JP6730394B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6730394B2
JP6730394B2 JP2018178749A JP2018178749A JP6730394B2 JP 6730394 B2 JP6730394 B2 JP 6730394B2 JP 2018178749 A JP2018178749 A JP 2018178749A JP 2018178749 A JP2018178749 A JP 2018178749A JP 6730394 B2 JP6730394 B2 JP 6730394B2
Authority
JP
Japan
Prior art keywords
region
electrode
semiconductor region
semiconductor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018178749A
Other languages
English (en)
Other versions
JP2018201050A (ja
Inventor
小寺 雅子
雅子 小寺
知子 末代
知子 末代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2018178749A priority Critical patent/JP6730394B2/ja
Publication of JP2018201050A publication Critical patent/JP2018201050A/ja
Application granted granted Critical
Publication of JP6730394B2 publication Critical patent/JP6730394B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明の実施形態は、半導体装置に関する。
高効率の電力変換のために、パワーエレクトロニクスの活用とパワー半導体開発がますます盛んに行われている。幅広い定格電圧、定格電流に対応するため、様々な素子が開発されている。スイッチング周波数と電力容量により、使用用途と使用される素子が決まってくる。代表的な素子として、高周波数動作に適したMOSFET(Metal Oxide Semiconductor Field Effect Transistor)や、高耐圧、大電流駆動可能なバイポーラ素子であるIGBT(Insulated Gate Bipolar Transistors)やpinダイオードなどの半導体装置がある。これらの半導体装置については、低損失駆動と共に、操作性、破壊耐量、高耐圧等の要求があり、高耐圧設計は重要な設計項目となっている。
特開2015−23061号公報
本発明が解決しようとする課題は、耐圧を向上できる半導体装置を提供することである。
実施形態に係る半導体装置は、第1電極と、第1導電形の第1半導体領域と、第2導電形の第2半導体領域と、第2電極と、第2導電形の第3半導体領域と、第1導電形の第4半導体領域と、第3電極と、第4電極と、第5電極と、を有する。
前記第1半導体領域は、第1領域と、前記第1領域の周りに設けられた第2領域と、を有する。前記第1半導体領域は、前記第1電極の上に設けられている。
前記第2半導体領域は、前記第1領域の上に設けられている。
前記第2電極は、前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続されている。
前記第3半導体領域は、前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲んでいる。
前記第3電極は、前記第3半導体領域の上に前記第2電極と離間して設けられている。前記第3電極は、前記第2電極を囲み、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第1突出部を有する。前記第1突出部の下面は、前記第1方向に垂直な第2方向に対して傾斜している。
前記第4半導体領域は、前記第2領域の上に前記第3半導体領域と離間して設けられ、前記第3半導体領域を囲み、前記第1半導体領域よりも高い第1導電形の不純物濃度を有する。
前記第4電極は、前記第4半導体領域の上に前記第3電極と離間して設けられ、前記第3電極を囲み、前記第2領域から前記第1領域に向かう第3方向に向けて突出した第2突出部を有し、前記第2突出部の下面が前記第2方向に対して傾斜している。
前記第5電極は、前記第2電極の周りに設けられ、前記第3電極に囲まれ、前記第2電極および前記第3電極と離間し、前記第2半導体領域の上に位置し、前記第1方向に向けて突出した第3突出部を有し、前記第3突出部の下面が前記第2方向に対して傾斜している。
前記第3電極は、前記第3半導体領域に接する部分から前記第1突出部の先端に近づくにつれて薄くなる前記第2方向の厚さを有する。
前記第3電極の下面は、下方に向けて凸に湾曲している。
第1実施形態に係る半導体装置の一部を表す断面図である。 第1実施形態に係る半導体装置の製造工程を表す工程断面図である。 第1実施形態に係る半導体装置の製造工程を表す工程断面図である。 第1実施形態に係る半導体装置の製造工程を表す工程断面図である。 第1実施形態に係る半導体装置のゲート電極近傍を拡大した断面図とゲート電極近傍の電界強度を表すグラフである。 第1実施形態の第1変形例に係る半導体装置のゲート電極近傍を拡大した断面図とゲート電極近傍の電界強度を表すグラフである。 第1実施形態の第2変形例に係る半導体装置におけるゲート電極近傍の部分拡大断面図およびゲート電極近傍の電界強度を表すグラフである。 第1実施形態の他の変形例に係る半導体装置が有するゲート電極近傍を表す部分拡大断面図である。 第1実施形態の他の変形例に係る半導体装置が有するゲート電極近傍を表す部分拡大断面図である。 第1実施形態の他の変形例に係る半導体装置を表す断面図である。 第2実施形態に係る半導体装置を表す平面図である。 図11のA−A’断面図である。 第2実施形態の参考例に係る半導体装置を表す断面図である。 第2実施形態の変形例に係る半導体装置を表す断面図である。
