JP6696603B2 - 蓄冷熱交換器 - Google Patents

蓄冷熱交換器 Download PDF

Info

Publication number
JP6696603B2
JP6696603B2 JP2019037727A JP2019037727A JP6696603B2 JP 6696603 B2 JP6696603 B2 JP 6696603B2 JP 2019037727 A JP2019037727 A JP 2019037727A JP 2019037727 A JP2019037727 A JP 2019037727A JP 6696603 B2 JP6696603 B2 JP 6696603B2
Authority
JP
Japan
Prior art keywords
refrigerant pipe
storage material
material container
refrigerant
cool storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037727A
Other languages
English (en)
Other versions
JP2019082322A (ja
Inventor
山田 淳司
淳司 山田
井上 誠司
誠司 井上
宮田 喜夫
喜夫 宮田
横山 直樹
直樹 横山
長谷川 恵津夫
恵津夫 長谷川
淳 安部井
淳 安部井
石川 浩
石川  浩
アウン 太田
アウン 太田
康太 萩原
康太 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JP2019082322A publication Critical patent/JP2019082322A/ja
Application granted granted Critical
Publication of JP6696603B2 publication Critical patent/JP6696603B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、冷凍サイクル装置に用いられる蓄冷熱交換器に関するものである。
従来、特許文献1に記載のトラック運転者仮眠用の蓄冷式冷房装置が知られている。この特許文献1の蓄冷材を封入した容器は、樹脂フィルムで作成されて、この容器の表面に凹部と凸部があり、この凹部によって、蓄冷材で冷やされる空気流路を確保できる形状を得ている。
そして、蓄冷時においては、上記容器を挟み込む冷媒配管に冷媒を流して蓄冷しておき、仮眠をとる運転者に上記空気通路を通る空気を供給して冷房を行う仮眠用の蒸発器を構成している。なお、運転中の運転者を冷房する車室内用蒸発器は、上記仮眠用の蒸発器とは別に設置され、圧縮機からの冷媒が、双方の蒸発器に並列に流れるようになっている。
特開平8−175167号公報
上記特許文献1の技術によると、上記仮眠用の蒸発器を成す蓄冷用熱交換器は、蓄冷した後に、蓄冷材と熱交換する空気を流すだけであるため、車室内を冷房するためには、別の蒸発器となる冷房用熱交換器が必要であり、コストアップの要因になる。
本発明は、このような従来の技術に存在する問題点に着目して成されたものであり、その目的は、蓄冷材容器を有する蓄冷熱交換器において、蓄冷材容器の接合性を確保することである。
従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。
本発明は上記目的を達成するために、下記の技術的手段を採用する。
第1の発明では、蓄冷熱交換器が、冷媒通路を有し、互いに間隔を設けて配置された複数の冷媒管(45)と、冷媒管(45)に接合され、蓄冷材(50)を収容する部屋を区画する蓄冷材容器(47)と、冷媒管(45)の、蓄冷材容器(47)とは反対側に配され、蓄冷材(50)への蓄冷時及び蓄冷材からの放冷時に冷却対象空間を冷却する空気が流通する冷却用空気通路(460)とを備え、冷媒管(45)が接合される蓄冷材容器(47)の外側表面には、複数の凸部(47a1)或いは複数の凹部(47a2)が設けられており、複数の凸部(47a1)は冷媒管(45)と接合する接合部を有しており、接合部、冷媒管(45)の風上側端部となる部位から冷媒管(45)の風下側端部となる部位まで連続して形成されており、接合部の少なくとも一部が、冷媒管の長手方向に対して傾斜しており、接合部は、傾斜方向における端部に向けて幅が小さくなる端部形状を有することを特徴とする。
第2の発明では、冷媒通路を有し、互いに間隔を設けて配置された複数の冷媒管(45)と、冷媒管(45)に接合され、蓄冷材(50)を収容する部屋を区画する蓄冷材容器(47)と、冷媒管(45)の蓄冷材容器(47)とは反対側に配され、蓄冷材(50)への蓄冷時及び蓄冷材からの放冷時に冷却対象空間を冷却する空気が流通する冷却用空気通路(460)とを備え、冷媒管(45)が接合される蓄冷材容器(47)の外側表面には、複数の凸部(47a1)或いは複数の凹部(47a2)が設けられており、複数の凸部(47a1)は冷媒管(45)と接合する接合部を有しており、接合部は、冷媒管(45)の風上側端部となる部位から冷媒管(45)の風下側端部となる部位まで連続して形成されており、接合部の少なくとも一部が、冷媒管の長手方向に対して傾斜しており、複数の凸部は上下方向に互いに間隔をおいて配置されており、通風方向における蓄冷材容器の端部に近い部位における、上下方向に隣接して配される凸部同士の上下方向の間隔が、通風方向における蓄冷材容器の中央に近い部位における、上下方向に隣接して配される凸部同士の上下方向の間隔よりも大きいことを特徴とする蓄冷熱交換器。
この発明においては、凍結割れが回避できる。
なお、特許請求の範囲および上記各手段に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
本発明の第1実施形態における車両用空調装置を構成する冷凍サイクル装置の構成図である。 上記実施形態における蒸発器の平面図である。 図2の矢印III方向から見た蒸発器の側面図である。 図2のIV−IV線に沿う断面の一部を模式的に示す一部拡大断面図である。 図3のV−V線に沿う断面の一部を模式的に示す冷媒管、蓄冷材容器、及び空気側フィンの関係を示す一部拡大断面図である。 図5の蓄冷材容器を矢印VI方向から見た内部側面図である。 車両用空調装置に上記実施形態の蒸発器を垂直方向の搭載姿勢で搭載したときの凝縮水を排出する様子を説明するための説明図である。 上記蒸発器の表面処理工程での処理液を排出する様子を説明するための説明図である。 本発明の第2実施形態における、図6と同様の蓄冷材容器の一部拡大側面図である。 上記第2実施形態における、図5と同様の、冷媒管、蓄冷材容器、及び空気側フィンの関係を示す一部拡大断面図である。 上記第1実施形態及び上記第2実施形態における、蓄冷材容器と冷媒管のロウ付け面積割合と蒸発器の能力比との関係を示した特性図である。 図10の構造においてロウ付け時のロウ材の流れを模式的に説明する説明図である。 その他の実施形態として、格子配列の凹凸形状を有する蓄冷材容器の側面図である。 その他の実施形態として、斜め配列の凹凸形状を有する蓄冷材容器の側面図である。 その他の実施形態として、丸型の千鳥配列の凹凸形状を有する蓄冷材容器の側面図である。 その他の実施形態として、丸型の格子配列の凹凸形状を有する蓄冷材容器の側面図である。 本発明の第3実施形態における、図3のV−V線に沿う断面の一部を模式的に示す冷媒管、蓄冷材容器、及び空気側フィンの関係を示す一部拡大断面図である。 