、接続管572Dを介して、第4の吸着塔570Dの上端に再生ガスを導入する。
流量調節バルブ552は、再生ガス導入ライン550のうち、第1乃至第4の導入分岐ライン551A〜551Dの分岐位置と、接続点543との間に設けられている。流量調節バルブ552は、水素ガス貯蔵タンク542から、接続点543、及び再生ガス導入ライン550を介して、第1乃至第4の吸着塔570A〜570Dに導入される再生ガスの流量を制御する。
第1の均圧分岐ライン561Aは、接続管572Aと接続されている。第2の均圧分岐ライン561Bは、第2の接続管572Bと接続されている。第3の均圧分岐ライン561Cは、接続管572Cと接続されている。第4の均圧分岐ライン561Dは、接続管572Dと接続されている。
流量調節バルブ562は、均圧・加圧ライン560のうち、接続点544と、後述する加圧バルブ563との間に設けられている。流量調節バルブ562は、均圧・加圧ライン560内のガスの流量を調節する。
加圧バルブ563は、均圧・加圧ライン560のうち、第1乃至第4の均圧分岐ライン561A〜561Dの分岐位置と、流量調節バルブ562との間に設けられている。加圧バルブ563は、水素ガス貯蔵タンク542から、接続点544、及び均圧・加圧ライン560を介して高圧の水素ガスを導入して、第1乃至第4の吸着塔570A〜570Dを加圧する。
第2の吸着塔570Bは、その下端が接続管571Bと接続されており、上端が接続管572Bと接続されている。第1の吸着塔570B内には、吸着剤573Bが充填されている。
第3の吸着塔570Cは、その下端が接続管571Cと接続されており、上端が接続管572Cと接続されている。第3の吸着塔570C内には、吸着剤573Cが充填されている。
第4の吸着塔570Dは、その下端が接続管571Dと接続されており、上端が接続管572Dと接続されている。第4の吸着塔570D内には、吸着剤573Dが充填されている。
バルブVA−4は、第1の回収分岐ライン541Aに設けられている。バルブVA−5は、第1の導入分岐ライン551Aに設けられている。バルブVA−6は、第1の均圧分岐ライン561Aに設けられている。
バルブVB−4は、第2の回収分岐ライン541Bに設けられている。バルブVB−5は、第2の導入分岐ライン551Bに設けられている。バルブVB−6は、第2の均圧分岐ライン561Bに設けられている。
バルブVC−4は、第3の回収分岐ライン541Cに設けられている。バルブVC−5は、第3の導入分岐ライン551Cに設けられている。バルブVC−6は、第3の均圧分岐ライン561Cに設けられている。
バルブVD−4は、第4の回収分岐ライン541Dに設けられている。バルブVD−5は、第4の導入分岐ライン551Dに設けられている。バルブVD−6は、第4の均圧分岐ライン561Dに設けられている。
バルブVでオフガスの圧力、及びオフガスの流量の少なくとも一方を調節することにより、アンモニア分解装置3のアンモニアの分解反応、及びオフガスの燃焼反応等の状態に合わせて、オフガス中の水素ガス濃度を制御することができ、アンモニアの分解反応に必要な熱量を安定的に供給することができる。
次に、上述した水素ガス製造装置1を用いた、本実施形態の水素ガス製造方法の一例について、説明する。
実施形態の水素ガス製造方法は、上述の水素ガス製造装置1を用いた水素ガス製造方法であって、前記吸着塔内を減圧して、吸着塔内に残存する原料ガスをオフガスとして排出する脱圧工程と、前記吸着塔内に水素ガスを導入して、吸着塔内に残存する原料ガスと、前記水素ガスとをオフガスとして排出する再生工程と、前記オフガスを、前記第1のタンクと、前記第2のタンクとの間で循環させて混合する工程と、前記オフガスを、前記アンモニア分解装置の燃料として再利用する工程と、を含み、前記再利用する工程で再利用される前記オフガスに含まれる水素ガスの濃度の変動が抑制されている。
2NH3→N2+3H2 ・・・(1)
オフガスの燃焼に際しては、空気は空気供給源6からラインL6を介して、ラインL5で混入される。
表1は本実施形態の水素ガス製造方法のうちPSA装置5による、不純物の除去工程を説明するための表である。以下、表1に示す各状態S1〜20について順番に説明する。なお、表1中、網掛けを施された部分の期間は、該当するバルブが開いている状態を示し、網掛けが施されていない部分の期間は、バルブが閉じている状態を示す。
