JP6729799B2 - 製氷機 - Google Patents

製氷機 Download PDF

Info

Publication number
JP6729799B2
JP6729799B2 JP2019513150A JP2019513150A JP6729799B2 JP 6729799 B2 JP6729799 B2 JP 6729799B2 JP 2019513150 A JP2019513150 A JP 2019513150A JP 2019513150 A JP2019513150 A JP 2019513150A JP 6729799 B2 JP6729799 B2 JP 6729799B2
Authority
JP
Japan
Prior art keywords
ice
tray
ice tray
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513150A
Other languages
English (en)
Other versions
JPWO2018193563A1 (ja
Inventor
松本 真理子
真理子 松本
舞子 柴田
舞子 柴田
伊藤 敬
敬 伊藤
大治 澤田
大治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018193563A1 publication Critical patent/JPWO2018193563A1/ja
Application granted granted Critical
Publication of JP6729799B2 publication Critical patent/JP6729799B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/06Apparatus for disintegrating, removing or harvesting ice without the use of saws by deforming bodies with which the ice is in contact, e.g. using inflatable members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

この発明は、氷を作るための製氷機に関する。
特許文献1に、冷蔵庫に備えられた製氷機が記載されている。特許文献1に記載された製氷機は、例えば第1の製氷皿及び第2の製氷皿を備える。第1の製氷皿を用いることにより、第1の形状の氷を作ることができる。第2の製氷皿を用いることにより、第1の形状とは異なる第2の形状の氷を作ることができる。
日本特許第3781767号公報
特許文献1に記載された製氷機では、例えば第1の製氷皿を用いて第2の形状の氷を作ることはできない。同様に、第2の製氷皿を用いて第1の形状の氷を作ることはできない。特許文献1に記載された製氷機では、形状の異なる氷を作るために、複数の製氷皿が必要になるといった問題があった。
この発明は、上述のような課題を解決するためになされた。この発明の目的は、同じ製氷皿を用いて、形状の異なる氷を作ることができる製氷機を提供することである。
この発明に係る製氷機は、製氷皿と、製氷皿にある水を冷却する冷却器と、製氷皿にある氷を加熱する加熱器と、を備える。第1製氷モードは、冷却器による第1冷却工程を備える。第1冷却工程では、製氷皿にある水が第1冷却速度で冷却される。第2製氷モードは、冷却器による第2冷却工程と第2冷却工程後の加熱器による加熱工程とを備える。第2冷却工程では、製氷皿にある水が第2冷却速度で冷却される。第2冷却速度は第1冷却速度より大きい。加熱工程で、製氷皿にある氷が粉砕される。
この発明に係る製氷機は、製氷皿と、製氷皿にある水を冷却する冷却器と、製氷皿にある氷を加熱する加熱器と、製氷皿を弾性変形させるための力を発生させるモータと、を備える。第1製氷モードは、冷却器による第1冷却工程と第1冷却工程後の加熱器による加熱工程とを備える。第1冷却工程では、製氷皿にある水が第1冷却速度で冷却される。第2製氷モードは、冷却器による第2冷却工程と第2冷却工程後のモータによる変形工程とを備える。第2冷却工程では、製氷皿にある水が第2冷却速度で冷却される。第2冷却速度は第1冷却速度より大きい。変形工程で、製氷皿にある氷が粉砕される。
この発明に係る製氷機は、例えば製氷皿、冷却器及び加熱器を備える。第1製氷モードは、冷却器による第1冷却工程を備える。第1冷却工程では、製氷皿にある水が第1冷却速度で冷却される。第2製氷モードは、冷却器による第2冷却工程と第2冷却工程後の加熱器による加熱工程とを備える。第2冷却工程では、製氷皿にある水が第2冷却速度で冷却される。第2冷却速度は第1冷却速度より大きい。加熱工程で、製氷皿にある氷が粉砕される。この発明に係る製氷機であれば、同じ製氷皿を用いて、形状の異なる氷を作ることができる。