以下に、本発明の各実施形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
また、本願明細書と各図において、既に説明したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1は、第1実施形態に係る半導体装置100の一部を表す断面図である。
半導体装置100は、例えば、横型のHEMT(High Electron Mobility Transistor)である。
図1に表すように、半導体装置100は、基板1、バッファ層2、チャネル層3、バリア層4(第1半導体層)、ゲート電極10、ゲート絶縁層18、ソース電極20(第1電極)、ドレイン電極30(第2電極)、および絶縁層40を有する。
以下の第1実施形態の説明では、ソース電極20からドレイン電極30に向かう方向をX方向(第1方向)とする。また、バリア層4の上面4aと交差する方向をZ方向(第2方向)とし、X方向およびZ方向に対して垂直な方向をY方向とする。
バッファ層2は、基板1の上に設けられている。バッファ層2は、基板1とチャネル層3との間の格子不整合を緩和するために設けられている。
チャネル層3は、バッファ層2の上に設けられている。
バリア層4は、チャネル層3の上に設けられている。バリア層4のバンドギャップは、チャネル層3のバンドギャップよりも大きい。チャネル層3とバリア層4とはヘテロ接合界面を形成し、このヘテロ接合界面に二次元電子ガスが発生する。
ソース電極20とドレイン電極30は、バリア層4の上面4aの上に互いに離間して設けられている。ソース電極20およびドレイン電極30は、バリア層4とオーミック接触している。
ゲート電極10は、上面4aの上にゲート絶縁層18を介して設けられている。また、ゲート電極10は、ソース電極20とドレイン電極30との間に位置し、これらの電極と離間している。
絶縁層40は、ゲート電極10の周りに設けられ、ソース電極20およびドレイン電極30を覆っている。
ここで、ゲート電極10の構造について、より具体的に説明する。
ゲート電極10は、図1に表すように、第1部分11および第2部分12を有する。
第1部分11は、上面4aの上にゲート絶縁層18を介して設けられている。
第2部分12は、X方向において第1部分11とドレイン電極30との間に設けられている。第2部分12とバリア層4との間のZ方向における距離は、第1部分11とバリア層4との間のZ方向における距離よりも長い。また、第2部分12の下面BS1とバリア層4との間のZ方向における距離は、X方向に向かうほど長くなっている。
第2部分12の下面BS1は、曲率を有する。
具体的には、下面BS1は、下方に向けて凸に湾曲しており、下面BS1のZ方向に対する傾斜角度は、Z方向に向かうほど小さくなっている。換言すると、下面BS1とバリア層4との間のZ方向における距離は、X方向に向かうほど長くなり、かつX方向に向かうほどその変化量が大きくなっている。
次に、半導体装置100が有する各構成要素の材料の一例について説明する。
基板1は、シリコン、炭化珪素、またはサファイアから構成されている。
バッファ層2は、複数の窒化アルミニウムガリウム層が積層された構造を有する。
チャネル層3は、アンドープの窒化ガリウムを含む。
バリア層4は、アンドープの窒化アルミニウムガリウムを含む。
ゲート電極10、ソース電極20、およびドレイン電極30は、アルミニウム、ニッケル、銅、またはチタンなどの金属を含む。
ゲート絶縁層18は、窒化アルミニウムまたは酸化アルミニウムなどの絶縁材料を含む。
絶縁層40は、酸化シリコンなどの絶縁材料を含む。
次に、第1実施形態に係る半導体装置100の製造方法の一例について説明する。
図2〜図4は、第1実施形態に係る半導体装置100の製造工程を表す工程断面図である。
まず、基板1の上に、バッファ層2、チャネル層3、およびバリア層4を順次エピタキシャル成長させる。次に、バリア層4の上面4aの上にゲート絶縁層18を形成する。続いて、ゲート絶縁層18の一部を除去し、上面4aの一部を露出させる。続いて、ゲート絶縁層18を覆う金属層を形成する。この金属層をパターニングすることで、図2(a)に表すように、ゲート電極10の一部であるゲート電極10aと、ソース電極20と、ドレイン電極30と、が形成される。
次に、ゲート電極10a、ソース電極20、およびドレイン電極30を覆う絶縁層40を形成する。続いて、絶縁層40の上にフォトレジスト層45を形成し、ナノインプリント法を用いて、フォトレジスト層45に第1凹部R1を形成する。このとき、第1凹部R1は、ゲート電極10aの上に形成される。また、第1凹部R1の底面45aの一部は、図1に表す第2部分12の下面BS1と同様に、曲率を有し、下方に向かって凸に湾曲している。
次に、フォトレジスト層45をマスクとして用いて、RIE(Reactive Ion Etching)法などの異方性エッチングにより、絶縁層40の一部を除去する。この工程により、フォトレジスト層45に形成されていた第1凹部R1の形状が絶縁層40に転写され、図3(a)に表すように、絶縁層40に第2凹部R2が形成される。このとき、ゲート電極10aの上面が第2凹部R2を通して露出される。また、第2凹部R2の底面40aの一部は、第1凹部R1の底面45aと同様に、曲率を有する。