このとき、第1の吸着塔570Aは、その下端が原料ガス供給ライン510と接続され、上端が水素ガス回収ライン540と接続されている。よって、状態S1では、原料ガスが、アンモニア除去装置4から、ラインL3、原料ガス供給ライン510、第1の供給分岐ライン511A、バルブVA−1、及び接続管571Aを介して、第1の吸着塔570Aの下端から吸着剤573Aに供給され、第1の吸着塔570A内が加圧される。第1の吸着塔570Aに供給された原料ガスに含まれる不純物は、高圧下で吸着剤573Aに吸着される。こうして原料ガスから不純物が除去され、第1の吸着塔570Aから接続管571A、バルブVA−4、及び第1の回収分岐ライン541Aを介して、精製された水素ガスが回収される。すなわち、状態S1にある第1の吸着塔570Aでは、精製された水素ガスを回収する吸着工程が行われている。
以上説明したように、状態S1にある第4の吸着塔570Dでは、減圧均圧工程が行われており、第2の吸着塔570Bでは、加圧均圧工程が行われている。
状態S1の時間は、t1秒である。t1は例えば、1〜10秒とすることができる。
バルブVD−6を閉じることにより、第4の吸着塔570Dでは減圧均圧工程が終了する。
吸着工程にある第1の吸着塔570A内の圧力は、一般的なPSA方式の吸着工程における圧力(0.1〜1.0MPaG程度)と同程度でよく、特に制限されない。
状態S2,S3を通して、第3の吸着塔570Cでは、再生工程のうち、排気再生工程が行われている。状態S2,S3の間は、第3の吸着塔570Cでは、真空ポンプ522による排出を行いながら、再生ガスを吸着塔内に導入して、不純物が排出される。排気再生工程を行うことによって、吸着剤573Cの吸着能が回復され、製造される水素ガスの純度の低下が防がれる。
真空ポンプ522の背圧が大気圧より高くならないようにする観点から、第1のタンク523に排出されたオフガスは、昇圧ポンプ524によって第2のタンク525に圧送される。オフガスは、第2のタンク525で一定の圧力に保たれる。
かかるオフガスの循環は、状態S1〜S3を通して行われることが好ましいが、これに限定されず、バルブVで圧力、及び流量の少なくとも一方を調節し、状態S1〜S3のうち少なくとも1つ以上の状態で、行われてもよい。
状態S4では、第2の吸着塔570Bでは、状態S1で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。
状態S4では、第3の吸着塔570Cでは、状態S1で説明した第2の吸着塔570Bと同様に、加圧均圧工程が行われている。
状態S4の時間は、t4秒である。t4は例えば、1〜10秒とすることができる。
バルブVA−6を閉じ、バルブVA−3を開くことにより、第1の吸着塔570Aでは減圧均圧工程が終了し、状態S2で説明した第4の吸着塔570Dと同様に、脱圧工程が開始される。
状態S5では、第3の吸着塔570Cでは、状態S2で説明した第2の吸着塔570Bと同様に、加圧工程が行われている。状態S5の時間は、t5秒である。t5は例えば、10〜120秒とすることができる。
状態S6では、第2の吸着塔570Bでは、状態S3で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。
状態S6では、第3の吸着塔570Cでは、状態S3で説明した第2の吸着塔570Bと同様に、加圧工程が行われている。
状態S6では、第4の吸着塔570Dでは、状態S3で説明した第3の吸着塔570Cと同様に、排気再生工程が行われている。状態S6の時間は、t6秒である。t6は例えば、10〜120秒とすることができる。
吸着工程にある第2の吸着塔570B内の圧力は、特に制限されず、0.1〜1.0MPaG程度であってよい。
状態S5,S6を通して、第4の吸着塔570Dでは、再生工程のうち、排気再生工程が行われている。状態S5,S6の間は、第4の吸着塔570Dでは、真空ポンプ522による排出を行いながら、再生ガスを吸着塔内に導入して、不純物が排出される。排気再生工程を行うことによって、吸着剤573Dの吸着能が回復され、製造される水素ガスの純度の低下が防がれる。
真空ポンプ522の背圧が大気圧より高くならないようにする観点から、第1のタンク523に排出されたオフガスは、昇圧ポンプ524によって第2のタンク525に圧送される。オフガスは、第2のタンク525で一定の圧力に保たれる。