製氷機を備えた冷蔵庫の例を示す断面図である。 冷蔵庫に備えられた機器の電気的な接続を示す図である。 製氷室の例を示す断面図である。 図3のA−A断面を示す図である。 製氷皿の例を示す斜視図である。 製氷皿の可動機構の例を説明するための図である。 ケースの例を示す斜視図である。 この発明の実施の形態1における製氷機の動作例を示すフローチャートである。 この発明の実施の形態1における製氷機の動作例を示すフローチャートである。 氷の温度に対する長さ変化と氷に閉じ込められた空気の温度に対する長さ変化とを示す図である。 氷の長さ変化に対する空気の長さ変化の比を示す図である。 この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。 この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。 図13に示す第2製氷モードと図12に示す第1製氷モードとを交互に行う時のタイミングチャートである。 氷とステンレスとのせん断付着強度を示す図である。 氷とポリスチレンとのせん断付着強度を示す図である。 この発明の実施の形態2における製氷機の動作例を示すフローチャートである。 この発明の実施の形態2における製氷機の動作例を示すフローチャートである。
添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。
実施の形態1.
図1は、製氷機を備えた冷蔵庫1の例を示す断面図である。冷蔵庫1は、例えば本体2を備える。本体2に、例えば冷蔵室3、製氷室4、冷凍室5、及び野菜室6が形成される。冷凍室5に冷凍食品等が収納される。野菜室6に野菜及びペットボトル等が収納される。本体2に、切替室を形成しても良い。切替室は、設定温度を切り替えることができる部屋である。切替室は、例えば製氷室4の隣に配置される。本体2に形成された各部屋は、断熱部材によって仕切られる。断熱部材として、例えば発泡ウレタン或いは真空断熱材が用いられる。
冷蔵庫1は、例えば冷凍サイクルを更に備える。冷凍サイクルは、例えば圧縮機7、凝縮器(図示せず)、膨張器(図示せず)、及び蒸発器8を備える。冷凍サイクルは、冷媒が通る配管を更に備える。
図2は、冷蔵庫1に備えられた機器の電気的な接続を示す図である。冷蔵庫1は、例えば温度センサ9a〜9e、操作パネル10、送風機11、モータ12、ダンパ13、及び制御装置14を更に備える。
本体2に形成された各部屋の温度は、温度センサ9a〜9eによって検出される。例えば、温度センサ9aによって冷蔵室3の温度が検出される。温度センサ9bによって製氷室4の温度が検出される。温度センサ9cによって冷凍室5の温度が検出される。温度センサ9dによって野菜室6の温度が検出される。温度センサ9eによって切替室の温度が検出される。温度センサ9a〜9eによって検出された温度の情報は、制御装置14に入力される。温度センサ9a〜9eは、例えば温度検知用のサーミスタをそれぞれ備える。
操作パネル10は、例えば冷蔵室3の扉2aの前面に設けられる。扉2aは、本体2の一部である。操作パネル10は、使用者が情報を入力するための装置を備えても良い。使用者は、各部屋の設定温度を変更するための情報を操作パネル10から入力する。使用者が操作パネル10から入力した情報は、制御装置14に入力される。操作パネル10は、表示器を備えても良い。表示器に、本体2に形成された各部屋の状況が表示される。例えば、表示器に各部屋の温度が表示される。操作パネル10の上記機能は、外部機器が備えても良い。例えば、使用者のスマートフォンが上記入力機能及び表示機能を備えても良い。かかる場合、制御装置14は、使用者のスマートフォンとの間で情報の送受信を行う。
送風機11は、蒸発器8で冷やされた空気を各部屋に送るための気流を発生させる。各部屋の壁面に、送りダクトに通じる吹出し口が形成される。送風機11が駆動することにより、蒸発器8で冷やされた空気が送りダクトを通り、各部屋に送られる。また、各部屋の壁面に、戻りダクトに通じる吸込み口が形成される。各部屋の空気は、吸込み口から戻りダクトに入る。各部屋で貯蔵物を冷やした空気は、戻りダクトを通り、蒸発器8が配置された空間に戻る。上記空間に戻った空気は、蒸発器8を通過することによって冷却される。
モータ12は、ダンパ13を駆動する。ダンパ13は、風路の各所に配置される。例えば、ダンパ13は送りダクトを開閉する。冷蔵室3に通じる送りダクトがダンパ13によって閉じられると、送風機11が駆動していても冷蔵室3に冷気は供給されない。冷蔵室3に通じる送りダクトがダンパ13によって閉じられていなければ、送風機11が駆動することによって冷蔵室3に冷気が供給される。他の部屋についても同様である。例えば、製氷室4に通じる送りダクトがダンパ13によって閉じられると、送風機11が駆動していても製氷室4に冷気は供給されない。製氷室4に通じる送りダクトがダンパ13によって閉じられていなければ、送風機11が駆動することによって製氷室4に冷気が供給される。
制御装置14は、冷蔵庫1に備えられた各機器を制御する。例えば、制御装置14は、圧縮機7、送風機11及びモータ12を制御する。制御装置14は、温度センサ9a〜9eによって検出された温度の情報及び操作パネル10から入力された情報等に基づいて各機器を制御する。操作パネル10が表示器を備える場合、表示器の制御は制御装置14によって行われる。
冷蔵庫1は、氷を作る機能、即ち製氷機の機能を備える。以下に、図3から図11も参照し、冷蔵庫1が備える製氷機の機能について詳細に説明する。図3は、製氷室4の例を示す断面図である。図4は、図3のA−A断面を示す図である。冷蔵庫1は、例えばタンク15、パイプ16、モータ17、ポンプ18、製氷皿19、支持軸20a、支持軸20b、フレーム21、モータ22、ストッパ23、温度センサ24、ヒータ25、ケース26、及びセンサ27を更に備える。
タンク15に、氷を作るための水が溜められる。タンク15は、例えば冷蔵室3に配置される。パイプ16は、タンク15に接続される。パイプ16は、本体2のうち冷蔵室3と製氷室4とを仕切る部分を貫通する。パイプ16の下端は、製氷室4で下向きに開口する。パイプ16の下端は、製氷皿19の直上に配置される。
モータ17は、ポンプ18を駆動する。モータ17は、本体2に設けられる。モータ17は、制御装置14によって制御される。ポンプ18は、タンク15の内部に設けられる。ポンプ18が駆動することにより、タンク15に溜められた水がパイプ16を通り、製氷皿19に供給される。
図5は、製氷皿19の例を示す斜視図である。図5は、氷を作るための12個の窪み19aが製氷皿19に形成された例を示す。例えば、窪み19aを形成する仕切りに切欠き19bが形成される。切欠き19bが形成されることにより、各窪み19aに均等に水を供給することができる。製氷皿19は、製氷室4の上部に配置される。製氷皿19は、少なくとも水が入れられる部分が金属製であることが好ましい。例えば、製氷皿19は、ステンレスの成型品である。製氷皿19は銅製或いはアルミ製であっても良い。製氷皿19は樹脂製であっても構わない。
支持軸20a及び支持軸20bは、製氷皿19から突出するように製氷皿19の側面に設けられる。支持軸20aが突出する側面と支持軸20bが突出する側面とは、互いに反対の方向を向く。支持軸20a及び支持軸20bは、一直線状に配置される。フレーム21は、製氷室4の壁面に固定される。支持軸20a及び支持軸20bは、フレーム21に支持される。即ち、製氷皿19は、支持軸20a及び支持軸20bを中心に回転可能となるようにフレーム21に支持される。
モータ22は、製氷皿19を回転させる。即ち、モータ22が駆動することにより、製氷皿19は支持軸20a及び支持軸20bを中心に回転する。モータ22は、制御装置14によって制御される。モータ22は、例えばフレーム21に設けられる。図3に示す例では、支持軸20aがモータ22に連結される。モータ22と支持軸20aとの間に、減速ギアが設けられても良い。支持軸20bは、フレーム21に回転可能に保持される。
図6は、製氷皿19の可動機構の例を説明するための図である。ストッパ23は、フレーム21と製氷室4の壁面との間に配置される。ストッパ23は、例えば円盤部材23aと棒状部材23bとを備える。円盤部材23aの中心部に貫通孔23cが形成される。支持軸20bは、貫通孔23cを貫通する。ストッパ23は、支持軸20bを中心に回転可能である。棒状部材23bは、円盤部材23aに設けられる。棒状部材23bは、円盤部材23aから突出する。棒状部材23bは、支持軸20bと平行に配置される。