次に、図3(b)に表すように、絶縁層40の上に金属層46を形成し、第2凹部R2を埋め込む。
続いて、CMP(Chemical Mechanical Polishing)を行うことで、図4(a)に表すように、絶縁層40の上に堆積した余剰な金属層46が除去され、上面が平坦化されたゲート電極10が形成される。これにより、図1に表す半導体装置100が得られる。
あるいは、金属層46の上にフォトレジスト層を形成し、金属層46をエッチバックして、絶縁層40の上に堆積した余剰な金属層46を除去してもよい。この場合、図4(b)に表すように、ゲート電極10の上面に窪みが生じる。
ここで、本実施形態による作用および効果について、図5を用いて説明する。
図5は、第1実施形態に係る半導体装置100のゲート電極10近傍を拡大した断面図とゲート電極10近傍の電界強度を表すグラフである。
図5のグラフにおいて、横軸は、X方向における位置を表し、縦軸は、各位置におけるバリア層4とゲート電極10との間の最大電界強度E[V/m]を表している。また、破線は、第2部分12の下面BS1が、Z方向に対して一定の角度で傾斜している場合の最大電界強度を表している。実線は、本実施形態のように、下面BS1が下方に向けて凸に湾曲している場合の最大電界強度を表している。
半導体装置100がオフ状態のとき、ゲート電極10とドレイン電極30との間の電位差およびソース電極20とドレイン電極30との間の電位差により、これらの電極の間に電界が発生する。ゲート電極10とドレイン電極30との間の距離は、ソース電極20とドレイン電極30との間の距離よりも近いため、ゲート電極10近傍には、ソース電極20近傍に比べて、より強い電界が生じる。
図5のグラフに表すように、ゲート電極10近傍の電界強度には、2つのピークが存在する。具体的には、第1部分11の下面のX方向における端部のピーク(第1ピーク)と、第2部分12の下面BS1のX方向における端部のピーク(第2ピーク)と、が存在する。そして、図5のグラフから、下面BS1が湾曲している場合、下面BS1が一定の角度で傾斜している場合に比べて、それぞれのピークにおける最大電界強度が低下していることがわかる。
すなわち、本実施形態によれば、ゲート電極10近傍の最大電界強度を低下させ、半導体装置の耐圧を向上させることが可能となる。
なお、図1〜図5では、第2部分12の下面BS1が、下方に向けて凸に湾曲している場合について説明したが、本実施形態に係る半導体装置はこれに限定されない。
以下に、図6および図7を用いて、本実施形態の変形例に係る半導体装置について説明する。
図6は、第1実施形態の第1変形例に係る半導体装置110のゲート電極10近傍を拡大した断面図とゲート電極10近傍の電界強度を表すグラフである。
図7は、第1実施形態の第2変形例に係る半導体装置120のゲート電極10近傍を拡大した断面図とゲート電極10近傍の電界強度を表すグラフである。
図6および図7に表すグラフにおいて、破線は、第2部分12の下面BS1が一定の角度で傾斜している場合の電界強度を表し、実線は、各変形例に係る半導体装置おけるゲート電極10近傍の電界強度を表している。
図6に表す半導体装置110では、第2部分12の下面BS1が、上方に向けて凸に湾曲している。すなわち、下面BS1のZ方向に対する傾斜角度は、Z方向に向かうほど、大きくなっている。
この場合、図6のグラフに表すように、下面BS1が一定の角度で傾斜している場合に比べて、第1ピークの位置が、X方向に向けて移動するとともに、第1ピークにおける最大電界強度が低下する。同様に、第2ピークの位置も、X方向に向けて移動するとともに、第2ピークにおける最大電界強度が低下する。
すなわち、本変形例によっても、半導体装置100と同様に、下面BS1が一定の角度で傾斜している場合に比べて、それぞれのピークにおける最大電界強度を低下させ、半導体装置の耐圧を向上させることが可能である。
図7に表す半導体装置120では、第2部分12の下面BS1が、第1面12aおよび第2面12bを含む。第1面12aは、下方に向けて凸に湾曲している。第2面12bは、第1面12aよりも上方に位置しており、上方に向けて凸に湾曲している。
この場合、図7のグラフに表すように、下面BS1が一定の角度で傾斜している場合に比べて、第1ピークの位置が、X方向に向けて移動するとともに、第1ピークにおける最大電界強度および第2ピークにおける最大電界強度が低下する。
すなわち、本変形例によっても、半導体装置100と同様に、半導体装置の耐圧を向上させることが可能である。
また、図5〜図7におけるグラフの対比から、半導体装置120では、第1ピークにおける最大電界強度が、半導体装置100と比べて低下し、第2ピークにおける最大電界強度が、半導体装置110と比べて低下していることがわかる。
すなわち、本変形例によれば、半導体装置100および110に比べて、第1ピークおよび第2ピークの少なくともいずれかの最大電界強度をさらに低下させ、半導体装置の耐圧をより一層向上させることが可能である。
以下では、本実施形態に係る半導体装置のさらに他の変形例について説明する。
図8および図9は、第1実施形態の他の変形例に係る半導体装置が有するゲート電極10近傍を表す部分拡大断面図である。
図10は、第1実施形態の他の変形例に係る半導体装置を表す断面図である。
図8〜図10に表す以下の各変形例においても、半導体装置100〜120と同様に、下面BS1が一定の角度で傾斜している場合に比べて、第1ピークにおける最大電界強度および第2ピークにおける最大電界強度を低下させ、半導体装置の耐圧を向上させることが可能である。
図8(a)に表す半導体装置では、第2部分12の下面BS1は、第1面12aおよび第2面12bを含む。第1面12aは、上方に向けて凸に湾曲している。第2面12bは、第1面12aよりも上方に位置し、下方に向けて凸に湾曲している。
