JP6760133B2 - 電池システム - Google Patents
電池システム Download PDFInfo
- Publication number
- JP6760133B2 JP6760133B2 JP2017038359A JP2017038359A JP6760133B2 JP 6760133 B2 JP6760133 B2 JP 6760133B2 JP 2017038359 A JP2017038359 A JP 2017038359A JP 2017038359 A JP2017038359 A JP 2017038359A JP 6760133 B2 JP6760133 B2 JP 6760133B2
- Authority
- JP
- Japan
- Prior art keywords
- block
- blocks
- internal resistance
- assembled battery
- soc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Description
本開示は、電池システムに関し、より特定的には、複数のブロックを含む組電池を備えた電池システムにおいて、ブロック内の断線を検出するための技術に関する。
近年、走行用バッテリが搭載された、ハイブリッド車または電気自動車などの電動車両の普及が進んでいる。走行用バッテリとしては一般に、組電池が用いられる。組電池では、複数のセルが並列接続されてブロック(あるいはモジュール)を構成し、複数のブロックが直列接続されて組電池を構成する。
組電池では、ブロック内に断線が生じ得る。より詳細に説明すると、たとえば、組電池の保護を目的にヒューズ等の電流遮断器が各セルに設けられている構成において、過大な電流がセルを流れる場合がある。そうすると、電流遮断器がセルの電流経路を遮断することで、そのセルを含むブロック内に断線が生じることになる。
組電池の充放電を適切に行なうためには、そのような断線が生じたか否か(上述の例では電流遮断器が作動したか否か)を検出することが求められる。組電池には、組電池全体(すなわち各ブロック)を流れる電流を検出するための電流センサが設けられる。しかし、この電流センサでは、各セルに流れる電流を監視することはできないので、断線を検出することはできない。一方、複数のセルの各々に電流センサを設けることも考えられる。各電流センサの検出値を監視することにより、断線を検出することが可能である。しかしながら、一般に、車載用の組電池には数十〜数百程度のセルが含まれるため、各セルに電流センサを設けることは部材コストの面から難しい。
このような事情の下、ブロックを流れる電流に代えて、ブロックの内部抵抗を用いて断線を検出する技術が提案されている。たとえば特開2013−128340号公報(特許文献1)は、複数のブロックの内部抵抗の変化を監視することで断線を検出する手法を開示する。
組電池では、時間の経過に伴い、ブロックの自己放電電流のばらつき等に起因して、ブロック間のSOC(State Of Charge)(あるいはOCV(Open Circuit Voltage))に不均等(アンバランス)が生じ得る。また、ブロック間のSOCの不均等は、ブロック毎の充電効率のばらつきによっても生じ得る。
このようにブロック間のSOCの不均等に備えた対策として、均等化制御が知られている。均等化制御により、複数のブロックのうちの一部(SOCが相対的に高いブロック)に蓄えられた電力が他のブロック(SOCが相対的に低いブロック)に放電され、SOCの不均等が解消される。
ブロックの内部抵抗にはSOC依存性が存在する。そのため、均等化制御によりブロックのSOCが変化すると、内部抵抗も変化し得る。その結果、断線が生じた場合の内部抵抗の変化量が小さくなり、断線を正しく検出することができない可能性がある。特許文献1に開示された手法は、均等化制御について特に考慮していない点において改善の余地がある。
本開示は上記課題を解決するためになされたものであり、その目的は、複数のブロックを含む組電池を備えた電池システムにおいて、均等化制御を実施した場合でも断線を高精度に検出することである。