支持軸20bは、フレーム21に形成された貫通孔21aを貫通する。また、フレーム21に、長孔21bが形成される。図6は、フレーム21に、支持軸20bを中心とする円弧状に長孔21bが形成される例を示す。ストッパ23は、棒状部材23bが長孔21bを貫通するように配置される。即ち、長孔21bは、ストッパ23が回転した時に棒状部材23bが配置される位置に合わせて形成される。棒状部材23bが長孔21bの縁に当たることによってストッパ23の回転が止まる。上述したように、製氷皿19は回転可能となるようにフレーム21に支持される。製氷皿19が回転すると、製氷皿19の縁が棒状部材23bに当たる。ストッパ23は、棒状部材23bが長孔21bの縁に当たるまで、製氷皿19に押されて回転する。棒状部材23bが長孔21bの縁に当たると、ストッパ23の回転は止まる。ストッパ23の回転が止まると、製氷皿19の変位は棒状部材23bによって阻害される。
温度センサ24は、製氷皿19にある水或いは氷の温度を検出するためのセンサである。温度センサ24は、例えば製氷皿19に設けられる。図4は、温度センサ24が製氷皿19の裏面の谷間に配置される例を示す。例えば、温度センサ24は、製氷皿19の裏面に貼り付けられた温度検知用のサーミスタを備える。図4に示す例では、温度センサ24が断熱材28によって覆われる。温度センサ24によって検出された温度の情報は、制御装置14に入力される。
ヒータ25は、製氷皿19にある氷を加熱する加熱器の一例である。ヒータ25は、例えば製氷皿19のうち水が入れられる部分を裏面側から覆うように製氷皿19に設けられる。詳細は後述するが、製氷皿19は弾性変形する。このため、ヒータ25は、製氷皿19の変形に追従して変形することが好ましい。ヒータ25は、例えば、シリコンゴムに電熱線を配置した面状発熱体でも良い。
ケース26に、製氷皿19で作られた氷が溜められる。ケース26は、製氷室4の下部に配置される。ケース26は、製氷皿19の下方に配置される。図7は、ケース26の例を示す斜視図である。図7に示す例では、ケース26は仕切り26aを備える。ケース26の内側の空間は、仕切り26aによって第1空間26bと第2空間26cとに区画される。上述したように、製氷皿19は支持軸20a及び支持軸20bを中心に回転する。第1空間26bは、製氷皿19が一方向に回転した際に製氷皿19から落ちる氷を受けるための空間である。例えば、製氷皿19が図4に示すB方向に回転すると、製氷皿19にある氷が第1空間26bに落下する。第2空間26cは、製氷皿19が上記一方向とは反対の方向に回転した際に製氷皿19から落ちる氷を受けるための空間である。例えば、製氷皿19が図4に示すC方向に回転すると、製氷皿19にある氷が第2空間26cに落下する。仕切り26aは、第1空間26bの体積と第2空間26cの体積とを変更することができるようにスライド可能であっても良い。仕切り26aはケース26の本体部分に着脱可能であっても良い。
センサ27は、ケース26が氷で満杯であることを検出する。例えば、センサ27は、ケース26の上方に配置されたレバーを備える。ケース26に一定量の氷が溜まると、氷によってレバーが押される。レバーが押されることによって、ケース26が氷で満杯であることが検出される。センサ27は、ケース26が氷で満杯であることを検出すると検出情報を制御装置14に出力する。
本実施の形態に示す例において、冷凍サイクル、送風機11、モータ12、及びダンパ13は、製氷皿19にある水を冷却する冷却器の一例である。上述したように、送風機11が駆動することにより、蒸発器8で冷やされた空気が送りダクトを通り、製氷室4に送られる。製氷室4の壁面に、吹出し口4a及び吸込み口4bが形成される。製氷室4には、吹出し口4aから冷気が入る。図3は、製氷室4の奥側の壁面に、製氷皿19より高い位置に吹出し口4aが形成される例を示す。
製氷室4では、送風機11が駆動すると、製氷皿19にある水を冷却するための気流が発生する。例えば、吹出し口4aから製氷室4に入った空気は、製氷皿19の上方を通過した後に製氷皿19の下方を通過する。図3は、製氷室4の奥側の壁面に、製氷皿19より低い位置に吸込み口4bが形成される例を示す。製氷皿19の下方を通過した空気は、吸込み口4bから戻りダクトに入る。図3及び図4に示す例では、製氷皿19にある水は、上部から凍り始める。このため、温度センサ24が製氷皿19の裏面に設けられていれば、温度センサ24によって検出された温度の情報から、製氷皿19に入れられた水が凍ったことをより正確に判定できる。更に、温度センサ24が断熱材28に覆われていれば、上記気流が発生しても冷気が温度センサ24に直接当たることを防止できる。
本実施の形態に示す冷蔵庫1は、少なくとも2つのモードで氷を作る機能を備える。例えば、冷蔵庫1は、第1製氷モードで氷を作ることができる。冷蔵庫1は、第2製氷モードで氷を作ることができる。以下においては、第1製氷モードでブロックアイスが作られる例を説明する。第2製氷モードでクラッシュドアイスが作られる例を説明する。第2製氷モードで作られる氷の大きさは、第1製氷モードで作られる氷の大きさより小さい。以下に、図8及び図9も参照し、冷蔵庫1で氷を作るための動作について詳しく説明する。
図8及び図9は、この発明の実施の形態1における製氷機の動作例を示すフローチャートである。図8及び図9は一連の動作を示す。
制御装置14は、送風機11を回転数f_n[rpm]で駆動させる(S101)。本実施の形態に示す例では、添え字nは任意の値であることを示す。例えば、制御装置14は、温度センサ9a〜9eによって検出された温度の情報等に基づいて送風機11を制御する。このため、送風機11の回転数f_nは、その時の状況に合わせて変化する。本実施の形態に示す例では、回転数f_nは、最大値より小さいある設定値或いは0である。
次に、制御装置14は、モータ17を制御し、ポンプ18を一定時間駆動させる(S102)。これにより、タンク15に溜められた水が製氷皿19に供給される。製氷皿19に、一定量の水が溜められる。
本実施の形態では、使用者が操作パネル10から氷の種類を選択できる例について説明する。例えば、操作パネル10は、第1ボタン及び第2ボタンを備える。第1ボタン及び第2ボタンは、接点を有する機械式のボタンでも画面上に表示されるボタンでも良い。第1ボタンが押されると、使用者がブロックアイスを選択した旨の第1情報が制御装置14に入力される。第2ボタンが押されると、使用者がクラッシュドアイスを選択した旨の第2情報が制御装置14に入力される。氷の種類を選択する方法は、上記例に限定されない。
制御装置14は、使用者が選択した氷の種類を特定する(S103)。本実施の形態に示す例であれば、制御装置14は、操作パネル10から第1情報が入力されたのか第2情報が入力されたのかを判定する。制御装置14は、操作パネル10から第1情報が入力されると、ブロックアイスを作るための第1製氷モードを開始する(S104)。制御装置14は、操作パネル10から第2情報が入力されると、クラッシュドアイスを作るための第2製氷モードを開始する(S114)。
第1製氷モードは、冷却器による第1冷却工程を備える。第1冷却工程では、製氷皿19にある水が第1冷却速度で冷却される。例えば、第1冷却工程では、送風機11が回転数f_nで駆動されることによって製氷室4に冷気が供給される。
制御装置14は、温度センサ24によって検出された温度Tit[℃]が第1製氷温度より低いか否かを判定する(S105)。第1製氷温度は、製氷皿19にある水が凍ったと判定するための温度である。図8及び図9は、第1製氷温度が−13℃である例を示す。第1製氷温度は予め設定される。
制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、モータ22を駆動し、製氷皿19を正転させる(S106)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。
制御装置14は、S106で製氷皿19の回転を開始すると、時間tr1[sec]のカウントを開始する(S107)。制御装置14は、S107でカウントを開始した時間tr1が第1設定時間に達したか否かを判定する(S108)。第1設定時間は、製氷皿19に一定量の捻りを加えるための時間である。第1設定時間は予め設定される。
上述したように、ストッパ23の回転は、棒状部材23bが長孔21bの縁に当たることによって止まる。第1設定時間は、製氷皿19の回転が開始されてから棒状部材23bが長孔21bの縁に当たるまでの時間より長い時間に設定される。このため、棒状部材23bが長孔21bの縁に当たった後もモータ22の駆動は継続される。棒状部材23bが長孔21bの縁に当たると、製氷皿19の一方の端部の回転が止まる。この一方の端部は、支持軸20bが接続された端部である。一方、棒状部材23bが長孔21bの縁に当たっても、製氷皿19のもう一方の端部は回転し続ける。このもう一方の端部は、支持軸20aが接続された端部である。これにより、製氷皿19に捻りが加えられ、製氷皿19は弾性変形する。製氷皿19が弾性変形することによって氷が製氷皿19から離れる。製氷皿19から離れた氷は、ケース26に落下する。この時、製氷皿19からは、窪み19aの大きさに合わせた大きさの氷が落下する。即ち、S108では、製氷皿19からブロックアイスが落下する。ケース26の第1空間に、ブロックアイスが溜まる。