図8(b)に表す半導体装置では、第2部分12の上面USが、下面BS1に沿って、下方に向けて凸に湾曲している。すなわち、図5〜図8(a)に表す半導体装置では、第2部分12のZ方向における長さが、X方向に向かうほど短くなっている。これに対して、図8(b)に表す半導体装置では、第2部分12のZ方向における長さが、X方向において略一定である。
なお、図8(b)では、下面BS1が下方に向けて凸となるように湾曲している場合について例示した。しかし、図5〜図8(a)に表す各半導体装置におけるゲート電極10についても、同様に、第2部分12のZ方向における長さがX方向において略一定となるように、上面USがそれぞれの下面BS1に沿って湾曲していてもよい。
図9(a)に表す半導体装置は、第2部分12の下面BS1が、第1部分11の下面と滑らかに連続して設けられている点で、半導体装置100と異なる。
同様に、図9(b)に表す半導体装置は、下面BS1が、第1部分11の下面と滑らかに連続して設けられている点で、半導体装置120と異なる。
すなわち、図5〜図8に表す各半導体装置では、ゲート電極10の第1部分11の下面と、第2部分12の下面BS1と、の間に段差が形成されていたが、これらの半導体装置において、図9に表す例のように、それぞれの下面が連続して設けられていてもよい。
図10に表す半導体装置では、ゲート電極10、ソース電極20の一部、およびドレイン電極30が、絶縁層40によって覆われている。また、ソース電極20が、絶縁層40の上に設けられた第3部分23を有する。第3部分23は、ゲート電極10の上方に位置しており、第3部分23のX方向における端部は、ゲート電極10のX方向における端部よりも、X方向に向けて突出している。
また、第3部分23の下面BS2は、上方に向けて凸に湾曲している。
ソース電極20がこのような第3部分23を有することで、ゲート電極10近傍における最大電界強度をさらに低下させ、半導体装置の耐圧をより一層高めることが可能となる。
なお、図10では、第2部分12の下面BS1が、下方に向けて凸に湾曲している場合について表したが、下面BS1は、図6〜図9に表すいずれかの形状を有していてもよい。
上述した第1実施形態の説明では、ゲート電極10、ソース電極20、およびドレイン電極30が、窒化物半導体を含む半導体層の上に設けられている場合について説明した。しかし、本実施形態に係る発明は、これに限られず、ゲート電極10、ソース電極20、およびドレイン電極30が、シリコンを含む半導体層の上に設けられている場合にも適用することが可能である。シリコンを含む半導体層の上に設けられたゲート電極に対して、本実施形態に係る発明を適用することで、同様に、ゲート電極近傍の最大電界強度を低下させ、半導体装置の耐圧を向上させることが可能となる。
(第2実施形態)
次に、図11および図12を用いて、第2実施形態に係る半導体装置の一例について説明する。
なお、以下の説明において、n、n及びp、pの表記は、各導電形における不純物濃度の相対的な高低を表す。すなわち、「+」が付されている表記は、「+」および「−」のいずれも付されていない表記よりも不純物濃度が相対的に高く、「−」が付されている表記は、いずれも付されていない表記よりも不純物濃度が相対的に低いことを示す。
以下で説明する各実施形態について、各半導体領域のp形とn形を反転させて各実施形態を実施してもよい。
図11および図12を用いて、第2実施形態に係る半導体装置の一例について説明する。
図11は、第2実施形態に係る半導体装置200を表す平面図である。
図12は、図11のA−A’断面図である。
なお、図11では、n形半導体領域52が有する第1領域52aおよび第2領域52bを、二点鎖線で表している。
半導体装置200は、ダイオードである。
図11および図12に表すように、半導体装置200は、n形(第1導電形)半導体領域51、n形半導体領域52(第1半導体領域)、p形(第2導電形)半導体領域53(第2半導体領域)、p形半導体領域54、p形ガードリング領域55(第3半導体領域)、n形ストッパ領域56(第4半導体領域)、カソード電極61(第1電極)、アノード電極62(第2電極)、フィールドプレート電極(以下、FP電極という)63、およびストッパ電極64(第4電極)を有する。
以下の第2実施形態の説明では、第1領域52aから第2領域52bに向かう方向(半導体装置の中心から外周に向かう方向)を第1方向とし、第1方向に含まれる方向であって相互に直交する2方向をX方向およびY方向とする。また、第1方向に対して垂直な方向を、Z方向(第2方向)とし、第2領域52bから第1領域52aに向かう方向(半導体装置の外周から中心に向かう方向)を第3方向とする。
図11に表すように、半導体装置200の上面には、アノード電極62、複数のFP電極63、およびストッパ電極64が、互いに離間して設けられている。
各FP電極63は、環状に設けられ、アノード電極62を囲んでいる。
ストッパ電極64は、環状に設けられ、複数のFP電極63を囲んでいる。
図12に表すように、半導体装置200の下面には、カソード電極61が設けられている。
形半導体領域51は、カソード電極61の上に設けられ、カソード電極61と電気的に接続されている。
形半導体領域52は、n形半導体領域51の上に設けられている。
図11および図12に表すように、n形半導体領域52は、第1領域52aと、第1領域52aの周りに設けられた第2領域52bと、を有する。
図11に表すように、p形半導体領域53は、第1領域52aの上に設けられている。
形半導体領域54は、p形半導体領域53の上に選択的に設けられている。
アノード電極62は、p形半導体領域53およびp形半導体領域54の上に設けられ、p形半導体領域53およびp形半導体領域54と電気的に接続されている。