本開示のある局面に従う電池システムは、組電池と、均等化回路と、制御装置とを備える。組電池は、直列に接続された第1および第2のブロックを含む。均等化回路は、第1のブロックのSOCと第2のブロックのSOCとの不均等を解消する均等化制御を実施するために設けられる。制御装置は、第1および第2のブロックのSOCから第1のブロックと第2のブロックとの内部抵抗比を推定し、推定された内部抵抗比から第1および第2のブロックのいずれかに生じた断線を検出するように構成される。制御装置は、均等化制御の実施前後での所定の基準SOCにおける第1のブロックと第2のブロックとの内部抵抗比の変化から、均等化制御による内部抵抗比の変化を相殺するための補正係数を算出し、算出された補正係数を用いて推定された内部抵抗比を補正する。
上記構成によれば、補正係数を用いて内部抵抗比を補正することで内部抵抗比の推定精度が向上する(補正手法の詳細については後述する)。これにより、均等化制御を実施した場合でも断線を高精度に検出することができる。
本開示によれば、複数のブロック(第1および第2のブロック)を含む組電池を備えた電池システムにおいて、均等化制御を実施した場合でも断線の検出精度を向上させることができる。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態]
<電池システムの構成>
図1は、本開示の実施の形態に係る電池システムが搭載された車両1の全体構成を概略的に示す図である。なお、以下では、車両1がいわゆるプラグインハイブリッド車両である場合について代表的に説明するが、本開示に係る電池システムは、プラグインハイブリッド車両に限らず、組電池を搭載する車両全般(たとえば電気自動車または通常のハイブリッド車両)に適用可能である。また、本開示に係る電池システムの用途は車載用に限られず、定置用であってもよい。
<電池システムの構成>
図1は、本開示の実施の形態に係る電池システムが搭載された車両1の全体構成を概略的に示す図である。なお、以下では、車両1がいわゆるプラグインハイブリッド車両である場合について代表的に説明するが、本開示に係る電池システムは、プラグインハイブリッド車両に限らず、組電池を搭載する車両全般(たとえば電気自動車または通常のハイブリッド車両)に適用可能である。また、本開示に係る電池システムの用途は車載用に限られず、定置用であってもよい。
図1を参照して、車両1は、電池システム1Aと、モータジェネレータ111,112と、エンジン120と、動力分割装置130と、駆動輪140と、パワーコントロールユニット(PCU:Power Control Unit)150と、システムメインリレー(SMR:System Main Relay)160と、充電リレー(CHR:Charge Relay)170と、電力変換装置180と、インレット190とを備える。電池システム1Aは、組電池10と、監視ユニット20と、電子制御装置(ECU:Electronic Control Unit)100とを備える。
モータジェネレータ111,112の各々は、交流回転電機であり、たとえば、ロータに永久磁石が埋設された三相交流同期電動機である。
モータジェネレータ111は、主として、動力分割装置130を経由してエンジン120により駆動される発電機として用いられる。モータジェネレータ111が発電した電力は、PCU150を介してモータジェネレータ112または組電池10に供給される。
モータジェネレータ112は、主として電動機として動作し、駆動輪140を駆動する。モータジェネレータ112は、組電池10からの電力およびモータジェネレータ111の発電電力の少なくとも一方を受けて駆動され、モータジェネレータ112の駆動力は駆動軸70に伝達される。一方、車両の制動時や下り斜面での加速度低減時には、モータジェネレータ112は、発電機として動作して回生発電を行なう。モータジェネレータ112が発電した電力は、PCU150を介して組電池10に供給される。
エンジン120は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギーをピストンやロータなどの運動子の運動エネルギーに変換することによって動力を出力する内燃機関である。
動力分割装置130は、たとえば、サンギヤ、キャリア、リングギヤの3つの回転軸を有する遊星歯車機構を含む。動力分割装置130は、エンジン120から出力される動力を、モータジェネレータ111を駆動する動力と、駆動輪140を駆動する動力とに分割する。
PCU150は、ECU100からの制御信号に従って、組電池10とモータジェネレータ111,112との間で双方向の電力変換を実行する。PCU150は、モータジェネレータ111,112の状態をそれぞれ別々に制御可能に構成されており、たとえば、モータジェネレータ111を回生状態(発電状態)にしつつ、モータジェネレータ112を力行状態にすることができる。PCU150は、たとえば、モータジェネレータ111,112に対応して設けられる2つのインバータと、各インバータに供給される直流電圧を組電池10の出力電圧以上に昇圧するコンバータ(いずれも図示せず)とを含んで構成される。