制御装置14は、S106で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を制御し、製氷皿19を逆転させる(S109)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。制御装置14は、S109で製氷皿19の回転を開始すると、時間tr2[sec]のカウントを開始する(S110)。制御装置14は、S110でカウントを開始した時間tr2が上記第1設定時間に達したか否かを判定する(S111)。制御装置14は、S109で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を停止させる。これにより、製氷皿19は、水平に配置された状態で停止する(S112)。
次に、制御装置14は、ケース26が氷で満杯であるか否かを判定する(S113)。制御装置14は、センサ27から検出情報が入力されると、ケース26が氷で満杯であると判定する。かかる場合、制御装置14は、氷を作るための動作を停止する。制御装置14は、センサ27から検出情報が入力されていなければ、ケース26が氷で満杯ではないと判定する。かかる場合、制御装置14は、氷を作るための動作を継続する。制御装置14は、ポンプ18を一定時間駆動させて、次の氷を作るための水を製氷皿19に供給する(S102)。
一方、第2製氷モードは、冷却器による第2冷却工程と加熱器による加熱工程とを備える。加熱工程は、第2冷却工程の後に行われる。第2冷却工程では、製氷皿19にある水が第2冷却速度で冷却される。第2冷却速度は、第1冷却速度より大きい。即ち、第2冷却工程では、第1冷却工程より水が急速に冷却される。この急速冷却は、氷の中に、気泡を可能な限り均等に分散させるために行われる。第2冷却工程によってできる氷は、気泡によって全体が白濁していることが好ましい。第2製氷モードでは、氷の中に閉じ込められた空気を膨張させることによって氷を粉砕する。製氷後の加熱工程は、氷の中に閉じ込められた空気を膨張させるために行われる。
S114で第2製氷モードが開始されると、制御装置14は、送風機11を回転数f_Max[rpm]で駆動させる(S115)。本実施の形態に示す例では、添え字Maxは最大の値であることを示す。本実施の形態では、送風機11の回転数を上げることによって急速冷却を行う例を示す。第2冷却工程では、他の方法によって急速冷却を行っても良い。
制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S116)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、送風機11の回転数をf_nに戻す(S117)。
次に、制御装置14は、ヒータ25の出力をW_Maxにする(S118)。制御装置14は、S118でヒータ25への通電を開始すると、時間th1[sec]のカウントを開始する(S119)。制御装置14は、S119でカウントを開始した時間th1が第2設定時間に達したか否かを判定する(S120)。第2設定時間は、氷の中に閉じ込められた空気を膨張させて氷を粉砕するための時間である。第2設定時間は予め設定される。ヒータ25による最大出力の加熱が第2設定時間行われることにより、製氷皿19の上で氷が粉々になる。この時の氷の温度は、例えば−10℃である。
制御装置14は、S118でヒータ25への通電を開始してから第2設定時間が経過すると、ヒータ25への通電を停止する(S121)。また、制御装置14は、第2設定時間が経過すると、モータ22を駆動し、製氷皿19を逆転させる(S122)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。
制御装置14は、S122で製氷皿19の回転を開始すると、時間tr1のカウントを開始する(S123)。制御装置14は、S123でカウントを開始した時間tr1が第1設定時間に達したか否かを判定する(S124)。上述したように、第1設定時間は、製氷皿19の回転が開始されてから棒状部材23bが長孔21bの縁に当たるまでの時間より長い時間に設定される。棒状部材23bが長孔21bの縁に当たった後もモータ22の駆動が継続されることにより、製氷皿19に捻りが加えられる。これにより、製氷皿19が弾性変形し、S120で作られたクラッシュドアイスが製氷皿19から落下する。ケース26の第2空間に、クラッシュドアイスが溜まる。
制御装置14は、S122で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を制御し、製氷皿19を正転させる(S125)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。制御装置14は、S125で製氷皿19の回転を開始すると、時間tr2のカウントを開始する(S126)。制御装置14は、S126でカウントを開始した時間tr2が第1設定時間に達したか否かを判定する(S127)。制御装置14は、S125で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を停止させる。これにより、製氷皿19は、水平に配置された状態で停止する(S128)。
次に、制御装置14は、ケース26が氷で満杯であるか否かを判定する(S129)。制御装置14は、センサ27から検出情報が入力されると、ケース26が氷で満杯であると判定する。かかる場合、制御装置14は、氷を作るための動作を停止する。制御装置14は、センサ27から検出情報が入力されていなければ、ケース26が氷で満杯ではないと判定する。かかる場合、制御装置14は、氷を作るための動作を継続する。制御装置14は、ポンプ18を一定時間駆動させて、次の氷を作るための水を製氷皿19に供給する(S102)。
次に、図10及び図11も参照し、クラッシュドアイスの生成原理について説明する。水には、一定量の空気が溶存している。氷は、水が冷却されて固体になったものである。水が結晶化すると、不純物である空気は結晶外に排出される。即ち、水が凍っていくと、空気は氷成長界面に押し出される。氷成長界面に押し出された空気が集合し、且つ内部に閉じ込められたものが、氷の中に見られる気泡である。
物質は、温度が変化することによって長さが変化する。温度に対する長さの変化の割合は、物質によって異なる。この変化の割合のことを線膨張率という。氷の線膨張率は50.7×10−6[1/K]である。空気は気体であるため、空気の線膨張率は絶対温度Tの逆数となる。
例えば、氷の初期温度を、一般的な冷蔵庫の製氷室の温度である−18℃とする。また、氷の大きさを20[mm]角とする。氷の温度に対する長さ変化ΔL[mm]及び氷に閉じ込められた空気の温度に対する長さ変化ΔL[mm]は、次式で表される。
ΔL=α×20×{Tn−(−18)} …(1)
αは線膨張率である。式1は、初期温度から温度Tnまで上げた時の長さ変化ΔLを表す。
図10は、氷の温度に対する長さ変化と氷に閉じ込められた空気の温度に対する長さ変化とを示す図である。図10では、式1によって得られたΔLを膨張距離として示している。図10は、氷の温度を−18℃から0℃まで上げた時の計算結果を示す。図11は、氷の長さ変化に対する空気の長さ変化の比を示す図である。即ち、図11は、各温度で氷の長さ変化を1とした場合の空気の長さ変化を示す。
図11から分かるように、上記温度範囲では、空気は氷と比較して70〜80倍膨張する。但し、−18℃の空気が−15℃になっても、その長さ変化の絶対値は0.2[mm]である。−18℃の空気が−5℃になっても、その長さ変化の絶対値は1[mm]である。このため、第2製氷モードでクラッシュドアイスを作るためには、第2冷却工程において、多数の気泡をなるべく接近して氷の中に閉じ込めることが好ましい。このような氷を作るためには、氷の結晶の核となる氷核を多数生成した上で、気泡が大きくならないうちに気泡を氷結晶に取り込む必要がある。即ち、水を可能な限り急速に冷却することによって、クラッシュドアイスに適した氷を作ることができる。
また、氷の中に閉じ込められた多数の気泡の温度を素早く上げることによって、氷をより細かく砕くことができる。即ち、より細かいクラッシュドアイスを作ることができる。このため、製氷皿19は、熱伝導性の良い金属製であることが好ましい。また、ヒータ25は、広い範囲を同時に暖めることが可能な面状の発熱体であることが好ましい。
図12は、この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。例えば、図12及び図9は一連の動作を示す。