上記第3実施形態の蒸発器の内側フィンと蓄冷材容器との接合割合の大小による性能低下を説明するものであり、図18の(a)部分は、外表面接合割合Xが適度に小さい場合、図18の(b)部分は、外表面接合割合Xが大きすぎる場合の一部拡大断面図である。 上記第3実施形態の蒸発器の内側フィンと蓄冷材容器との接合割合の大小による性能を説明する各種グラフである。 本発明の第4実施形態の蒸発器における蓄冷材容器表面のリブの形状を示す一部側面図である。 本発明の第5実施形態の蒸発器における蓄冷材容器表面のリブの形状を示す一部側面図である。 本発明の第6実施形態の蒸発器における蓄冷材容器表面のリブの形状を示す一部側面図である。 本発明の第7実施形態の蒸発器における蓄冷材容器表面のリブの形状を示す一部側面図である。 本発明の第8実施形態における積層プレートで形成された蓄冷材付き蒸発器の正面図である。 図24の蓄冷材付き蒸発器の左側面図である。 本発明の第8実施形態となるドロンカップのチューブで冷媒管が製造された蒸発器を、押出製法で製造された蒸発器と対比して示す模式的断面図である。 本発明の第9実施形態となるドロンカップのチューブで冷媒管が製造された蒸発器を、の押出製法で製造された蒸発器と対比して示す模式的断面図である。 本発明の第10実施形態に関し、図4と同様に図示した蒸発器の模式的断面図である。 図28の矢印Z33部分を拡大して示す摸式断面図である。 図28の矢印Z34部分を拡大して示す摸式断面図である。 本発明の第10実施形態において圧縮機の断続運転に伴い蒸発器の温度が変化する状態を説明するグラフである。 図28の蒸発器の蓄冷材容器の表面のリブを逆V字形に形成した状態を示す側面図である。
(第1実施形態)
図1は、本発明の第1実施形態となる車両用空調装置を構成する冷凍サイクル装置の構成図である。この空調装置を構成する冷凍サイクル装置1は、圧縮機10、放熱器20、減圧器30、および蒸発器(エバポレータ)40を有する。これら構成部品は、配管によって環状に接続され、冷媒循環路を構成する。
圧縮機10は、車両の走行用の動力源2である内燃機関(あるいは電動機等)によって駆動される。動力源2が停止すると、圧縮機10も停止する。圧縮機10は、蒸発器40から冷媒を吸引し、圧縮し、放熱器20へ吐出する。放熱器20は、高温冷媒を冷却する。放熱器20は、凝縮器とも呼ばれる。減圧器30は、放熱器20によって冷却された冷媒を減圧する。蒸発器40は、減圧器30によって減圧された冷媒を蒸発させ、車室内空気を冷却する。
図2は、第1実施形態の蒸発器40の平面図である。図3は、図2の矢印III方向から見た側面図である。図4は、図2のIV−IV線に沿う断面の一部を模式的に示す拡大断面図である。図5は、図3のV−V線に沿う断面の一部を模式的に示す冷媒管と蓄冷材容器と空気側フィンとの関係を示す拡大断面図である。
図2および図3において、蒸発器40は、複数に分岐した冷媒通路部材を有する。この冷媒通路部材は、アルミニウム等の金属製の通路部材によって提供される。冷媒通路部材は、組をなして位置づけられたヘッダ41、42、43、44と、それらヘッダの間を連結する複数の冷媒管45によって提供されている。
図2および図3において、第1ヘッダ41と第2ヘッダ42とは、組をなしており、互いに所定距離れて平行に配置されている。第3ヘッダ43と第4ヘッダ44も組をなしており、互いに所定距離れて平行に配置されている。第1ヘッダ41と第2ヘッダ42との間には、複数の冷媒管45が等間隔に配列されている。
各冷媒管45は、その端部において対応するヘッダ41、42内に連通している。これら第1ヘッダ41と、第2ヘッダ42と、それらの間に配置された複数の冷媒管45によって第1熱交換部48(図3)が形成されている。第3ヘッダ43と第4ヘッダ44との間には、複数の冷媒管45が等間隔に配列されている。
各冷媒管45は、その端部において対応するヘッダ43、44内に連通している。これら第3ヘッダ43と、第4ヘッダ44と、それらの間に配置された複数の冷媒管45によって第2熱交換部49が形成されている。
この結果、蒸発器40は、2層に配置された第1熱交換部48と第2熱交換部49とを有する。矢印400にて示す空気の流れ方向に関して、第2熱交換部49が上流側に配置され、第1熱交換部48が下流側に配置されている。
第1ヘッダ41の端部には、冷媒入口としての図示しないジョイントが設けられている。第1ヘッダ41内は、その長さ方向のほぼ中央に設けられた図示しない仕切板によって、第1区画と第2区画とに区画されている。これに対応して、複数の冷媒管45は、第1群と第2群とに区分されている。
冷媒は、第1ヘッダ41の第1区画に供給される。冷媒は、第1区画から、第1群に属する複数の冷媒管45に分配される。冷媒は、第1群を通して第2ヘッダ42に流入し、集合される。
冷媒は、第2ヘッダ42から、第2群に属する複数の冷媒管45に再び分配される。冷媒は、第2群を通して第1ヘッダ41の第2区画に流入する。このように、第1熱交換部48においては、冷媒をU字状に流す流路が形成される。
第3ヘッダ43の端部には、冷媒出口としての図示しないジョイントが設けられている。第3ヘッダ43内は、その長さ方向のほぼ中央に設けられた図示しない仕切板によって、第1区画と第2区画とに区画されている。
これに対応して、複数の冷媒管45は、第1群と第2群とに区分されている。第3ヘッダ43の第1区画は、第1ヘッダ41の第2区画に隣接している。第3ヘッダ43の第1区画と第1ヘッダ41の第2区画とは連通している。
冷媒は、第1ヘッダ41の第2区画から、第3ヘッダ43の第1区画に流入する。冷媒は、第1区画から、第1群に属する複数の冷媒管45に分配される。冷媒は、第1群を通して第4ヘッダ44に流入し、集合される。冷媒は、第4ヘッダ44から、第2群に属する複数の冷媒管45に再び分配される。
冷媒は、第2群を通して第3ヘッダ43の第2区画に流入する。このように、第2熱交換部49においても、冷媒をU字状に流す流路が形成される。第3ヘッダ43の第2区画内の冷媒は、冷媒出口から流出し、圧縮機10へ向けて流れる。
図2において、複数の冷媒管45は、略一定の間隔で配置されている。それら複数の冷媒管45の間には、複数の隙間が形成されている。これら複数の隙間には、複数の空気側フィン46と複数の蓄冷材容器47とが、所定の規則性をもって配置されロウ付けされている。隙間のうちの一部は、冷却用空気通路460である。隙間のうちの残部は、蓄冷材容器47が配置されている収容部461である。
複数の冷媒管45の間に形成された合計間隔のうちの10%以上50%以下が収容部461とされる。蓄冷材容器47は、蒸発器40の全体にほぼ均等に分散して配置されている。蓄冷材容器47の両側に位置する2つの冷媒管45は、蓄冷材容器47とは反対側において空気と熱交換するための冷却用空気通路460を区画している。
別の観点では、図4のように2つの空気側フィン46a及び46bの間に2つの冷媒管45a及び45bが配置され、さらにこれら2つの冷媒管45a及び45bの間にひとつの蓄冷材容器47が配置されている。
図4および図5において、冷媒管45は、内部側に複数の冷媒通路を有する多穴管である。冷媒管45(45a及び45b)は、扁平管とも呼ばれる。この多穴管は、押出製法によって得ることができる。複数の冷媒通路45c(図4)は、冷媒管45の図4の紙面と垂直の方向に沿って延びている。