SMR160は、PCU150と組電池10とを結ぶ電力線に電気的に接続されている。SMR160は、ECU100からの制御信号に応じて、PCU150と組電池10との間での電力の供給と遮断とを切り替える。
充電リレー170は、組電池10と電力変換装置180とを結ぶ電力線に電気的に接続されている。充電リレー170は、ECU100からの制御信号に応じて、組電池10と電力変換装置180との間での電力の供給と遮断とを切り替える。
電力変換装置180は、たとえばAC/DCコンバータ(図示せず)を含んで構成され、車両外部の充電装置2から供給される交流電力を直流電力に変換して組電池10に供給する。なお、車両外部の充電装置2から供給される電力による組電池10の充電を「外部充電」とも称する。
インレット190は、充電ケーブル3のコネクタの一端を接続することが可能に構成される。充電装置2は、外部充電時には、系統電源200からの交流電力を充電ケーブル3を介して車両1に供給する。
組電池10は、複数のセルを含んで構成される(詳細な構成は後述)。組電池10は、モータジェネレータ111,112を駆動するための電力を蓄え、PCU150を通じてモータジェネレータ111,112へ電力を供給する。また、組電池10は、モータジェネレータ111,112の発電時にPCU150を通じて発電電力を受けて充電される。
監視ユニット20は、電圧センサ21(図2参照)と、電流センサ22(図2参照)と、温度センサ(図示せず)とを含む。電圧センサ21は、組電池10において並列接続される複数のセルの電圧VBを検出する。電流センサ22は、組電池10に入出力される電流IBを検出する。温度センサは、セル毎の温度TBを検出する。なお、温度センサは、組電池10に対して複数個(セル数よりも少ない数)設けられ、隣接する複数(たとえば数個)のセルを監視単位として温度を検出してもよい。
ECU100は、CPU(Central Processing Unit)100Aと、メモリ(より具体的にはROM(Read Only Memory)およびRAM(Random Access Memory))100Bと、各種信号を入出力するための入出力ポート(図示せず)とを含んで構成される。ECU100は、各センサから受ける信号並びにメモリ100Bに記憶されたプログラムおよびマップに基づいてエンジン120およびPCU150を制御することにより、組電池10の充放電を制御する。ECU100により実行される主要な制御として、組電池10の均等化制御と、組電池10における断線検出処理とが挙げられる。これらの制御または処理の詳細については後述する。
<組電池の構成>
図2は、組電池10の構成を説明するための図である。組電池10においては、複数のセルが並列接続されてブロック(あるいはモジュール)を構成し、複数のブロックが直列接続されて組電池10を構成する。具体的には、組電池10は、直列接続されたM個のブロック101〜10Mを含む。ブロック101〜10Mの各々は、並列接続されたN個のセルを含む。なお、M,Nは、2以上の自然数である。
図2は、組電池10の構成を説明するための図である。組電池10においては、複数のセルが並列接続されてブロック(あるいはモジュール)を構成し、複数のブロックが直列接続されて組電池10を構成する。具体的には、組電池10は、直列接続されたM個のブロック101〜10Mを含む。ブロック101〜10Mの各々は、並列接続されたN個のセルを含む。なお、M,Nは、2以上の自然数である。
各セルは、たとえばリチウムイオン二次電池またはニッケル水素電池である。ただし、セルの種類は特に限定されるものではない。図示しないが、各セルには直列にヒューズが接続されている。ヒューズは、過大な電流が流れた場合にセルの電流経路を遮断する。なお、ヒューズに代えて、PTC(Positive Temperature Coefficient)サーミスタを用いてもよい。また、セル内に電流遮断弁を設けてもよい。
電圧センサ211は、ブロック101の電圧を検出する。すなわち、電圧センサ211は、ブロック101を構成するN個のセルの電圧VB1を検出する。電圧センサ212〜21Mについても同様である。
電流センサ22は、各ブロック101〜10Mに流れる電流IBを検出する。すなわち、電流センサ22は、各ブロックのN個のセルに流れる総電流を検出する。