図12に示す例では、第1製氷モードは、冷却器による第1冷却工程と加熱器による第1加熱工程とを備える。第1加熱工程は、第1冷却工程の後に行われる。第1加熱工程では、製氷皿19にある氷が第1加熱速度で加熱される。一方、第2製氷モードの加熱工程では、製氷皿19にある氷が第2加熱速度で加熱される。以下においては、図9に示す加熱工程を第2加熱工程という。第2加熱速度は、第1加熱速度より大きい。製氷皿19が金属製であると、製氷皿19が樹脂製である場合と比較して氷が製氷皿19から離れ難くなる。第1製氷モードの第1加熱工程は、氷が製氷皿19から離れ易くするために行われる。
図12に示す処理フローは、図8に示す処理フローにS130からS132に示す処理を加えたものに相当する。S104で第1製氷モードが開始されると、制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S105)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、ヒータ25の出力をW_nにする(S130)。出力W_nは、最大出力W_Maxより小さいある設定値である。
制御装置14は、S130でヒータ25への通電を開始すると、温度センサ24によって検出された温度Titが第2製氷温度以上であるか否かを判定する(S131)。第2製氷温度は、氷が製氷皿19から離れ易くなったと判定するための温度である。図12は、第2製氷温度が−1℃である例を示す。第2製氷温度は予め設定される。
制御装置14は、温度センサ24によって検出された温度Titが第2製氷温度以上になると、ヒータ25への通電を停止する(S132)。また、制御装置14は、温度Titが第2製氷温度以上になると、モータ22を駆動し、製氷皿19を正転させる(S106)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。図12のS106からS113に示す処理は、図8のS106からS113に示す処理と同じである。
図13は、この発明の実施の形態1における製氷機の他の動作例を示すフローチャートである。例えば、図12及び図13は一連の動作を示す。
図13に示す例では、第2製氷モードは、冷却器による第2冷却工程と加熱器による第2加熱工程及び第3加熱工程とを備える。第2加熱工程は、第2冷却工程の後に行われる。第3加熱工程は、第2加熱工程の後に行われる。第2加熱工程では、製氷皿19にある氷が第2加熱速度で加熱される。第3加熱工程では、製氷皿19にある氷が第3加熱速度で加熱される。第2加熱速度は、第3加熱速度より大きい。第2加熱速度は、第1加熱速度より大きい。第3加熱工程は、氷が製氷皿19から離れ易くするために行われる。
図13に示す処理フローは、図9に示す処理フローにS133及びS134に示す処理を加えたものに相当する。S114で第2製氷モードが開始されると、制御装置14は、送風機11を回転数f_Maxで駆動させる(S115)。
制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S116)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S102で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、送風機11の回転数をf_nに戻す(S117)。
次に、制御装置14は、ヒータ25の出力をW_Maxにする(S118)。制御装置14は、S118でヒータ25への通電を開始すると、時間th1のカウントを開始する(S119)。制御装置14は、S119でカウントを開始した時間th1が第2設定時間に達したか否かを判定する(S120)。
制御装置14は、S118でヒータ25への通電を開始してから第2設定時間が経過すると、ヒータ25の出力をW_nにする(S133)。制御装置14は、S133でヒータ25の出力を低下させると、温度センサ24によって検出された温度Titが第2製氷温度以上であるか否かを判定する(S134)。図13は、第2製氷温度が−1℃である例を示す。
制御装置14は、温度センサ24によって検出された温度Titが第2製氷温度以上になると、ヒータ25への通電を停止する(S121)。また、制御装置14は、温度Titが第2製氷温度以上になると、モータ22を駆動し、製氷皿19を逆転させる(S122)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。図13のS121からS129に示す処理は、図9のS121からS129に示す処理と同じである。
図14は、図13に示す第2製氷モードと図12に示す第1製氷モードとを交互に行う時のタイミングチャートである。図14に示す区間Iは、図12のS101からS103の処理に対応する。区間IIは、図13のS115からS117の処理に対応する。第2冷却工程は、区間IIに含まれる。区間IIIは、図13のS118からS120の処理に対応する。第2加熱工程は、区間IIIに含まれる。区間IVは、図13のS133からS129の処理に対応する。第3加熱工程は、区間IVの最初の部分に含まれる。区間Vは、図12のS105の処理に対応する。第1冷却工程は、区間Vに含まれる。区間VIは、図12のS130からS113の処理に対応する。第1加熱工程は、区間VIの最初の部分に含まれる。
上述したように、第2冷却工程での第2冷却速度は、第1冷却工程での第1冷却速度より大きい。本実施の形態では、ある設定温度の規定量の水が目標温度の氷になるまでに掛かる時間が短いほど、冷却速度が大きいと定義する。なお、第2冷却工程によってできる氷は、気泡によって全体が白濁していることが好ましい。このような氷を作るためには、氷成長速度は2[mm/時間]以上である必要がある。氷成長速度は、5[mm/時間]以上であることが望ましい。
上述したように、第2加熱工程での第2加熱速度は、第1加熱工程での第1加熱速度及び第3加熱工程での第3加熱速度より大きい。本実施の形態では、ある設定温度の規定量の氷がその設定温度より高い目標温度の氷になるまでに掛かる時間が短いほど、加熱速度が大きいと定義する。
本実施の形態に示す例であれば、同じ製氷皿19を用いて形状の異なる氷を作ることができる。形状の異なる氷を作るために複数の製氷皿を用いる必要はない。このため、装置を小型化できる。製氷機が冷蔵庫に備えられる場合は、冷蔵庫を小型化できる。換言すれば、冷蔵庫に形成される他の部屋の容量を大きくすることができる。本実施の形態では、ブロックアイス及びクラッシュドアイスを作る例について説明した。これは一例である。製氷皿19を用いて他の形状の氷を作っても良い。
なお、氷を刃物で削ることによってクラッシュドアイスを作ることも可能であるが、刃物を使用する場合は器具を洗う際に注意が必要になる。本実施の形態に示す例では、クラッシュドアイスを作るために刃物を用いない。このため、器具の洗浄を容易に行うことができる。
本実施の形態に示す例では、ケース26が仕切り26aを備える。仕切り26aによって区画された第1空間にブロックアイスが溜められる。仕切り26aによって区画された第2空間にクラッシュドアイスが溜められる。ブロックアイス及びクラッシュドアイスを分けて溜めることができるため、使い勝手が良い。
製氷皿19は、水が入れられる部分のみが金属製で、残りの部分が樹脂製でも良い。このような製氷皿19であれば、全ての部分が金属製である製氷皿19と比較して、弾性変形させるために必要な力を低減できる。このため、モータ22として小型及び安価なものを使用できる。
本実施の形態では、蒸発器8及び送風機11を備える冷却器を例示した。これは一例である。冷却器として、製氷皿19を直接冷却する装置を用いても良い。例えば、冷却器は、製氷皿19の裏面に設けられた冷却管を備えても良い。冷却器は、製氷皿19の裏面に設けられたペルチェ素子を備えても良い。
本実施の形態では、加熱器として、製氷皿19の裏面に設けられたヒータ25を例示した。これは一例である。例えば、加熱器として、製氷皿19の氷に対して温風を吹き付ける装置を用いても良い。
本実施の形態では、ケース26を製氷室4に配置する例について説明した。これは一例である。ケース26は、製氷室4以外の部屋に配置されても良い。また、本実施の形態では、製氷室4の扉を開けて取り出すことができるケース26を例示した。これは一例である。冷蔵庫1にディスペンサー機能を備えることにより、製氷室4の扉全体を開けることなく氷を取り出すことができるようにしても良い。
実施の形態2.
実施の形態1では、急速冷却した氷を加熱することによって氷を破砕する例について説明した。本実施の形態では、製氷皿19を捻ることによって氷に力を加え、氷を破砕する例について説明する。