p形ガードリング領域55は、第2領域52bの上に選択的に設けられている。p形ガードリング領域55は、互いに離間して複数設けられている。各p形ガードリング領域55は、環状に設けられ、p形半導体領域53を囲んでいる。
形ストッパ領域56は、第2領域52bの上に環状に設けられ、複数のp形ガードリング領域55を囲んでいる。
複数のFP電極63の一部(第5電極)は、p形半導体領域53の上にアノード電極62と離間して設けられ、p形半導体領域53と電気的に接続されている。
複数のFP電極63の他の一部(第3電極)は、p形ガードリング領域55の上に設けられ、p形ガードリング領域55と電気的に接続されている。
ストッパ電極64は、n形ストッパ領域56の上に設けられ、n形ストッパ領域56と電気的に接続されている。
アノード電極62、FP電極63、およびストッパ電極64のそれぞれの間には、絶縁層68が設けられている。
なお、p形ガードリング領域55およびFP電極63の数は任意であり、半導体装置に求められる耐圧に応じて適宜変更することが可能である。
また、n形半導体領域52の第1部分52a上の構造も、図11および図12に表す例に限らず、適宜変更することが可能である。
ここで、FP電極63およびストッパ電極64の具体的な構造について説明する。
FP電極63は、第1方向に向けて突出した突出部P1を有する。突出部P1は、Z方向において、n形半導体領域52、p形半導体領域53、およびp形ガードリング領域55と離間しており、下面BS3がZ方向に対して傾斜している。また、下面BS3とn形半導体領域52との間のZ方向における距離は、第1方向に向かうほど長くなっている。
ストッパ電極64は、第3方向に向けて突出した突出部P2を有する。突出部P2は、Z方向において、n形半導体領域52およびn形ストッパ領域56と離間しており、下面BS4がZ方向に対して傾斜している。また、下面BS4とn形半導体領域52との間のZ方向における距離は、第2方向に向かうほど長くなっている。
半導体装置200がオフ状態のとき、n形半導体領域52とp形半導体領域53とのpn接合面から半導体装置の外周および下方に向けて空乏層が広がる。このとき、p形ガードリング領域55およびFP電極63が設けられていることで、空乏層が半導体装置の外周に向けて広がりやすくなり、pn接合面の第1方向における端部での電界集中が緩和される。
また、n形ストッパ領域56およびストッパ電極64を設けることで、半導体装置の外周に向けて広がった空乏層が、半導体装置の最外周に達することを抑制できる。
ここで、本実施形態による作用および効果について、図13を参照しつつ説明する。
図13は、第2実施形態の参考例に係る半導体装置250を表す断面図である。
半導体装置250では、FP電極63およびストッパ電極64のそれぞれの突出部の下面に、下方に向けて突出した角が形成されている。
この場合、半導体装置がオフ状態のときに、半導体装置の外周に向けて空乏層を広げることができるものの、FP電極63およびストッパ電極64の上述した角の近傍で電界集中が生じてしまう。
これに対して、本実施形態に係る半導体装置200では、FP電極63およびストッパ電極64のそれぞれの突出部の下面がZ方向に対して傾斜しており、当該下面には角が形成されておらず平坦である。このような構造を採用することで、FP電極63およびストッパ電極64のそれぞれの下面における電界集中を抑制し、半導体装置の耐圧を向上させることが可能となる。
なお、ここでは、第2実施形態に係る半導体装置がダイオードである場合について説明したが、本実施形態に係る発明は、他の半導体装置にも適用することができる。
図14は、第2実施形態の変形例に係る半導体装置210を表す断面図である。
半導体装置210は、MOSFETである。
半導体装置210では、電極61は、ドレイン電極として機能し、電極62は、ソース電極として機能する。
図14に表すように、半導体装置210は、n形半導体領域51、n形半導体領域52、p形半導体領域53、p形ガードリング領域55、n形ストッパ領域56、n形半導体領域57(第5半導体領域)、ドレイン電極61、ソース電極62、FP電極63、ストッパ電極64、ゲート電極70、およびゲート絶縁層71を有する。
p形半導体領域53は、第1領域52aの上に設けられている。
形半導体領域57は、p形半導体領域53の上に選択的に設けられ、ソース電極62と電気的に接続されている。
p形半導体領域53およびn形半導体領域57は、X方向において複数設けられ、それぞれがY方向に延びている。
ゲート電極70は、X方向において、n形半導体領域52の一部、p形半導体領域53、およびn形半導体領域57の一部と並んでいる。
ゲート絶縁層71は、n形半導体領域52、p形半導体領域53、およびn形半導体領域57と、ゲート電極70との間に設けられている。
ソース電極62とゲート電極70との間にはゲート絶縁層71が設けられ、これらの電極は電気的に分離されている。
また、第2領域52bの上には、半導体装置200と同様に、p形ガードリング領域55、n形ストッパ領域56、FP電極63、およびストッパ電極64が設けられている。また、FP電極63およびストッパ電極64のそれぞれの突出部の下面は、Z方向に対して一定の角度で傾斜している。
半導体装置210に対してこのような構造を採用することで、半導体装置200と同様に、半導体装置の外周に向けて空乏層を広げつつ、FP電極63およびストッパ電極64における電界集中を緩和し、半導体装置の耐圧を向上させることが可能となる。
なお、ここでは、ゲート電極70がゲート絶縁層71を介して半導体領域中に設けられた、トレンチ型ゲート構造を有する半導体装置について説明した。しかし、本実施形態に係る発明は、ゲート電極70がゲート絶縁層71を介して半導体領域の上に設けられた、プレーナ型ゲート構造を有する半導体装置に対して適用することも可能である。