組電池10では、時間の経過に伴い、ブロック101〜10Mの自己放電電流のばらつき、または、電圧センサ211〜21Mの消費電流のばらつき等に起因してブロック101〜10M間のSOC(あるいはOCV)がばらつき得る。また、ブロック101〜10M間のSOCのばらつきは、充電効率のばらつきによっても生じ得る。このようなブロック間のSOCの不均等(アンバランス)を解消するために、ブロック101〜10Mには、均等化回路301〜30Mがそれぞれ設けられている。
均等化回路301〜30Mの各々は、図示しないが、バイパス抵抗と、スイッチング素子(トランジスタ等)とを含む。ECU100は、電圧センサ211〜21Mからブロック101〜10Mの電圧VB1〜VBMを取得すると、最も電圧が低いブロックとほぼ同じ電圧となるまで他のブロックを放電するように均等化回路301〜30Mを制御する(制御信号をE1〜EMで示す)。これにより、ブロック101〜10M間のSOCの不均等が解消される。
<組電池における断線>
以上のように構成された組電池10では、各ブロック内の配線に断線が生じる可能性がある。たとえば各セルに接続されたヒューズが作動した場合には、そのセルを含むブロック内で断線が生じることとなる。ECU100は、以下の処理により断線が生じたブロックを特定する。
以上のように構成された組電池10では、各ブロック内の配線に断線が生じる可能性がある。たとえば各セルに接続されたヒューズが作動した場合には、そのセルを含むブロック内で断線が生じることとなる。ECU100は、以下の処理により断線が生じたブロックを特定する。
まず、ECU100は、各ブロックの内部抵抗を算出する。以下では、ブロック101〜10Mの内部抵抗をR1〜RMとそれぞれ表す。ECU100は、たとえば隣接するブロック毎に内部抵抗を比較する。より具体的には、ECU100は、ブロック101の内部抵抗R1とブロック102との内部抵抗R2との比である抵抗比X1(=R2/R1)を算出する。また、ECU100は、ブロック102の内部抵抗R2とブロック103の内部抵抗R3との比である抵抗比X2(=R3/R2)を算出する。残りのブロックについても同様である。そして、ECU100は、各抵抗比の時間変化を監視する。なお、以下では、どのブロック間の抵抗比かを特に区別しない場合には、単に「抵抗比X」と記載する場合がある。
なお、ブロック内に断線が生じる要因としてヒューズの作動を例に説明したが、断線の要因はこれに限定されない。セルの異常(ドライアップ等のオープンモード故障)または接続不良などによっても断線が生じる可能性がある。
図3は、断線発生時の内部抵抗の変化の一例を示す図である。図3において、横軸は経過時間を示す。縦軸は、内部抵抗R1と内部抵抗R2との抵抗比X1を示す。
図3に示すように、断線が発生するまでは抵抗比X1は、組電池10の温度変化に伴い変化し得るものの、ほぼ一定である。しかし、時刻tcにおいてブロック102に断線が発生すると、内部抵抗R2が増加する。一方、ブロック101の内部抵抗R1は、ほとんど変化しない。したがって、抵抗比X1(=R2/R1)が時刻tcにて急激に増加することになる。これにより、ECU100は、ブロック102内(ブロック102内のいずれかのセル)に断線が生じたと判定することができる。なお、図示しないが、抵抗比X1が急激に減少した場合には、ECU100は、ブロック101内のいずれかのセルに断線が生じたと判定することができる。
<内部抵抗のSOC依存性>
本発明者は、このように断線が検出される場合に、各ブロックの内部抵抗がSOCに応じて変化することによって以下のような課題が生じ得る点に着目した。
本発明者は、このように断線が検出される場合に、各ブロックの内部抵抗がSOCに応じて変化することによって以下のような課題が生じ得る点に着目した。
図4は、内部抵抗のSOC依存性を説明するための図である。図4において、横軸は、あるブロック(ブロック101〜10Mのうちのいずれかのブロック)のSOCを示し、縦軸は、そのブロックの内部抵抗を示す。図4に示すように、ブロックのSOCが高くなるに従って、そのブロックの内部抵抗は減少する。
上述の均等化制御を実行すると、ブロック101〜10MのSOCが変化し、それによりブロック101〜10Mの内部抵抗も変化し得る。そうすると、ブロック101〜10M間の抵抗比も変化する可能性がある。その結果、断線が生じた場合の抵抗比Xの変化量が小さくなり、断線を正しく検出することができない可能性がある。なお、逆に、実際には断線が生じていないにもかかわらず抵抗比Xが大きく変化することで、断線が生じたと誤検出してしまう可能性がある。
