JP6695387B2 - 第1段ダイノード及び光電子増倍管 - Google Patents

第1段ダイノード及び光電子増倍管 Download PDF

Info

Publication number
JP6695387B2
JP6695387B2 JP2018108699A JP2018108699A JP6695387B2 JP 6695387 B2 JP6695387 B2 JP 6695387B2 JP 2018108699 A JP2018108699 A JP 2018108699A JP 2018108699 A JP2018108699 A JP 2018108699A JP 6695387 B2 JP6695387 B2 JP 6695387B2
Authority
JP
Japan
Prior art keywords
stage dynode
pair
dynode
electron
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018108699A
Other languages
English (en)
Other versions
JP2019212517A5 (ja
JP2019212517A (ja
Inventor
侑記 西村
侑記 西村
小谷 政弘
政弘 小谷
孝規 一宮
孝規 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018108699A priority Critical patent/JP6695387B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to EP19814327.3A priority patent/EP3806132A4/en
Priority to CN201980037228.9A priority patent/CN112219256A/zh
Priority to CA3098438A priority patent/CA3098438A1/en
Priority to US17/057,926 priority patent/US11302522B2/en
Priority to PCT/JP2019/021104 priority patent/WO2019235300A1/ja
Publication of JP2019212517A publication Critical patent/JP2019212517A/ja
Publication of JP2019212517A5 publication Critical patent/JP2019212517A5/ja
Application granted granted Critical
Publication of JP6695387B2 publication Critical patent/JP6695387B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/20Dynodes consisting of sheet material, e.g. plane, bent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/26Box dynodes

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Measurement Of Radiation (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