かかるオフガスの循環は、状態S4〜S6を通して行われることが好ましいが、これに限定されず、バルブVで圧力、及び流量の少なくとも一方を調節し、状態S4〜S6のうち少なくとも1つ以上の状態で、行われてもよい。
状態S7では、第2の吸着塔570Bでは、状態S1で説明した第4の吸着塔570Dと同様に、減圧均圧工程が行われている。
状態S7では、第3の吸着塔570Cでは、状態S1で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。
状態S7では、第4の吸着塔570Dでは、状態S1で説明した第2の吸着塔570Bと同様に、加圧均圧工程が行われている。
状態S7の時間は、t7秒である。t7は例えば、1〜10秒とすることができる。
バルブVB−6を閉じ、バルブVB−3を開くことにより、第2の吸着塔570Bでは減圧均圧工程が終了し、状態S2で説明した第4の吸着塔570Dと同様に、脱圧工程が開始される。
状態S8では、第4の吸着塔570Dでは、状態S2で説明した第2の吸着塔570Bと同様に、加圧工程が行われている。状態S8の時間は、t8秒である。t8は例えば、10〜120秒とすることができる。
状態S9では、第3の吸着塔570Cでは、状態S3で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。
状態S9では、第4の吸着塔570Dでは、状態S3で説明した第2の吸着塔570Bと同様に、加圧工程が行われている。
状態S9では、第1の吸着塔570Aでは、状態S3で説明した第3の吸着塔570Cと同様に、排気再生工程が行われている。状態S9の時間は、t9秒である。t9は例えば、10〜120秒とすることができる。
吸着工程にある第3の吸着塔570C内の圧力は、特に制限されず、0.1〜1.0MPaG程度であってよい。
状態S8,S9を通して、第1の吸着塔570Aでは、再生工程のうち、排気再生工程が行われている。状態S8,S9の間は、第1の吸着塔570Aでは、真空ポンプ522による排出を行いながら、再生ガスを吸着塔内に導入して、不純物が排出される。排気再生工程を行うことによって、吸着剤573Aの吸着能が回復され、製造される水素ガスの純度の低下が防がれる。
真空ポンプ522の背圧が大気圧より高くならないようにする観点から、第1のタンク523に排出されたオフガスは、昇圧ポンプ524によって第2のタンク525に圧送される。オフガスは、第2のタンク525で一定の圧力に保たれる。
かかるオフガスの循環は、状態S7〜S9を通して行われることが好ましいが、これに限定されず、バルブVで圧力、及び流量の少なくとも一方を調節し、状態S7〜S9のうち少なくとも1つ以上の状態で、行われてもよい。
状態S10では、第2の吸着塔570Bでは、状態S1で説明した第3の吸着塔570Cと同様に、排気工程が行われている。
状態S10では、第3の吸着塔570Cでは、状態S1で説明した第4の吸着塔570Dと同様に、減圧均圧工程が行われている。
状態S10では、第4の吸着塔570Dでは、状態S1で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。
状態S10の時間は、t10秒である。t10は例えば、1〜10秒とすることができる。
バルブVC−6を閉じ、バルブVC−3を開くことにより、第3の吸着塔570Cでは減圧均圧工程が終了し、状態S2で説明した第4の吸着塔570Dと同様に、脱圧工程が開始される。
状態S11では、第4の吸着塔570Dでは、状態S2で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。状態S11の時間は、t11秒である。t11は例えば、10〜120秒とすることができる。
状態S12では、第1の吸着塔570Aでは、状態S3で説明した第2の吸着塔570Bと同様に、加圧工程が行われている。
状態S12では、第2の吸着塔570Bでは、状態S3で説明した第3の吸着塔570Cと同様に、排気再生工程が行われている。
状態S12では、第4の吸着塔570Dでは、状態S3で説明した第1の吸着塔570Aと同様に、吸着工程が行われている。状態S12の時間は、t12秒である。t12は例えば、10〜120秒とすることができる。
吸着工程にある第4の吸着塔570D内の圧力は、特に制限されず、0.1〜1.0MPaG程度であってよい。