また、本実施形態に係る発明は、IGBT(Insulated Gate Bipolar Transistor)に対して適用することも可能である。この場合、n形半導体領域51に代えて、n形半導体領域52と電極61との間に、p形半導体領域(第6半導体領域)が設けられる。
また、ここでは、FP電極63の下面BS3およびストッパ電極64の下面BS4が、それぞれZ方向に対して一定の角度で傾斜している場合について説明した。しかし、本実施形態に係る発明はこれに限定されない。下面BS3およびBS4は、図1〜図9に表したゲート電極10の下面BS1と同様に、湾曲していてもよい。
一例として、下面BS3が、図5または図6に表す下面BS1と同様に、下方または上方に向けて凸に湾曲していてもよい。または、図7および図8(a)に表す下面BS1と同様に、下面BS3の一部が上方に向けて凸に湾曲し、下面BS3の他の一部が下方に向けて凸に湾曲していてもよい。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態に含まれる、例えば、基板1、バッファ層2、チャネル層3、バリア層4、ゲート電極10、ゲート絶縁層18、ソース電極20、ドレイン電極30、絶縁層40、n形半導体領域51、n形半導体領域52、p形半導体領域53、p形半導体領域54、p形ガードリング領域55、n形ストッパ領域56、n形半導体領域57、電極61、電極62、FP電極63、ストッパ電極64、ゲート電極70、ゲート絶縁層71などの各要素の具体的な構成に関しては、当業者が公知の技術から適宜選択することが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
100〜120、200、210、250…半導体装置、 2…バッファ層、 3…チャネル層、 4…バリア層、 10…ゲート電極、 20…ソース電極、 30…ドレイン電極、 40…絶縁層、 51…n形半導体領域、 52…n形半導体領域、 53…p形半導体領域、 54…p形半導体領域、 55…p形ガードリング領域、 56…n形ストッパ領域、 61、62…電極、 63…フィールドプレート電極、 64…ストッパ電極、 70…ゲート電極

Claims (10)

  1. 第1電極と、
    第1領域と、前記第1領域の周りに設けられた第2領域と、を有し、前記第1電極の上に設けられた第1導電形の第1半導体領域と、
    前記第1領域の上に設けられた第2導電形の第2半導体領域と、
    前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続された第2電極と、
    前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲む第2導電形の第3半導体領域と、
    前記第3半導体領域の上に前記第2電極と離間して設けられ、前記第2電極を囲み、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第1突出部を有し、前記第1突出部の下面が前記第1方向に垂直な第2方向に対して傾斜している第3電極と、
    前記第2領域の上に前記第3半導体領域と離間して設けられ、前記第3半導体領域を囲み、前記第1半導体領域よりも高い第1導電形の不純物濃度を有する第1導電形の第4半導体領域と、
    前記第4半導体領域の上に前記第3電極と離間して設けられ、前記第3電極を囲み、前記第2領域から前記第1領域に向かう第3方向に向けて突出した第2突出部を有し、前記第2突出部の下面が前記第2方向に対して傾斜している第4電極と、
    前記第2電極の周りに設けられ、前記第3電極に囲まれ、前記第2電極および前記第3電極と離間し、前記第2半導体領域の上に位置し、前記第1方向に向けて突出した第3突出部を有し、前記第3突出部の下面が前記第2方向に対して傾斜している第5電極と、
    を備え、
    前記第3電極は、前記第3半導体領域に接する部分から前記第1突出部の先端に近づくにつれて薄くなる前記第2方向の厚さを有し、
    前記第3電極の下面は、下方に向けて凸に湾曲した半導体装置。
  2. 第1電極と、
    第1領域と、前記第1領域の周りに設けられた第2領域と、を有し、前記第1電極の上に設けられた第1導電形の第1半導体領域と、
    前記第1領域の上に設けられた第2導電形の第2半導体領域と、
    前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続された第2電極と、
    前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲む第2導電形の第3半導体領域と、
    前記第3半導体領域の上に前記第2電極と離間して設けられ、前記第2電極を囲み、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第1突出部を有し、前記第1突出部の下面が前記第1方向に垂直な第2方向に対して傾斜している第3電極と、
    を備え、
    前記第3電極の前記下面は、上方に向けて凸に湾曲した半導体装置。
  3. 第1電極と、
    第1領域と、前記第1領域の周りに設けられた第2領域と、を有し、前記第1電極の上に設けられた第1導電形の第1半導体領域と、
    前記第1領域の上に設けられた第2導電形の第2半導体領域と、
    前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続された第2電極と、