本発明は、第1段ダイノード及び光電子増倍管に関する。
光電子増倍管に用いられる第1段ダイノードとして、様々な形状を呈するものが提案されている。例えば、特許文献1には、光電子の収集効率の向上を目的とする第1段ダイノードとして、平坦な底面を有するティーカップ型の形状を呈するものが記載されている。特許文献1に記載の第1段ダイノードにおいては、ティーカップ型の形状の平坦な底面によって電子放出面が構成されている。また、特許文献2には、光電陰極の入射位置に依存しない信号電流の取得を目的とする第1段ダイノードとして、光電子が入射する受け口が漏斗型の形状を呈するものが記載されている。特許文献2に記載の第1段ダイノードにおいては、凹状に湾曲するように連なった3つの平面及び1つの曲面によって電子放出面が構成されており、電子放出面と直交するように電子放出面の両側に一対の側面が設けられている。
米国特許第4112325号明細書 特公平8−12772号公報
しかしながら、特許文献1に記載の第1段ダイノードにおいては、ティーカップ型の形状の平坦な底面によって電子放出面が構成されているため、第1段ダイノードから第2段ダイノードまでの二次電子の走行時間の調整が困難となり、その結果、第1段ダイノードから第2段ダイノードまでの二次電子の走行時間に差が生じるおそれがある。また、特許文献2に記載の第1段ダイノードにおいては、電子放出面と直交するように電子放出面の両側に一対の側面が設けられているため、電子放出面における中央領域から放出された二次電子が直線的に走行するのに対し、電子放出面における側面の近傍領域から放出された二次電子が、同電位の側面に反発して走行するおそれがあり、その結果、第1段ダイノードから第2段ダイノードまでの二次電子の走行時間に差が生じるおそれがある。したがって、特許文献1,2に記載の第1段ダイノードでは、光電子増倍管において電子走行時間差(C.T.T.D.:Cathode Transit Time Difference)及び電子走行時間拡がり(T.T.S.:Transit Time Spread)を抑制することが困難と予想される。
そこで、本発明は、光電子増倍管において電子走行時間差及び電子走行時間拡がりを抑制できる第1段ダイノード、及びそのような第1段ダイノードを備える光電子増倍管を提供することを目的とする。
本発明の第1段ダイノードは、光電子増倍管に用いられる第1段ダイノードであって、底壁部と、所定方向における底壁部の両端部から一方の側に延在する一対の側壁部と、を備え、底壁部における一方の側の底面、及び一対の側壁部における一方の側の一対の側面によって、電子放出面が構成されており、一対の側面のそれぞれは、所定方向に平行な断面において凹状に湾曲する曲面である。
この第1段ダイノードでは、一対の側面のそれぞれが、所定方向に平行な断面において凹状に湾曲する曲面である。そのため、各側面が、所定方向における電子放出面の中心から離れるほど、1つの電子通過開口に近付く。その結果、各側面に入射する光電子の走行距離も、各側面から放出される二次電子の走行距離も、各側面が1つの電子通過開口に近付いた分だけ短くなる。よって、この第1段ダイノードによれば、光電子増倍管において電子走行時間差及び電子走行時間拡がりを抑制できる。
本発明の第1段ダイノードでは、一対の側面のそれぞれの曲率半径は、2mmよりも大きくてもよい。この構成によれば、光電子増倍管において電子走行時間差及び電子走行時間拡がりを好適に抑制できる。
本発明の第1段ダイノードでは、所定方向における電子放出面の幅をLとし、一対の側面のそれぞれの曲率半径をRとすると、R≧0.1Lが成立してもよい。この構成によれば、光電子増倍管において電子走行時間差及び電子走行時間拡がりを好適に抑制できる。
本発明の第1段ダイノードでは、底面は、所定方向に垂直な断面において凹状に湾曲する曲面であってもよい。この構成によれば、第1段ダイノードから第2段ダイノードまでの二次電子の走行時間の調整が容易となる。したがって、光電子増倍管において電子走行時間差及び電子走行時間拡がりをより確実に抑制できる。
本発明の第1段ダイノードでは、電子放出面は、1つの電子通過開口と対向していてもよい。この構成によれば、電子放出面に入射する光電子も、電子放出面から放出される二次電子も、1つの(すなわち、同一の)電子通過開口を通過するため、光電子の入射位置に対する電子走行時間の依存性が小さくなる。したがって、光電子増倍管において電子走行時間差及び電子走行時間拡がりをより確実に抑制できる。
本発明の光電子増倍管は、光電陰極と、複数段のダイノードと、アノードと、を備え、複数段のダイノードは、所定面上に配列された第1段ダイノード及び第2段ダイノードと、を含み、第1段ダイノードは、底壁部と、所定面に垂直な所定方向における底壁部の両端部から光電陰極側且つ第2段ダイノード側に延在する一対の側壁部と、を有し、第1段ダイノードでは、底壁部における光電陰極側且つ第2段ダイノード側の底面、及び一対の側壁部における光電陰極側且つ第2段ダイノード側の一対の側面によって、電子放出面が構成されており、一対の側面のそれぞれは、所定方向に平行な断面において凹状に湾曲する曲面である。
この光電子増倍管によれば、上述した理由により、電子走行時間差及び電子走行時間拡がりを抑制できる。
本発明によれば、光電子増倍管において電子走行時間差及び電子走行時間拡がりを抑制できる第1段ダイノード、及びそのような第1段ダイノードを備える光電子増倍管を提供することが可能となる。