状態S11,S12を通して、第2の吸着塔570Bでは、再生工程のうち、排気再生工程が行われている。状態S11,S12の間は、第2の吸着塔570Bでは、真空ポンプ522による排出を行いながら、再生ガスを吸着塔内に導入して、不純物が排出される。排気再生工程を行うことによって、吸着剤573Bの吸着能が回復され、製造される水素ガスの純度の低下が防がれる。
真空ポンプ522の背圧が大気圧より高くならないようにする観点から、第1のタンク523に排出されたオフガスは、昇圧ポンプ524によって第2のタンク525に圧送される。オフガスは、第2のタンク525で一定の圧力に保たれる。
かかるオフガスの循環は、状態S10〜S12を通して行われることが好ましいが、これに限定されず、バルブVで圧力、及び流量の少なくとも一方を調節し、状態S10〜S12のうち少なくとも1つ以上の状態で、行われてもよい。
実施形態の水素ガス製造方法は、上述したPSA装置5のオフガスをアンモニア分解装置3の燃料として再利用する工程を含む。ラインL5を流れるオフガスには、ラインL6を介して空気が混入される。空気が混入されたオフガスは、PSA装置5からラインL5を介してアンモニア分解装置3に燃料として供給される。
以上説明したように、上記の構成を有する水素ガス製造装置1は、PSA装置5が有する第2のタンク525でオフガスを一定の圧力に維持しながら貯留するので、ラインL5を介してアンモニア分解装置3に燃料として導入されるオフガスの流量、及び圧力の変動が抑制され、アンモニアの分解反応に必要な熱量をアンモニア分解装置3に安定的に供給することができる。
また、上記の構成を有する水素ガス製造装置1は、第1のタンク523と第2のタンク525との間でオフガスを循環させるので、第1のタンク523内のオフガスと第2のタンク525内のオフガスとが混合され、ラインL5に導出されるオフガス中の水素ガスの濃度の変動が抑制される。かかる水素ガス製造装置1を用いた実施形態の水素ガス製造方法によれば、オフガス中の水素濃度を一定にしてアンモニア分解装置3の燃料として導入するので、アンモニアの分解反応に必要な熱量をアンモニア分解装置3に安定的に供給することができる。
したがって、本発明によれば、アンモニアの分解反応に必要な熱量を、PSA装置5から排出されるオフガスを再利用することによって、安定的に供給することができるので、アンモニアの分解反応の反応効率が低下することなく、効率的に水素ガスを製造することができる。
以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
図2に示すPSA装置5が有する各塔の吸着剤として合成ゼオライト1Lを充填し、原料ガスとして水素ガスを75%、窒素ガスを25%それぞれ含有するガスを17.0NL/minでPSA装置5に導入し、精製された水素ガスを10.2NL/minで回収した。吸着工程における吸着圧力を300kPaGとして排気再生工程における到達圧力を−80kPaGとして運転すると、精製された水素ガス中の窒素ガス濃度は10ppm以下であった。ここで、返送ライン580に設けられたバルブV等によってオフガスを、第1のタンク523と、第2のタンク525との間で循環させながら、表1に示すバルブの開閉操作に従って水素ガスの精製を行った。このときのオフガス中の水素ガス濃度は、図3に示すように変動が抑制され、その平均値は38%±1%であった。
なお、精製された水素ガス、及びオフガス中の水素ガス濃度は、島津製作所製のGC−TCDを用いて測定した。
表2に示すバルブの開閉操作にしたがった以外は、実施例1と同様にして、PSA装置5による水素ガスの精製を行った。このときのオフガス中の水素ガス濃度は、図4に示すように変動が抑制され、その平均値は38%±2%であった。
返送ライン580に設けられた圧力調節器V塔によってオフガスを、第1のタンク523と、第2のタンク525との間で循環させなかったこと以外は、実施例1と同様にして、PSA装置5による水素ガスの精製を行った。このときのオフガス中の水素ガス濃度は、図5に示すように変動し、その平均値は38%±5%であった。その結果、比較例1における水素ガスの製造効率は、実施例1,2における製造効率より低下していた。
Claims (3)
- PSA方式によって原料ガスから水素ガスを製造する装置であって、
アンモニアを分解して、窒素ガスと水素ガスとを含む原料ガスを生成するアンモニア分解装置と、
二つ以上の吸着塔と、
前記アンモニア分解装置から前記吸着塔に前記原料ガスを供給する原料ガス供給ラインと、