そこで、本実施の形態においては、均等化制御に伴うSOCずれを補正するための構成を採用する。より具体的には、ブロック101〜10Mの満充電容量(後述するC1〜CM)と、均等化制御の実施前後での所定の基準SOC(後述する)における2つのブロック間の抵抗比Xの変化とから、均等化制御による抵抗比Xの変化を相殺するための補正係数Kを算出し、補正係数Kを用いて抵抗比Xを補正する。本実施の形態における断線検出処理および上記補正手法について、以下に詳細に説明する。
<処理フロー>
図5は、本実施の形態における断線検出処理を説明するためのフローチャートである。このフローチャートは、所定条件が成立した場合にメインルーチンから呼び出されて実行される。各ステップ(以下、Sと略す)は、基本的にはECU100によるソフトウェア処理によって実現されるが、ECU100内に作製された電子回路によるハードウェア処理によって実現されてもよい。
図5は、本実施の形態における断線検出処理を説明するためのフローチャートである。このフローチャートは、所定条件が成立した場合にメインルーチンから呼び出されて実行される。各ステップ(以下、Sと略す)は、基本的にはECU100によるソフトウェア処理によって実現されるが、ECU100内に作製された電子回路によるハードウェア処理によって実現されてもよい。
なお、図5ならびに後述する図6および図7のフローチャートでは、抵抗比Xの推定対象とするブロックを区別するために、添字n(nは1以上かつ(M−1)以下の自然数)が用いられる。たとえばn=1の場合には、ブロック101〜10Mのうちブロック101とブロック102との抵抗比X1(=R1/R2)が推定される。
図2および図5を参照して、S10において、ECU100は、電圧センサ211〜21Mの検出値(VB1〜VBM)および電流センサの検出値(IB)から、各ブロックのOCVnを算出する。OCVの算出方法は公知であるため、説明は繰り返さない。
S20において、ECU100は、予め取得されメモリ100Bに格納されたOCV−SOCカーブ(図示せず)を用いて、S10にて算出されたOCVnから、ブロック10nのSOCであるSOCnを算出する。
S30において、ECU100は、図4に示したマップMPを参照することで、S20にて算出されたSOCnから、ブロック10nの内部抵抗Rnを算出する。
S40において、ECU100は、隣接するブロックの内部抵抗比を比較することで、抵抗比Xnを推定する。なお、比較対象とするブロックは必ずしも隣接している必要はなく、任意の2つのブロックの内部抵抗を比較して抵抗比を推定することができる。
S50において、ECU100は、補正係数Knを用いて、対応するブロック10nの抵抗比Xnを補正する。補正後の抵抗比をXn’と表す(Xn’=Kn×Xn)。補正係数Knの算出手法については図6および図7にて詳細に説明する。
S60において、ECU100は、S50にて補正後の抵抗比Xn’のなかから最大抵抗比Xmaxを算出する。
S70において、ECU100は、S60にて算出された最大抵抗比Xmaxの変化量(ΔXmax)の大きさが所定のしきい値Xthよりも大きいか否かを判定する。しきい値Xthは、断線が生じたブロックの内部抵抗と断線が生じていないブロックの内部抵抗とを測定することによって、上記2つの内部抵抗の間の値として予め実験的に決定することができる。
ΔXmaxがしきい値Xthよりも大きい場合(S70においてYES)、ECU100は、最大抵抗比Xmaxに対応するブロックに断線が発生したと判定する(S80)。一方、ΔXmaxがしきい値Xth以下の場合(S70においてNO)、ECU100は、ブロック101〜10Mには断線は発生していないと判定する(S90)。その後、一連の処理は終了する。
図6は、補正係数Knの算出処理を説明するためのフローチャートである。このフローチャートは、所定期間が経過する毎または所定条件が成立した毎にメインルーチンから呼び出されて実行される。なお、図6および後述する図7において、各パラメータの末尾に付された「a」は、そのパラメータが均等化制御の実施前のパラメータであることを示す。一方、均等化制御の実施後のパラメータの末尾には「b」を付して区別する。
図2および図6を参照して、S110において、ECU100は、組電池10の均等化制御を実施済みであるか否かを判定する。組電池10の均等化制御が実施されていない場合(S110においてNO)、ECU100は、均等化制御の実施前における各ブロック101〜10Mの抵抗比Xを推定するための「均等化前推定処理」を実行する。一方、組電池10の均等化制御が実施済みである場合(S110においてYES)には、ECU100は、均等化制御の実施後における各ブロック101〜10Mの抵抗比Xを推定するための「均等化後推定処理」を実行する。これら各推定処理については図7にて説明する。なお、均等化制御を実施済みであるか否かは、たとえばフラグを用いて管理することができる。補正係数Knの算出後(S130の処理後)にはフラグが解消される。