複数の冷媒管45は、列をなして並べられている。各列において、複数の冷媒管45は、その側面が互いに対向するように配置されている。複数の冷媒管45は、互いに隣接する2つの冷媒管45a及び45bの間に、空気と熱交換するための冷却用空気通路460と、蓄冷材容器47を収容するための収容部461とを区画している。
蒸発器40は、車室へ供給される空気と接触面積を増加させるための空気側フィン部材を上記冷却用空気通路460に備える。空気側フィン部材は、複数のコルゲート型の空気側フィン46(46a及び46b)によって提供されている。
空気側フィン46は、隣接する2つの冷媒管45と熱的に結合している。空気側フィン46は、熱伝達に優れた接合材によって、隣接する2つの冷媒管45に接合されている。接合材としては、ロウ材を用いることができる。空気側フィン46は、薄いアルミニウム等の金属板が波状に曲げられた形状をもっており、ルーバーと呼ばれる。
蒸発器40は、さらに、複数の蓄冷材容器47を有している。蓄冷材容器47は、アルミニウムウ等の金属製である。蓄冷材容器47は、図4の左右の表面に凹凸形状部を有する筒状である。
蓄冷材容器47は、その図示しない長手方向両端(図2及び図5の上下端)において閉じられ、内部に蓄冷材50(図5)を収容するための部屋を区画している。蓄冷材容器47は、両側面部に広い主面を有している。これら2つの主面を提供する2つの主壁は、それぞれが冷媒管45と平行に配置されている。
蓄冷材容器47は、隣接する2つの冷媒管45の間に配置されている。蓄冷材容器47は、その両側に配置された2つの冷媒管45に熱的に外殻47aの凸部47a1で結合している。
蓄冷材容器47は、熱伝達に優れた接合材によって、隣接する2つの冷媒管45に接合されている。接合材としては、ロウ材または接着材などの樹脂材料を用いることができるが、この第1実施形態の蓄冷材容器47は、冷媒管45にロウ付けされている。
蓄冷材容器47と冷媒管45との間には、それらの間を広い断面積によって連結するためにロウ材が配置されている。このロウ材は、蓄冷材容器47と冷媒管45との間にロウ材の箔を配置することによっても提供することができる。この結果、蓄冷材容器47は、冷媒管45との間で良好な熱伝導を行う。
蓄冷材容器47は、その外面を提供する外殻47aを有している。そして、この蓄冷材容器の外殻47aは、凹凸状の表面形状を有する。そしてこの凹凸状の表面形状によって、蓄冷材容器47に接する冷媒管45とのロウ付け性を向上している。即ち、ロウ付け面積を少なくしてボイドや隙間が生じないようにしている。
47a1は凸部であり、47a2は凹部である。凸部47a1は、冷媒管45にロウ付けされている。このロウ付けに用いるロウ材のSi(シリコン)量を調節することで、ロウ付け部への流れ込みやすさを調整できる。ロウ材のSi量が多いほど、ロウ付け部に流れ込みやすくなる。なお、凹部47a2は、蓄冷材側空気通路461aを構成している。
また、この凹凸形状は、蓄冷材容器47の長手方向(図5上下方向)、及び蓄冷材容器47の短手方向(図4の上下方向)の両方向に対し複数回繰り返されている。この凹凸形状によって、後述するように凝縮水などの排水性を良好にしている。
図5に示すように、蓄冷材容器47の内部側には、内側フィン47fが蓄冷材容器47に熱的及び機械的に結合されて配設されている。この内側フィン47fは、熱伝達に優れた接合材によって、蓄冷材容器47の主壁の内壁に接合されている。この接合は、ロウ付けによって成される。蓄冷材容器47の内部側に、内側フィン47fが結合していることで、蓄冷材容器47の変形が防止され、耐圧性が向上する。
図5のように、内側フィン47fは、薄いアルミニウム等の金属板が波状に曲げられた形状を有している。そして、蓄冷材容器47の表面が凹凸状であるため、内側フィン47fは、蓄冷材容器47の外殻47aの凹部47a2、即ち、内側に突出した部分(内面突起)とロウ付けにより接合されて、機械的強度並びに耐圧性能を高めている。これによって、外殻47aのうち、外側に突出した凸部47a1と内側フィン47fとは、接合されていない。図5の460は、冷却用空気通路、461aは、蓄冷材側空気通路である。
図4では、内側フィン47fは、図5の上側から見たように板材として図示されている。図5では、波状に屈曲した内側フィン47fが模式的に図示されている。実際には、周知のように上記板材の表面に無数の切り起こしがプレスで成型されている。
図6は、図5の蓄冷材容器47の内壁を矢印IV方向から見た内部側面図である。この図6のアルミニウム成型品から成る蓄冷材容器47は、図6の上下方向の高さ225mm、横幅50mm、及び厚さ5mm程度の長方形の容器である。この容器表面の多数の凸部47a1は、千鳥配列に形成されている。この千鳥配列は、プレス成型時の型抜きが容易である。また、凸部47a1のロウ付けされる部分の横幅は、ボイドの発生を防止するために2乃至5mm程度の幅以下に設定している。
蓄冷材容器47の厚さ5mm程度の内部には、蓄冷材50(図5)と内側フィン47fが収容されている。図6の47gは、内側フィン47fを止めるための打ち出し部である。内側フィン47f及び蓄冷材50は、略打ち出し部47gの高さまで蓄冷材容器47の内部に収納されている。打ち出し部47gより上方の蓄冷材容器47の内部には、空気が封入されている。この空気の圧縮作用で、蓄冷材50(図5)膨張時の蓄冷材容器47の応力を緩和している。
上記第1実施形態の作用効果について説明する。蓄冷材容器47の表面に複数の凹部47a2及び凸部47a1を設けることで、蓄冷材容器47と冷媒管45との接触は凸部47a1の外面のみとなる。その凸部47a1相互間(凹部47a2の表面)から凝縮水や蒸発器表面処理工程における処理液を排出することができる。
図7は、車両用空調装置に蒸発器を垂直方向の搭載姿勢で搭載したときの凝縮水を排出する様子を説明するための説明図である。図7において、千鳥配列された凸部47a1相互間の凹部47a2の表面における多数の並列の凝縮水の天方向から地方向への流れを矢印47h1で示している。
また、広範囲にわたる平面接触を凸部47a1で無くすことで、ロウ付け後のボイドの発生を防止し、ロウ付け性能を良くしている。
図5のように、蓄冷材容器47の表面に複数の凹部47a2及び凸部47a1を設けることで、蓄冷材容器47の内側フィン47fは、凹部47a2の内面凸部のみで蓄冷材容器47と接触することとなる。
この結果、内側フィン47fと蓄冷材容器47との間には、通り道50aが確保され、蓄冷材50を蓄冷材容器47内に封入する工程において、封入時間を短縮することが出来る。
図8は、蒸発器の表面処理工程での処理液を排出する様子を説明するための説明図である。処理液の中にディッピングされた蓄冷材容器47はブロアで空気を吹き付けられる。この時の千鳥配列された凸部47a1相互間の凹部47a2の表面における処理液の流れを矢印47h2で示している。471及び472は、表面処理嵌挿工程におけるブロワの空気吹きつけ方向である。
蓄冷材容器47の凹凸形状が、蓄冷材容器47の長手方向及び短手方向の両方向に対し複数回繰り返されている構造としていることで、蒸発器の取り付け角度によらず排水性を確保できる。特に、図7のように、排水性、プレス成型性、及び蓄冷材50の封入性の面から蓄冷材容器47の長手方向に細長い小判状の凸部47a1を設ける形状が推奨される。
(第2実施形態)
次に、本発明の第2実施形態について説明する。図9は、図6と同様の蓄冷材容器47の側面図である。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成および特徴について説明する。