一実施形態の光電子増倍管の断面図である。 図1に示される電子増倍部及びアノードの断面図である。 一実施形態の第1段ダイノードの斜視図である。 図3に示されるIV−IV線に沿っての第1段ダイノードの断面図である。 図3に示されるV−V線に沿っての第1段ダイノードの断面図である。 比較例の第1段ダイノードの斜視図である。 電子の走行軌道を説明するための模式図である。 第1実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差及び電子走行時間拡がりを示す図である。 第2実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差及び電子走行時間拡がりを示す図である。 第3実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差及び電子走行時間拡がりを示す図である。 第4実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差及び電子走行時間拡がりを示す図である。 第1比較例の第1段ダイノードが用いられた光電子増倍管、及び第5実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図である。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[光電子増倍管の構成]
図1に示されるように、光電子増倍管1は、管体2と、光電陰極3と、加速電極4と、収束電極5と、電子増倍部6と、アノード7と、を備えている。電子増倍部6は、複数段(例えば、10段)のダイノード10を有している。以下の説明では、光電子増倍管1に対して光が入射する側を「前」、その反対側を「後」とする。また、管体2の管軸(中心軸)を「Z軸」、複数段のダイノード10が配列された面(Z軸を含む面)に直交する軸を「X軸」、Z軸及びX軸に直交する軸を「Y軸」とする。
管体2は、真空引きされた空間に、光電陰極3、加速電極4、収束電極5、電子増倍部6及びアノード7を収容している。管体2は、光透過性を有するガラスバルブである。管体2は、Z軸を中心軸とする扁球状部分2aと、扁球状部分2aの後側においてZ軸を中心軸とする円柱状部分2bと、を有している。扁球状部分2a及び円柱状部分2bは、1つのガラスバルブとして一体的に形成されている。一例として、前側から見た場合における扁球状部分2aの外径は200mm程度であり、円柱状部分2bの外径は85mm程度である。
光電陰極3は、管体2の内面に設けられている。具体的には、光電陰極3は、扁球状部分2aの前側半分の領域の内面に設けられている。光電陰極3は、透過型の光電面を構成しており、例えば、アンチモン化カリウム・セシウム型(バイアルカリ)の材料、或いは、他の周知の材料によって形成されている。前側から光電陰極3に光が入射すると、光電効果によって、光電陰極3から後側に光電子が放出される。一例として、前側から見た場合における光電陰極3の外径(すなわち、光電子増倍管1の有効径)は200mm程度である。なお、図1に示される破線は、光電陰極3から放出された光電子の軌道(代表的な軌道)を示している。
加速電極4は、光電陰極3よりも後側に配置されている。加速電極4には、所定電圧が印加される。加速電極4は、光電陰極3から放出された光電子を電子増倍部6に向かって加速させるように構成されている。収束電極5は、加速電極4よりも後側に配置されている。収束電極5には、所定電圧が印加される。収束電極5は、光電陰極3から放出された光電子を電子増倍部6に向かって収束させるように構成されている。
電子増倍部6は、収束電極5よりも後側に配置されている。複数段のダイノード10は、YZ平面(Y軸及びZ軸を含む平面)上に配列されている。各ダイノード10は、例えば、ステンレス鋼等によって形成されている。複数段のダイノード10には、それぞれ、所定電圧が印加される。電子増倍部6、すなわち、複数段のダイノード10は、光電陰極3から放出された光電子を増倍させるように構成されている。アノード7は、最終段のダイノード10と対向した状態でYZ平面上に配置されている。アノード7には、所定電圧が印加される。アノード7は、最終段のダイノード10から放出された二次電子を信号電流として出力するように構成されている。
加速電極4、収束電極5、電子増倍部6の各ダイノード10、及びアノード7は、管体2内において、支持部材(図示省略)によって支持されている。当該支持部材は、円柱状部分2bの後端部を封止するステム(図示省略)に取り付けられている。なお、当該ステムには、電圧印加用の配線及び信号電流出力用の配線が、ステムピン又はケーブル等として設けられている。
[電子増倍部の構成]
図2に示されるように、電子増倍部6において、複数段のダイノード10は、第1段ダイノード11、第2段ダイノード12及び第3段ダイノード13を含んでいる。以下の説明では、第1段ダイノード11、第2段ダイノード12及び第3段ダイノード13を含む各ダイノードを包括してダイノード10という。また、第1段ダイノード11の電子放出面11a、第2段ダイノード12の電子放出面12a及び第3段ダイノード13の電子放出面13aを含む各ダイノードの電子放出面(電子が入射し、それにより二次電子を放出する面)を包括して電子放出面10aという。
第1段ダイノード11は、電子放出面11aが光電陰極3(図1参照)及び第2段ダイノード12の電子放出面12aと対向するように配置されている。第2段ダイノード12は、電子放出面12aが第1段ダイノード11の電子放出面11a及び第3段ダイノード13の電子放出面13aと対向するように配置されている。最終段のダイノード10を除く第3段以降の各ダイノード10も同様に、その電子放出面10aが前段のダイノード10の電子放出面10a及び後段のダイノード10の電子放出面10aと対向するように配置されている。最終段のダイノード10は、その電子放出面10aが前段のダイノード10の電子放出面10a及びアノード7と対向するように配置されている。
第1段ダイノード11は、底壁部111、一対の側壁部112、第1保持部113、及び一対の第2保持部114を有している(詳細については後述する)。第1段ダイノード11の電子放出面11aは、底壁部111における光電陰極3側且つ第2段ダイノード12側の底面、及び一対の側壁部112における光電陰極3側且つ第2段ダイノード12側の一対の側面によって、構成されている。