S120において、ECU100は、均等化前推定処理(S200の処理)および均等化後推定処理(S300の処理)の両方を実行済みであるか否かを判定する。両処理を実行済みである場合(S120においてYES)には、ECU100は、補正係数Knを算出する(詳細は後述)。均等化前推定処理および均等化後推定処理をいずれも実行していないか、いずれか一方のみしか実行していない場合(S120においてNO)には、ECU100は、S130の処理をスキップする。その後、一連の処理は終了する。
図7は、図6の均等化前推定処理(S200の処理)を説明するためのフローチャートである。なお、図7では、説明の理解を容易にするため、ブロック101(第1のブロック)とブロック102(第2のブロック)との抵抗比X1を推定する例(すなわち添字n=1の例)について代表的に説明する。
図2および図7を参照して、S210において、ECU100は、ブロック101の満充電容量C1と、ブロック102の満充電容量C2とを取得する。満充電容量C1,C2は、たとえば組電池10の外部充電時に図示しない別フローを実行することで算出することができる。満充電容量C1,C2の算出手法については公知の手法を用いることができるため、説明は繰り返さない。
S220において、ECU100は、電圧センサ211,212の検出値から、ブロック101,102のOCVであるOCV1a,OCV2aをそれぞれ算出する。
S230において、ECU100は、予め取得されたOCV−SOCカーブ(図示せず)を用いて、S220にて算出されたOCV1a,OCV2aから、ブロック101,102のSOCであるSOC1a、SOC2aをそれぞれ算出する。S220,S230の処理は、図5のS10,S20の処理と同様に実現することができる。
本実施の形態においては、OCV−SOCカーブが均等化制御の実施前後で基本的に相似の形状を有する点に着目し、基準となる所定のSOC(後述のSOC1a*等)における内部抵抗比(2つのブロック間の抵抗比X)を均等化制御の実施前と実施後とで比較する。より詳細には、本実施の形態では、以下のS230〜S260の処理が実行される。
均等化制御の実施前において、ブロック101のSOC(=SOC1a)と、基準となるSOC(=SOC1a*)との差をΔSOC1(=SOC1a*−SOC1a)と表すと、ブロック102のSOC(=SOC2a)と、比較に用いられるブロック102のSOC(=SOC2a*)との差ΔSOC2(=SOC2a*−SOC2a)は、満充電容量C1,C2の逆比を用いて下記式(1)のように表される。
ΔSOC2a/ΔSOC1a=C1/C2 ・・・(1)
ECU100は、上記式(1)を変形することで求められる下記式(2)を用いて、SOC2a*を算出する(S240)。
ECU100は、上記式(1)を変形することで求められる下記式(2)を用いて、SOC2a*を算出する(S240)。
SOC2a*=SOC2a−(SOC1a−SOC1a*)×C1/C2・・・(2)
式(2)において、SOC1aには、予め定められた固定値が用いられる。SOC1a,SOC2aには、S230にて算出された値が用いられる。満充電容量C1,C2には、S210にて取得された値が用いられる。
式(2)において、SOC1aには、予め定められた固定値が用いられる。SOC1a,SOC2aには、S230にて算出された値が用いられる。満充電容量C1,C2には、S210にて取得された値が用いられる。
S250において、ECU100は、図4に示したマップMPを参照することで、S240にて算出されたSOC1a*,SOC2a*から、ブロック101,102の内部抵抗R1a,R2aをそれぞれ算出する。
S260において、ECU100は、ブロック101とブロック102との抵抗比X1a=R1a/R2aを算出する。この抵抗比X1aは、基準となる特定のSOC(SOC1a*)から算出されたものであるものの、抵抗比X1aには、均等化制御の実施前におけるブロック101,102間の内部抵抗の傾向(たとえば、R1aがR2aよりも高くなりやすいとの傾向)が反映されている。
S270において、ECU100は、すべてのブロック10n(n1〜(M−1))の抵抗比Xnの推定が完了したか否かを判定する。すべてのブロック10nの抵抗比Xnの推定が完了していない場合(S270においてNO)には、添字nが1だけインクリメントされ(S280)、処理がS210に戻される。これにより、すべてのブロック10nの抵抗比Xnの推定が完了するまでS210〜S260の処理が繰り返し実行される。
均等化後推定処理(図6のS300の処理)は、各パラメータの末尾を「b」に変更すれば、基本的に図7に示した処理(S200の処理)と同等であるため詳細な説明は繰り返さない。均等化後推定処理により推定される抵抗比X1bには、均等化制御の実施後におけるブロック101,102間の内部抵抗の傾向が反映されている。したがって、抵抗比X1aと抵抗比X1bとを比較する(より詳細には比を取る)ことで、均等化制御がブロック101,102に与える影響(内部抵抗の変化の方向や変化のしやすさ)を抵抗比X1の推定の際に考慮に入れることができる。すなわち、抵抗比X1を補正することができる。
より具体的には、図6のS130においては、図7のS260にて算出された均等化制御の実施前における抵抗比X1aと、図示しないが同様にして推定された均等化制御の実施後における抵抗比X1bとの比(=X1a/X1b)から補正係数K1が算出される(図6では、より一般的に補正係数Knと記載している)。この補正係数K1を抵抗比X1に乗算することで(図5のS50参照)、均等化制御に伴うSOCずれの影響を補正する(均等化制御に伴う抵抗比X1の変化を相殺する)ことができる。
以上のように、本実施の形態によれば、均等化制御の実施前後での所定の基準SOC(SOC1a*等)における2つのブロック間の内部抵抗比(X1a,X1b等)の変化から補正係数Knが算出される。補正係数Knを用いた補正により、均等化制御が各ブロックに与える影響を考慮に入れることができる。したがって、均等化制御を実施した場合でも断線を高精度に検出することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、1A 電池システム、2 充電装置、3 充電ケーブル、10 組電池、101〜10M ブロック、20 監視ユニット、21,211〜21M 電圧センサ、22 電流センサ、301〜30M 均等化回路、70 駆動軸、100 ECU、100A CPU、100B メモリ、111,112 モータジェネレータ、120 エンジン、130 動力分割装置、140 駆動輪、150 PCU、160 SMR、170 充電リレー、180 電力変換装置、190 インレット、200 系統電源。
Claims (1)
- 直列に接続された第1および第2のブロックを含む組電池と、
前記第1のブロックのSOC(State Of Charge)と前記第2のブロックのSOCとの不均等を解消する均等化制御を実施するための均等化回路と、
前記第1および第2のブロックのSOCから前記第1のブロックと前記第2のブロックとの内部抵抗比を推定し、推定された内部抵抗比から前記第1および第2のブロックのいずれかに生じた断線を検出するように構成された制御装置とを備え、
前記制御装置は、前記均等化制御の実施前後での所定の基準SOCにおける前記第1のブロックと前記第2のブロックとの内部抵抗比の変化から、前記均等化制御による内部抵抗比の変化を相殺するための補正係数を算出し、算出された補正係数を用いて前記推定された内部抵抗比を補正する、電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038359A JP6760133B2 (ja) | 2017-03-01 | 2017-03-01 | 電池システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038359A JP6760133B2 (ja) | 2017-03-01 | 2017-03-01 | 電池システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018148612A JP2018148612A (ja) | 2018-09-20 |
JP6760133B2 true JP6760133B2 (ja) | 2020-09-23 |
Family