図9において、第2実施形態の蓄冷材容器47の表面における複数の凸部47a1の外面凸部の中央(頭頂部)は、穴空き形状となっている。この孔空き部47a3を通して(図10のように)蓄冷材50が冷媒管45と直接接触している。
また、図9左右方向の凸部47a1のロウ付け幅は、2乃至5mm以下が望ましい。
図10は、図5と同様の、冷媒管45と蓄冷材容器47と空気側フィン46との関係を示す拡大断面図である。蓄冷材容器47内に内側フィン47fと共に封入された蓄冷材50は、蓄冷材容器47の内側から孔空き部47a3に突出し、冷媒管45の表面に直接接触している。図10の460は、冷却用空気通路、461aは、蓄冷材側空気通路である。
蓄冷材50は、冷媒管45と蓄冷材容器47の凸部47a1がロウ付けされた後に、蓄冷材容器47内に充填されるので、孔空き部47a3から外部に漏れることはない。
なお、蓄冷材容器47の外表面が、この外表面に隣接する冷媒管45の表面に凹凸形状(凹部47a2及び凸部47a1)や上記孔空き部47a3無しで、全面的に接触した場合の接触面積を100%として、上述のように凹凸形状や上記孔空き部47a3を設けて部分的に接触した時の接触面積つまりロウ付け面積が、10%以上(好ましくは20%以上)あれば、空調装置用蒸発器の熱交換能力を充分に確保できることが上記第1実施形態及び上記第2実施形態で、後述のように確認されている。
図11は、蓄冷材容器47と冷媒管45のロウ付け面積割合と蒸発器の能力比との関係を示した特性図である。蓄冷材容器47の外表面が、この外表面に隣接する冷媒管45の表面に凹凸形状や上記孔空き部47a3無しで、全面的に接触した場合のロウ付け面積割合を100%としたときの蒸発器の能力比を100%としている。この図11から判明するように凹凸形状や孔空き部47a3が存在していても、部分的に接触した時のロウ付け面積割合が、10%以上あれば、蒸発器の能力比が90%以上確保される。
また、上記孔空き部47a3を形成した場合は、蓄冷材容器47と冷媒管45のロウ付け部に使用されるロウ材を、蓄冷材容器47の内面に形成するロウ材と蓄冷材容器47の外面に形成するロウ材とで区別することが望ましい。ロウ材は、ロウ材中に含まれるシリコンSiの量が多いほど、流動性に富む。
図12は、図10の構造においてロウ付け時のロウ材の流れを模式的に説明する説明図である。蓄冷材容器47の内面に形成する内面ロウ材の流れを矢印47INで示し、蓄冷材容器47の外面に形成する外面ロウ材の流れを矢印47OUTで示している。
ロウ材は、ロウ材に含まれるシリコンSiの量が多いほど、流動性に富む。内面ロウ材の流れ性が外面ロウ材の流れ性よりも優れていることが、ロウ付けのために好ましい。この理由について以下に説明する。
外面ロウ材には、犠牲防食材が含まれており、この外面ロウ材は、蓄冷材容器47と冷媒管45のロウ付け部にあまり流れ込まないことが、外面ロウ材による必要部分のロウ付けを確保し、かつ蓄冷材容器47と冷媒管45のロウ付け部の耐腐食性を向上するために好ましい。そこで、内面ロウ材のシリコンSi量を多くして流動性を良くして矢印47INで示すロウ材の流れを多くしている。
このように内側からの内面ロウ材の流れと、外側からの外面ロウ材の流れでロウ付けされるため、蓄冷材容器47の接合性が良好に保たれる構造となる。
(上記実施形態の変形例)
本発明は上述した実施形態にのみ限定されるものではなく、次のように変形または拡張することができる。例えば、上述の第1実施形態では、千鳥配列の凹凸形状を蓄冷材容器47の表面に形成したが、図13のような格子配列の凹凸形状を蓄冷材容器47の表面に形成しても良い。また、図14のような斜め配列、及び図15のような丸型の千鳥配列、図16のような丸型の格子配列としても良い。
(第3実施形態)
図17は、図5と同じく、図3のV−V線に沿う断面の一部を模式的に示す冷媒管、蓄冷材容器、及び空気側フィンの関係を示す第3実施形態の一部拡大断面図である。そして、この第3実施形態は、上記外表面接合割合または内表面接合割合を所定範囲内に設定したものである。
図17において、460は、冷却用空気通路、461aは、蓄冷材側空気通路である。
蓄冷材容器47の表面に凹凸形状のリブを構成する際に、凸部47a1を成す蓄冷材容器47の外側表面(図17において二点鎖線の仮想線を付した部分)の面積割合をX%とし、凹部を成す蓄冷材容器47の内側表面(内側フィン47f側と接触した蓄冷材容器47の部分)の面積割合をY%とした場合、X+Yは100%と成る。
そして、図17のように、蓄冷材容器47内に、幅の均一な内側フィン47fを設け、上記凹凸形状によって、内側フィン47fが、蓄冷材容器47の表面に接触したり、しなかったりする部分が存在する。上記仮想線部分のXが大きい(Yが小さい)場合には、蓄冷材容器47の表面と内側フィン47fとの接触面積が確保できない割合が大きくなり、熱交換器(この場合は蒸発器)としての性能が低下する。
一方、Xが小さい(Yが大きい)場合には、蓄冷材容器47と冷媒管45(45a、45b)との接触面積が充分に確保できず、蓄冷材50の量及びロウ材が少なくてすむものの、熱交換器としての性能が低下する。
また、内側フィン47fは、波状の折り曲げ部を有し、折り曲げ部の波の頂上部分が部分的に蓄冷材容器47の内側表面に接触し、該折り曲げ部の波の高さ(図17の左右方向の幅)が均一である。このように、内側フィン47fの折り曲げ部の波の高さを均一とすれば、内側フィン47fの製造ならびに組付けが容易である。
図18は、上記熱交換の内側フィン47fと蓄冷材容器47との接合割合の大小による性能低下を説明するものである。図18の(a)部分は、外表面接合割合Xが適度に小さい場合、図18の(b)部分は、外表面接合割合Xが大きすぎる場合である。
図18の(a)の場合は、冷媒管45a、45bから内側フィン47f及び蓄冷材50への伝熱距離が短く、伝熱量が多い場合を示しており、図18の(b)の場合は、冷媒管45a、45bから内側フィン47f及び蓄冷材50への伝熱距離が長く、伝熱量が少ない場合を示している。
このように、凹凸を設けることで、内側フィン47fと蓄冷材容器47とが接触せず、当然それら内側フィン47fと蓄冷材容器47の間がロウ付けされないため、熱交換器としての性能が凹凸の寸法に影響される。
また、図19は、上記内側フィン47fと蓄冷材容器47との接合割合の大小による性能を説明するものであり、図19の(a)部分は、充分に蓄冷された後の放冷時間と接合割合との関係を示したグラフである。図19の(b)部分は、蓄冷時間(秒)と接合割合との関係を示したグラフである。図19の(c)部分は、完全に蓄冷が完了していない、限られた時間で蓄冷した場合の、放冷時間(秒)と接合割合との関係を示したグラフである。
図18及び図19において、接合割合Xが大きいと、接合されている部分に隣接する蓄冷材50の内容積が増える。そのため、充分蓄冷できた状態であれば、放冷時間は、図19の(a)部分のグラフのように、接合割合Xの増加につれて、放冷時間はほぼ比例的に大きく成る。
蓄冷材50全体が凝固する時間を、蓄冷時間と定義すると、図18の(b)部分のように接合割合Xが大きいと、内部へ熱が伝わる際に、伝熱経路が、図18の(b)部分のように長くなり、空気側フィン46(46a及び46b)の効率が低下する。
そのため、図19の(b)部分のグラフのように、接合割合Xが大きいと、蓄冷時間がかなり大きくなってしまう。また、蓄冷できる時間は、自動車の運転時間と相関があり、限られた時間であるため、搭載された蓄冷材50を効率良く使用し、完全に蓄冷する必要がある。図19の(b)部分のグラフにおいては、上記限られた時間をTLで示している。