    前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲む第2導電形の第3半導体領域と、
    前記第3半導体領域の上に前記第2電極と離間して設けられ、前記第2電極を囲み、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第1突出部を有し、前記第1突出部の下面が前記第1方向に垂直な第2方向に対して傾斜している第3電極と、
    を備え、
    前記第3電極の前記下面は、下方に向けて凸に湾曲した第1面と、上方に向けて凸に湾曲した第2面と、を含む半導体装置。
  4. 前記第2領域の上に前記第3半導体領域と離間して設けられ、前記第3半導体領域を囲み、前記第1半導体領域よりも高い第1導電形の不純物濃度を有する第1導電形の第4半導体領域と、
    前記第4半導体領域の上に前記第3電極と離間して設けられ、前記第3電極を囲み、前記第2領域から前記第1領域に向かう第3方向に向けて突出した第2突出部を有し、前記第2突出部の下面が前記第2方向に対して傾斜している第4電極と、
    をさらに備えた請求項2又は3に記載の半導体装置。
  5. 前記第2電極の周りに設けられ、前記第3電極に囲まれ、前記第2電極および前記第3電極と離間し、前記第2半導体領域の上に位置し、前記第1方向に向けて突出した第3突出部を有し、前記第3突出部の下面が前記第2方向に対して傾斜している第5電極をさらに備えた請求項記載の半導体装置。
  6. 第1電極と、
    第1領域と、前記第1領域の周りに設けられた第2領域と、を有し、前記第1電極の上に設けられた第1導電形の第1半導体領域と、
    前記第1領域の上に設けられた第2導電形の第2半導体領域と、
    前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続された第2電極と、
    前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲む第2導電形の第3半導体領域と、
    前記第2領域の上に前記第3半導体領域と離間して設けられ、前記第3半導体領域を囲み、前記第1半導体領域よりも高い第1導電形の不純物濃度を有する第1導電形の第4半導体領域と、
    前記第4半導体領域の上に設けられ、前記第2領域から前記第1領域に向かう第3方向に向けて突出した第2突出部を有し、前記第2突出部の下面が前記第3方向に垂直な第2方向に対して傾斜している第4電極と、
    前記第2電極の周りに設けられ、前記第4電極に囲まれ、前記第2電極および前記第4電極と離間し、前記第2半導体領域の上に位置し、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第3突出部を有し、前記第3突出部の下面が前記第2方向に対して傾斜している第5電極と、
    を備え、
    前記第5電極は、前記第2半導体領域に接する部分から前記第3突出部の先端に近づくにつれて薄くなる前記第2方向の厚さを有し、
    前記第5電極の下面は、下方に向けて凸に湾曲した半導体装置。
  7. 第1電極と、
    第1領域と、前記第1領域の周りに設けられた第2領域と、を有し、前記第1電極の上に設けられた第1導電形の第1半導体領域と、
    前記第1領域の上に設けられた第2導電形の第2半導体領域と、
    前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続された第2電極と、
    前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲む第2導電形の第3半導体領域と、
    前記第2領域の上に前記第3半導体領域と離間して設けられ、前記第3半導体領域を囲み、前記第1半導体領域よりも高い第1導電形の不純物濃度を有する第1導電形の第4半導体領域と、
    前記第4半導体領域の上に設けられ、前記第2領域から前記第1領域に向かう第3方向に向けて突出した第2突出部を有し、前記第2突出部の下面が前記第3方向に垂直な第2方向に対して傾斜している第4電極と、
    前記第2電極の周りに設けられ、前記第4電極に囲まれ、前記第2電極および前記第4電極と離間し、前記第2半導体領域の上に位置し、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第3突出部を有し、前記第3突出部の下面が前記第2方向に対して傾斜している第5電極と、
    を備え、
    前記第5電極の下面は、上方に向けて凸に湾曲した半導体装置。
  8. 第1電極と、
    第1領域と、前記第1領域の周りに設けられた第2領域と、を有し、前記第1電極の上に設けられた第1導電形の第1半導体領域と、
    前記第1領域の上に設けられた第2導電形の第2半導体領域と、
    前記第2半導体領域の上に設けられ、前記第2半導体領域と電気的に接続された第2電極と、
    前記第2領域の上に前記第2半導体領域と離間して設けられ、前記第2半導体領域を囲む第2導電形の第3半導体領域と、
    前記第2領域の上に前記第3半導体領域と離間して設けられ、前記第3半導体領域を囲み、前記第1半導体領域よりも高い第1導電形の不純物濃度を有する第1導電形の第4半導体領域と、
    前記第4半導体領域の上に設けられ、前記第2領域から前記第1領域に向かう第3方向に向けて突出した第2突出部を有し、前記第2突出部の下面が前記第3方向に垂直な第2方向に対して傾斜している第4電極と、
    前記第2電極の周りに設けられ、前記第4電極に囲まれ、前記第2電極および前記第4電極と離間し、前記第2半導体領域の上に位置し、前記第1領域から前記第2領域に向かう第1方向に向けて突出した第3突出部を有し、前記第3突出部の下面が前記第2方向に対して傾斜している第5電極と、