前記吸着塔に接続され、脱圧工程または再生工程にある吸着塔から排出されるオフガスを挿通するオフガス排出ラインと、
前記オフガス排出ラインに設けられ、前記オフガスを貯留する第1のタンクと、
前記オフガス排出ラインのうち、前記第1のタンクの二次側の部分に設けられた第2のタンクと、
前記オフガス排出ラインのうち、前記第1のタンクと前記第2のタンクとの間に設けられた昇圧手段と、
前記第1のタンクと前記第2のタンクとを結ぶ返送ラインと、
前記オフガス排出ラインで挿通されるオフガスを、前記アンモニア分解装置の燃料として再利用する燃料ラインと、
を有する、水素ガス製造装置。 - 前記オフガス排出ラインと、前記返送ラインによって、前記第1のタンクと前記第2のタンクとの間で循環された前記オフガスを、前記アンモニア分解装置の燃料として再利用する請求項1に記載の水素ガス製造装置。
- 請求項1又は2に記載の水素ガス製造装置を用いた水素ガス製造方法であって、
前記吸着塔内を減圧して、吸着塔内に残存する原料ガスをオフガスとして排出する脱圧工程と、
前記吸着塔内に水素ガスを導入して、吸着塔内に残存する原料ガスと、前記水素ガスとをオフガスとして排出する再生工程と、
前記オフガスを、前記第1のタンクと、前記第2のタンクとの間で循環させて混合する工程と、
前記オフガスを、前記アンモニア分解装置の燃料として再利用する工程と、を含み、
前記再利用する工程で再利用される前記オフガスに含まれる水素ガスの濃度の変動が抑制されている水素ガス製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017083557A JP6763817B2 (ja) | 2017-04-20 | 2017-04-20 | 水素ガス製造装置、及び水素ガス製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017083557A JP6763817B2 (ja) | 2017-04-20 | 2017-04-20 | 水素ガス製造装置、及び水素ガス製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018177615A JP2018177615A (ja) | 2018-11-15 |
JP6763817B2 true JP6763817B2 (ja) | 2020-09-30 |
Family
ID=64281089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017083557A Active JP6763817B2 (ja) | 2017-04-20 | 2017-04-20 | 水素ガス製造装置、及び水素ガス製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6763817B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102513906B1 (ko) * | 2020-12-15 | 2023-03-24 | 주식회사 원익홀딩스 | 가스생성시스템 |
KR102513905B1 (ko) * | 2020-12-15 | 2023-03-24 | 주식회사 원익홀딩스 | 가스생성시스템 |
KR102664944B1 (ko) * | 2021-12-02 | 2024-05-13 | 한화오션 주식회사 | 선박의 암모니아 분해 시스템 및 방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054882B2 (ja) * | 1978-08-08 | 1985-12-02 | 大同特殊鋼株式会社 | アンモニア分解ガス発生装置及びその装置における再生排ガスのリタ−ン方法 |
JPH0549837A (ja) * | 1991-08-20 | 1993-03-02 | Tokico Ltd | 生成ガス昇圧システム |
CN100336577C (zh) * | 2003-02-25 | 2007-09-12 | 住友精化株式会社 | 废气供给方法及目标气体精制系统 |
JP4187569B2 (ja) * | 2003-03-31 | 2008-11-26 | 大阪瓦斯株式会社 | 水素製造装置 |