この限られた時間TL内で蓄冷した場合の放冷時間は、図19の(c)部分のグラフのようになり、放冷時間が最大となるのは、接合割合50%近辺である。よって、これらのグラフから考察して、限られた時間内で蓄冷し、かつ少ない蓄冷材50の量で放冷時間を確保するためには、接合割合Xは50%以下が良い。
なお、蓄冷材容器47の外側表面(X+Yの部分)に対する、該蓄冷材容器47が接合される冷媒管45の外側表面が部分的に接触したときの接触面積の割合Xを20%以上50%未満とすれば、より好ましい。これによれば、接触面積の割合Xを少なくしながら、蓄冷熱交換器としての熱交換性能の低下を、より確実に1%以内にすることができる。
そして、このように接合割合を限定し、充分な伝熱量を確保することで、制限された必要時間内に蓄冷材50に熱量を溜め、溜めた熱量を使って、充分に長い時間放冷することができ、交差点の赤信号によって、エンジンを停止させた時等の、車室内空調を補助する効果が高まる。
(第4実施形態)
次に、本発明の第4実施形態について説明する。上述の実施形態においては、蓄冷材容器47に複数の凸部47a1或いは複数の凹部47a2を形成し、その形状を図6、図7、図8、図9、図13、図14、図15、図16のように設定したが、この第4実施形態では、複数の凸部47a1から成るリブを逆V字形(傾斜形状)に形成したものである。
図20は、本発明の第4実施形態の蓄冷材容器47の表面のリブの形状を示すもので図20中下側が天地の地方向になるように車両に組付けられる。そして、蓄冷材容器47の表面の複数の凸部47a1或いは複数の凹部47a2は、凝縮水が山の頂上部分を境にして左右に分かれて流れる傾斜部分が両側に形成された形状に形成されている。
このように、凸部47a1或いは凹部47a2は、傾斜形状として形成されているから、発生した凝縮水が、傾斜部分に沿って速やかに左右に分かれて外部に排出されるため、凝縮水が凍ることで体積が膨張して冷媒管45と蓄冷材容器47が破壊するという凍結割れが回避できる。
また、たとえ凝縮水が残存して凍っても、傾斜部分に沿って、凍った氷が逃げるため、凍結割れが抑止できる。また、左右にわかれて傾斜部分を流れるため、左右夫々の傾斜部分の長さを短くすることができ、凝縮水の排出性能がよくなる。
具体的には、凸部47a1或いは凹部47a2は、傾斜形状のリブの隆起高さが0.2mm以上であり、複数の凸部47a1相互間の間隔、或いは複数の凹部47a2相互間の間隔であるリブのピッチは3mm以上に設定されている。また、複数のリブが蓄冷材容器47の天方向から地方向に向かって3個以上重ねられて配置されている。
蓄冷材容器47が車室内空気を空調するとき、冷却用空気通路460内(図17等)の冷却フィン46と一体になった冷媒管45と、蓄冷材容器47との間の、蓄冷材側空気通路461aに凝縮水が停滞し、低負荷における凍結(フロスト)が発生するとき、蓄冷熱交換器47及び冷媒管45が破壊するおそれがある。
このために、この第4実施形態においては、冷媒管45と蓄冷熱交換器47の間の空間に停滞する凝縮水の量を低減できる逆V字形状の凸部47a1からなる上記リブを冷媒管45と蓄冷熱交換器47の間の空間に配置している。
これによって、蓄冷熱交換器47上側(垂直方向)の凝縮水が、蓄冷熱交換器47下側の逆V字形状のリブへ流れ込むことを防ぐことができる。その結果、冷媒管45と蓄冷熱交換器47の間の停滞する凝縮水量を低減することができる。更に、凍結が発生する際に、発生した氷が、冷媒管45と蓄冷熱交換器47の間の空間から外部空間方向(図17の紙面表裏方向)へ逃げることができる。
(第5実施形態)
次に、本発明の第5実施形態について説明する。図21は、本発明の第5実施形態の蓄冷材容器47の表面のリブの形状を示すもので、図21中下側が天地の地方向になるように車両に組付けられる。上述の第4実施形態においては、リブを等ピッチで蓄冷材容器47の天方向から地方向に向かって重ねて配置したが、この第5実施形態は、図21に示すように、不等ピッチでリブを配置したものである。
(第6実施形態)
次に、本発明の第6実施形態について説明する。図22は、本発明の第6実施形態の蒸発器における蓄冷材容器47の表面のリブの形状を示す一部側面図である。上述の第4及び第5実施形態においては、リブを連続した傾斜形状で蓄冷材容器47の天方向から地方向に向かって重ねて配置したが、この第6実施形態は、図22に示すように、傾斜形状の中央を窪みで分断したリブの形状としたものである。
(第7実施形態)
次に、本発明の第7実施形態について説明する。図23は、本発明の第7実施形態の蒸発器における蓄冷材容器47の表面のリブの形状を示す一部側面図である。上述の第6実施形態においては、分断された傾斜形状のリブを連続した等ピッチで配列し、蓄冷材容器47の天方向から地方向に向かって重ねて配置したが、この第7実施形態は、図23に示すように、傾斜形状の中央で分断したリブを不等ピッチで配置したものである。
上述の図20ないし図23の逆V字形ないし傾斜形のリブは、複数の凸部47a1或いは複数の凹部47a2が重ねられて配置されている。そして、凝縮水が山の頂上部分を境にして左右に分かれて流れる傾斜部分が、蓄冷材容器47の外側表面の両端47tまで延在して形成されている。
これによれば、発生した凝縮水の大部分が、蓄冷材容器47の外側表面の両端47tから外部に排出されるため、蓄冷材容器47の下部に凝縮水が溜まりにくいため、下部における冷媒管45と蓄冷材容器47が破壊するという凍結割れが回避できる。
また、複数の凸部47a1或いは複数の凹部47a2は、凝縮水が山の頂上部分を境にして左右に分かれて流れる傾斜部分が、蓄冷材容器47の外側表面の両端47tまで延在し、この両端47t相互間を最短距離で結ぶ直線と傾斜した凸部47a1或いは凹部47a2との交差角度θ(図20)が30〜60度の範囲で設定されている。これにより、車両が坂道で傾いても、充分な凝縮水の排出性能が得られる。
更に、複数の凸部47a1と冷媒管45との対面部分の8割以上がロウ付けにより密接している。これにより、凸部47a1の傾斜に沿って凝縮水が確実に蓄冷材容器47の外側に排出される。
(第8実施形態)
次に、本発明の第8実施形態について説明する。上述の実施形態においては、特に図2及び図3に示すように、ヘッダ41、42、43、44と呼ばれるタンクと、それらヘッダの間を連結するヘッダとは別の複数の冷媒管45によって構成されている。
各冷媒管45は、その端部において対応するヘッダ41、42、43、44内に連通している。また、冷媒管45は、内部側に複数の冷媒通路を有する押出製法によって形成された多穴の扁平管である。ちなみに、押出製法で押し出された多穴の扁平管を加圧ローラの中に通して表面に凹凸上のリブを形成することが特開2004−3787号公報に開示されている。
これに対して、この第8実施形態は、タンク部と冷媒管を一体に、一対のプレートを重ねて形成し、これらを多数積層することで熱交換器をするものである。なお、このような積層タイプの熱交換器は特開2001―221535号公報等で公知である。
このように重ね合わせて形成したカップ状のチューブ(ドロンカップのチューブとも呼ぶ)の表面にも、加圧ローラの中に通して表面に凸部47a1及び凹部47a2から成る凹凸状のリブを形成することが、同じ特開2004−3787号公報に開示されている。
図24は、上記積層プレートで形成された第8実施形態における蓄冷材付き蒸発器の正面図である。また、図25は、図24の蓄冷材付き蒸発器の左側面図である。図24及び図25のように蒸発器のタンク部分と冷媒管とは一体に一対のプレートを重ねることで形成され、これらを多数積層して、各積層部分相互間に蓄冷材容器47が挟持されている。なお、図24及び図25においては、蓄冷材容器47または冷媒管45の表面の凹凸は図示を省略している。また、図24及び図25の、図2と対応する部分に、同一の符号を付している。
図26は、ドロンカップのチューブで冷媒管45が製造された第8実施形態の蒸発器と、押出製法で製造された蒸発器とを対比して示す模式的断面図である。図26の(a)部分が第8実施形態であり上記ドロンカップのチューブで冷媒管45が製造されている。
図26の(a)部分において、左端に冷却用空気通路460に設置された空気側フィン46が設けられ、この空気側フィン46の片面に内部に冷媒管フィン45fが介在したドロンカップよりなる冷媒管45が設けられ、この冷媒管45の空気側フィン46とは反対側の面には、表面に凹凸状のリブが形成された蓄冷材容器47が接合されている。
そしてこれら、空気側フィン46、冷媒管45、蓄冷材容器47の組が一つのユニットを構成し、これらのユニットが多数重ねられて蒸発器が構成されている。なお、図26の(a)部分に示した蓄冷材容器47の右側には、空気側フィン46を接合してユニットを並べてもよいし、蓄冷材容器47の右側に、内側フィンが格納された冷媒管45を接合してユニットを並べてもよい。
なお、図26の(b)部分は、第1実施形態と同様に押出製法で冷媒管45を形成した第1実施形態の変形例とも言うべき対比例であり、図4の第1実施形態と相違する点は、蓄冷材容器47内に内側フィン47fが設けられていない点である。そして、図26は、押出製法で形成した蒸発器と、プレートを積層する、いわゆるドロンカップ製法で形成された蒸発器との対応関係を明示している。
(第9実施形態)
次に、本発明の第9実施形態について説明する。図27は、本発明の第9実施形態となるドロンカップのチューブで冷媒管が製造された蒸発器を、押出製法で製造された蒸発器と対比して示す模式的断面図である。
図27の(a)部分が第9実施形態であり、上記ドロンカップのチューブで冷媒管45が製造されている。図27において、左端に冷却用空気通路460に設置された空気側フィン46が設けられ、この空気側フィン46の片面に内部に冷媒管フィン45fが介在したドロンカップよりなる冷媒管45が設けられている。
そして、この冷媒管45の表面のリブを成す凸部45a1及び凹部45a2から成る凹凸が形成されている。この冷媒管45の空気側フィン46とは反対側の面には、凹凸のない蓄冷材容器47が接合されている。また、凹部45a2内に蓄冷材側空気通路461aが形成されている。
そしてこれら、空気側フィン46、冷媒管45、蓄冷材容器47の組が一つのユニットを構成し、これらのユニットが多数重ねられて蒸発器が構成されている。なお、図27の(a)部分に示した蓄冷材容器47の右側には、空気側フィン46を接合してユニットを並べてもよいし、蓄冷材容器47の右側に、内側フィン47fが格納された冷媒管45を接合してユニットを並べてもよい。
なお、図27の(b)部分は、図4の第1実施形態と同様に押出製法で冷媒管45を形成した第1実施形態の変形例とも言うべき比較例であり、第1実施形態と相違する点は、蓄冷材容器47の表面に凹凸が無く、冷媒管45の表面に凸部45a1及び凹部45a2からなるリブを形成している点、及び蓄冷材容器47内に内側フィン47fが設けられていない点である。そして、図27は、押出製法で形成した蒸発器と、プレートを積層する、いわゆるドロンカップ製法で形成された蒸発器との対応関係を明示している。
(第10実施形態)
次に、本発明の第10実施形態について説明する。図28は、本発明の第10実施形態に関し、第1実施形態の図4と同様に図示した蒸発器の模式的断面図である。図29は、図28の矢印Z33部分を拡大して示す摸式的断面図である。
図30は、図28の矢印Z34部分を拡大して示す摸式的断面図である。また、図31は、第10実施形態において圧縮機(コンプレッサ)に結合されたクラッチの断続運転に伴い蒸発器(エバポレータ)の温度が変化する状態を説明するグラフである。図32は、図28の蒸発器の蓄冷材容器47の表面のリブを逆V字形に形成した状態を示す側面図である。
図28において、冷媒管45は、内部側に複数の冷媒通路を有する多穴管である。左右の冷媒管45a及び45bの夫々の両側に、空気と熱交換するための冷却用空気通路460と、内側フィン47fが格納された蓄冷材容器47が設けられている。
冷媒管45と蓄冷材容器47とが接触する部位は、図29のように、ロウ材33rにより接合されている。このロウ材33rの中にボイド33vが在ると、ボイド内凝縮水33v1が溜まることがある。
また、図28の蓄冷材容器47の表面に凹部47a2が形成された蓄冷材側空気通路461a内には、図30のように、空間34vが在り、この空間34vは、蒸発器に図示しない冷却ファンで空調風が通風されたときに、空気が流れ、空間34v内で空気中の水分が凝縮して凝縮水34v1が溜まり易い。また、この空間34vは、蓄冷材容器47が放冷するときの蓄冷材側空気通路461aを成している。
図31のように、図1の圧縮機10相当部分のクラッチの断続に応じて、蒸発器(エバポレータ)の温度が繰り返し変化し、凝縮水が凍結と溶解を繰り返す。このときの凍結割れを防止するため、図29の接合平面部の幅Wは0.8mm以下に設定されている。
また、蓄冷材容器47の表面に凹部47a2が形成された図30の空間34vに溜まった凝縮水34v1は、凹部47a2と隣接する凸部47a1から成るリブを、図30の矢印Z36方向から見た図32のような逆V字形に形成することで、空間34v内の凝縮水34v1を矢印Y36のように、蓄冷材容器47の外側に排出する。
また、凸部47a1相互間の隙間によって、下から凝縮水を矢印Y361のように吸い上げないように、凸部47a1相互間の凹部47a2の幅寸法が設定されている。これにより凝縮水が氷になっても、氷は凹部47a2上である蓄冷材容器47の表面をすべり落ち、外部に排出され、凍結割れを引き起こす応力を発生しない。
このように、図28の蓄冷材容器47が、車室内空気を空調する冷却用空気通路460内の冷却フィン46a、46bと一体になった蓄冷熱交換器47において、冷媒管45と蓄冷材容器47間の蓄冷材側空気通路461aに凝縮水が停滞し、低負荷における凍結(フロスト)が発生するとき、蓄冷熱交換器47及び冷媒管45が破壊しようとするが、第10実施形態によれば、冷媒管45と蓄冷熱交換器47の間の空間に停滞する凝縮水の量を低減できる逆V字形状のリブを図32の冷媒管45と蓄冷熱交換器47の間の空間に配置している。
これによって、蓄冷熱交換器47上側(天方向)の凝縮水が、蓄冷熱交換器47の上側から下側の逆V字形状のリブへ流れ込むことを抑制することができる。その結果、冷媒管45と蓄冷熱交換器47の間に停滞する凝縮水量を低減することができる。更に、凍結が発生する際に、発生した氷が、冷媒管45と蓄冷熱交換器47の間の空間から外部空間へ逃げることができる。
1 冷凍サイクル装置
40 蒸発器(エバポレータ)
45(45a及び45b) 冷媒管
45c 冷媒管の冷媒通路
46(46a及び46b) 空気側フィン
47 蓄冷材容器
47a 蓄冷材容器の外殻
47a1、45a1 凸部
47a2、45a2 凹部
47a3 孔空き部
47f 内側フィン
50 蓄冷材
460 冷却用空気通路
461a 蓄冷材側空気通路