本実施の形態に示す例では、モータ22が、製氷皿19を弾性変形させるための力を発生させる。上述したように、急速冷却された氷には多数の空気が閉じ込められる。このため、製氷皿19を弾性変形させれば、製氷皿19にある氷を粉々にすることができる。但し、本実施の形態に示す例では、製氷皿19が捻られた際に、氷が破砕する前に氷が製氷皿19から外れてしまうことを防止する必要がある。
図15は、氷とステンレスとのせん断付着強度を示す図である。図16は、氷とポリスチレンとのせん断付着強度を示す図である。図15及び図16は以下より引用した。
「前野紀一、「氷の付着と摩擦」、日本雪氷学会、Vol.68,No.5,p.449−455(2006)」
付着強度が大きいほど氷は離れ難い。本実施の形態に示す例では、製氷皿19は、少なくとも水が入れられる部分が金属製であることが好ましい。例えば、製氷皿19がステンレスの成型品である場合、水が入れられる部分は、金型から外された後に研磨作業が行われていないことが好ましい。製氷皿19が樹脂製である場合は、例えば、水が入れられる部分の表面が他の部分の表面より粗いことが好ましい。実施の形態1に示す例に、このような製氷皿19を適用しても良い。
図17及び図18は、この発明の実施の形態2における製氷機の動作例を示すフローチャートである。図17及び図18は一連の動作を示す。図17に示す処理フローは、図12に示す処理フローと同様である。
制御装置14は、送風機11を回転数f_n[rpm]で駆動させる(S201)。また、制御装置14は、モータ17を制御し、ポンプ18を一定時間駆動させる(S202)。これにより、タンク15に溜められた水が製氷皿19に供給される。製氷皿19に、一定量の水が溜められる。
制御装置14は、使用者が選択した氷の種類を特定する(S203)。例えば、制御装置14は、操作パネル10から第1情報が入力されると、ブロックアイスを作るための第1製氷モードを開始する(S204)。制御装置14は、操作パネル10から第2情報が入力されると、クラッシュドアイスを作るための第2製氷モードを開始する(S214)。
第1製氷モードは、冷却器による第1冷却工程と加熱器による第1加熱工程とを備える。第1冷却工程では、製氷皿19にある水が第1冷却速度で冷却される。例えば、第1冷却工程では、送風機11が回転数f_nで駆動されることによって製氷室4に冷気が供給される。第1加熱工程は、第1冷却工程の後に行われる。第1加熱工程では、製氷皿19にある氷が第1加熱速度で加熱される。第1加熱工程は、氷が製氷皿19から離れ易くするために行われる。
制御装置14は、温度センサ24によって検出された温度Tit[℃]が第1製氷温度より低いか否かを判定する(S205)。図17は、第1製氷温度が−13℃である例を示す。第1製氷温度は予め設定される。
制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S202で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、ヒータ25の出力をW_nにする(S230)。
制御装置14は、S230でヒータ25への通電を開始すると、温度センサ24によって検出された温度Tit[℃]が第2製氷温度以上であるか否かを判定する(S231)。図17は、第2製氷温度が−1℃である例を示す。第2製氷温度は予め設定される。
制御装置14は、温度センサ24によって検出された温度Titが第2製氷温度以上になると、ヒータ25への通電を停止する(S232)。また、制御装置14は、温度Titが第2製氷温度以上になると、モータ22を駆動し、製氷皿19を正転させる(S206)。例えば、制御装置14は、製氷皿19を図4に示すB方向に回転させる。図17のS206からS213に示す処理は、図12のS106からS113に示す処理と同じである。
一方、第2製氷モードは、冷却器による第2冷却工程とモータ22による製氷皿19の変形工程とを備える。変形工程は、第2冷却工程の後に行われる。第2冷却工程では、製氷皿19にある水が第2冷却速度で冷却される。第2冷却速度は、第1冷却速度より大きい。
S214で第2製氷モードが開始されると、制御装置14は、送風機11を回転数f_Max[rpm]で駆動させる(S215)。本実施の形態においても、送風機11の回転数を上げることによって急速冷却を行う例を示す。第2冷却工程では、他の方法によって急速冷却を行っても良い。
制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低いか否かを判定する(S216)。制御装置14は、温度センサ24によって検出された温度Titが第1製氷温度より低くなると、S202で製氷皿19に入れられた水が凍ったと判定する。制御装置14は、温度Titが第1製氷温度より低くなると、送風機11の回転数をf_nに戻す(S217)。
次に、制御装置14は、モータ22を駆動し、製氷皿19を逆転させる(S222)。例えば、制御装置14は、製氷皿19を図4に示すC方向に回転させる。制御装置14は、S222で製氷皿19の回転を開始すると、時間tr1[sec]のカウントを開始する(S223)。制御装置14は、S223でカウントを開始した時間tr1が第1設定時間に達したか否かを判定する(S224)。
上述したように、第1設定時間は、製氷皿19の回転が開始されてから棒状部材23bが長孔21bの縁に当たるまでの時間より長い時間に設定される。棒状部材23bが長孔21bの縁に当たった後もモータ22の駆動が継続されることにより、製氷皿19に捻りが加えられる。これにより、製氷皿19が弾性変形し、製氷皿19にある氷が粉々になる。即ち、S224では、製氷皿19からクラッシュドアイスが落下する。ケース26の第2空間に、クラッシュドアイスが溜まる。
制御装置14は、S222で製氷皿19の回転を開始してから第1設定時間が経過すると、モータ22を制御し、製氷皿19を正転させる(S225)。図18のS225からS229に示す処理は、図9のS125からS129に示す処理と同じである。
本実施の形態に示す例でも、実施の形態1で開示した例が奏する効果と同様の効果を奏することができる。即ち、本実施の形態に示す例であれば、同じ製氷皿19を用いて形状の異なる氷を作ることができる。形状の異なる氷を作るために複数の製氷皿を用いる必要はない。このため、装置を小型化できる。製氷機が冷蔵庫に備えられる場合は、冷蔵庫を小型化できる。換言すれば、冷蔵庫に形成される他の部屋の体積を大きくすることができる。本実施の形態では、ブロックアイス及びクラッシュドアイスを作る例について説明した。これは一例である。製氷皿19を用いて他の形状の氷を作っても良い。
なお、氷を刃物で削ることによってクラッシュアイスを作ることも可能であるが、刃物を使用する場合は器具を洗う際に注意が必要になる。本実施の形態に示す例では、クラッシュドアイスを作るために刃物を用いない。このため、器具の洗浄を容易に行うことができる。
本実施の形態で説明しない特徴は、実施の形態1で開示した特徴と同様である。
図2に示すように、制御装置14は、ハードウェア資源として、例えばプロセッサ29とメモリ30とを含む処理回路を備える。制御装置14は、メモリ30に記憶されたプログラムをプロセッサ29によって実行することにより、上述した各機能を実現する。
プロセッサ29は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ或いはDSPともいわれる。メモリ30として、半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク或いはDVDを採用しても良い。採用可能な半導体メモリには、RAM、ROM、フラッシュメモリ、EPROM及びEEPROM等が含まれる。
制御装置14が有する各機能の一部又は全部をハードウェアによって実現しても良い。制御装置14の機能を実現するハードウェアとして、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらの組み合わせを採用しても良い。
この発明は、水から氷を作る種々の装置に適用できる。
1 冷蔵庫、 2 本体、 2a 扉、 3 冷蔵室、 4 製氷室、 4a 吹出し口、 4b 吸込み口、 5 冷凍室、 6 野菜室、 7 圧縮機、 8 蒸発器、 9a〜9e 温度センサ、 10 操作パネル、 11 送風機、 12 モータ、 13 ダンパ、 14 制御装置、 15 タンク、 16 パイプ、 17 モータ、 18 ポンプ、 19 製氷皿、 19a 窪み、 19b 切欠き、 20a 支持軸、 20b 支持軸、 21 フレーム、 21a 貫通孔、 21b 長孔、 22 モータ、 23 ストッパ、 23a 円盤部材、 23b 棒状部材、 23c 貫通孔、 24 温度センサ、 25 ヒータ、 26 ケース、 26a 仕切り、 26b 第1空間、 26c 第2空間、 27 センサ、 28 断熱材、 29 プロセッサ、 30 メモリ

Claims (9)

  1. 第1製氷モード及び第2製氷モードのそれぞれで氷を作ることが可能な製氷機であって、
    製氷皿と、
    前記製氷皿にある水を冷却する冷却器と、
    前記製氷皿にある氷を加熱する加熱器と、
    を備え、
    前記第1製氷モードは、前記冷却器による第1冷却工程を備え、
    前記第1冷却工程では、前記製氷皿にある水が第1冷却速度で冷却され、
    前記第2製氷モードは、前記冷却器による第2冷却工程と前記第2冷却工程後の前記加熱器による加熱工程とを備え、
    前記第2冷却工程では、前記製氷皿にある水が第2冷却速度で冷却され、
    前記第2冷却速度は前記第1冷却速度より大きく、
    前記加熱工程で、前記製氷皿にある氷が粉砕される製氷機。
  2. 前記第1製氷モードは、前記第1冷却工程後の前記加熱器による第1加熱工程を更に備え、
    前記第1加熱工程では、前記製氷皿にある氷が第1加熱速度で加熱され、
    前記第2製氷モードの前記加熱工程では、前記製氷皿にある氷が第2加熱速度で加熱され、
    前記第2加熱速度は前記第1加熱速度より大きい請求項1に記載の製氷機。
  3. 前記第1製氷モードは、前記第1冷却工程後の前記加熱器による第1加熱工程を更に備え、
    前記第1加熱工程では、前記製氷皿にある氷が第1加熱速度で加熱され、
    前記第2製氷モードの前記加熱工程は、前記第2冷却工程後の第2加熱工程と前記第2加熱工程後の第3加熱工程とを備え、
    前記第2加熱工程では、前記製氷皿にある氷が第2加熱速度で加熱され、
    前記第3加熱工程では、前記製氷皿にある氷が第3加熱速度で加熱され、
    前記第2加熱速度は、前記第1加熱速度及び前記第3加熱速度より大きい請求項1に記載の製氷機。
  4. 第1製氷モード及び第2製氷モードのそれぞれで氷を作ることが可能な製氷機であって、
    製氷皿と、
    前記製氷皿にある水を冷却する冷却器と、
    前記製氷皿にある氷を加熱する加熱器と、
    前記製氷皿を弾性変形させるための力を発生させるモータと、
    を備え、
    前記第1製氷モードは、前記冷却器による第1冷却工程と前記第1冷却工程後の前記加熱器による加熱工程とを備え、
    前記第1冷却工程では、前記製氷皿にある水が第1冷却速度で冷却され、
    前記第2製氷モードは、前記冷却器による第2冷却工程と前記第2冷却工程後の前記モータによる変形工程とを備え、
    前記第2冷却工程では、前記製氷皿にある水が第2冷却速度で冷却され、
    前記第2冷却速度は前記第1冷却速度より大きく、
    前記変形工程で、前記製氷皿にある氷が粉砕される製氷機。
  5. 前記製氷皿は、少なくとも水が入れられる部分が金属製である請求項1から請求項4の何れか一項に記載の製氷機。
  6. 前記製氷皿は樹脂製であり、水が入れられる部分の表面が他の部分の表面より粗い請求項1から請求項4の何れか一項に記載の製氷機。
  7. 前記加熱器は、前記製氷皿のうち水が入れられる部分を裏面側から覆う面状発熱体である請求項1から請求項6の何れか一項に記載の製氷機。
  8. 前記製氷皿に設けられた温度センサと、
    前記温度センサを覆う断熱材と、
    を更に備えた請求項1から請求項7の何れか一項に記載の製氷機。
  9. 前記製氷皿の下方に配置されたケースを更に備え、
    前記製氷皿は、軸を中心に回転可能に支持され、
    前記ケースは、第1空間と第2空間とを区画するための仕切りを備え、
    前記第1空間は、前記製氷皿が前記軸を中心に一方向に回転した際に前記製氷皿から落ちる氷を受けるための空間であり、
    前記第2空間は、前記製氷皿が前記軸を中心に前記一方向とは反対の方向に回転した際に前記製氷皿から落ちる氷を受けるための空間である請求項1から請求項8の何れか一項に記載の製氷機。
JP2019513150A 2017-04-19 2017-04-19 製氷機 Active JP6729799B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015782 WO2018193563A1 (ja) 2017-04-19 2017-04-19 製氷機