EP2032502A4 (en) * | 2006-06-27 | 2011-11-02 | Fluor Tech Corp | CONFIGURATIONS AND METHOD FOR FERTILIZING WITH HYDROGEN |
JP5188742B2 (ja) * | 2007-03-30 | 2013-04-24 | 株式会社日立産機システム | ガス昇圧圧縮装置 |
JP5518503B2 (ja) * | 2010-01-25 | 2014-06-11 | 大陽日酸株式会社 | 高圧且つ高純度の窒素ガス供給装置及び供給方法 |
-
2017
- 2017-04-20 JP JP2017083557A patent/JP6763817B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018177615A (ja) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5294247A (en) | Adsorption process to recover hydrogen from low pressure feeds | |
JP6763817B2 (ja) | 水素ガス製造装置、及び水素ガス製造方法 | |
US7025803B2 (en) | Methane recovery process | |
KR102481433B1 (ko) | 암모니아의 분해 혼합가스로부터 수소의 분리 및 정제방법 | |
UA121224C2 (uk) | Комбінований мембранний спосіб з адсорбцією з коливанням тиску для відновлення гелію | |
CN101460234B (zh) | 回收二氧化碳的方法 | |
US20040237789A1 (en) | Helium recovery | |
DK2938423T3 (en) | Method and apparatus for separating a gas mixture by means of pressure change adsorption | |
JP6305938B2 (ja) | ガス精製装置 | |
MX2013008114A (es) | Proceso de adsorcion de oscilacion de presion de seis lechos que opera en el modo normal y reductor. | |
US10058815B2 (en) | Methods for separating ozone | |
JP6667382B2 (ja) | 水素ガス製造方法及び水素ガス製造装置 | |
JP3169647B2 (ja) | プレッシャースイング式吸着方法および吸着装置 | |
JP2005246137A (ja) | ガス分離方法及び装置 | |
JP2011148670A (ja) | 高圧且つ高純度の窒素ガス供給装置及び供給方法 | |
US4832714A (en) | Device for the decomposition of a multicomponent gas and to a method of operating the system for the decomposition of gases | |
JP4187569B2 (ja) | 水素製造装置 | |
JP6515045B2 (ja) | 窒素ガスの製造方法および装置 | |
WO2020105242A1 (ja) | ガス分離装置及びガス分離方法 | |
JP6640660B2 (ja) | 水素ガス製造方法及び水素ガス製造装置 | |
KR20220078121A (ko) | 중수소와 질소의 혼합가스로부터 중수소의 분리 및 정제방법 | |
JP6136074B2 (ja) | 窒素分離装置及び方法 | |
JP6837375B2 (ja) | 水素ガス精製装置、及び水素ガス精製装置の運転方法 | |
JP2020025931A (ja) | ガス分離装置、ガス分離方法、窒素富化ガス製造装置及び窒素富化ガス製造方法 | |
JP2012110824A (ja) | Psa装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6763817 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |