JP6752287B2 - 弾性波フィルタ、弾性波デバイス、分波器および通信装置 - Google Patents

弾性波フィルタ、弾性波デバイス、分波器および通信装置 Download PDF

Info

Publication number
JP6752287B2
JP6752287B2 JP2018547675A JP2018547675A JP6752287B2 JP 6752287 B2 JP6752287 B2 JP 6752287B2 JP 2018547675 A JP2018547675 A JP 2018547675A JP 2018547675 A JP2018547675 A JP 2018547675A JP 6752287 B2 JP6752287 B2 JP 6752287B2
Authority
JP
Japan
Prior art keywords
resonator
capacitance
parallel
filter
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547675A
Other languages
English (en)
Other versions
JPWO2018079522A1 (ja
Inventor
伊藤 幹
幹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2018079522A1 publication Critical patent/JPWO2018079522A1/ja
Application granted granted Critical
Publication of JP6752287B2 publication Critical patent/JP6752287B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本開示は、弾性波を利用して信号をフィルタリングする弾性波フィルタ、当該弾性波フィルタを含む弾性波デバイス、分波器および通信装置に関する。弾性波は、例えば、弾性表面波(SAW:surface acoustic wave)である。
弾性波フィルタとして、複数の弾性波共振子をラダー型に接続したラダー型フィルタが知られている(特許文献1)。特許文献1では、弾性波共振子に対して容量部を並列に接続している。また、特許文献1では、このような容量部を設けることによって、共振周波数を変化させずに、反共振周波数を共振周波数に近づけ、共振周波数と反共振周波数との差Δfを小さくできることについて言及している。
特開2001−345675号公報
本開示の一態様に係る弾性波フィルタは、圧電基板と、直列腕と、1以上の並列共振部とを有している。前記直列腕は、前記圧電基板上に位置している1以上の直列共振部を含んでいる。前記1以上の並列共振部は、前記圧電基板上に位置しており、前記直列腕とラダー型フィルタを構成している。前記1以上の直列共振部および前記1以上の並列共振部のうちのいずれか1つである第1共振部は、第1共振子と、第1容量部とを有している。前記第1共振子は、前記圧電基板上に位置しているIDT電極、およびその両側に位置している1対の反射器を含んでいる。前記第1容量部は、前記第1共振子と並列接続されている。前記第1容量部の容量は前記第1共振子のIDT電極の容量の0.8倍以上である。前記第1共振部の反共振周波数と共振周波数との差は前記第1共振子の反共振周波数と共振周波数との差よりも小さい。
本開示の一態様に係る弾性波デバイスは、上記の弾性波フィルタと、前記弾性波フィルタが実装されている実装基板と、を有している。前記実装基板は、前記複数の基準電位端子と接合されている複数のパッドと、前記複数のパッドに接続されている複数の配線と、前記複数のパッドと前記複数の配線を介して接続されている複数の外部端子と、を有している。前記複数のパッドは、当該複数のパッドから前記複数の外部端子までにおいて互いに短絡されていない2つのパッドを含む。前記2つの基準電位端子の一方は、前記2つのパッドの一方に接続されている。前記2つの基準電位端子の他方は、前記2つのパッドの他方に接続されている。
本開示の一態様に係る分波器は、アンテナ端子と、送信信号をフィルタリングして前記アンテナ端子に出力する送信フィルタと、前記アンテナ端子からの受信信号をフィルタリングする受信フィルタと、を有している。前記送信フィルタおよび前記受信フィルタの少なくとも一方は、上記の弾性波フィルタを含んでいる。
本開示の一態様に係る通信装置は、アンテナと、前記アンテナに前記アンテナ端子が接続されている上記の分波器と、前記送信フィルタおよび前記受信フィルタに接続されているICと、を有している。
SAW共振子の構成を示す平面図である。 図1のSAW共振子を含むSAWフィルタの構成を模式的に示す平面図である。 図3(a)は図2のSAWフィルタを含む分波器を模式的に示す断面図であり、図3(b)は分波器の回路の一部を模式的に示す図である。 図3の分波器を含む通信装置を示す模式図である。 図5(a)、図5(b)、図5(c)および図5(d)はシミュレーション計算結果を示す図である。 SAWフィルタの変形例を示す模式図である。 図2のSAWフィルタと他の変形例のSAWフィルタとの周波数特性のシミュレーション計算結果を示す図である。
以下、本開示の実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。
同一または類似する構成については、「第1櫛歯電極11A」、「第2櫛歯電極11B」のように、同一名称に対して互いに異なるアルファベットを付して呼称することがあり、また、この場合において、単に「櫛歯電極11」といい、これらを区別しないことがある。
(SAW共振子の構成)
図1は、実施形態に係るSAWフィルタ51(図2)に用いられるSAW共振子1の構成を示す平面図である。
SAW共振子1(SAWフィルタ51)は、いずれの方向が上方または下方とされてもよいものであるが、以下の説明では、便宜的に、D1軸、D2軸およびD3軸からなる直交座標系を定義し、D3軸の正側(図1の紙面手前側)を上方として、上面等の語を用いることがあるものとする。なお、D1軸は、後述する圧電基板3の上面(紙面手前側の面。通常は最も広い面(主面)。)に沿って伝搬するSAWの伝搬方向に平行になるように定義され、D2軸は、圧電基板3の上面に平行かつD1軸に直交するように定義され、D3軸は、圧電基板3の上面に直交するように定義されている。
SAW共振子1は、いわゆる1ポートSAW共振子を構成しており、例えば、模式的に示す第1端子31Aおよび第2端子31Bの一方から所定の周波数の電気信号が入力されると共振を生じ、その共振を生じた信号を第1端子31Aおよび第2端子31Bの他方から出力する。
このような1ポートSAW共振子としてのSAW共振子1は、例えば、圧電基板3と、圧電基板3上に設けられた共振子電極部5とを有している。共振子電極部5は、IDT電極7と、IDT電極7の両側に位置する1対の反射器9とを有している。
圧電基板3は、例えば、圧電性を有する単結晶からなる。単結晶は、例えば、ニオブ酸リチウム(LiNbO)単結晶またはタンタル酸リチウム(LiTaO)単結晶である。カット角は、利用するSAWの種類等に応じて適宜に設定されてよい。例えば、圧電基板3は、回転YカットX伝搬のものである。すなわち、X軸は圧電基板3の上面(D1軸)に平行であり、Y軸は、圧電基板3の上面の法線に対して所定の角度で傾斜している。なお、圧電基板3は、比較的薄く形成され、裏面(D3軸負側の面)に無機材料または有機材料からなる支持基板が貼り合わされたものであってもよい。
IDT電極7および反射器9は、圧電基板3上に設けられた層状導体によって構成されている。IDT電極7および反射器9は、例えば、互いに同一の材料および厚さで構成されている。これらを構成する層状導体は、例えば、金属である。金属は、例えば、AlまたはAlを主成分とする合金(Al合金)である。Al合金は、例えば、Al−Cu合金である。層状導体は、複数の金属層から構成されてもよい。層状導体の厚さは、SAW共振子1に要求される電気特性等に応じて適宜に設定される。一例として、層状導体の厚さは50nm〜600nmである。