    を備え、
    前記第5電極の下面は、下方に向けて凸に湾曲した第1面と、上方に向けて凸に湾曲した第2面と、を含む半導体装置。
  9. 前記第2半導体領域の上に選択的に設けられた第1導電形の第5半導体領域と、
    ゲート電極と、
    前記第2半導体領域と前記ゲート電極との間に設けられたゲート絶縁層と、
    をさらに備えた請求項1〜のいずれか1つに記載の半導体装置。
  10. 前記第1電極と前記第1半導体領域との間に設けられ、前記第2半導体領域よりも高い第2導電形の不純物濃度を有する第2導電形の第6半導体領域をさらに備えた請求項1〜のいずれか1つに記載の半導体装置。
JP2018178749A 2018-09-25 2018-09-25 半導体装置 Active JP6730394B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018178749A JP6730394B2 (ja) 2018-09-25 2018-09-25 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178749A JP6730394B2 (ja) 2018-09-25 2018-09-25 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016048901A Division JP6408503B2 (ja) 2016-03-11 2016-03-11 半導体装置

Publications (2)

Publication Number Publication Date
JP2018201050A JP2018201050A (ja) 2018-12-20
JP6730394B2 true JP6730394B2 (ja) 2020-07-29

Family

ID=64668362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178749A Active JP6730394B2 (ja) 2018-09-25 2018-09-25 半導体装置

Country Status (1)

Country Link
JP (1) JP6730394B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880355B2 (ja) * 2018-10-25 2021-06-02 株式会社ソフイア 遊技機
JP7208875B2 (ja) 2019-09-05 2023-01-19 株式会社東芝 半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628613B2 (ja) * 1997-11-03 2005-03-16 インフィネオン テクノロジース アクチエンゲゼルシャフト 半導体構成素子のための耐高圧縁部構造
JP5671867B2 (ja) * 2010-08-04 2015-02-18 富士電機株式会社 半導体装置およびその製造方法
JP2013131569A (ja) * 2011-12-20 2013-07-04 Toyota Motor Corp 半導体装置

Also Published As

Publication number Publication date
JP2018201050A (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6408503B2 (ja) 半導体装置
JP6400544B2 (ja) 半導体装置
JP6666224B2 (ja) 半導体装置
JP3506676B2 (ja) 半導体装置
JP5619758B2 (ja) 逆伝導半導体装置
US8618557B2 (en) Wide-band-gap reverse-blocking MOS-type semiconductor device
JP6946764B2 (ja) 半導体装置および半導体装置の製造方法
KR101437480B1 (ko) 기판에 대한 상면 콘택을 형성하기 위한 방법 및 구조물
US10083957B2 (en) Semiconductor device
JP6833848B2 (ja) 面積効率の良いフローティングフィールドリング終端
US20180040690A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP7030665B2 (ja) 半導体装置
US9224844B2 (en) Semiconductor device
JP6730394B2 (ja) 半導体装置
US20160276448A1 (en) Semiconductor device
US8502237B2 (en) Semiconductor rectifying device
JP2013182905A (ja) 半導体装置
JP2012079945A (ja) 半導体装置
JP5865860B2 (ja) 半導体装置
JP2019087646A (ja) 半導体装置
JP7204544B2 (ja) 半導体装置
JP2023101772A (ja) 半導体装置および半導体装置の製造方法
CN116646406A (zh) 宽带隙半导体器件与其制造方法
JP7284721B2 (ja) ダイオード
JP7257912B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6730394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150