第2段ダイノード12は、底壁部121、及び一対の保持部122を有している。第2段ダイノード12の電子放出面12aは、底壁部121における第1段ダイノード11側且つ第3段ダイノード13側の底面によって構成されている。一対の保持部122は、X軸方向(X軸に平行な方向)における底壁部121の両端部から第1段ダイノード11側且つ第3段ダイノード13側に延在している。
第3段ダイノード13は、底壁部131、及び一対の保持部132を有している。第3段ダイノード13の電子放出面13aは、底壁部131における第2段ダイノード12側且つ第4段のダイノード10側の底面によって構成されている。一対の保持部132は、X軸方向における底壁部131の両端部から第2段ダイノード12側且つ第4段のダイノード10側に延在している。
第1段ダイノード11、第2段ダイノード12及び第3段ダイノード13の相互間の領域には、一対の電子レンズ形成電極14が設けられている。具体的には、一方の電子レンズ形成電極14は、一方の第2保持部114と一方の保持部122との間の領域に延在するように、一方の保持部132と一体的に形成されている。他方の電子レンズ形成電極14は、他方の第2保持部114と他方の保持部122との間の領域に延在するように、他方の保持部132と一体的に形成されている。一対の電子レンズ形成電極14には、第3段ダイノード13に印加される所定電圧が印加される。これにより、第1段ダイノード11と第2段ダイノード12との間に領域においてX軸方向における電位分布が平坦化される。
[第1段ダイノードの構成]
図3、図4及び図5に示されるように、第1段ダイノード11は、底壁部111、一対の側壁部112、第1保持部113、及び一対の第2保持部114を有している。一対の側壁部112は、X軸方向(所定面に垂直な所定方向)における底壁部111の両端部から一方の側(光電陰極3側且つ第2段ダイノード12側(図1及び図2参照))に延在している。第1保持部113は、底壁部111における前側(光電陰極3側(図1及び図2参照))の端部から外側(第2段ダイノードとは反対側(図1及び図2参照))に延在している。一対の第2保持部114は、X軸方向における一対の側壁部112の両端部から一方の側に延在している。
第1保持部113は、XY平面に平行な平板状(例えば、矩形板状)を呈している。一対の第2保持部114のそれぞれは、YZ平面に平行な平板状を呈している。第1段ダイノード11は、第1保持部113、及び一対の第2保持部114を介して、管体2内に設けられた支持部材に取り付けられている。
第1段ダイノード11の電子放出面11aは、底壁部111における一方の側の底面111a、及び一対の側壁部112における一方の側の一対の側面112aによって、構成されている。電子放出面11aは、1つの電子通過開口11bと対向している。第1段ダイノード11では、底壁部111、一対の側壁部112、及び一対の第2保持部114における一方の側の縁部によって、1つの電子通過開口11bが画定されている。つまり、電子放出面11aに入射する光電子も、電子放出面11aから放出される二次電子も、1つの(すなわち、同一の)電子通過開口11bを通過する。
電子放出面11aを構成する底面111aは、X軸方向に垂直な断面において凹状に湾曲する曲面である(特に図4参照)。本実施形態では、底面111aは、X軸方向を長手方向(筒の高さ方向)とする筒面(楕円柱面、双曲柱面、放物柱面、それらの複合面等)である。電子放出面11aを構成する一対の側面112aのそれぞれは、X軸方向に平行な断面において凹状に湾曲する曲面である(特に図5参照)。本実施形態では、各側面112aは、底面111aと各第2保持部114の内面とで形成される角部(隅部)にラウンド状の内面取りを施した場合の面取り面に相当する。なお、底面111a、及び各側面112aは、曲率が連続するように互いに接続されている。また、各側面112a、及び各第2保持部114の内面も、曲率が連続するように互いに接続されている。
X軸方向における電子放出面11aの幅をLとし、一対の側面112aのそれぞれの曲率半径をRとすると(図5参照)、第1段ダイノード11では、R≧0.1Lが成立する。また、一対の側面112aのそれぞれの曲率半径Rは、2mmよりも大きい。一例として、X軸方向における電子放出面11aの幅Lは、20mmよりも大きく且つ50mmよりも小さい。
以上のような形状を呈する第1段ダイノード11は、金属板(例えば、厚さ0.3mm程度のステンレス鋼板等)によって一体的に形成されている。つまり、底壁部111、一対の側壁部112、第1保持部113、及び一対の第2保持部114は、金属板によって一体的に形成されている。ここで、金属板によって一体的に形成されるとは、金属板に対してプレス加工等の塑性加工を施すことで形成されることを意味する。
[作用及び効果]
第1段ダイノード11では、電子放出面11aを構成する一対の側面112aのそれぞれが、X軸方向に平行な断面において凹状に湾曲する曲面である。そのため、各側面112aが、X軸方向における電子放出面11aの中心から離れるほど、1つの電子通過開口11bに近付く。その結果、各側面112aに入射する光電子の走行距離も、各側面112aから放出される二次電子の走行距離も、各側面112aが1つの電子通過開口11bに近付いた分だけ短くなる。よって、第1段ダイノード11によれば、光電子増倍管1において電子走行時間差及び電子走行時間拡がりを抑制できる。
なお、電子放出面の全体を例えば球面状に形成したとしても、そのような電子放出面を有する第1段ダイノードでは、第1段ダイノードから第2段ダイノードまでの二次電子の走行時間の調整が困難となり、光電子増倍管において電子走行時間差及び電子走行時間拡がりを効果的に抑制できない。また、電子走行時間差及び電子走行時間拡がりを抑制するために、一対の側面112aを設けずに底面111aのみによって電子放出面を構成し、X軸方向における電子放出面の幅を大きくすることも考えられる。しかし、そのような電子放出面を有する第1段ダイノードでは、そのサイズが大きくなるため、管体2の円柱状部分2bの外径も大きくせざるを得ず、管体2の耐水圧性能の確保が困難となる。更に、第1段ダイノードのサイズが大きくなると、金属板に対してプレス加工等の塑性加工を施すことで第1段ダイノードを形成することも困難となる。上述した第1段ダイノード11によれば、そのサイズが大きくなるのを抑制しつつ、光電子増倍管1において電子走行時間差及び電子走行時間拡がりを抑制できる。
また、第1段ダイノード11では、一対の側面112aのそれぞれの曲率半径Rが2mmよりも大きい。この構成により、光電子増倍管1において電子走行時間差及び電子走行時間拡がりを好適に抑制できる。
また、第1段ダイノード11では、X軸方向における電子放出面11aの幅をLとし、一対の側面112aのそれぞれの曲率半径をRとすると、R≧0.1Lが成立する。この構成により、光電子増倍管1において電子走行時間差及び電子走行時間拡がりを好適に抑制できる。
また、第1段ダイノード11では、電子放出面11aを構成する底面111aが、X軸方向に垂直な断面において凹状に湾曲する曲面である。この構成により、第1段ダイノード11から第2段ダイノード12までの二次電子の走行時間の調整が容易となる。したがって、光電子増倍管1において電子走行時間差及び電子走行時間拡がりをより確実に抑制できる。
また、第1段ダイノード11では、電子放出面11aが1つの電子通過開口11bと対向している。この構成により、電子放出面11aに入射する光電子も、電子放出面11aから放出される二次電子も、1つの(すなわち、同一の)電子通過開口11bを通過するため、光電子の入射位置に対する電子走行時間の依存性が小さくなる。したがって、光電子増倍管1において電子走行時間差及び電子走行時間拡がりをより確実に抑制できる。
ここで、上述した第1段ダイノード11では、第2段ダイノード12までの二次電子の走行時間に差が生じ難い理由について、より詳細に説明する。
図6は、比較例の第1段ダイノード15の斜視図である。図6に示されるように、比較例の第1段ダイノード15は、一対の側壁部112が設けられておらず、一対の第2保持部114が底壁部111と交差している点で、上述した第1段ダイノード11と主に相違している。比較例の第1段ダイノード15においては、底面111aによって、1つの電子通過開口15bと対向する電子放出面15aが構成されている。
比較例の第1段ダイノード15では、図7の(a)に示されるように、電子放出面15aにおける中央領域に光電子が軌道A1で入射することにより当該中央領域から放出された二次電子は、軌道B1で直線的に走行する。これに対し、電子放出面15aにおける第2保持部114の近傍領域に光電子が軌道A2で入射することにより当該近傍領域から放出された二次電子は、同電位の第2保持部114に反発して、軌道B2で走行する。その結果、比較例の第1段ダイノード15では、第2段ダイノード12までの二次電子の走行時間に差が生じ易い。
一方、上述した第1段ダイノード11では、図7の(b)に示されるように、電子放出面11aにおける中央領域に光電子が軌道A1で入射することにより当該中央領域から放出された二次電子は、軌道B1で直線的に走行する。これに対し、電子放出面11aにおける第2保持部114の近傍領域(すなわち、側面112a)に光電子が軌道A2で入射することにより当該近傍領域から放出された二次電子は、同電位の第2保持部114に反発して、軌道B2で走行するものの、当該近傍領域に入射する光電子の走行距離も、当該近傍領域から放出される二次電子の走行距離も、側面112aが電子通過開口11bに近付いた分だけ短くなる。その結果、上述した第1段ダイノード11では、第2段ダイノード12までの二次電子の走行時間に差が生じ難い。
次に、第1段ダイノード11では、電子放出面11aを構成する一対の側面112aのそれぞれの曲率半径Rが2mmよりも大きいことが、より一層好適である理由について、シミュレーション結果と共に説明する。
まず、シミュレーションモデルとして、第1実施例の第1段ダイノード、第2実施例の第1段ダイノード、第3実施例の第1段ダイノード及び第4実施例の第1段ダイノードを用意した。各第1段ダイノードは、厚さ0.3mmのステンレス鋼板にプレス加工を施すことで形成したものに相当する。各第1段ダイノードにおいて、X軸方向における電子放出面の幅Lを30.6mmとした。
各第1段ダイノードは、上述した第1段ダイノード11と同様の構成を有しており、次の点でのみ、互いに相違している。すなわち、第1実施例の第1段ダイノードでは曲率半径Rを2mm、第2実施例の第1段ダイノードでは曲率半径Rを4mm、第3実施例の第1段ダイノードでは曲率半径Rを6mm、第4実施例の第1段ダイノードでは曲率半径Rを8mmとした。
第1実施例の第1段ダイノード、第2実施例の第1段ダイノード、第3実施例の第1段ダイノード及び第4実施例の第1段ダイノードをそれぞれ同一の光電子増倍管に取り付け、光電子増倍管を同一の条件で動作させた場合に相当するシミュレーションにおいて、X軸方向における電子走行時間差及び電子走行時間拡がりを測定した。
図8の(a)は、第1実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図であり、図8の(b)は、その場合における電子走行時間拡がりを示す図である。図9の(a)は、第2実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図であり、図9の(b)は、その場合における電子走行時間拡がりを示す図である。図10の(a)は、第3実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図であり、図10の(b)は、その場合における電子走行時間拡がりを示す図である。図11の(a)は、第4実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図であり、図11の(b)は、その場合における電子走行時間拡がりを示す図である。