IDT電極7は、第1櫛歯電極11A(視認性をよくする便宜上ハッチングを付す)および第2櫛歯電極11Bを有している。各櫛歯電極11は、バスバー13と、バスバー13から互いに並列に延びる複数の電極指15と、複数の電極指15の間にてバスバー13から突出する複数のダミー電極17とを有している。1対の櫛歯電極11は、複数の電極指15が互いに噛み合うように(交差するように)配置されている。すなわち、1対の櫛歯電極11の2本のバスバー13は互いに対向して配置され、第1櫛歯電極11Aの電極指15と第2櫛歯電極11Bの電極指15とはその幅方向に基本的に交互に配列されている。また、一方の櫛歯電極11の複数のダミー電極は、その先端が他方の櫛歯電極11の電極指15の先端と対向している。
バスバー13は、例えば、概ね一定の幅でSAWの伝搬方向(D1軸方向)に直線状に延びる長尺状に形成されている。そして、一対のバスバー13は、SAWの伝搬方向に直交する方向(D2軸方向)において互いに対向している。なお、バスバー13は、幅が変化していたり、SAWの伝搬方向に対して傾斜していたりしてもよい。
各電極指15は、例えば、概ね一定の幅でSAWの伝搬方向に直交する方向(D2軸方向)に直線状に延びる長尺状に形成されている。複数の電極指15は、例えば、SAWの伝搬方向に配列されており、また、互いに同等の長さである。なお、IDT電極7は、複数の電極指15の長さ(別の観点では交差幅)が伝搬方向の位置に応じて変化する、いわゆるアポダイズが施されていてもよい。
電極指15の本数は、SAW共振子1に要求される電気特性等に応じて適宜に設定されてよい。なお、図1等は模式図であることから、電極指15の本数は少なく示されている。実際には、図示よりも多く(例えば100本以上)の電極指15が配列されてよい。後述する反射器9のストリップ電極21についても同様である。
複数の電極指15のピッチp(電極指ピッチ)は、例えば、IDT電極7全体に亘って概ね一定とされている。なお、ピッチpは、例えば、互いに隣り合う2本の電極指15(または後述するストリップ電極21)の中心間距離である。ピッチpは、基本的に、圧電基板3上を伝搬するSAWのうち共振させたい周波数と同等の周波数を有するSAWの波長λの半分(p=λ/2)とされている。
複数のダミー電極17は、例えば、概ね一定の幅でSAWの伝搬方向に直交する方向(D2軸方向)に直線状に突出する長尺状に形成されている。その先端と複数の電極指15の先端とのギャップは、例えば、複数のダミー電極17間で同等である。複数のダミー電極17の幅、本数およびピッチは、複数の電極指15と同等である。なお、ダミー電極17の幅は電極指15と異なっていてもよい。
また、IDT電極7は、ダミー電極17を有さないものであってもよい。以下の説明では、ダミー電極17の説明および図示を省略することがある。
反射器9は、例えば、格子状に形成されている。すなわち、反射器9は、互いに対向する1対のバスバー19と、1対のバスバー19間において延びる複数のストリップ電極21とを有している。
バスバー19およびストリップ電極21の形状は、ストリップ電極21の両端が1対のバスバー19に接続されていることを除いては、IDT電極7のバスバー13および電極指15と同様とされてよい。
例えば、バスバー19は、概ね一定の幅でSAWの伝搬方向(D1軸方向)に直線状に延びる長尺状に形成されている。各ストリップ電極21は、概ね一定の幅でSAWの伝搬方向に直交する方向(D2軸方向)に直線状に延びる長尺状に形成されている。また、複数のストリップ電極21は、例えば、SAWの伝搬方向に配列されており、また、互いに同等の長さである。複数のストリップ電極21の幅およびピッチは、例えば、複数の電極指15の幅およびピッチと同等である。
複数のストリップ電極21の本数は、例えば、利用を意図しているモードのSAWの反射率が概ね100%以上となるように設定されている。その理論的な必要最小限の本数は、例えば、数本〜10本程度であり、通常は、余裕を見て20本以上または30本以上とされている。
1対の反射器9は、例えば、SAWの伝搬方向においてIDT電極7の両側に隣接している。従って、複数のストリップ電極21は、複数の電極指15の配列に続いて配列されている。反射器9とIDT電極7との間で互いに隣接するストリップ電極21と電極指15とのピッチは、例えば、複数の電極指15のピッチと同等である。
なお、特に図示しないが、圧電基板3の上面は、IDT電極7および反射器9の上から、SiO等からなる保護膜によって覆われていてもよい。保護膜は、単にIDT電極7等の腐食を抑制するためのものであってもよいし、温度補償に寄与するものであってもよい。また、保護膜が設けられる場合等において、IDT電極7および反射器9の上面または下面には、SAWの反射係数を向上させるために、絶縁体または金属からなる付加膜が設けられてもよい。
1対の櫛歯電極11に電圧が印加されると、電極指15によって圧電基板3に電圧が印加され、圧電基板3の上面付近において上面に沿ってD1軸方向に伝搬する所定のモードのSAWが励起される。励起されたSAWは、電極指15によって機械的に反射される。その結果、電極指15のピッチを半波長とする定在波が形成される。定在波は、当該定在波と同一周波数の電気信号に変換され、電極指15によって取り出される。このようにしてSAW共振子1は共振子として機能する。その共振周波数は、電極指ピッチを半波長として圧電基板3上を伝搬するSAWの周波数と概ね同一の周波数である。
IDT電極7において励起されたSAWは、反射器9のストリップ電極21によって機械的に反射される。また、互いに隣接するストリップ電極21がバスバー19によって互いに接続されていることから、IDT電極7からのSAWは、電気的にもストリップ電極21によって反射される。これにより、SAWの発散が抑制され、IDT電極7における定在波が強く立ち、SAW共振子1の共振子としての機能が向上する。
IDT電極7は、特性の向上または微調整のために、その一部(例えば電極指ピッチの総数の50%未満、または5%未満)に、大部分の電極指ピッチとは異なる大きさの電極指ピッチが設定されることがある。例えば、IDT電極7は、SAWの伝搬方向の両側に、他の大部分よりも電極指ピッチが小さい狭ピッチ部が設けられることがある。また、例えば、交互に配列されている1対の櫛歯電極11の電極指15を1〜数十本程度(例えば3本)無くす、またはこれと実質的に等価な電極指15の幅または配列の変更を行う、いわゆる間引きが行われることがある。本開示において単にピッチという場合、このような特異な部分のピッチは除くものとする。また、ピッチがIDT電極7全体に亘って微小範囲内で変動するような場合においては、その平均値を用いてよい。
(SAWフィルタ)
図2は、SAW共振子1を含むSAWフィルタ51の構成を模式的に示す平面図である。この図では、紙面左上側に示された共振子電極部5、IDT電極7、反射器9、櫛歯電極11、バスバー13および電極指15の符号から理解されるように、これらの導体を図1よりも更に模式的に示している。
SAWフィルタ51は、例えば、既述の圧電基板3と、当該圧電基板3上に位置している2つの端子53(第1端子53Aおよび第2端子53B)とを有している。SAWフィルタ51は、2つの端子53の一方に入力された信号をフィルタリングして2つの端子53の他方から出力する。
また、SAWフィルタ51は、圧電基板3上に位置しており、接地される(基準電位が付与される)1以上または2以上のGND端子55(図示の例では第1GND端子55A〜第3GND端子55C)を有している。2つの端子53間を流れようとする信号のうちの不要成分(通過帯域外の信号)は、GND端子55へ流される。
端子53およびGND端子55は、圧電基板3の上面に位置する層状導体からなる。これらの具体的な数、形状、大きさおよび圧電基板3の上面における位置は適宜に設定されてよい。
SAWフィルタ51は、上記のようなフィルタリングを行うために、2つの端子53を接続する直列腕57と、直列腕57とGND端子55とを接続する1以上の並列腕59(図示の例では第1並列腕59A〜第3並列腕59C)とを有している。すなわち、SAWフィルタ51は、ラダー型に接続された直列腕57および1以上の並列腕59を有するラダー型フィルタである。通過帯域の信号は、直列腕57を介して2つの端子53の一方から他方へ流れ、通過帯域外の信号は、並列腕59を介してGND端子55へ流れる。
直列腕57は、第1端子53Aと第2端子53Bとの間において直列に接続されている複数の直列共振部61(図示の例では第1直列共振部61A〜第4直列共振部61D)を含んでいる。なお、直列腕が含む直列共振部61は、1つであってもよい。
並列腕59の数は、1つであってもよいし、複数であってもよく、以下では、複数の場合を例にとる。複数の並列腕59は、直列腕57に対して電気的に互いに異なる位置に接続されている。
ここでいう直列腕57に対して電気的に互いに異なる位置は、直列腕57が含む直列共振部61に対する相対関係が互いに異なることを指す。例えば、第1直列共振部61Aと第2直列共振部61Bとの間と、第2直列共振部61Bと第3直列共振部61Cとの間とは互いに異なる位置である。逆に、例えば、第1直列共振部61Aと第2直列共振部61Bとの間(後述する第1直列共振子65Aと容量素子67との第2直列共振部61B側の接続点含む。)であれば、両者を接続する配線のいずれの位置であっても、電気的に同じ(共通する)位置である。
各並列腕59は、直列腕57とGND端子55とを接続している並列共振部63(図示の例では第1並列共振部63A〜第3並列共振部63C)を有している。
直列共振部61および並列共振部63それぞれは、例えば、インピーダンスが極小値をとる共振周波数と、インピーダンスが極大値をとり、共振周波数よりも周波数が高い反共振周波数とを有している。そして、直列共振部61および並列共振部63は、直列共振部61の共振周波数と並列共振部63の反共振周波数とが概ね一致するように共振周波数および反共振周波数が設定される。これにより、並列共振子69の共振周波数と直列共振子65の反共振周波数との間の周波数範囲よりも若干狭い範囲を通過帯域として、2つの端子53の一方から他方へ流れる信号をフィルタリングすることができる。
(共振部)
複数の直列共振部61は、例えば、それぞれ、少なくとも直列共振子65(図示の例では第1直列共振子65A〜第4直列共振子65D)を含んでいる。また、複数の直列共振部61のいずれか(図示の例では第1直列共振部61A)は、直列共振子65に並列に接続されている容量素子67を含んでいてもよい。
複数の並列共振部63は、例えば、それぞれ、少なくとも並列共振子69(図示の例では第1並列共振子69A〜第3並列共振子69C)を含んでいる。また、複数の並列共振部63のいずれか(図示の例では全ての並列共振部63)は、並列共振子69に並列に接続されている容量素子71(第1容量素子71A〜第3容量素子71C)を含んでいてもよい。
直列共振子65および並列共振子69は、例えば、図1を参照して説明したSAW共振子1と同様の構成である。すなわち、直列共振子65および並列共振子69それぞれは、圧電基板3と、圧電基板3上に設けられた共振子電極部5(IDT電極7および反射器9)とを有している。ただし、電極指15の本数、電極指15の長さおよび/またはピッチp等の具体的な値は、各共振子に要求される特性に応じて設定されている。以下では、直列共振子65および並列共振子69を区別せずにこれらをSAW共振子1ということがある。
直列共振子65および並列共振子69は、同一の圧電基板3の同一主面に設けられている。別の観点では、直列共振子65および並列共振子69は、圧電基板3の一部と、その上に設けられた共振子電極部5とを有しており、その配置範囲は共振子電極部5によって規定されている。なお、以下では、便宜上、共振子の用語を共振子電極部の用語と同義で用いることがある。
容量素子67は、第1直列共振子65Aに対して並列接続されている。また、各並列共振部63において、容量素子71は、並列共振子69に対して並列接続されている。
容量素子とSAW共振子1(IDT電極7)との並列接続は、例えば、容量素子を構成する2つの電極の一方と、SAW共振子1の2つの櫛歯電極11の一方とが接続され、容量素子を構成する2つの電極の他方と、SAW共振子1の2つの櫛歯電極11の他方とが接続されている状態である。なお、このような接続を狭義の並列接続ということがある。
ただし、本開示においては、並列接続は、後述するように、理論上の並列接続であればよく、並列共振部63においては、容量素子71の2つの電極と並列共振子69の2つの櫛歯電極11とが上記のように接続されている必要はない。
SAW共振子1に対して容量素子を並列接続すると、例えば、SAW共振子1と等価な2重共振回路において反共振周波数(並列共振の周波数)を規定する制動容量が大きくなることに相当する。このことから、例えば、SAW共振子1の反共振周波数が低くなる。ひいては、共振周波数と反共振周波数との周波数差Δfが小さくなる。換言すれば、容量素子(67または71)を含む共振部(61Aまたは63)のΔfは、当該共振部が含むSAW共振子1のΔfよりも小さくなる。
直列共振部61および/または並列共振部63は、不図示のインダクタを含んでいてもよい。この場合、共振周波数も変化する。ただし、本実施形態では、インダクタのインダクタンスは共振部(61,63)のΔfが、当該共振部が含むSAW共振子1のΔfよりも大きくなるように設定されており、容量素子(67,71)の容量は、共振部(61,63)のΔfが、当該共振部が含むSAW共振子1のΔfよりも小さくなるように設定されている。本実施形態とは異なり、一部または全部において、共振部のΔfがその共振部が含むSAW共振子1のΔf以上とされてもよい。
直列腕57の用語との対比において並列腕59の用語を用いているものの、本開示においては、並列腕59と並列共振部63とは同義である。例えば、並列腕59が並列腕59の共振特性に影響を及ぼす電子素子を含む場合は、当該電子素子は並列共振部63に含まれるものとする。従って、並列腕59のΔfおよび並列共振部63のΔfは同義である。また、直列腕57において、2つの直列共振子65の間に直列にインダクタが設けられている場合、そのインダクタがいずれの直列共振子65と直列共振部61を構成するかは、例えば、並列腕59の接続位置を直列共振部61間の境界として捉えることにより判別できる。
図2では、各種の接続は、模式的に示した配線によってなされている。ただし、例えば、バスバー13同士が直接に接続されることなどによってなされ、配線が省略されていてもよい。
(容量素子の構成)
容量素子67または71は、互いに対向する1対の電極を有している。この1対の電極は、例えば、圧電基板3上に設けられた導体層によって構成されている。1対の電極は、例えば、互いに1辺同士を対向させる長方形であってもよいし、互いに噛み合うように配置された1対の櫛歯電極11(IDT電極7)であってもよい。
本実施形態では、第1容量素子71Aにおいて符号を付すように、並列共振部63の容量素子71は、1対の櫛歯電極11によって構成されている。容量素子71を1対の櫛歯電極11によって構成することによって、容量素子71の面積に対して容量を大きくすることが容易になる。
1対の櫛歯電極11を有する容量素子71は、SAWの伝搬による共振特性を有する必要はないから、SAW共振子1と同様の構成である必要はない。従って、例えば、容量素子71は、図示のように反射器9を有していなくてもよいし、図2とは異なり、IDT電極7の両側に位置する反射器9を有していてもよい。また、容量素子71は、ダミー電極17を有していてもよいし、有していなくてもよい。また、容量素子71のIDT電極7のピッチは、SAWの半波長と大きくずれていてもよいし、近くてもよいし、一定であってもよいし、一定でなくてもよい。ピッチは、一定でない場合、比較的大きな範囲(例えば平均ピッチの±30%以上の範囲)で変動してよい。また、ピッチは、規則的に変動してもよいし、不規則に変動してもよい。なお、反射器9および/またはダミー電極17を設けない場合においては、例えば、小型化に有利である。
容量素子71のIDT電極7のピッチpは、例えば、比較的小さくされている。これにより、例えば、容量素子71の面積に対して容量素子71の容量を大きくすることができる。具体的には、例えば、容量素子71のピッチpは、当該容量素子71と並列に接続されているSAW共振子1(ここでは並列共振子69)のピッチpよりも小さい。さらに具体的には、例えば、前者は、後者の0.9倍以下または0.6倍以下とされてよい。
直列共振部61の容量素子67も、容量素子71と同様に、1対の櫛歯電極11によって構成されて構わない。従って、上記の容量素子71の1対の櫛歯電極11についての説明は、容量素子67に適用してよい。
(容量素子の容量)
並列共振部63の容量素子71の容量は、例えば、比較的大きくされる。例えば、容量素子71の容量は、当該容量素子71と並列に接続されているSAW共振子1(ここでは並列共振子69)のIDT電極7の容量の0.8倍以上または1倍以上である。
なお、ここでいうSAW共振子1または容量素子のIDT電極7の容量は、1対の櫛歯電極11の対向面積(平面視における対向長さ×電極厚み)、および圧電基板3等の誘電率によって決定される実際の容量である。すなわち、SAW共振子1を2重共振回路などの等価回路で表わしたときの等価容量ではない。
一般に、SAWフィルタ51の設計においては、まず、直列共振子65および並列共振子69(SAW共振子1)が設計される。そして、シミュレーション計算または実験から、SAW共振子1において所望の特性が得られないときに、SAW共振子1に並列接続される容量素子を設けることが検討され、また、その容量が設定される。その結果、通常は、容量素子71の容量は、比較的小さい値となり、上記のような比較的大きい値とはならない。
本実施形態では、上記のように容量素子71の容量を大きくすることによって、別の観点では、並列共振子69の設計の当初から容量素子71の容量を考慮することによって、例えば、並列共振部63の面積を小さくすることができる。これは、上記のように、容量素子71は、ピッチを小さくすることができること、ダミー電極17が不要であること、および/または反射器9が不要であることなどからである。
直列共振部61の容量素子67は、例えば、比較的小さくされる。例えば、容量素子67の容量は、当該容量素子67と並列に接続されているSAW共振子1(ここでは直列共振子65)の容量の0.8倍未満または1倍未満である。換言すれば、直列共振子65のIDT電極7の容量(C65)に対する当該直列共振子65に並列に接続されている容量素子67の容量(C67)の比(C67/C65)は、並列共振子69のIDT電極7の容量(C69)に対する当該並列共振子69に並列に接続されている容量素子71の容量(C71)の比(C71/C69)よりも小さい。この場合、容量を大きくしたことに伴う反共振周波数におけるインピーダンスの低下がフィルタ特性に及ぼす影響を小さくすることが容易である。
ただし、上記の説明とは異なり、容量素子71の容量が比較的小さくされたり(例えばC71/C69<1または0.8)、容量素子67の容量が比較的大きくされたり(例えばC67/C65≧1または0.8)、比(C67/C65)が比(C71/C69)よりも大きくされたりしてもよい。
(並列共振部の接続方法)
第1並列共振部63Aおよび第3並列共振部63Cそれぞれにおいては、並列共振子69と容量素子71とは上述した狭義の並列接続によって接続されている。すなわち、並列共振子69の1対の櫛歯電極11の一方と、容量素子71の1対の櫛歯電極11の一方とが接続され、並列共振子69の1対の櫛歯電極11の他方と、容量素子71の1対の櫛歯電極11の他方とが接続されている。また、別の観点では、並列共振子69と容量素子71とは同一のGND端子55に接続されている。
一方、第2並列共振部63Bにおいては、第2並列共振子69Bの1対の櫛歯電極11の一方と、第2容量素子71Bの1対の櫛歯電極11の一方とは接続されているものの(直列腕57側)、第2並列共振子69Bの1対の櫛歯電極11の他方と、第2容量素子71Bの1対の櫛歯電極11の他方とは接続されていない(GND端子55側)。別の観点では、第2並列共振子69Bの1対の櫛歯電極11の他方と、第2容量素子71Bの1対の櫛歯電極11の他方とは、互いに別個のGND端子55に接続されている。
従って、第2並列共振子69Bと第2容量素子71Bとは、狭義には並列接続されていない。しかし、複数のGND端子55は、いずれも基準電位が付与されて、基本的には互いに同一の電位になることが意図されているものである。従って、第2並列共振子69Bと第2容量素子71Bとは並列接続されているとみなすことができ、また、慣習的にも、このような接続は、並列接続の一種として扱われている。そこで、本開示においては、並列接続という場合、特に断りがない限りは、このような、並列共振子69と容量素子71とが互いに異なるGND端子55に接続されている態様も含むものとする。
第1GND端子55Aと第2GND端子55Bとは短絡されていない。すなわち、第1GND端子55Aおよび第2GND端子55Bは、第1並列共振部63A、第2直列共振部61Bおよび第2並列共振部63Bを経由するルートで接続されてはいるものの、共振部、抵抗体、インダクタおよび/または容量素子(いずれも配線に不可避に含まれるものを除く)を介さない接続(配線のみによる接続)はなされていない。
一方、第2並列共振部63Bにおいて、第2並列共振子69Bは、第2GND端子55Bに接続されており、第2容量素子71Bは、第1GND端子55Aに接続されている。従って、第2並列共振子69Bおよび第2容量素子71Bは、互いに短絡されていない2つのGND端子55に接続されており、GND端子55まで電気的に分離されている。
なお、仮に、第2並列共振子69Bと第2GND端子55Bとの間の配線と、第2容量素子71Bと第1GND端子55Aとの間の配線とを結ぶ配線が設けられ、第2並列共振子69Bと第2容量素子71Bとにおいて狭義の並列接続がなされると、当然に第1GND端子55Aと第2GND端子55Bとは短絡する。従って、第1GND端子55Aと第2GND端子55Bとが短絡されていないという場合、逆説的であるが、これらに接続される第2並列共振子69Bと第2容量素子71Bとにおいては狭義の並列接続がなされていないことが前提となる。
第2GND端子55Bおよび第3GND端子55Cは、例えば、配線(符号省略)を介して短絡されている。従って、例えば、第3並列共振部63Cにおいて、第3並列共振子69Cと第3容量素子71Cとが配線のみによっては接続されておらず、第3並列共振子69Cが第3GND端子55Cに接続され、第3容量素子71Cが第2GND端子55Bに接続されていても、第3並列共振子69Cと第3容量素子71Cとは狭義の並列接続がなされているといえる。
互いに並列接続される並列共振子69および容量素子71は、直列腕57側については、直列腕に対して互いに同じ(共通する)位置に接続されていればよい。この同じ位置の意味は、既に述べたとおりである。例えば、第1並列共振子69Aおよび第1容量素子71Aは、図示のように互いに接続されてから直列腕57に接続されるのではなく、互いに別個に、第1直列共振部61Aと第2直列共振部61Bとの間に接続されていてもよい。
なお、図示とは異なり、第1GND端子55Aと第2GND端子55Bとが短絡されてもよいし、第2GND端子55Bと第3GND端子55Cとが短絡されないようにしてもよいし、第2並列共振子69Bと第2容量素子71Bとが同一のGND端子55に接続されていてもよい。
(分波器)
図3(a)は、SAWフィルタ51の利用例としての分波器101を模式的に示す断面図である。
分波器101は、例えば、送信信号と受信信号とを分波するデュプレクサである。この分波において、送信信号または受信信号をフィルタリングするフィルタとしてSAWフィルタ51が用いられている。
分波器101は、例えば、概ね直方体状の電子部品であり、その少なくとも1つの面85bにおいて露出する外部端子91を有している。そして、例えば、分波器101は、外部端子91と不図示の回路基板のランドとを接合することによって、不図示の回路基板に実装されて利用される。
分波器101は、例えば、実装基板81と、実装基板81に実装されたSAWフィルタ51およびSAWフィルタ52と、これらフィルタを封止する封止樹脂83とを有している。
実装基板81は、例えば、絶縁基板85と、絶縁基板85に設けられた複数のパッド87、配線89および上記の外部端子91とを有している。パッド87は、例えば、絶縁基板85の一方の面85a上に位置する導体層によって構成されている。配線89は、絶縁基板85の内部および/または表面に位置する導体層、ならびに絶縁基板85の一部または全部を貫通する貫通導体のいずれかを含んで構成されている。外部端子91は、例えば、絶縁基板85の他方の面85b上に位置する導体層によって構成されている。パッド87と外部端子91とは配線89によって接続されている。
SAWフィルタ51および52は、例えば、一方が送信信号をフィルタリングするフィルタとして機能し、他方が受信信号をフィルタリングするフィルタとして機能する。SAWフィルタ51の構成は、既に述べたとおりである。SAWフィルタ52は、例えば、SAWフィルタ51と同様に、圧電基板3と、圧電基板3上に位置する1以上のIDT電極7と、端子53およびGND端子55を有している。ただし、IDT電極7が構成するフィルタは、SAWフィルタ51と同様のラダー型フィルタであってもよいし、他の形式(例えば多重モード型フィルタ)であってもよい。
SAWフィルタ51および52は、例えば、端子53およびGND端子55が設けられている面を実装基板81の面85aに対向させて配置され、これらの端子53がバンプ93によって実装基板81のパッド87に接合されることによって、面85aと所定の隙間を空けた状態で実装基板81に実装される。
封止樹脂83は、SAWフィルタ51および52を実装基板81とは反対側から覆い、SAWフィルタ51および52と実装基板81との隙間を封止する。この隙間は、例えば、真空状態または不活性ガスが封止された状態となっており、SAWの伝搬(圧電基板3の振動)を容易化することに寄与する。
図3(b)は、分波器101の回路の一部を模式的に示す図である。なお、この図では、図3(a)で示したパッド87および外部端子91に対して、A〜CおよびG1〜G3(単にGとすることもある。)の付加符号を付している。また、SAWフィルタ52の端子53にCおよびDの付加符号を付している。
外部端子91Aは、ここでは不図示のアンテナに接続されるものであり、2つのパッド87Aを介してSAWフィルタ51の第2端子53BおよびSAWフィルタ52の端子53Cに接続される。すなわち、外部端子91Aは、SAWフィルタ51および52の双方に接続される。
外部端子91Bは、送信信号の入力および受信信号の出力の一方に供されるものであり、パッド87Bを介してSAWフィルタ51の第1端子53Aに接続される。なお、SAWフィルタ51における第1端子53Aおよび第2端子53Bの役割は逆でもよい。外部端子91Cは、送信信号の入力または受信信号の出力の他方に供されるものであり、パッド87Cを介してSAWフィルタ52の端子53Dに接続される。
外部端子91G(87G1〜87G3)は、外部から基準電位が付与される(外部の基準電位部に接続される)ものであり、パッド87G(87G1〜87G3)を介してSAWフィルタ51のGND端子55およびSAWフィルタ52のGND端子55(ここでは不図示)に接続される。
SAWフィルタ51において互いに短絡されていなかった第1GND端子55Aおよび第2GND端子55Bは、実装基板81のパッド87G1および87G2に接続されている。ここで、パッド87G1およびパッド87G2は、実装基板81内において(換言すれば外部端子91Gに至るまでにおいて)短絡されていない。従って、第2並列共振子69Bおよび第2容量素子71BのGND端子55側の電極は、当該電極から外部端子91までに亘って短絡されておらず、ひいては、分波器101全体においても狭義の並列接続はなされていない。
(通信装置)
図4は、上述した分波器101の利用例としての通信装置151の要部を示すブロック図である。
通信装置151において、送信すべき情報を含む送信情報信号TISは、RF−IC(Radio Frequency Integrated Circuit)153によって変調および周波数の引き上げ(搬送波周波数の高周波信号への変換)がなされて送信信号TSとされる。送信信号TSは、バンドパスフィルタ155によって送信用の通過帯以外の不要成分が除去され、増幅器157によって増幅されて分波器101(外部端子91Bおよび91Cの一方)に入力される。そして、分波器101は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去し、その除去後の送信信号TSを外部端子91Aからアンテナ159に出力する。アンテナ159は、入力された電気信号(送信信号TS)を無線信号(電波)に変換して送信する。
また、通信装置151において、アンテナ159によって受信された無線信号(電波)は、アンテナ159によって電気信号(受信信号RS)に変換されて分波器101(外部端子91A)に入力される。分波器101は、入力された受信信号RSから受信用の通過帯以外の不要成分を除去して、外部端子91Bおよび91Cの他方から増幅器161に出力する。出力された受信信号RSは、増幅器161によって増幅され、バンドパスフィルタ163によって受信用の通過帯以外の不要成分が除去される。そして、受信信号RSは、RF−IC153によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。
なお、送信情報信号TISおよび受信情報信号RISは、適宜な情報を含む低周波信号(ベースバンド信号)でよく、例えば、アナログの音声信号もしくはデジタル化された音声信号である。無線信号の通過帯は、UMTS(Universal Mobile Telecommunications System)等の各種の規格に従ったものでよい。変調方式は、位相変調、振幅変調、周波数変調もしくはこれらのいずれか2つ以上の組み合わせのいずれであってもよい。回路方式は、図4では、ダイレクトコンバージョン方式を例示したが、それ以外の適宜なものとされてよく、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図4は、要部のみを模式的に示すものであり、適宜な位置にローパスフィルタやアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。
(シミュレーション計算結果)
並列共振子69の容量に対する容量素子71の容量の比(C71/C69)として種々の値を仮定してシミュレーション計算を行い、容量の比(C71/C69)がフィルタ特性に及ぼす影響を調べた。なお、容量の比(C71/C69)は、全ての並列共振部63に共通して設定した。
図5(a)は、実施形態のSAWフィルタ51のフィルタ特性の一例を示す図である。この図において、横軸は正規化された周波数を示している。横軸において1.00は、通過帯域の中心周波数を示している。縦軸は減衰量(dB)を示している。
このシミュレーション計算結果は、容量の比(C71/C69)を0.8以上に設定したSAWフィルタ51についてのものである。本実施形態では、従来とは異なり、容量の比が比較的大きく設定されるが(例えば0.8以上または1.0以上)、そのような場合においても、この図に示すように、ラダー型フィルタの特性が得られることが確認された。
ここで、この図に示すように、フィルタ特性の評価指標として、中心周波数における通過特性IL(dB)、中心周波数から所定の幅Wf1だけ低周波側の周波数における通過特性Att1(dB)、中心周波数から所定の幅Wf2だけ高周波側の周波数における通過特性Att2(dB)をフィルタ特性を評価する指標として用いることとする。
通過特性ILが小さければ、挿入損失が少ないといえる。通過特性Att1が大きければ、低周波側の減衰特性が急峻であるといえる。通過特性Att2が大きければ、高周波側の減衰特性が急峻であるといえる。
幅Wf1およびWf2は、実際の設計においては、通信システムの仕様や、顧客から要求される特性に応じて、種々の業者のノウハウ等に基づいて適宜に設定される。ここでは、Wf1およびWf2として、通過帯域の帯域幅を用いることとする。
図5(b)〜図5(d)は、容量の比(C71/C69)のみを種々変更しつつ、シミュレーション計算によって上記の指標の値を求めた結果を示す図である。各図において、横軸は、容量の比(C71/C69)を示している。縦軸は、IL、Att1またはAtt2(減衰量)である。
図5(b)に示すように、減衰量ILは、容量の比(C71/C69)が0.85以上1.69以下の範囲において3dB以下となっている。一方、一般に、減衰量ILは、3dB以下に収めるように要求されることが多い。従って、容量の比が比較的大きく設定されても、一般に要求される減衰量ILを実現できることが確認された。
図5(c)に示すように、減衰量Att1は、計算の対象とした全ての容量の比(C71/C69)について、40dB以上となっている。また、図5(d)に示すように、減衰量Att2は、容量の比が0.97以上の範囲において30dB以上となっている。経験上、減衰量Att1およびAtt2は、30dB以上であれば、多くの場合において、SAWフィルタに要求される仕様を満たす。従って、容量の比を比較的大きくしても、一般に要求される減衰量Att1およびAtt2を実現できることが確認された。
容量の比(C71/C69)の変化に対する減衰量Att1およびAtt2の変化の割合(変化率、傾き)は、縦軸をdBとしたこれらの図において概ね一定となっている。一方、減衰量ILの変化率は、1.60付近において絶対値が大きくなっている(傾斜が急になっている)。これは、容量の比を大きくすると、反共振周波数が低周波側へ移動するだけでなく、反共振周波数におけるインピーダンスが下がることから、その影響が減衰量Att1およびAtt2よりも減衰量ILに強く現れたものと考えられる。従って、容量の比として、例えば、1.60を上限値として考慮したり、3dB以下か否かも考慮して、1.69を上限値として考慮したりして、容量素子71(または67)を設計してよい。もちろん、それ以上の値で容量の比を設定しても構わない。
(面積縮小の試算例)
既述のように、容量素子71を比較的大きくすることによって、並列共振部63の面積を縮小することができる。その試算例を以下に示す。
まず、比較例として、容量素子71を設けずに、並列共振子69のみで並列共振部63を構成したものを想定する。このような比較例として、IDT電極7の容量CおよびIDT電極7のピッチpが互いに異なるケース1〜3を仮定し、その並列共振子69の面積Sを試算した。試算結果は、以下のとおりである。

(pF) (μm) (μm
ケース1 8.0 2.643 122883
ケース2 6.8 2.637 99238
ケース3 7.5 2.632 114507
次に、実施形態のように並列共振子69および容量素子71によって並列共振部63を構成したものを想定する。そして、この並列共振部63全体としての容量が上記のケース1〜3の容量Cになるように並列共振子69の容量Cおよび容量素子71の容量Cを設定する(C=C+C)。また、並列共振子69のピッチpを上記のケース1〜3のピッチpに設定し(p=p)、その一方で、容量素子71のピッチpをピッチpよりも小さく設定する。具体的には、以下のように設定した。
/C/p
(pF) (pF) (μm)
ケース1 4.0 4.0 1.00 1.5 0.568
ケース2 3.2 3.6 1.13 1.5 0.569
ケース3 3.0 4.5 1.50 1.5 0.570
そして、上記のC、C、pおよびpのもと、並列共振子69の面積Sおよび容量素子71の面積Sを試算し、その合計の面積Sを比較例の面積Sと比較した。試算結果は、以下のとおりである。
B+CB+C/S
(μm) (μm) (μm
ケース1 56404 24168 80572 0.656
ケース2 49619 21470 71089 0.716
ケース3 42491 26502 68993 0.603
上記の結果から、容量素子71の容量を比較的大きくすることによって、並列共振部63全体としての面積を小さくすることができることが確認された。具体的には、この試算例では、容量の比(C/C)を1以上にすることによって、容量素子71を設けない場合に比較して、並列共振部63の面積を約7割以下まで縮小することができた。
以上のとおり、本実施形態では、例えば、SAWフィルタ51は、圧電基板3と、圧電基板3上に位置している1以上の直列共振部61を含んでいる直列腕57と、圧電基板3上に位置しており、直列腕57とラダー型フィルタを構成している1以上の並列共振部63(並列腕59)と、を有している。1以上の直列共振部61および1以上の並列共振部63のうちのいずれか1つである第1並列共振部63Aが、IDT電極7等を含む第1並列共振子69Aと、第1並列共振子69Aと並列接続されている第1容量素子71Aと、を有している。第1容量素子71Aの容量は、第1並列共振子69AのIDT電極7の容量の0.8倍以上である。第1並列共振部63Aの反共振周波数と共振周波数との差Δfは、第1並列共振子69Aの反共振周波数と共振周波数との差Δfよりも小さい。
従って、例えば、フィルタの減衰域の急峻度の向上および/または狭い通過帯域の実現が容易化される。また、例えば、並列共振子69を設計した後に容量素子71を付加的に設計するのではなく、比較的大きな容量を有する容量素子71を当初から設計に考慮することによって、試算例で示したように、並列共振部63の面積を小さくし、ひいては、SAWフィルタ51、分波器101および/または通信装置151の小型化を図ることができる。
また、本実施形態では、例えば、上記のように比較的大きな容量素子71を有する共振部は、1以上の並列共振部63の1つである。
この場合、例えば、直列共振部61において容量素子67の容量を大きくして面積を縮小しようとする場合(この場合も本開示の技術に含まれる)に比較して、容量を大きくしたことに伴う反共振周波数におけるインピーダンスの低下がフィルタ特性に及ぼす影響を小さくすることが容易である。
また、本実施形態では、例えば、1以上の直列共振部61のうちの1つである第1直列共振部61Aは、IDT電極7等を含んでいる第1直列共振子65Aと、第1直列共振子65Aと並列接続されている容量素子67と、を有している。第1直列共振子65AのIDT電極7の容量に対する容量素子67の容量の比は、第1並列共振子69AのIDT電極7の容量に対する第1容量素子71Aの容量の比よりも小さい。
この場合、例えば、上述した、容量を大きくしたことに伴う反共振周波数におけるインピーダンスの低下がフィルタ特性に及ぼす影響を小さくする効果が得られやすくなる。
また、本実施形態では、SAWフィルタ51は、圧電基板3上に位置している複数のGND端子55を更に有している。複数のGND端子は、互いに短絡されていない2つのGND端子55(55Aおよび55B)を含む。第2並列共振子69Bは、第2GND端子55Bに接続されている。第2並列共振子69Bと並列接続されている(直列腕57に対する接続位置が共通の)第2容量素子71Bは、第1GND端子55Aに接続されている。
この場合、例えば、第2並列共振子69Bおよび第2容量素子71Bは、理論上は並列接続されているといえども、現実の製品においては、配線における抵抗、インダクタンスおよび/または容量が互いに異なる別個の経路に接続されることになる。そして、例えば、複数の経路に応じて、直列共振の減衰極が複数生じる。その結果、例えば、並列共振子69の数を増加させることなく、複数の減衰極によって減衰特性を向上させることが可能になる。
また、本実施形態の分波器101は、フィルタ内で第2並列共振子69Bおよび第2容量素子71Bが短絡されていないSAWフィルタ51と、SAWフィルタ51が実装されている実装基板81と、を有している。実装基板81は、複数のGND端子55と接合されている複数のパッド87と、複数のパッド87に接続されている複数の配線89と、複数のパッド87と複数の配線89を介して接続されている複数の外部端子91と、を有している。複数のパッド87は、当該複数のパッド87から複数の外部端子91まで互いに短絡されていない2つのパッド87G1および87G2を含む。上記の短絡されていない2つのGND端子55の一方(55A)は、パッド87G1に接続され、2つのGND端子55の他方(55B)は、パッド87G2に接続されている。
従って、第1GND端子55Aおよび第2GND端子55Bのアイソレーションが向上し、上述した複数の減衰極の効果が向上する。別の観点では、第2並列共振子69Bおよび第2容量素子71Bは、外部端子91まで短絡されない別個の経路に接続されるから、両経路の共振特性の差が大きくなりやすく、ひいては、複数の減衰極が現れやすい。
(グランド分離による効果検証:シミュレーション計算結果)
上述の通り、本実施形態によれば、共振子とこれに並列接続される容量素子とが圧電基板3上おいて異なる基準電位に接続されている。具体的には、SAWフィルタ51の第2並列共振部63Bに着目すると、第2並列共振子69Bと第2容量素子71Bとは別々のGND端子55(55Aおよび55B)に接続されている。このように、1つの並列腕59に並列接続された並列共振子69と容量素子71とを異なるGND端子55に接続させることによる効果を確認するために、図2に示す構成のSAWフィルタ51のモデルを作製し、周波数特性をシミュレーションした。
また、変形例として、第2並列共振子69Bと第2容量素子71Bとを同一のGND端子55に接続したSAWフィルタのモデルを作製し、同様に周波数特性をシミュレーションした。
これらのシミュレーション結果を図7に示す。図7において横軸は周波数(単位:MHz)を、縦軸は通過特性(単位:dB)を示している。図中において、実線は本実施形態のSAWフィルタ51のモデルの結果を示し、破線は変形例のSAWフィルタのモデルの結果を示している。
図からも明らかなように、GND端子を分離した本実施形態のモデルの特性は、変形例のモデルの特性に比べ通過帯域外の減衰特性が優れていることが確認できた。これは、第2並列共振子69Bおよび第2容量素子71Bは、理論上は並列接続されているといえども、現実の製品においては、配線における抵抗、インダクタンスおよび/または容量が互いに異なる別個の経路に接続されることになる。そして、例えば、複数の経路に応じて、直列共振の減衰極が複数生じる。その結果、例えば、並列共振子69の数を増加させることなく、複数の減衰極によって減衰特性を向上させることが可能になったものと考えられる。
また、図3に示す本実施形態の分波器101のように、SAWフィルタが実装される実装基板81においても、第2並列共振子69Bが接続されたGND端子55Aと第2容量素子71Bが接続されたGND端子55Bとが電気的に接続される経路を備えない場合には、さらに減衰特性を高めることができる。
なお、以上の実施形態において、SAWフィルタ51は弾性波フィルタの一例である。第1直列共振部61Aおよび第1並列共振部63A〜第3並列共振部63Cはそれぞれ、第1共振部の一例である。第1直列共振子65Aおよび第1並列共振子69A〜第3並列共振子69Cはそれぞれ、第1共振子の一例である。容量素子67および第1容量素子71A〜第3容量素子71Cはそれぞれ第1容量部の一例である。
また、別の観点では、第1直列共振部61Aは、第2共振部の一例である。第1直列共振子65Aは、第2共振子の一例である。容量素子67は第2容量部の一例である。
複数のGND端子55は複数の基準電位端子の一例である。第1GND端子55Aおよび第2GND端子55Bは、互いに短絡されていない2つの基準電位端子の一例である。分波器101は、弾性波デバイスの一例である。
外部端子91Aはアンテナ端子の一例である。SAWフィルタ51は、送信フィルタおよび受信フィルタの一方の一例であり、SAWフィルタ52は、送信フィルタおよび受信フィルタの他方の一例である。
本開示の技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。
弾性波は、SAWに限定されない。例えば、弾性波は、圧電基板内を伝搬するバルク波であってもよいし、圧電基板と圧電基板を覆う絶縁層との境界部を伝搬する弾性境界波(ただし、広義にはSAWの一種である。)であってもよい。
実施形態では、複数の並列共振部のうち1つのみについて、並列共振子と容量部とを互いに短絡されていない基準電位端子に接続した。このような並列共振部が設けられる数は適宜に設定されてよいし、直列腕に対する接続位置も適宜に設定されてよい。例えば、図6に示すように、全ての並列共振部63において、並列共振子69と容量素子71とが互いに短絡されていないGND端子55(さらには互いに短絡されていないパッド87〜外部端子91)に接続されていてもよい。この場合、例えば、1つの並列共振部63において並列共振子69と容量素子71とを短絡させない場合に比較して、減衰極の数が多くなり、減衰量が向上する。
図3(a)に示した弾性波デバイスの構成は、一例に過ぎない。例えば、弾性波デバイス(または弾性波フィルタと捉えられてもよい)は、圧電基板の上面にIDT電極を覆うようにカバーが設けられてIDT電極が封止され、カバーの上面から端子(パッド状であてもよいし、柱状であってもよい)が露出するウェハレベルパッケージのものであってもよい。
本開示からは、容量部の容量の大小を問題としない以下の技術を抽出可能である。
圧電基板と、
前記圧電基板上に位置している直列腕と、
前記圧電基板上に位置しており、前記直列腕とラダー型フィルタを構成している1以上の並列腕と、
前記圧電基板上に位置している複数の基準電位端子と、
を有しており、
前記1以上の並列腕のうちのいずれか1つである第1並列腕が、
前記圧電基板上に位置しているIDT電極、およびその両側に位置している1対の反射器を含んでいる第1共振子と、
前記第1共振子と並列接続されている第1容量部と、を有しており、
前記複数の基準電位端子は、互いに短絡されていない2つの基準電位端子を含み、
前記第1共振子は、前記2つの基準電位端子の一方に接続されており、
前記第1容量部は、前記2つの基準電位端子の他方に接続されている
弾性波フィルタ。
3…圧電基板、7…IDT電極、9…反射器、57…直列腕、51…SAWフィルタ(弾性波フィルタ)、59(59A〜59C)…並列腕、61A…第1直列共振部(第2共振部)、63(63A〜63C)…並列共振部(第1共振部)、69(69A〜69C)…並列共振子(第1共振子)、71(71A〜71C)…容量素子(容量部)。

Claims (7)

  1. 圧電基板と、
    前記圧電基板上に位置している1以上の直列共振部を含んでいる直列腕と、
    前記圧電基板上に位置しており、前記直列腕とラダー型フィルタを構成している1以上の並列共振部と、
    前記圧電基板上に位置している複数の基準電位端子と、
    を有しており、
    記1以上の並列共振部のうちのいずれか1つである第1共振部が、
    前記圧電基板上に位置しているIDT電極、およびその両側に位置している1対の反射器を含んでいる第1共振子と、
    前記第1共振子と並列接続されている第1容量部と、を有しており、
    前記第1容量部の容量が前記第1共振子のIDT電極の容量の0.8倍以上であり、
    前記第1共振部の反共振周波数と共振周波数との差が前記第1共振子の反共振周波数と共振周波数との差よりも小さく、
    前記複数の基準電位端子は、互いに短絡されていない2つの基準電位端子を含み、
    前記第1共振子は、前記2つの基準電位端子の一方に接続されており、
    前記第1容量部は、前記2つの基準電位端子の他方に接続されている
    弾性波フィルタ。
  2. 前記第1容量部は、前記圧電基板上に位置しており、前記第1共振子のIDT電極の電極指ピッチよりも小さい電極指ピッチのIDT電極を含んでいる
    請求項に記載の弾性波フィルタ。
  3. 前記1以上の直列共振部のうちの1つである第2共振部が、
    前記圧電基板上に位置しているIDT電極、およびその両側に位置している1対の反射器を含んでいる第2共振子と、
    前記第2共振子と並列接続されている第2容量部と、を有しており、
    前記第2共振子のIDT電極の容量に対する前記第2容量部の容量の比は、前記第1共振子のIDT電極の容量に対する前記第1容量部の容量の比よりも小さい
    請求項1または2に記載の弾性波フィルタ。
  4. 前記第1容量部の容量が前記第1共振子の容量の1.69倍以下である
    請求項1〜3のいずれか1項に記載の弾性波フィルタ。
  5. 請求項1〜4のいずれか1項に記載の弾性波フィルタと、
    前記弾性波フィルタが実装されている実装基板と、
    を有しており、
    前記実装基板は、
    前記複数の基準電位端子と接合されている複数のパッドと、
    前記複数のパッドに接続されている複数の配線と、
    前記複数のパッドと前記複数の配線を介して接続されている複数の外部端子と、を有しており、
    前記複数のパッドは、当該複数のパッドから前記複数の外部端子までにおいて互いに短絡されていない2つのパッドを含み、
    前記2つの基準電位端子の一方は、前記2つのパッドの一方に接続されており、
    前記2つの基準電位端子の他方は、前記2つのパッドの他方に接続されている
    弾性波デバイス。
  6. アンテナ端子と、
    送信信号をフィルタリングして前記アンテナ端子に出力する送信フィルタと、
    前記アンテナ端子からの受信信号をフィルタリングする受信フィルタと、
    を有しており、
    前記送信フィルタおよび前記受信フィルタの少なくとも一方は、請求項1〜のいずれか1項に記載の弾性波フィルタを含んでいる
    分波器。
  7. アンテナと、
    前記アンテナに前記アンテナ端子が接続されている請求項に記載の分波器と、
    前記送信フィルタおよび前記受信フィルタに接続されているICと、
    を有している通信装置。
JP2018547675A 2016-10-28 2017-10-24 弾性波フィルタ、弾性波デバイス、分波器および通信装置 Active JP6752287B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016211840 2016-10-28
JP2016211840 2016-10-28
JP2016243165 2016-12-15
JP2016243165 2016-12-15
PCT/JP2017/038282 WO2018079522A1 (ja) 2016-10-28 2017-10-24 弾性波フィルタ、弾性波デバイス、分波器および通信装置

Publications (2)

Publication Number Publication Date
JPWO2018079522A1 JPWO2018079522A1 (ja) 2019-09-19
JP6752287B2 true JP6752287B2 (ja) 2020-09-09

Family

ID=62023469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547675A Active JP6752287B2 (ja) 2016-10-28 2017-10-24 弾性波フィルタ、弾性波デバイス、分波器および通信装置

Country Status (4)

Country Link
US (1) US10911024B2 (ja)
JP (1) JP6752287B2 (ja)
CN (2) CN109792239B (ja)
WO (1) WO2018079522A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585621B2 (ja) * 2014-12-02 2019-10-02 京セラ株式会社 弾性波素子、分波器および通信モジュール
US10951194B2 (en) * 2017-12-20 2021-03-16 Kyocera Corporation Acoustic wave filter, multiplexer, and communication apparatus
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11996827B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
DE112020001227T5 (de) 2019-03-14 2022-02-10 Resonant Inc. Transversal angeregter akustischer Filmresonator mit Lambda-Halbe-Dielektrikumschicht
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11405019B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US11824522B2 (en) * 2020-11-11 2023-11-21 Rf360 Singapore Pte. Ltd. Electroacoustic filter with modified phase characteristics
JP2022173148A (ja) * 2021-05-07 2022-11-17 レゾナント インコーポレイテッド 無線周波数フロントエンド素子に整合する入出力インピーダンスを有する横方向励起フィルムバルク音響共振器マトリックスフィルタ
WO2023107987A1 (en) * 2021-12-09 2023-06-15 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators with inductively coupled sub-resonators
CN115425945A (zh) * 2022-08-26 2022-12-02 中国科学院上海微系统与信息技术研究所 一种声表面波滤波器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201017B2 (ja) * 1992-11-13 2001-08-20 株式会社村田製作所 梯子型弾性表面波フィルタ
JPH07264000A (ja) * 1994-03-16 1995-10-13 Fujitsu Ltd 弾性表面波フィルタ素子及びそれをパッケージングして成る弾性表面波フィルタ
JP3390537B2 (ja) * 1994-08-22 2003-03-24 富士通株式会社 弾性表面波フィルタ
JPH09135145A (ja) * 1995-11-08 1997-05-20 Sanyo Electric Co Ltd 弾性表面波フィルタ
JP3792409B2 (ja) 1998-10-05 2006-07-05 京セラ株式会社 弾性表面波フィルタ
JP4377525B2 (ja) 2000-05-31 2009-12-02 京セラ株式会社 弾性表面波フィルタ
JP2005260833A (ja) * 2004-03-15 2005-09-22 Murata Mfg Co Ltd 弾性表面波共振子及び弾性表面波フィルタ
JP2007036856A (ja) * 2005-07-28 2007-02-08 Fujitsu Media Device Kk 共振器、フィルタおよびアンテナ分波器
JP5072642B2 (ja) * 2007-03-28 2012-11-14 京セラ株式会社 弾性表面波装置及びこれを用いた分波器並びに通信装置
US8204031B2 (en) * 2008-09-24 2012-06-19 Rockstar Bidco, LP Duplexer/multiplexer having filters that include at least one band reject filter
US8923794B2 (en) * 2011-11-02 2014-12-30 Triquint Semiconductor, Inc. Temperature compensation of acoustic resonators in the electrical domain
WO2013080461A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
US9419585B2 (en) * 2013-08-22 2016-08-16 Murata Manufacturing Co., Ltd. Elastic wave filter device and duplexer
JP2016136687A (ja) * 2015-01-23 2016-07-28 株式会社村田製作所 ラダー型フィルタ
US9608595B1 (en) * 2015-11-13 2017-03-28 Resonant Inc. Acoustic wave filter with enhanced rejection

Also Published As

Publication number Publication date
CN109792239B (zh) 2024-01-30
WO2018079522A1 (ja) 2018-05-03
US20190245518A1 (en) 2019-08-08
CN109792239A (zh) 2019-05-21
CN117914282A (zh) 2024-04-19
US10911024B2 (en) 2021-02-02
JPWO2018079522A1 (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6752287B2 (ja) 弾性波フィルタ、弾性波デバイス、分波器および通信装置
JP6573668B2 (ja) 弾性波装置および通信装置
US9966929B2 (en) Duplexer including a low-pass filter capacitor
JP6651643B2 (ja) 弾性波フィルタ、分波器および通信装置
JP7132944B2 (ja) 弾性波フィルタ、分波器および通信装置
JP2010011300A (ja) 共振器、該共振器を用いるフィルタ及びデュプレクサ
JP6487458B2 (ja) 弾性波素子、フィルタ素子および通信装置
CN109478881B (zh) 弹性波器件以及通信装置
JP6868025B2 (ja) 受信フィルタ、分波器および通信装置
JP7386741B2 (ja) フィルタ、分波器及び通信装置
JP6876828B2 (ja) 弾性波フィルタ、分波器および通信装置
JPWO2007015331A1 (ja) 弾性波フィルタ装置
JP2021190908A (ja) 帯域阻止フィルタ、複合フィルタ及び通信装置
JP7213747B2 (ja) 弾性波フィルタ、分波器および通信装置
JP6620036B2 (ja) 弾性波フィルタ、分波器および通信装置
JP6585459B2 (ja) 弾性波素子、分波器および通信装置
WO2023234405A1 (ja) 複合フィルタ、マルチプレクサ及び通信装置
JP7344294B2 (ja) 弾性波フィルタ、分波器および通信装置
JP2023066628A (ja) 弾性波装置及び通信装置
JP2024003954A (ja) 複合フィルタ及び通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6752287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150