Claims (11)

  1. 冷媒通路を有し、互いに間隔を設けて配置された複数の冷媒管(45)と、
    前記冷媒管(45)に接合され、蓄冷材(50)を収容する部屋を区画する蓄冷材容器(47)と、
    前記冷媒管(45)の、前記蓄冷材容器(47)とは反対側に配され、前記蓄冷材(50)への蓄冷時及び前記蓄冷材からの放冷時に冷却対象空間を冷却する空気が流通する冷却用空気通路(460)とを備え
    前記冷媒管(45)が接合される前記蓄冷材容器(47)の外側表面には、複数の凸部(47a1)或いは複数の凹部(47a2)が設けられており、
    前記複数の凸部(47a1)は前記冷媒管(45)と接合する接合部を有しており、
    前記接合部、前記冷媒管(45)の風上側端部となる部位から前記冷媒管(45)の風下側端部となる部位まで連続して形成されており、
    前記接合部の少なくとも一部が、前記冷媒管の長手方向に対して傾斜しており、
    前記接合部は、傾斜方向における端部に向けて幅が小さくなる端部形状を有することを特徴とする蓄冷熱交換器。
  2. 前記接合部は、前記冷媒管(45)の風上側端部から前記冷媒管(45)の風下側端部まで連続して前記冷媒管に接合されていることを特徴とする請求項1に記載の蓄冷熱交換器。
  3. 複数の第1冷媒管からなる第1熱交換部と、
    前記第1熱交換部の風上側に配され、複数の第2冷媒管からなる第2熱交換部とを有し、
    前記蓄冷材容器は、前記第1冷媒管および前記第2冷媒管と接続されていることを特徴とする請求項1に記載の蓄冷熱交換器。
  4. 前記凸部は、それぞれ、前記第1冷媒管の風下側端部から前記第2冷媒管の風上側端部まで連続して形成されていることを特徴とする請求項3に記載の蓄冷熱交換器。
  5. 前記凸部のうち前記第2冷媒管に接合する部位は、風上側となる部位が風下側部位よりも下方に位置するように傾斜していることを特徴とする請求項4に記載の蓄冷熱交換器。
  6. 前記第1冷媒管の風下側端部から前記冷媒管の風上側端部まで連続して形成される第1接合部と、
    前記第2冷媒管の風下側端部から前記冷媒管の風上側端部まで連続して形成される第2接合部とを有することを特徴とする請求項3に記載の蓄冷熱交換器。
  7. 前記第2接合部は、風上側となる部位が風下側部位よりも下方に位置するように傾斜していることを特徴とする請求項6に記載の蓄冷熱交換器。
  8. 前記複数の凸部は上下方向に互いに間隔をおいて配置されており、
    通風方向における前記蓄冷材容器の端部に近い部位における、上下方向に隣接して配される前記凸部同士の上下方向の間隔が、通風方向における前記蓄冷材容器の中央に近い部位における、上下方向に隣接して配される前記凸部同士の上下方向の間隔よりも大きいことを特徴とする請求項1に記載の蓄冷熱交換器。
  9. 上下方向に隣接して配される前記凸部同士の間隔が、前記蓄冷材容器の幅方向中央側から前記蓄冷材容器の端部側となるにつれて徐々に大きくなるように前記複数の凸部が配されていることを特徴とする請求項7に記載の蓄冷熱交換器。
  10. 前記複数の凸部は上下方向に互いに間隔をおいて配置されており、上下方向に隣接して配される前記凸部の外縁が平行となるように前記複数の凸部は形成されていることを特徴とする請求項1に記載の蓄冷熱交換器。
  11. 冷媒通路を有し、互いに間隔を設けて配置された複数の冷媒管(45)と、
    前記冷媒管(45)に接合され、蓄冷材(50)を収容する部屋を区画する蓄冷材容器(47)と、
    前記冷媒管(45)の前記蓄冷材容器(47)とは反対側に配され、前記蓄冷材(50)への蓄冷時及び前記蓄冷材からの放冷時に冷却対象空間を冷却する空気が流通する冷却用空気通路(460)とを備え、
    前記冷媒管(45)が接合される前記蓄冷材容器(47)の外側表面には、複数の凸部(47a1)或いは複数の凹部(47a2)が設けられており、
    前記複数の凸部(47a1)は前記冷媒管(45)と接合する接合部を有しており、
    前記接合部は、前記冷媒管(45)の風上側端部となる部位から前記冷媒管(45)の風下側端部となる部位まで連続して形成されており、
    前記接合部の少なくとも一部が、前記冷媒管の長手方向に対して傾斜しており、
    前記複数の凸部は上下方向に互いに間隔をおいて配置されており、
    通風方向における前記蓄冷材容器の端部に近い部位における、上下方向に隣接して配される前記凸部同士の上下方向の間隔が、通風方向における前記蓄冷材容器の中央に近い部位における、上下方向に隣接して配される前記凸部同士の上下方向の間隔よりも大きいことを特徴とする蓄冷熱交換器。
JP2019037727A 2009-06-05 2019-03-01 蓄冷熱交換器 Active JP6696603B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009136630 2009-06-05
JP2009136630 2009-06-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017196759A Division JP6493479B2 (ja) 2009-06-05 2017-10-10 蓄冷熱交換器

Publications (2)

Publication Number Publication Date
JP2019082322A JP2019082322A (ja) 2019-05-30
JP6696603B2 true JP6696603B2 (ja) 2020-05-20

Family

ID=49594517

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2013166578A Active JP5768844B2 (ja) 2009-06-05 2013-08-09 蓄冷熱交換器
JP2013166977A Active JP5682674B2 (ja) 2009-06-05 2013-08-09 蓄冷熱交換器
JP2013166579A Active JP5692303B2 (ja) 2009-06-05 2013-08-09 蓄冷熱交換器
JP2015020190A Active JP5884927B2 (ja) 2009-06-05 2015-02-04 蓄冷熱交換器
JP2016023285A Active JP6269695B2 (ja) 2009-06-05 2016-02-10 蓄冷熱交換器
JP2017196759A Active JP6493479B2 (ja) 2009-06-05 2017-10-10 蓄冷熱交換器
JP2019037727A Active JP6696603B2 (ja) 2009-06-05 2019-03-01 蓄冷熱交換器

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2013166578A Active JP5768844B2 (ja) 2009-06-05 2013-08-09 蓄冷熱交換器
JP2013166977A Active JP5682674B2 (ja) 2009-06-05 2013-08-09 蓄冷熱交換器
JP2013166579A Active JP5692303B2 (ja) 2009-06-05 2013-08-09 蓄冷熱交換器
JP2015020190A Active JP5884927B2 (ja) 2009-06-05 2015-02-04 蓄冷熱交換器
JP2016023285A Active JP6269695B2 (ja) 2009-06-05 2016-02-10 蓄冷熱交換器
JP2017196759A Active JP6493479B2 (ja) 2009-06-05 2017-10-10 蓄冷熱交換器

Country Status (1)

Country Link
JP (7) JP5768844B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113863A1 (de) * 2014-01-23 2015-07-23 Halla Visteon Climate Control Corporation Vorrichtung zur Wärmeübertragung und Verfahren zur Herstellung der Vorrichtung
JP2016114265A (ja) * 2014-12-12 2016-06-23 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
CN107850346B (zh) * 2015-07-08 2020-07-31 株式会社电装 制冷系统和车载制冷系统
JP2017090015A (ja) * 2015-11-16 2017-05-25 サンデン・オートモーティブクライメイトシステム株式会社 蓄冷熱交換器
JP6596327B2 (ja) * 2015-12-24 2019-10-23 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
JP6627538B2 (ja) * 2016-01-29 2020-01-08 株式会社デンソー 蓄冷熱交換器
JP2017141978A (ja) * 2016-02-08 2017-08-17 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
JP2019182226A (ja) * 2018-04-11 2019-10-24 株式会社デンソー 蒸発器
JP7159757B2 (ja) * 2018-09-27 2022-10-25 株式会社デンソー 熱交換器
EP3882551A1 (en) * 2018-11-13 2021-09-22 NOK Corporation Heat exchanger
JP7151560B2 (ja) * 2019-03-08 2022-10-12 株式会社デンソー 蓄冷熱交換器
KR102627702B1 (ko) * 2022-03-28 2024-01-19 현대로템 주식회사 축냉열교환기를 적용한 발열체용 열관리시스템
CN117366853B (zh) * 2023-12-04 2024-03-22 江苏富通空调净化设备制造有限公司 一种防冻型表冷器

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1586469A (en) * 1920-06-25 1926-05-25 Alexander H Revell Golf club
JPS5813866U (ja) * 1981-07-16 1983-01-28 日立造船株式会社 連続鋳造設備におけるサポ−トロ−ル装置
JPS5913866U (ja) * 1982-07-20 1984-01-27 三菱電機株式会社 熱交換器
JPS5997376U (ja) * 1982-12-22 1984-07-02 日本軽金属株式会社 蓄熱板
JPS60162187A (ja) * 1984-02-02 1985-08-23 Agency Of Ind Science & Technol 蓄熱装置
JPS63109875U (ja) * 1986-12-27 1988-07-15
JPH01129587U (ja) * 1988-02-23 1989-09-04
JPH0733101Y2 (ja) * 1991-09-13 1995-07-31 サンデン株式会社 蓄冷装置
JPH0688688A (ja) * 1992-09-08 1994-03-29 Tokai Rubber Ind Ltd 蓄熱装置
US5532039A (en) * 1994-04-25 1996-07-02 Gateway Technologies, Inc. Thermal barriers for buildings, appliances and textiles
JP3334386B2 (ja) * 1994-12-21 2002-10-15 株式会社デンソー 蓄冷式冷房装置
JPH09292196A (ja) * 1996-03-01 1997-11-11 Denso Corp 蓄冷式冷房装置
JP2000055583A (ja) * 1998-08-03 2000-02-25 Sanden Corp 熱交換器
US6343485B1 (en) * 1998-12-11 2002-02-05 Behr Gmbh & Co. Cold storage unit
JP3972501B2 (ja) * 1999-01-18 2007-09-05 株式会社デンソー 蓄熱用熱交換装置および車両用空調装置
JP3736608B2 (ja) * 2000-04-20 2006-01-18 株式会社神戸製鋼所 アルミニウム合金製ブレージングシート
JP2002127737A (ja) * 2000-10-24 2002-05-08 Japan Climate Systems Corp 車輌用熱交換器
DE10156882A1 (de) * 2001-01-05 2002-08-29 Behr Gmbh & Co Klimaanlage für ein Kraftfahrzeug
JP2003063241A (ja) * 2001-08-29 2003-03-05 Denso Corp 蓄冷蓄熱熱交換器
FR2847973B1 (fr) * 2002-11-29 2006-01-27 Valeo Climatisation Echangeur de chaleur a inertie thermique pour circuit de fluide caloporteur, notamment de vehicule automobile.
FR2861166B1 (fr) * 2003-10-21 2006-11-24 Valeo Climatisation Echangeur de chaleur utilisant un fluide d'accumulation
JP4698416B2 (ja) * 2005-12-28 2011-06-08 株式会社デンソー ドロンカップ型熱交換器の製造方法、アルミニウムクラッド板材およびドロンカップ型熱交換器
JP2007225219A (ja) * 2006-02-24 2007-09-06 Matsushita Electric Ind Co Ltd 蓄熱装置
JP4736847B2 (ja) * 2006-02-24 2011-07-27 株式会社デンソー 熱交換器およびその製造方法
JP2008190786A (ja) * 2007-02-05 2008-08-21 Calsonic Kansei Corp プレート式熱交換器
JP2008303405A (ja) * 2007-06-05 2008-12-18 Mitsubishi Alum Co Ltd 熱交換器ヘッダプレート用アルミニウム合金材料および熱交換器用ろう付け体
US7505269B1 (en) * 2007-10-11 2009-03-17 Valere Power Inc. Thermal energy storage transfer system
JP5525726B2 (ja) * 2008-12-26 2014-06-18 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ

Also Published As

Publication number Publication date
JP6269695B2 (ja) 2018-01-31
JP5768844B2 (ja) 2015-08-26
JP2013228206A (ja) 2013-11-07
JP6493479B2 (ja) 2019-04-03
JP2018017500A (ja) 2018-02-01
JP5682674B2 (ja) 2015-03-11
JP5884927B2 (ja) 2016-03-15
JP5692303B2 (ja) 2015-04-01
JP2016117486A (ja) 2016-06-30
JP2013224153A (ja) 2013-10-31
JP2015111039A (ja) 2015-06-18
JP2019082322A (ja) 2019-05-30
JP2013242145A (ja) 2013-12-05

Similar Documents

Publication Publication Date Title
JP6696603B2 (ja) 蓄冷熱交換器
JP5408017B2 (ja) 蓄冷熱交換器
JP5923262B2 (ja) 蓄冷機能付きエバポレータ
JP5624761B2 (ja) 蓄冷機能付きエバポレータ
JP6596327B2 (ja) 蓄冷機能付きエバポレータ
JP6182442B2 (ja) 蓄冷機能付きエバポレータ
JP6410527B2 (ja) 蓄冷機能付きエバポレータ
JP6286184B2 (ja) 蓄冷機能付きエバポレータ
JP2015034684A (ja) 蓄冷機能付きエバポレータ
JP5525840B2 (ja) 蓄冷機能付きエバポレータ
JP6605338B2 (ja) 蓄冷機能付きエバポレータ
JP2017116254A (ja) 蓄冷機能付きエバポレータ
JP2018009719A (ja) 蓄冷機能付きエバポレータ
JP2015090244A (ja) エバポレータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6696603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250