Publications (2)

Publication Number Publication Date
JPWO2018193563A1 JPWO2018193563A1 (ja) 2019-11-07
JP6729799B2 true JP6729799B2 (ja) 2020-07-22

Family

ID=63856685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513150A Active JP6729799B2 (ja) 2017-04-19 2017-04-19 製氷機

Country Status (5)

Country Link
JP (1) JP6729799B2 (ja)
CN (1) CN110494704B (ja)
AU (2) AU2017409899B2 (ja)
TW (1) TWI651503B (ja)
WO (1) WO2018193563A1 (ja)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164440A (ja) * 1991-12-17 1993-06-29 Toshiba Corp 冷蔵庫の製氷装置
JPH06201237A (ja) * 1992-12-28 1994-07-19 Toshiba Corp 自動製氷装置
JPH0719685A (ja) * 1993-07-07 1995-01-20 Matsushita Refrig Co Ltd 自動製氷装置
JPH11108513A (ja) * 1997-10-02 1999-04-23 Toshiba Home Techno Corp 自動製氷機
JPH11270940A (ja) * 1998-03-20 1999-10-05 Sanyo Electric Co Ltd プレートタイプ製氷機
JP4257986B2 (ja) * 1999-02-25 2009-04-30 三菱電機株式会社 自動製氷装置
JP2002350021A (ja) * 2001-05-31 2002-12-04 Hitachi Ltd 冷蔵庫
JP2005076920A (ja) * 2003-08-28 2005-03-24 Sanyo Electric Co Ltd 冷蔵庫
JP3781767B2 (ja) * 2005-09-06 2006-05-31 松下冷機株式会社 冷蔵庫
KR100786075B1 (ko) * 2005-12-16 2007-12-17 엘지전자 주식회사 냉장고의 운전 제어 방법
JP2011064371A (ja) * 2009-09-16 2011-03-31 Sharp Corp 冷凍冷蔵庫の製氷装置
KR101750309B1 (ko) * 2010-10-28 2017-06-23 엘지전자 주식회사 제빙장치 및 이를 구비하는 냉장고
WO2012124075A1 (ja) * 2011-03-16 2012-09-20 シャープ株式会社 冷凍冷蔵庫の製氷装置
JP2013040729A (ja) * 2011-08-18 2013-02-28 Sharp Corp 冷蔵庫
JP5866230B2 (ja) * 2012-03-05 2016-02-17 シャープ株式会社 冷蔵庫
JP5939844B2 (ja) * 2012-03-07 2016-06-22 三菱電機株式会社 製氷皿、自動製氷機、及び冷凍冷蔵庫
US9513045B2 (en) * 2012-05-03 2016-12-06 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
CN102679657A (zh) * 2012-06-08 2012-09-19 小天鹅(荆州)电器有限公司 制冰机和冰箱
CN105241146A (zh) * 2015-10-14 2016-01-13 苏州路之遥科技股份有限公司 一种双冰模制冰机

Also Published As

Publication number Publication date
JPWO2018193563A1 (ja) 2019-11-07
TW201839335A (zh) 2018-11-01
WO2018193563A1 (ja) 2018-10-25
TWI651503B (zh) 2019-02-21
CN110494704B (zh) 2021-07-27
AU2020294172A1 (en) 2021-01-28
CN110494704A (zh) 2019-11-22
AU2017409899A1 (en) 2019-10-03
AU2020294172B2 (en) 2022-03-17
AU2017409899B2 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US10429118B2 (en) Refrigerator
KR101601653B1 (ko) 제빙장치 및 이를 구비하는 냉장고
KR20070064207A (ko) 제빙장치 및 그 제어방법
KR102358107B1 (ko) 냉장고 및 그 제어 방법
JP6750725B2 (ja) 自動製氷機及び冷凍冷蔵庫
KR20070094587A (ko) 제빙장치 및 그 제어방법
JP6729799B2 (ja) 製氷機
CN101738040B (zh) 冰箱的制冰设备及其控制方法
CA2778577C (en) Ice making assembly with optimized harvesting and related refrigeration appliance
JP6599027B2 (ja) 製氷装置および冷蔵庫
KR100722051B1 (ko) 냉장고용 아이스메이커 및 아이스메이커의 제어방법
JP2003065649A (ja) 冷蔵庫
JP2005114198A (ja) 製氷皿及び自動製氷機付き冷蔵庫
JP7375297B2 (ja) 冷蔵庫
JP2007209306A (ja) アイスクリーム製造装置、アイスクリーム製造方法、及びそれを用いた冷蔵庫
JP7261444B2 (ja) 冷蔵庫
JP2023038035A (ja) 冷蔵庫
KR20180000908A (ko) 제빙기 및 이를 이용한 제빙 방법
JP2005106347A (ja) 冷蔵庫
KR20050103769A (ko) 냉장고용 다용도 도어 구조

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6729799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250