JP6693619B2 - β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法 - Google Patents

β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法 Download PDF

Info

Publication number
JP6693619B2
JP6693619B2 JP2016132828A JP2016132828A JP6693619B2 JP 6693619 B2 JP6693619 B2 JP 6693619B2 JP 2016132828 A JP2016132828 A JP 2016132828A JP 2016132828 A JP2016132828 A JP 2016132828A JP 6693619 B2 JP6693619 B2 JP 6693619B2
Authority
JP
Japan
Prior art keywords
film
electrode
polyvinylidene fluoride
pvdf
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132828A
Other languages
English (en)
Other versions
JP2018002913A (ja
Inventor
隆興 佐々木
隆興 佐々木
森谷 弘二
弘二 森谷
啓太郎 原田
啓太郎 原田
道夫 庭野
道夫 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAPPYJAPAN,INC.
Original Assignee
HAPPYJAPAN,INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAPPYJAPAN,INC. filed Critical HAPPYJAPAN,INC.
Priority to JP2016132828A priority Critical patent/JP6693619B2/ja
Publication of JP2018002913A publication Critical patent/JP2018002913A/ja
Application granted granted Critical
Publication of JP6693619B2 publication Critical patent/JP6693619B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法に関する。
従来、高分子の圧電材料としてポリフッ化ビニリデンが知られている。このポリフッ化ビニリデンは、水素センサ、圧力センサ、超音波センサ、加速度センサ、振動センサ等の各種センサに圧電材料として既に用いられており、今後は、ソフトウエア等の情報処理デバイスや、アクチュエータ等の出力デバイスへの応用が期待されている。ポリフッ化ビニリデンには、α型、β型及びγ型の3種の結晶構造が存在するが、それらの中で圧電性を有するのはβ型だけである。このようなβ型の結晶構造を有するポリフッ化ビニリデン膜(以下、「β型ポリフッ化ビニリデン膜」という)は、通常、結晶構造を無極性のα型から極性を有するβ型へ転移させるために、α型の結晶構造を有するポリフッ化ビニリデンに分極処理を施さなければ製造することができない。しかしながら、分極処理を行うためには押出機や分極装置等の大掛かりな設備が必要となり、製造コストがかかるという問題がある。そこで、簡易な設備且つ簡便な方法で製造できるβ型ポリフッ化ビニリデン膜の製造方法が開発されている(例えば特許文献1参照)。
ところで、β型ポリフッ化ビニリデン膜は柔軟性を有しており、この特性を活かして医療分野への応用も期待されている。例えば、血管内カテーテルやガイドワイヤ等に、ポリフッ化ビニリデン系材料を適用した低侵襲手術用センサを搭載して、脳梗塞、動脈瘤、狭心症等の手術を行う方法が提案されている。かかる低侵襲手術用センサとしては、血流測定するための血流センサ(非特許文献1参照)の他、人間の指のような感覚で生体や患部の状況を把握するための触覚センサ等も研究開発されている。
しかしながら、β型ポリフッ化ビニリデン膜は、基材への密着性が弱いため剥離するという問題が知られている。その改善を図るために、β型ポリフッ化ビニリデン膜を形成するための塗布液について、種々の改良を加えたものが提案されている。例えば、特許文献2では、圧電性樹脂膜形成用のコーティング溶液にシラン系カップリング剤を添加し、特許文献3では、特定のオルガノシロキサン部位を有するフッ化ビニリデン系化合物を含む液状の塗料組成物を作製し、特許文献4では、ポリ塩化ビニル、ポリイミド類、ポリエーテルアミド、ナイロン類、ポリシアノアクリレイトのうちから選ばれた1種類又はそれらの混合物よりなる非強誘電性高分子を含む液状の塗料組成物を作製して、それぞれ密着性の向上を図っている。しかしながら、β型ポリフッ化ビニリデン膜における基材への密着性については、更に改善の余地がある。
特開2014−43514号公報 特開2013−188667号公報 特開2009−137842号公報 特開昭63−145353号公報
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL.62, NO.1, JANUARY 2015, p.188−p.195
本発明は、このような事情に鑑み、基材への密着性に優れたβ型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法を提供することを目的とする。
上記課題を解決する本発明にかかる第1の態様は、樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材と、前記多孔質膜上に形成されるβ型ポリフッ化ビニリデン膜とを含むことを特徴とするβ型ポリフッ化ビニリデン膜付基材にある。
また、本発明にかかる第2の態様は、樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材を準備する工程と、ポリフッ化ビニリデンと、前記ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、前記水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程と、得られた塗布液を前記基材に塗布してβ型ポリフッ化ビニリデンからなる塗布膜を形成する工程と、形成した塗布膜を乾燥する工程と、乾燥した塗布膜を水洗する工程とを含むことを特徴とするβ型ポリフッ化ビニリデン膜付基材の製造方法にある。
また、本発明にかかる第3の態様は、樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材と、前記多孔質膜の少なくとも一部の領域上に形成される第1電極と、前記第1電極上に形成されるβ型ポリフッ化ビニリデン膜と、前記β型ポリフッ化ビニリデン膜中又は前記β型ポリフッ化ビニリデン膜上に配設される第2電極とを含み、前記β型ポリフッ化ビニリデン膜は、前記多孔質膜における前記第1電極が形成されていない領域上にも形成されていることを特徴とするβ型ポリフッ化ビニリデン膜を具備する圧電センサにある。
また、本発明にかかる第4の態様は、前記第1電極は、糸状若しくは布状に形成されたもの又は電極パターンであることを特徴とする第3の態様のβ型ポリフッ化ビニリデン膜を具備する圧電センサにある。
また、本発明にかかる第5の態様は、樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材を準備する工程と、前記多孔質膜の少なくとも一部の領域上に第1電極を形成する工程と、ポリフッ化ビニリデンと、前記ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、前記水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程と、得られた塗布液から形成されるβ型ポリフッ化ビニリデンからなる塗布膜中又は前記塗布膜上に第2電極が配設されるように、前記塗布膜を前記第1電極が設けられた配置も含む基材上に形成する工程と、形成された塗布膜を乾燥する工程と、乾燥した塗布膜を水洗する工程とを含み、前記β型ポリフッ化ビニリデンからなる塗布膜を、前記多孔質膜における前記第1電極が形成されていない領域上にも形成することを特徴とするβ型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法にある。
また、本発明にかかる第6の態様は、前記第1電極は、糸状若しくは布状に形成されたもの又は電極パターンであることを特徴とする第5の態様のβ型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法にある。
本発明によれば、基材への密着性に優れたβ型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法を提供することができる。
実施形態1のβ型ポリフッ化ビニリデン膜付基材の構造を模式的に示す正面図である。 実施形態2のβ型ポリフッ化ビニリデン膜を具備する圧電センサの構造を模式的に示す平面図である。 図2の断面図であり、(a)はA−A′線断面図、(b)はB−B′線断面図である。 実施形態2のβ型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法を説明するための図であり、(a)は基材上に第1電極を配置した状態を示す平面図及び正面図であり、(b)は基材の上方に第2電極を配置した状態を示す平面図及び正面図であり、(c)はβ型ポリフッ化ビニリデン膜中に第2電極を配設した状態を示す平面図及び正面図である。 実施例1のPVDFセンサのタッピング試験の測定結果を示すグラフである。
以下に本発明を実施形態に基づいて詳細に説明する。
(第1の実施形態)
<β型ポリフッ化ビニリデン膜付基材>
図1は、本発明の第1の実施形態にかかるβ型ポリフッ化ビニリデン膜付基材の構造を模式的に示す正面図である。図示するように、β型ポリフッ化ビニリデン膜付基材(以下、「PVDF膜付基材1」という)は、樹脂フィルム11と、樹脂フィルム11上に形成される多孔質膜12とを含む基材10と、多孔質膜12上に形成されるβ型ポリフッ化ビニリデン膜(以下、「PVDF膜20」という)とを含むものである。PVDF膜付基材1は、詳細は後述するが、樹脂フィルム11上に形成される多孔質膜12を含む基材10上にPVDF膜20が形成されてなるものであるため、基材10への密着性及び柔軟性に優れるものである。
基材10は、PVDF膜20に対する密着性を保持することができ、PVDF膜20の特長である柔軟性を阻害することがなければ特に限定されず、用途に応じて材質を適宜選択することができる。このような基材10としては、例えば、柔軟性を有する樹脂フィルム11上に、少なくとも金属化合物粒子を含む多孔質膜12が形成されたものを適用することができる。
樹脂フィルム11は、柔軟性を有しているものであれば特に限定されず、用途に応じて適宜選択することができる。そのような樹脂フィルム11としては、例えば、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリアミド(PA)、ポリイミド(PI)、ポリ塩化ビニリデン(PVDC)、ポリカーボネート(PC)等が挙げられる。本実施形態では、樹脂フィルム11としてポリエチレンテレフタラートを用いた。
多孔質膜12は、例えば、金属化合物粒子とバインダ等との混合スラリーを、各種コーター等により樹脂フィルム11上に塗布し、乾燥により形成された多孔質金属化合物膜等を適用することができる。このような多孔質金属化合物膜からなる多孔質膜12は、金属化合物粒子として、金属化合物粒子とバインダ等との隙間や多孔質金属化合物粒子の細孔等により多孔質な膜となり、詳細は後述するが、PVDF膜20の基材10への密着性を改善する。このため、多孔質膜12は、適度な粒径を有する金属酸化物(金属酸化物粒子)や金属水酸化物(金属水酸化物粒子)等、或いは、適度な半径の細孔を有する金属酸化物(多孔質金属酸化物粒子)や金属水酸化物(多孔質金属水酸化物粒子)等を用いて形成することができる。金属酸化物粒子や金属水酸化物粒子の粒径は、例えば平均粒径であれば、概ね10nm〜100nm程度であればよい。また、多孔質金属酸化物粒子や多孔質金属水酸化物粒子の細孔の半径は、概ね1nm〜50nm程度であればよい。これらの平均粒径や細孔の半径は、必要に応じて適宜設定することができる。
多孔質金属化合物膜からなる多孔質膜12は、樹脂フィルム11上に形成することができ、且つ樹脂フィルム11の柔軟性を阻害するものでなければ特に限定されず、用途に応じて適宜選択することができる。そのような多孔質金属化合物膜を構成する金属化合物粒子としては、酸化ケイ素粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化ジルコニウム粒子等の金属酸化物粒子や、水酸化アルミニウム粒子等の金属水酸化物粒子等が挙げられ、これらの金属酸化物粒子や金属水酸化物粒子は、上記の多孔質金属酸化物粒子や多孔質金属水酸化物粒子であってもよく、これらの混合物であってもよい。このような金属化合物粒子の何れかを用いることにより、上記の特徴(多孔性)を有する多孔質膜12を形成することができ、PVDF膜20に対する効果(密着性)を享受することができる。
多孔質膜12には、必要に応じて金属化合物粒子及びバインダ以外の構成要素が含まれていてもよいし、多孔質膜12の形成方法は上記に限定されない。なお、多孔質膜12の形成において適用可能なバインダとしては、例えば、デンプンやその変性物、PVA(ポリビニルアルコール)やその変性物、SBRラテックス(スチレンとブダジエンを主成分とした合成ゴムラテックス)、NBRラテックス(アクリロニトリルとブタジエンを主成分とした合成ゴムラテックス)、ヒドロキシセルロース、ポリビニルピロリドン等の有機物を用いることができる。また、多孔質膜12の形成においては、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、バーコーター等の各種コーターを用いることができる。
本実施形態では、多孔質膜12を構成する金属化合物粒子として水酸化アルミニウム粒子を用いた。
上述の多孔質膜12によりPVDF膜20の基材10への密着性が改善される理由は明らかになっていないが、PVDF膜20の形成時において、後述するPVDF膜20を形成するための塗布液が、多孔質膜12の孔部に浸透した状態で乾燥すると、その孔部内で乾燥した塗布液が楔の役割を果たし、PVDF膜20が多孔質膜12から剥がれ難くなると考えられる。即ち、樹脂フィルム11上に、上述した通りの多孔質膜12を形成することで、PVDF膜20の基材10に対する密着性を保持することができる。また、多孔質膜12が樹脂フィルム11及びPVDF膜20の柔軟性を阻害しないので、PVDF膜付基材1全体として柔軟性を有することになり、例えば、PVDF膜付基材1の固定対象に応じて変形が可能となる。なお、上記の多孔質膜12の孔部とは、金属酸化物粒子や金属水酸化物粒子とバインダとにより形成される多孔質膜12中の隙間、或いは、多孔質金属酸化物粒子や多孔質金属水酸化物粒子の細孔と考えられる。
なお、基材10は、PVDF膜20に対する密着性及び柔軟性を維持できれば、必要に応じて他の構成要素が含まれていてもよい。
本実施形態では、基材10としてOHPフィルムを適用した。OHPフィルムは、一般に、樹脂フィルム11に相当するフィルム層(ポリエチレンテレフタラート)上に、水溶性ポリマー層(ポリビニルアルコール又はカチオン変性ポリビニルアルコール)、多孔質膜12に相当する金属水酸化物層(塩基性ポリ水酸化アルミニウム)、及びコロイダルシリカ層が順次形成されてなるものである。基材10としてOHPフィルムを用いることで、PVDF膜20の密着性と、基材10自体の柔軟性を両立して維持することができる。
PVDF膜20は、β型のポリフッ化ビニリデンが主体であり純度が高く、β型ポリフッ化ビニリデンとしての機能を発揮すれば、α型のポリフッ化ビニリデンやγ型のポリフッ化ビニリデンが混在したものも含むものである。ここで、純度が高いとは、ポリフッ化ビニリデン(以下、「PVDF」ともいう)以外の成分が殆ど含有されていない膜であることをいう。
β型ポリフッ化ビニリデンは、(−CF−CH−)の繰り返し連鎖からなり、分子鎖がオールトランスの立体配座構造からなる。このため、β型ポリフッ化ビニリデンは、自発分極の向きがフッ素原子から水素原子に、即ち、分子鎖に対して垂直方向に揃っており、圧電特性に優れた材料となる。
また、PVDF膜20は、平均粒径8μm〜9μmの粒状の結晶粒からなり、48%〜53%の体積空隙率を有する膜である。
なお、体積空隙率は、以下の式(1)により算出した。
体積空隙率(%)=((真のPVDFの質量−みかけのPVDFの質量)/真のPVDFの質量)×100 ・・・(1)
ただし、真のPVDFの質量とは、(理論密度1.78g/cm)×(作製したPVDF膜20の体積)であり、みかけのPVDFの質量とは、秤量計による実測値である。
このようなPVDF膜20は、体積空隙率が大きく、結晶粒の間に複数の空隙が存在する多孔質の膜である。これらの空隙の存在により、PVDF膜20は優れた歪特性を有する。一方、従来の延伸法で製造したβ型ポリフッ化ビニリデン膜は、表面が平坦であり、粒状の結晶粒は見られない。
よって、本実施形態にかかる粒状の結晶粒からなるPVDF膜20は、従来のβ型ポリフッ化ビニリデン膜とは区別され、例えば、圧電体膜として、圧電式センサに用いることにより、高感度で且つ安定した検知特性を有するセンサを実現することができる。
<β型ポリフッ化ビニリデン膜付基材の製造方法>
PVDF膜付基材1の製造方法は、大がかりな設備を必要とせず、溶液塗布法による簡便な方法により、圧電特性に優れ且つ純度が高く基材10への密着性に優れたPVDF膜20を具備したPVDF膜付基材1を製造するものである。
このような優れた特性を有するPVDF膜付基材1の製造方法は、樹脂フィルム11と、樹脂フィルム11上に形成される、少なくとも金属化合物粒子を含む多孔質膜12とを含む基材10を準備する工程と、ポリフッ化ビニリデンと、ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程と、得られた塗布液を基材10に塗布してβ型ポリフッ化ビニリデンからなる塗布膜を形成する工程と、形成した塗布膜を乾燥する工程と、乾燥した塗布膜を水洗する工程とからなる。
かかるPVDF膜付基材1の製造方法は、ポリフッ化ビニリデンを、ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、水溶性極性溶媒よりも沸点が低い有機溶媒とに溶解して塗布液とし、これを準備した基材10上に塗布して成膜した後、かかる有機溶媒を除去して多孔質膜とし、これを水洗して水溶性極性溶媒を除去することにより、純度の高いPVDF膜20を製造し、PVDF膜付基材1とするものである。
以下、各工程について説明する。
基材10の準備工程は、PVDF膜20の基材10に対する密着性と柔軟性を両立して維持することが可能な基材10を準備する工程であり、本実施形態では、基材10としてOHPフィルムを準備した。
塗布液の形成工程は、ポリフッ化ビニリデンと、ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程である。具体的には、所定の水溶性極性溶媒と所定の有機溶媒に、ポリフッ化ビニリデン粉を溶解して、ポリフッ化ビニリデンを含む塗布液を調製する。
ここで、本実施形態で用いるポリフッ化ビニリデンとは、β型ポリフッ化ビニリデン膜となって圧電特性を示すものであれば、フッ化ビニリデン単独の重合体だけでなく、フッ化ビニリデンのモノマーと、フッ素を含有する他のモノマーとの共重合体であってもよい。本実施形態では、これらを総称して単にポリフッ化ビニリデンという。このようなポリフッ化ビニリデンは、溶媒に溶解して用いるので、好適には粉状のものを用いるが、フレーク状や塊状等であってもよい。
また、本実施形態で用いる所定の水溶性極性溶媒は、ポリフッ化ビニリデンを溶解して該ポリフッ化ビニリデンをβ型に固定化する機能を有するものであり、例えば、ヘキサメチルリン酸トリアミド(HMPA)等のリン酸アミド化合物、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等を挙げることができる。また、リン酸アミド化合物は、ヘキサアルキルリン酸トリアミド等のトリアミドだけでなく、モノアミド、ジアミド又はこれらの混合物を含むものである。これらの中でも、特にヘキサメチルリン酸トリアミドが好ましく、本実施形態では、ヘキサメチルリン酸トリアミドを用いた。
ここで、水溶性極性溶媒がポリフッ化ビニリデンをβ型に固定化する機能を有するとは、ポリフッ化ビニリデンと相溶した状態でポリフッ化ビニリデンをβ型の結晶構造に転移して固定化することをいう。また、β型に固定化するとは、完全にβ型に固定化するものの他、α型よりβ型が優位なように固定するものを包含するものであり、結果的に成膜されたポリフッ化ビニリデンが所望の圧電性を有するものとなるように固定化するものであればよい。
また、水溶性極性溶媒の水溶性とは、後述する水洗工程により塗布膜から溶媒を除去できる程度の水溶性を意味する。
水溶性極性溶媒よりも沸点が低い有機溶媒とは、後述の乾燥温度における飽和蒸気圧が、水溶性極性溶媒よりも高く、蒸発速度が速いものをいう。このため、後述する塗布膜の乾燥工程において、かかる有機溶媒の沸点温度程度に加熱することにより、水溶性極性溶媒を塗布膜中に残存させたまま、有機溶媒のみを蒸発させることができ、これにより多孔質の膜とすることができる。このような有機溶媒は、ポリフッ化ビニリデン及び水溶性極性溶媒と相溶するものであり、使用する水溶性極性溶媒の種類に応じて、適宜選択すればよい。
水溶性極性溶媒よりも沸点が低い有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルブチルアミド及びN−メチルピロリドン等又はこれらの混合溶媒を挙げることができる。これらの中でも、アセトン及びジメチルホルムアミドからなる群から選択される少なくとも1種を用いるのが好ましい。本実施形態では、蒸発のし易さに鑑みて、アセトンを用いた。
本実施形態では、上述したポリフッ化ビニリデンと、ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成するが、水溶性極性溶媒と、水溶性極性溶媒よりも沸点が低い有機溶媒の体積比は、上述したように乾燥後に多孔性の形状を保持できる塗布膜を形成できる範囲であれば、特に限定されず、有機溶媒を10容量%〜80容量%含有させればよい。10容量%より有機溶媒が少ないと有機溶媒を除去した際に多孔質の膜とはならず、また、80容量%より多いと膜の形状が保持できないからである。好適には、水溶性極性溶媒と有機溶媒の体積比が1:3〜3:1の範囲にあるのが望ましい。
また、ポリフッ化ビニリデンの含有量は、水溶性極性溶媒の総質量に対して、例えば、3.5質量%以上の範囲にあるのが好ましく、より好ましいのは、5質量%〜6.5質量%の範囲である。
更に好ましいのは、水溶性極性溶媒としてヘキサメチルリン酸トリアミドを用いた場合、ヘキサメチルリン酸トリアミドとアセトンの体積比が1:1であり、且つポリフッ化ビニリデンの含有量が、ヘキサメチルリン酸トリアミドの総質量に対して、6.5質量%である。
塗布膜の形成工程は、上述の通りにして得られた塗布液を基材10に塗布して塗布膜を形成する工程である。塗布液の塗布方法は、塗膜が形成できるものであれば特に限定されないが、例えば、スピンコート法、キャスト法及びインクジェット法等の公知の方法を適用することができる。なお、塗布膜の形成工程において、塗布液の容量(質量)を増やしたり、塗布回数を増やしたり、塗布膜の形成工程と後述する乾燥工程を繰り返すことにより、所望の膜厚を得ることができる。
塗布膜の乾燥工程は、上述の通りにして形成した塗布膜を乾燥する工程である。かかる乾燥工程では、基材10上に所定の方法で塗布した塗布膜を乾燥して多孔質の膜とする。具体的には、基材10上に塗布されたポリフッ化ビニリデンを含有する塗布膜から、水溶性極性溶媒よりも沸点が低い有機溶媒のみを除去し、多孔質の乾燥膜を形成する。
本実施形態では、かかる有機溶媒としてアセトンを用い、基材10としてOHPフィルムを適用しているため、例えば、塗布膜をアセトンの沸点(約56℃)よりも数十℃高い70℃程度に加熱して、塗布膜からアセトンのみを蒸発させて、乾燥膜を形成している。
塗布膜から有機溶媒のみを除去するため、得られる乾燥膜は所定の水溶性極性溶媒とポリフッ化ビニリデンから構成され、複数の空隙が存在する多孔質の膜、即ち、ポーラスの膜となる。また、上述の乾燥膜中では、所定の水溶性極性溶媒の存在により、ポリフッ化ビニリデン膜の自発分極の向きは一定の方向に揃えられ、この膜の結晶構造はβ型に保持されている。赤外分光法による吸収スペクトルの結果からも、上述の乾燥膜中に含まれるポリフッ化ビニリデン膜の結晶構造は、β型であることが確認されている(例えば特許文献1参照)。
なお、乾燥工程で用いられる加熱装置としては、例えば、赤外線ランプの照射により加熱するRTA(Rapid Thermal Annealing)装置やホットプレート等を挙げることができる。本実施形態では、ホットプレートを用いた。
乾燥膜の水洗工程は、乾燥膜を水洗する工程である。かかる水洗工程では、乾燥して形成した多孔質の膜(乾燥膜)を水洗して、水溶性極性溶媒を除去する。水洗は、流水、又は水中への浸漬等により行えばよい。本実施形態では、乾燥して得られた多孔質の膜を形成した基材10を純水で約1分間、水洗し、この膜中のヘキサメチルリン酸トリアミド等の水溶性極性溶媒を除去してPVDF膜20を得た。
乾燥膜は、アセトンの蒸発により多孔質の膜となっているため、水溶性極性溶媒、例えば、ヘキサメチルリン酸トリアミドは水洗により乾燥膜から除去されると考えられる。また、乾燥膜から水洗によりポリフッ化ビニリデンをβ型に固定化しているヘキサメチルリン酸トリアミド等の水溶性極性溶媒を除去しても、ポリフッ化ビニリデンの自発分極の方向は維持されることが確認されている(特許文献1参照)。よって、水洗により、圧電特性に優れ且つ純度が高く基材10への密着性及び柔軟性に優れたPVDF膜20を形成することができる。PVDF膜20の膜厚は、用途に応じて適宜選択することができ特に限定されないが、概ね70μm〜300μm程度である。
また、所定の水溶性極性溶媒の脱離により、更に体積空隙率が大きい多孔質の膜を形成することができる。多孔性を有することにより、この膜は優れた歪特性を有する。
本実施形態では、純度が高く且つ多孔性に優れた膜を形成するために、塗布液に水溶性極性溶媒よりも沸点が低い有機溶媒を混合している。そして、乾燥工程において、塗布膜に水溶性極性溶媒を残存させたまま、かかる有機溶媒を先に蒸発させることで、残存膜を、多孔性を有する乾燥膜とし、続く水洗工程において、かかる乾燥膜から、更に水溶性極性溶媒を脱離させて、より多孔性を有するPVDF膜20とする。このような乾燥工程と水洗工程の2つの工程により、純度が高く且つ多孔性に優れたPVDF膜20を形成することができる。
更に、本実施形態の製造方法によれば、塗布液に混合する、水溶性極性溶媒よりも沸点が低い有機溶媒の混合比率を変えることにより、膜の多孔性、即ち、体積空隙率を制御することが可能である。具体的には、かかる有機溶媒の混合比率を増やすことにより、乾燥工程で蒸発する有機溶媒を増大させ、PVDF膜20の多孔性を高め、体積空隙率を大きくすることができる。
このように、本実施形態にかかるPVDF膜付基材1の製造方法によれば、大掛かりな設備を必要とせず、基材10の準備工程、塗布液の形成工程、塗布膜の形成工程及び乾燥工程、乾燥した塗布膜の水洗工程のみからなる簡便な方法により、圧電特性に優れ且つ純度が高く基材10への密着性及び柔軟性に優れたPVDF膜20を具備するPVDF膜付基材1を製造することができる。また、このような塗布法によるPVDF膜付基材1の製造は、製造工程が少ないため、環境負荷が小さく、製造コストの低減を図ることができる。このような圧電特性に優れ且つ純度の高い膜を圧電体膜として各種センサに搭載することにより、検知特性の優れたセンサを実現することができる。更に、柔軟性に優れたPVDF膜付基材1を製造できるため、例えば、かかるPVDF膜付基材1を、固定対象に応じて変形することが可能な生体センサ等に適用することができる。
(第2の実施形態)
<β型ポリフッ化ビニリデン膜を具備する圧電センサ>
図2は、本発明の第2の実施形態にかかるβ型ポリフッ化ビニリデン膜を具備する圧電センサの構造を模式的に示す平面図であり、図3は、図2の断面図であり、(a)はA−A′線断面図、(b)はB−B′線断面図である。図示するように、PVDF膜20を具備する圧電センサ(以下、「PVDFセンサ2」という)は、基材10と、基材10の少なくとも一部の領域上に形成される第1電極30と、第1電極30上に形成されるPVDF膜20と、PVDF膜20中に配設される第2電極40とを含むものである。PVDFセンサ2は、PVDF膜20との密着性の問題が解消され、且つ柔軟性を有する基材10を用いており、柔軟性を有する第1電極30及び第2電極40が形成されているため、PVDF膜20の特長である柔軟性を阻害することなく、センサ全体としても柔軟性に優れるものである。なお、基材10及びPVDF膜20については、上述した通りであるので説明を適宜省略する。
第1電極30は、基材10上のうち、少なくとも一部の領域に形成されたものである。そして、用途に応じて適度に変形することが可能な程度の柔軟性を有し、且つ基材10とPVDF膜20との密着性を阻害しない構造を有しているものである。本実施形態では、第1電極30として、一対の主電極31a,31bの間に、9本の電極線32a〜32iが形成されてなる電極パターンを適用した。主電極31a,31bは、基材10の一辺の長さを超えない程度の長さを有する矩形状の電極であり、基材10の±Y方向の端部周辺にそれぞれ形成されている。一方、9本の電極線32a〜32iは、線状の電極であり、互いに離間して形成された主電極31a,31bの間に、主電極31a,31bに対して垂直に、且つ互いに交差せず一定の間隔をあけて平行になるように形成され、これらの両端部は主電極31a,31bにそれぞれ接続されて、主電極31a,31b及び9本の電極線32a〜32iで1つの電極(共通電極)として機能するようになっている。即ち、一対の主電極31a,31bの間に線状の9本の電極線32a〜32iが形成されることで、第1電極30上にPVDF膜20が形成された場合において、図3(a)に示した通りの電極線32a及び図示しない電極線32b〜32i上にPVDF膜20が形成される領域と、図3(b)に示した通りの基材10の多孔質膜12上にPVDF膜20が形成される領域が存在するようになる。かかる構成により、図3(a)に示した領域で、導通性を確保することができると共に、図3(b)に示した領域で、基材10とPVDF膜20との密着性を保持することができる。なお、電極線32a〜32iの本数は9本に限定されず、必要に応じて適宜変更することが可能である。
第1電極30における主電極31a,31bと電極線32a〜32iの材料は特に限定されず、例えば、銀(Ag)、金(Au)、チタン(Ti)、パラジウム(Pd)、白金(Pt)、銅(Cu)、或いはこれらの合金等の一般的な電極材料を適用することができ、用途に応じて適宜選択することができる。また、第1電極30の形成方法は、形成した第1電極30が基材10の柔軟性を阻害しなければ特に限定されず、電極形状やセンサ用途等に応じて適宜選択することができる。例えば、上述の電極材料を含んだ金属ペーストを用いて電極パターン(第1電極30)を、インクジェット印刷する方法や、真空蒸着(物理蒸着(PVD)や化学蒸着(CVD)を含む)により形成する方法等を適用することができる。第1電極30の電極パターンは、上述した通り、基材10とPVDF膜20とが接触することが可能な領域を含むように構成すればよく、例えば、網状、格子状、メッシュ状等のパターン形状が好ましい。ただし、第1電極30は、上述の主電極31a,31bを形成せずに、電極線32a〜32iのみのパターン形状としてもよい。第1電極30における電極線32a〜32iの間隔は、基材10とPVDF膜20との密着性を阻害することなく、且つセンサとして機能することが可能な導通性を保持していれば特に限定されず、用途に応じて適宜選択することができる。
また、第1電極30は、一般的な電極として機能し、且つ基材10とPVDF膜20との密着性及び柔軟性を保持することができれば特に限定されず、例えば、糸状又は布状に形成されたものであってもよい。例えば、糸状の電極(糸状体)を適用する場合には、Z方向からみた外観形状が、上述の主電極31a,31bを形成せずに、電極線32a〜32iのみを形成した電極パターンと類似したものとなる。このような場合には、糸状体として、例えば、ポリエステル、レーヨン、ナイロン、ポリプロピレン、ポリウレタン等の合成繊維に、金属めっきを施した金属めっき線等の柔軟性に優れる材料や細い金属ワイヤ等を挙げることができる。金属めっき線としてはモノフィラメント及び撚糸の何れでもよいが、強度を考慮すると撚糸が好ましい。めっき処理で用いる金属の素材は特に限定されないが、上述の電極材料を適用することができ、用途に応じて適宜選択することができる。また、糸状体の太さは、用途に応じて適宜選択され得るものであり特に限定されないが、1デニール〜100デニールのものを用いることができる。なお、1デニールは、9000mの糸の質量をグラム単位で表したものである。また、糸状体として複数の金属めっきフィラメントを束ねたものである場合、その径(上述の糸状体の太さに相当)は、用途に応じて適宜選択され得るものであり特に限定されないが、500μmΦ以下のものを用いることができる。なお、金属めっき撚糸の代替として、1本の金属ワイヤを第1電極30として適用すると、例えその径が500μmΦ以下であったとしても、100μmΦを超過するとPVDFセンサ2の柔軟性を阻害するので好ましくないため、特に100μmΦ以下が好ましく、概ね100μmΦが望ましい。
布状の電極(布状体)としては、例えば、撚糸を織った織物、撚糸を編んだ編物、若しくは撚糸を粗くメッシュ状に織ったもの(メッシュ状体)等を挙げることができ、これらの中では、織物又はメッシュ状体としたものが好ましい。なお、上述の織物、編物及びメッシュ状体に用いる撚糸の本数は限定されず、用途に応じて適宜選択することができる。
第2電極40は、一般的な電極として機能し、且つ基材10とPVDF膜20の柔軟性を保持することができれば特に限定されず、第1電極30と同様の電極材料、電極形態及び形成方法を適用することができ、例えば、第2電極40として、5本の電極線40a〜40eを用いることができる。ただし、電極線40a〜40eの使用本数についても5本に限定されず、必要に応じて変更可能である。また、詳細は後述するが、第2電極40は、PVDF膜20中又はPVDF膜20上に形成されるものである。例えば、第2電極40をPVDF膜20中に形成する場合には、製造容易性の観点から、電極形態は糸状体又は布状体であることが好ましい。
また、第1電極30及び第2電極40は用途に応じて使い分けることができ、これらに、同一の電極形態を適用してもよいし、それぞれ異なる電極形態を適用してもよい。例えば、第1電極30及び第2電極40に、それぞれ糸状体、布状体及び電極パターンの何れかを適用してもよいし、或いは、第1電極30に糸状体、布状体及び電極パターンの何れかを適用し、第2電極40に第1電極30とは異なる電極形態を適用してもよい。これらの場合、布状体又は電極パターンは、1つの電極(共通電極)として機能してもよいし、個別の電極として機能してもよい。或いは、第1電極30及び第2電極40に、それぞれ複数の糸状体を適用して、マトリックス構造を有する電極としてもよい。即ち、かかる構造の第1電極30及び第2電極40は、相互に間隔をあけて配設された複数の第1電極(第1電極群)と、相互に間隔をあけて配設され且つ複数の第1電極と交差して設けられた複数の第2電極(第2電極群)とを有するワイヤメッシュ電極である。このような構成により、ワイヤメッシュ電極は、第1電極群及び第2電極群がそれぞれ共通電極として機能することが可能となり、或いは、各第1電極及び各第2電極間で個別にセンシングが可能となる。
本実施形態では、インクジェット印刷により、第1電極30としてAg配線(主電極31a,31bと電極線32a〜32i)を形成し、上述の第2電極40の電極線40a〜40eとして、Agめっき糸を用いた。
本実施形態にかかるPVDFセンサ2は、優れた歪特性を有するPVDF膜20を具備するので、従来の延伸法で形成したβ型ポリフッ化ビニリデン膜を具備する圧力センサと比較すると、例えば、出力電圧は、安定した電位変化を示し、検知感度は数倍優れていることがわかっている(特許文献1参照)。これにより、高感度で且つ安定した検知特性を有し、信頼性の高い圧力センサを実現できる。また、PVDFセンサ2は、PVDF膜20との密着性の問題が解消され、且つ柔軟性を有する基材10を用いており、柔軟性を有する第1電極30及び第2電極40が形成されているため、PVDF膜20本来の特性である柔軟性が阻害されず、柔軟性に優れた圧力センサを実現できる。
また、このような優れた歪特性を有するPVDF膜20は、圧力センサの他にも圧電式水素センサ、超音波センサ、加速度センサ、振動センサ及び衝撃センサ等の各種圧電式センサや、血流センサ、触角センサ等の低侵襲手術用センサ等に広く用いることができる。
<β型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法>
図4は、β型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法を説明するための図であり、(a)は基材上に第1電極を配置した状態を示す平面図及び正面図であり、(b)は基材の上方に第2電極を配置した状態を示す平面図及び正面図であり、(c)はβ型ポリフッ化ビニリデン膜中に第2電極を配設した状態を示す平面図及び正面図である。
図示するように、PVDFセンサ2の製造方法は、上述したPVDF膜付基材1の製造方法に第1電極30及び第2電極40を形成する工程を加えたものであり、圧電特性に優れ且つ純度が高く基材10への密着性及び柔軟性に優れたPVDF膜20を具備したPVDFセンサ2を製造するものである。
このような優れた特性を有するPVDFセンサ2の製造方法は、樹脂フィルム11と、樹脂フィルム11上に形成される、少なくとも金属化合物粒子を含む多孔質膜12とを含む基材10を準備する工程と、多孔質膜12の少なくとも一部の領域上に第1電極30を形成する工程と、ポリフッ化ビニリデンと、ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程と、得られた塗布液から形成されるβ型ポリフッ化ビニリデンからなる塗布膜中に第2電極が配設されるように、塗布膜を第1電極30が設けられた配置も含む基材10上に形成する工程と、形成された塗布膜を乾燥する工程と、乾燥した塗布膜を水洗する工程とからなる。
以下、各工程について説明するが、PVDFセンサ2の製造方法は、上述した通り、第1電極30を形成する工程と、PVDF膜20を形成する工程中に第2電極40を形成する工程が加わったこと以外は、PVDF膜付基材1の製造方法と同様であるので、ここでの説明は適宜省略する。
第1電極30の形成工程は、上述の通り基材10を準備した後、基材10における多孔質膜12の少なくとも一部の領域上に第1電極30を形成する工程である。図4(a)に示すように、まず、基材10上に、一定の間隔を置いて載置された主電極31a,31bの間に9本の電極線32a〜32iが形成された電極パターンをインクジェットにより印刷し、第1電極30とする。このような電極パターンでは、多孔質膜12上における主電極31a,31bの間の領域内に、電極(9本の電極線32a〜32i)が形成されていない領域が存在することになる。つまり、後述するPVDF膜20は、電極線32a〜32i上、及び基材10の多孔質膜12上に形成されることになり、大部分が多孔質膜12上に形成されることから基材10との密着性を確保しつつ、第1電極30が電極として機能するように形成される。本実施形態では、基材10としてOHPフィルムを適用し、第1電極30としてAg配線を適用した。
また、第1電極30の形成後に、その密着性を強化するために焼成工程を追加してもよい。焼成条件は、必要に応じて適宜変更され得るが、本実施形態では、90℃で30分間の焼成を行った。
PVDF膜20を形成する工程は、第1電極30を形成した基材10の上方に第2電極40を配設する工程と、配設した第2電極40を内部に含むようにPVDF膜20を形成する工程とからなる。
図4(b)に示すように、第2電極40の形成工程では、1対の台座50a,50bを準備し、これらの間に電極線32a〜32iが収まるように、基材10上にそれぞれ配置する。このとき、1対の台座50a,50bの間隔は、概ね1cm〜10cm程度であるが、第1電極30の形態に応じて適宜設定することができる。次に、第2電極40として糸状体である電極線40a〜40eを5本用意し、台座50a,50b上に電極線40a〜40eを、互いに100μm〜500μmの間隔をあけて載置し張架する。このときの電極線40a〜40eの張力は5g重〜100g重である。
本実施形態では、電極線40a〜40eとして、上述のAgめっき糸を使用し、電極線32a〜32iの離間距離を500μmとし、張架時の張力を10g重とした。
図4(c)に示すように、PVDF膜20の形成工程では、1対の台座50a,50bを用いて基材10の上方に配設した電極線40a〜40eからなる第2電極40を内部に含むように、塗布液の形成工程で得られた塗布液を用いて塗布膜を形成する。本実施形態では、得られた塗布液を基材10の上方に配設した第2電極40に、これらが塗布液中に埋没する程度の量を滴下した。これにより、後述する乾燥工程及び水洗工程を経て得られるPVDF膜20中に第2電極40を配設することができる。また、このPVDF膜20は、多孔質膜12上及び第1電極30上にそれぞれ形成されることから、PVDF膜20の基材10に対する密着性を保持することができる。
なお、塗布膜の形成方法は、第2電極40を塗布膜中に配設して膜形成できるものであれば特に限定されないが、適用する第1電極30及び第2電極40の形態に応じて、適宜選択することができる。
その後、得られた塗布膜を、実施形態1と同様に乾燥工程及び水洗工程に供してPVDF膜20を具備したPVDFセンサ2となる。このPVDF膜20は、上述した通り、大部分が多孔質膜12上に形成されることから、基材10との密着性が確保され、水洗工程に供しても剥離することは無い。なお、形成されたPVDF膜20の膜厚は約70μm〜300μmである。
このように、本実施形態にかかるPVDFセンサ2の製造方法によれば、大掛かりな設備を必要とせず、基材10の準備工程、各種電極30,40の形成工程、塗布液の形成工程、塗布膜の形成工程及び乾燥工程、乾燥した塗布膜の水洗工程のみからなる簡便な方法により、圧電特性に優れ且つ純度が高く基材10への密着性及び柔軟性に優れたPVDF膜20を具備するPVDFセンサ2を製造することができる。また、このような塗布法によるPVDF膜20の製造は、上述した通り、環境面及びコスト面に配慮しつつ、高性能の圧電体膜として各種センサに搭載することにより、検知特性の優れたセンサを実現することができる。更に、柔軟性に優れたPVDFセンサ2を製造できるため、かかるセンサの固定対象に応じて変形することが可能な生体センサ等に適用することができる。なお、本実施形態では、基材10の準備工程及び塗布液の形成工程の順序は問わない。
以下、実施例に基づいて、本発明を更に詳細に説明する。
(実施例1)
実施例1では、上記実施形態2に基づき、ヘキサメチルリン酸トリアミド(以下、「HMPA」という)とアセトン(純度>99.5%)からなる混合溶液(体積%比50:50)に、β型ポリフッ化ビニリデン(以下、「PVDF」という)の原料であるα型のPVDF粉末(Polysciences社製)を、混合溶液の総質量に対して10wt%となるように加え、PVDF粉末が溶解するまで、混練器で30分撹拌を行い、均一なPVDFを含有する塗布液(10wt%PVDF液)を得た。
次に、PETフィルム(樹脂フィルム11)上に水酸化アルミニウム粒子を含む溶液を均一に塗布し乾燥させ多孔質膜12を形成した基材10を用意し、その上に、図4(a)に示した通りの第1電極30(Ag配線)をインクジェットにより印刷し、90℃で30分間Ag配線の焼成を行った。次に、第2電極40(5本のAgメッキ糸/50μmΦ)を用意し、更に1対の台座50a,50bを準備して、これらの間に第1電極30が収まるように、基材10上にそれぞれ配置した。次に、図4(b)に示した通り、5本のAgメッキ糸からなる第2電極40を、互いに500μmの間隔をあけて載置し、これらを20g重の張力で架張し、この状態を保持した。
次に、図4(c)に示した通り、得られた塗布液200μLを5本のAgメッキ糸に滴下し、これらのめっき糸を内部に含んだ状態のPVDF含有膜(塗布膜)を得た。このPVDF含有膜は、基材10及びAg配線(第1電極30の電極線32a〜32i)とそれぞれ接している。そして、このPVDF含有膜を約70℃のホットプレート上で、約5時間乾燥し、乾燥膜を得た。得られた乾燥膜を、その内部に含んだ5本のAgめっき糸及び基材10ごと純水で2分間水洗し、PVDF含有膜が剥離しないことを確認した。これにより、厚さ200μmのPVDF膜20を形成し、図2に示した通りのPVDFセンサ2を得た。
(試験例1)
実施例1のPVDFセンサ2について、タッピング試験を行った。具体的には、PVDFセンサ2をビニル袋に入れ、その上から指で軽くタッピングしたときの電気信号の受信の有無を確認した。かかるPVDFセンサ2は、第1電極30及び第2電極40を、それぞれ共通電極とした。
また、上述のPVDFセンサ2は、上段下段それぞれの電極30,40を個別に接続して使用することもできる。この場合、圧力信号の強弱を適切に処理することにより位置情報を得ることが可能である。例えば、上段側及び下段側のAgめっき糸からなる各電極(第1電極30の電極線32a〜32i及び第2電極40の電極線40a〜40e)に、それぞれ番号(電極番号)を付して区別できるようにしておき、最も強い信号が得られる下段の電極番号と最も強い上段の電極番号を位置情報として記録し、時間経過を逐次記録することにより、測定対象の移動方向を特定できる。このような使用方法では、それぞれの電極本数は面積に応じて調整され、また、信号処理にもある程度高速な処理を要するためプロセッサが必要である。
図5は、実施例1のPVDFセンサのタッピング試験の測定結果を示すグラフである。図示するように、PVDFセンサ2を共に軽く指でタッピングしたときの電気信号が得られている。
以上のことから、PVDF膜20を具備するPVDFセンサ2は、高感度で且つ安定した電位変化を示す信頼性の高い圧力センサとして使用可能である。試験例1では、第2電極40として複数の電極を共通電極として使用した場合、電極の表面積が増える効果でキャパシタの容量が増大するため、より微細な振動や圧力を検出するのに適した大きな信号を捉えることが可能となるため、用途に応じて上述の布状の電極(布状体)は、糸状体と同様にPVDFセンサ2の電極として適用できる。
(他の実施形態)
以上、本発明の一実施形態について説明したが、本発明の基本的構成は上述した実施形態に限定されるものではない。例えば、上述した実施形態では、β型ポリフッ化ビニリデン膜を圧電体膜として圧力センサに適用したが、圧力センサ以外でも、圧電式水素センサ、超音波センサ、加速度センサ、振動センサ及び衝撃センサ等の各種センサに広く適用することができる。また、回路及びソフトウエア等の情報処理デバイスや、アクチュエータ及びトランスデューサ等の出力デバイス等にも用いることができる。更に、血流センサ、触角センサ等の低侵襲手術用センサ等の各種生体センサ等にも用いることができる。
また、本実施形態では、PVDF膜中に第2電極を配設したPVDFセンサを例に挙げて説明したが、これに限定されず、例えば、PVDF膜上に第2電極を配設したPVDFセンサとしてもよい。この場合、製造容易性の観点から、電極形態は電極パターンが好ましい。PVDF膜上に電極パターンを形成する場合には、例えば、網状、格子状、メッシュ状等のパターン形状のほか、PVDF膜上の一面に、上述の電極材料からなる電極薄膜を形成してもよいし、或いは、かかる電極薄膜を形成した後に、所定形状にパターンニングしてもよい。
また、本実施形態では、図面において示す構成要素、即ち基材、膜、電極等の厚さ、幅、相対的な位置関係等は、本発明を説明する上で、誇張して示されている場合がある。また、本明細書の「上」という用語は、構成要素の位置関係が「直上」であることを限定するものではない。例えば、「基材上の第1電極」という表現は、基材の上方に第1電極が配設されている場合も含むものである。また、「基材上の第1電極」や「基材上のPVDF膜」という表現は、基材と第1電極との間や、基材とPVDF膜との間に、他の構成要素を含むものを除外しない。
本発明は、β型ポリフッ化ビニリデン膜の圧電特性を利用した各種センサ、情報処理デバイス及び出力デバイス等の産業分野の他、各種生体センサ等の医療分野で利用することができる。
1 PVDF膜付基材
2 PVDFセンサ
10 基材
11 樹脂フィルム
12 多孔質膜
20 PVDF膜
30 第1電極
31a,31b 主電極
32a〜32i,40a〜40e 電極線
40 第2電極
50a,50b 台座

Claims (6)

  1. 樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材と、
    前記多孔質膜上に形成されるβ型ポリフッ化ビニリデン膜と
    を含むことを特徴とするβ型ポリフッ化ビニリデン膜付基材。
  2. 樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材を準備する工程と、
    ポリフッ化ビニリデンと、前記ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、前記水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程と、
    得られた塗布液を前記基材に塗布してβ型ポリフッ化ビニリデンからなる塗布膜を形成する工程と、
    形成した塗布膜を乾燥する工程と、
    乾燥した塗布膜を水洗する工程と
    を含むことを特徴とするβ型ポリフッ化ビニリデン膜付基材の製造方法。
  3. 樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材と、
    前記多孔質膜の少なくとも一部の領域上に形成される第1電極と、
    前記第1電極上に形成されるβ型ポリフッ化ビニリデン膜と、
    前記β型ポリフッ化ビニリデン膜中又は前記β型ポリフッ化ビニリデン膜上に配設される第2電極とを含み、
    前記β型ポリフッ化ビニリデン膜は、前記多孔質膜における前記第1電極が形成されていない領域上にも形成されている
    ことを特徴とするβ型ポリフッ化ビニリデン膜を具備する圧電センサ。
  4. 前記第1電極は、糸状若しくは布状に形成されたもの又は電極パターンであることを特徴とする請求項3に記載のβ型ポリフッ化ビニリデン膜を具備する圧電センサ。
  5. 樹脂フィルムと、前記樹脂フィルム上に形成される、少なくとも金属酸化物粒子又は金属水酸化物粒子を含む多孔質膜とを含む基材を準備する工程と、
    前記多孔質膜の少なくとも一部の領域上に第1電極を形成する工程と、
    ポリフッ化ビニリデンと、前記ポリフッ化ビニリデンを溶解してβ型に固定する水溶性極性溶媒と、前記水溶性極性溶媒よりも沸点が低い有機溶媒とを混合して塗布液を形成する工程と、
    得られた塗布液から形成されるβ型ポリフッ化ビニリデンからなる塗布膜中又は前記塗布膜上に第2電極が配設されるように、前記塗布膜を前記第1電極が設けられた配置も含む基材上に形成する工程と、
    形成された塗布膜を乾燥する工程と、
    乾燥した塗布膜を水洗する工程とを含み、
    前記β型ポリフッ化ビニリデンからなる塗布膜を、前記多孔質膜における前記第1電極が形成されていない領域上にも形成する
    ことを特徴とするβ型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法。
  6. 前記第1電極は、糸状若しくは布状に形成されたもの又は電極パターンであることを特徴とする請求項5に記載のβ型ポリフッ化ビニリデン膜を具備する圧電センサの製造方法。
JP2016132828A 2016-07-04 2016-07-04 β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法 Active JP6693619B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132828A JP6693619B2 (ja) 2016-07-04 2016-07-04 β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132828A JP6693619B2 (ja) 2016-07-04 2016-07-04 β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2018002913A JP2018002913A (ja) 2018-01-11
JP6693619B2 true JP6693619B2 (ja) 2020-05-13

Family

ID=60948498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132828A Active JP6693619B2 (ja) 2016-07-04 2016-07-04 β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法

Country Status (1)

Country Link
JP (1) JP6693619B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170962A1 (ja) * 2019-02-18 2020-08-27 株式会社バルカー 圧電センサーおよび圧電センサーの製造方法
CN112701213A (zh) * 2020-12-22 2021-04-23 杭州华新机电工程有限公司 一种pvdf压电感应薄膜的制备方法和压电传感器及其在起重机啃轨中的应用
CN115031887B (zh) * 2022-06-06 2023-10-20 深圳大学 多孔压电薄膜及其制备方法、应用和压力传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048870B2 (ja) * 2012-08-27 2016-12-21 独立行政法人国立高等専門学校機構 β型ポリフッ化ビニリデン膜の製造方法、β型ポリフッ化ビニリデン膜、β型ポリフッ化ビニリデン膜を具備する圧電式センサ及び圧電式センサの製造方法
KR20170009838A (ko) * 2014-05-20 2017-01-25 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터, 그 제조 방법 및 비수계 이차전지
JP6467217B2 (ja) * 2014-12-19 2019-02-06 学校法人 関西大学 圧電振動センサ
JP6713664B2 (ja) * 2016-06-10 2020-06-24 株式会社ハッピージャパン β型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法
JP7074419B2 (ja) * 2016-06-21 2022-05-24 住友化学株式会社 積層体

Also Published As

Publication number Publication date
JP2018002913A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6693619B2 (ja) β型ポリフッ化ビニリデン膜付基材及びその製造方法、並びにβ型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法
Chatterjee et al. Electrically conductive coatings for fiber-based e-textiles
Cheng et al. In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing
Luo et al. Force and humidity dual sensors fabricated by laser writing on polyimide/paper bilayer structure for pulse and respiration monitoring
JP6713664B2 (ja) β型ポリフッ化ビニリデン膜を具備する圧電センサ及びその製造方法
Ji et al. Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications
CN110864828A (zh) 一种银纳米线/MXene柔性应力传感器的制备方法
Kannichankandy et al. Flexible piezo-resistive pressure sensor based on conducting PANI on paper substrate
CN111118889B (zh) 一种多功能柔性传感纤维膜及其制备方法和应用
Xu et al. A flexible, conductive and simple pressure sensor prepared by electroless silver plated polyester fabric
JP6618546B2 (ja) 導電性ポリマー自立膜の作製プロセス
KR101926371B1 (ko) 고민감도 스트레인 센서의 제조 방법, 스트레인 센서 및 이를 포함하는 웨어러블 디바이스
Wang et al. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires
Zhang et al. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films
Zhao et al. AgNWs/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding
Zhang et al. A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow
Sun et al. Design and fabrication of flexible strain sensor based on ZnO-decorated PVDF via atomic layer deposition
WO2014165908A1 (en) Method and device for smart sensing
CN109239139A (zh) 一种纱线状湿度传感器
CN110558968B (zh) 一种微凝胶可穿戴传感器及其制备方法
Tuukkanen et al. A survey of printable piezoelectric sensors
Yin et al. Electrospun micro/nanofiber with various structures and functions for wearable physical sensors
WO2019234711A1 (en) Elastic printed conductors
Zhong et al. Tunable wrinkled graphene foams for highly reliable piezoresistive sensor
Liu et al. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200402

R150 Certificate of patent or registration of utility model

Ref document number: 6693619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250