図8の(a)、図9の(a)、図10の(a)及び図11の(a)に示されるように、第2実施例の第1段ダイノード、第3実施例の第1段ダイノード及び第4実施例の第1段ダイノードが用いられた光電子増倍管において、第1実施例の第1段ダイノードが用いられた光電子増倍管に比べ、X軸方向における電子走行時間差がX軸方向における両端部で、より一層均一化された。また、図8の(b)、図9の(b)、図10の(b)及び図11の(b)に示されるように、第2実施例の第1段ダイノード、第3実施例の第1段ダイノード及び第4実施例の第1段ダイノードが用いられた光電子増倍管において、第1実施例の第1段ダイノードが用いられた光電子増倍管に比べ、X軸方向における電子走行時間拡がりが、より一層低減された。
以上のシミュレーション結果から、電子放出面を構成する一対の側面のそれぞれの曲率半径Rが2mmよりも大きいことが、光電子増倍管において電子走行時間差及び電子走行時間拡がりを抑制する上で、より一層好適であるといえる。
次に、第1段ダイノード11では、R≧0.1Lが成立することが、より一層好適である理由について、シミュレーション結果と共に説明する。
上述したシミュレーション結果から、第1実施例の第1段ダイノード(L:30.6mm、R:2mm)では、R≧0.1Lが成立せず、第2実施例の第1段ダイノード(L:30.6mm、R:4mm)、第3実施例の第1段ダイノード(L:30.6mm、R:6mm)及び第4実施例の第1段ダイノード(L:30.6mm、R:8mm)では、R≧0.1Lが成立する。そこで、X軸方向における電子放出面の幅Lが30.6mmでない場合でも、第1段ダイノードにおいてR≧0.1Lが成立することが、光電子増倍管において電子走行時間差及び電子走行時間拡がりを抑制する上で、より一層好適であるといえるか、シミュレーションにより確認した。
まず、シミュレーションモデルとして、第1比較例の第1段ダイノード及び第5実施例の第1段ダイノードを用意した。各第1段ダイノードは、厚さ0.3mmのステンレス鋼板にプレス加工を施すことで形成したものに相当する。第1比較例の第1段ダイノードでは、X軸方向における電子放出面の幅Lを34mmとし、一対の側面のそれぞれの曲率半径Rを0mmとした(すなわち、第1比較例の第1段ダイノードは、図6に示される第1段ダイノード15と同様の構成を有している)。第5実施例の第1段ダイノードでは、X軸方向における電子放出面の幅Lを34mmとし、一対の側面のそれぞれの曲率半径Rを5mmとした(すなわち、第5実施例の第1段ダイノードは、上述した第1段ダイノード11と同様の構成を有している)。
第1比較例の第1段ダイノード及び第5実施例の第1段ダイノードをそれぞれ同一の光電子増倍管に取り付け、光電子増倍管を同一の条件で動作させた場合に相当するシミュレーションにおいて、X軸方向における電子走行時間差を測定した。図12の(a)は、第1比較例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図であり、図12の(b)は、第5実施例の第1段ダイノードが用いられた光電子増倍管の電子走行時間差を示す図である。
図12の(a)及び(b)に示されるように、第5実施例の第1段ダイノードが用いられた光電子増倍管において、第1比較例の第1段ダイノードが用いられた光電子増倍管に比べ、X軸方向における電子走行時間差がX軸方向における両端部で均一化された。このシミュレーション結果から、第1段ダイノードにおいてR≧0.1Lが成立することが、光電子増倍管において電子走行時間差及び電子走行時間拡がりを抑制する上で、より一層好適であるといえる。
[変形例]
本発明は、上述した実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。一例として、第1保持部113は、矩形板状に限定されず、半円形板状等の他の形状を呈していてもよい。また、第1段ダイノード11は、第1保持部113を有していなくてもよい。
また、一対の第2保持部114のそれぞれにおける一方の側の縁部は、底壁部111、及び一対の側壁部112における一方の側の縁部から突出するように形成されていてもよいし、或いは、底壁部111、及び一対の側壁部112における一方の側の縁部から凹むように形成されていてもよい。また、第1段ダイノード11は、一対の第2保持部114を有していなくてもよい。その場合、例えば、X軸方向において第1段ダイノード11を挟み込む一対の基板のそれぞれの表面に、第2保持部114と同様の形状を呈する金属膜を蒸着等によって形成しておき、第2保持部114が欠けた部分に当該金属膜を配置してもよい。
また、電子放出面11aに入射する光電子、及び電子放出面11aから放出される二次電子が、別々の電子通過開口を通過するように、電子放出面11aと対向する複数の電子通過開口が形成されていてもよい。また、電子放出面11aを構成する底面111aは、平坦な領域を含んでいてもよい。
また、底壁部111、一対の側壁部112、第1保持部113、及び一対の第2保持部114は、板状に形成されていなくてもよい。一例として、底壁部111、一対の側壁部112、第1保持部113、及び一対の第2保持部114がブロック状に形成されており、上述したような電子放出面11aが切削等によって形成されていてもよい。
1…光電子増倍管、3…光電陰極、7…アノード、10…ダイノード、11…第1段ダイノード、11a…電子放出面、11b…電子通過開口、12…第2段ダイノード、111…底壁部、111a…底面、112…側壁部、112a…側面。

Claims (5)

  1. 光電子増倍管に用いられる第1段ダイノードであって、
    底壁部と、
    所定方向における前記底壁部の両端部から一方の側に延在する一対の側壁部と、を備え、
    前記底壁部における前記一方の側の底面、及び前記一対の側壁部における前記一方の側の一対の側面によって、電子放出面が構成されており、
    前記一対の側面のそれぞれは、前記所定方向に平行な断面において凹状に湾曲する曲面であり、
    前記所定方向における前記電子放出面の幅をLとし、前記一対の側面のそれぞれの曲率半径をRとすると、R≧0.1Lが成立する、第1段ダイノード。
  2. 前記一対の側面のそれぞれの曲率半径は、2mmよりも大きい、請求項1に記載の第1段ダイノード。
  3. 前記底面は、前記所定方向に垂直な断面において凹状に湾曲する曲面である、請求項1又は2に記載の第1段ダイノード。
  4. 前記電子放出面は、1つの電子通過開口と対向している、請求項1〜のいずれか一項に記載の第1段ダイノード。
  5. 光電陰極と、
    複数段のダイノードと、
    アノードと、を備え、
    前記複数段のダイノードは、所定面上に配列された第1段ダイノード及び第2段ダイノードと、を含み、
    前記第1段ダイノードは、
    底壁部と、
    前記所定面に垂直な所定方向における前記底壁部の両端部から前記光電陰極側且つ前記第2段ダイノード側に延在する一対の側壁部と、を有し、
    前記第1段ダイノードでは、前記底壁部における前記光電陰極側且つ前記第2段ダイノード側の底面、及び前記一対の側壁部における前記光電陰極側且つ前記第2段ダイノード側の一対の側面によって、電子放出面が構成されており、
    前記一対の側面のそれぞれは、前記所定方向に平行な断面において凹状に湾曲する曲面であり、
    前記所定方向における前記電子放出面の幅をLとし、前記一対の側面のそれぞれの曲率半径をRとすると、R≧0.1Lが成立する、光電子増倍管。
JP2018108699A 2018-06-06 2018-06-06 第1段ダイノード及び光電子増倍管 Active JP6695387B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018108699A JP6695387B2 (ja) 2018-06-06 2018-06-06 第1段ダイノード及び光電子増倍管
CN201980037228.9A CN112219256A (zh) 2018-06-06 2019-05-28 第1级倍增极和光电倍增管
CA3098438A CA3098438A1 (en) 2018-06-06 2019-05-28 First-stage dynode and photomultiplier tube
US17/057,926 US11302522B2 (en) 2018-06-06 2019-05-28 First-stage dynode and photomultiplier tube
EP19814327.3A EP3806132A4 (en) 2018-06-06 2019-05-28 FIRST STAGE DYNODE AND PHOTO MULTIPLIER TUBE
PCT/JP2019/021104 WO2019235300A1 (ja) 2018-06-06 2019-05-28 第1段ダイノード及び光電子増倍管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018108699A JP6695387B2 (ja) 2018-06-06 2018-06-06 第1段ダイノード及び光電子増倍管

Publications (3)

Publication Number Publication Date
JP2019212517A JP2019212517A (ja) 2019-12-12
JP2019212517A5 JP2019212517A5 (ja) 2020-05-07
JP6695387B2 true JP6695387B2 (ja) 2020-05-20

Family

ID=68770142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108699A Active JP6695387B2 (ja) 2018-06-06 2018-06-06 第1段ダイノード及び光電子増倍管

Country Status (6)

Country Link
US (1) US11302522B2 (ja)
EP (1) EP3806132A4 (ja)
JP (1) JP6695387B2 (ja)
CN (1) CN112219256A (ja)
CA (1) CA3098438A1 (ja)
WO (1) WO2019235300A1 (ja)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2092937A6 (ja) * 1970-04-03 1972-01-28 Hyperelec
GB1470162A (en) 1973-02-27 1977-04-14 Emi Ltd Electron multiplying arrangements
GB1571551A (en) 1976-02-04 1980-07-16 Rca Corp Electron discharge tube having an electron emissive electrode
US4306188A (en) 1979-10-30 1981-12-15 Rca Corporation Photomultiplier tube having a photocurrent collector
US4604545A (en) 1980-07-28 1986-08-05 Rca Corporation Photomultiplier tube having a high resistance dynode support spacer anti-hysteresis pattern
US4446401A (en) 1981-11-20 1984-05-01 Rca Corporation Photomultiplier tube having improved count-rate stability
JPH0812772B2 (ja) 1987-04-12 1996-02-07 浜松ホトニクス株式会社 光電子増倍管
JPH0812772A (ja) 1994-06-28 1996-01-16 Idemitsu Petrochem Co Ltd ポリプロピレン系延伸フイルム及びその製造方法
JP3640464B2 (ja) 1996-05-15 2005-04-20 浜松ホトニクス株式会社 電子増倍器及び光電子増倍管
JP4640881B2 (ja) * 2000-07-27 2011-03-02 浜松ホトニクス株式会社 光電子増倍管
JP4473585B2 (ja) * 2004-01-08 2010-06-02 浜松ホトニクス株式会社 光電子増倍管
US7427835B2 (en) 2005-03-31 2008-09-23 Hamamatsu Photonics K.K. Photomultiplier including a photocathode, a dynode unit, a focusing electrode, and an accelerating electrode
FR2964785B1 (fr) 2010-09-13 2013-08-16 Photonis France Dispositif multiplicateur d'électrons a couche de nanodiamant.
US8853617B1 (en) 2013-03-14 2014-10-07 Schlumberger Technology Corporation Photomultiplier for well-logging tool

Also Published As

Publication number Publication date
WO2019235300A1 (ja) 2019-12-12
EP3806132A1 (en) 2021-04-14
US20210305033A1 (en) 2021-09-30
EP3806132A4 (en) 2022-02-23
US11302522B2 (en) 2022-04-12
WO2019235300A9 (ja) 2020-01-30
CN112219256A (zh) 2021-01-12
JP2019212517A (ja) 2019-12-12
CA3098438A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP0690478B1 (en) Electron tube
JP5345784B2 (ja) 遷移時間を小さくする光電子増倍管
US6946792B2 (en) Photomultiplier
US5616987A (en) Electron multiplier
JP5439079B2 (ja) 電子管
JP6695387B2 (ja) 第1段ダイノード及び光電子増倍管
JPH03155036A (ja) 光電子増倍管
US2908840A (en) Photo-emissive device
JPH0251212B2 (ja)
JP7033501B2 (ja) 第1段ダイノード及び光電子増倍管
US20200185184A1 (en) X-ray tube
JP3748608B2 (ja) 光電子増倍管
JP2008098174A (ja) 光電子増倍管
JP4473585B2 (ja) 光電子増倍管
JP2002042718A (ja) 光電子増倍管
RU2774805C1 (ru) Динод первого каскада и фотоэлектронный умножитель
JPH02295053A (ja) 高い収集均一性を有する高速光電子増倍管
EP0495589B1 (en) Photomultiplier tube
JPS58184250A (ja) 二次電子増倍管
KR20240002997A (ko) 초점 형상 조절이 가능한 엑스레이 튜브
JPH02291655A (ja) 光電子増倍管
KR20160094563A (ko) 덮개형 아노드 전극
JP2019185847A (ja) イメージ管、及びその製造方法
NL8700359A (nl) Roentgenstralingsdetectorbuis.
JPH0393142A (ja) 二次電子増倍管

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200324

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200421

R150 Certificate of patent or registration of utility model

Ref document number: 6695387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250