ID=63591778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017038359A Active JP6760133B2 (ja) | 2017-03-01 | 2017-03-01 | 電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6760133B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7103253B2 (ja) * | 2019-02-04 | 2022-07-20 | トヨタ自動車株式会社 | 電池セルの断線検知装置 |
CN110901465B (zh) * | 2019-11-13 | 2022-11-01 | 东风航盛(武汉)汽车控制系统有限公司 | Bms均衡开启时提升单体电压采集精度的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013114468A (ja) * | 2011-11-29 | 2013-06-10 | Chugoku Electric Power Co Inc:The | 離席検知装置 |
JP5692040B2 (ja) * | 2011-12-16 | 2015-04-01 | トヨタ自動車株式会社 | 蓄電システム |
-
2017
- 2017-03-01 JP JP2017038359A patent/JP6760133B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018148612A (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4116609B2 (ja) | 電源制御装置、電動車両および電池制御ユニット | |
US8497661B2 (en) | Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method | |
CN110001402B (zh) | 二次电池系统和诊断电池组中的异常的方法 | |
EP2502774B1 (en) | Vehicle and method for controlling vehicle | |
CN103308769B (zh) | 车载高电压设备的漏电电阻检测装置及漏电电阻检测方法 | |
JP5370492B2 (ja) | 車両および車両の制御方法 | |
JP5482798B2 (ja) | 車両および車両の制御方法 | |
US20170003353A1 (en) | Method of measuring battery pack current | |
JP5527183B2 (ja) | 電池制御システム、充放電制御ecu | |
US11618341B2 (en) | Power control system, electric powered vehicle, and power control method | |
KR20090129212A (ko) | 고전압 배터리시스템 전류센서의 고장진단방법 | |
KR20120079674A (ko) | 차등적 soc 추정의 배터리 관리 장치와 방법 및 배터리 팩 | |
JP2018137171A (ja) | 電池システム | |
JP6760133B2 (ja) | 電池システム | |
JP7484870B2 (ja) | 組電池の劣化診断装置、及び組電池の劣化診断方法 | |
JP2019124567A (ja) | 電池システム | |
JP5741189B2 (ja) | 車両の充電制御装置および充電制御方法 | |
KR20090042367A (ko) | 하이브리드 차량의 배터리 성능 보상 및 soc 초기화방법 | |
JP6658321B2 (ja) | 電池システム | |
JP6897479B2 (ja) | 二次電池システム | |
JP2019075936A (ja) | 二次電池システム | |
JP2018080969A (ja) | リチウムイオン二次電池の制御システム | |
JP6849497B2 (ja) | 電池システム | |
US20220311058A1 (en) | Battery system and method for equalization of battery pack | |
JP2019046638A (ja) | 電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200817 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6760133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |