JP6685315B2 - プロピレンのエポキシ化のためのチタンゼオライト触媒の再生方法 - Google Patents
プロピレンのエポキシ化のためのチタンゼオライト触媒の再生方法 Download PDFInfo
- Publication number
- JP6685315B2 JP6685315B2 JP2017542404A JP2017542404A JP6685315B2 JP 6685315 B2 JP6685315 B2 JP 6685315B2 JP 2017542404 A JP2017542404 A JP 2017542404A JP 2017542404 A JP2017542404 A JP 2017542404A JP 6685315 B2 JP6685315 B2 JP 6685315B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reactor
- stream
- titanium
- hydrogen peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/89—Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/90—Regeneration or reactivation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/12—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/04—Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/183—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/06—Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
- C01B39/08—Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
- C01B39/085—Group IVB- metallosilicates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Epoxy Compounds (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
該方法は段階(i)を含み、
段階(i)は、
(a)プロピレンオキシドの連続的製造工程であって、
(a1)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する反応器に導入する工程と、
(a2)前記反応器中に、前記触媒の存在下で(a1)による前記供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3)前記反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b)前記供給流を前記反応器中に導入することを停止する工程、及び
(c)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i)が、工程(a)〜(c)の一連をn回繰り返す工程をさらに含み、ここで、nが、整数であり、かつ、少なくとも1であり;
前記再生方法は、段階(ii)をさらに含み、
段階(ii)は、工程(a)〜(c)の一連をn回繰り返した後、(c)から得た前記触 媒をか焼する工程を含み、
段階(i)〜(ii)の一連を、任意にm回繰り返し、ここで、mが、整数であり、かつ、少なくとも1であり、
段階(i)〜(ii)の一連の各回の繰り返しにおいて、nが同一又は異なる。
本発明の方法の段階(i)は、
(a)プロピレンオキシドの連続的製造工程であって、
(a1)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する反応器に導入する工程と、
(a2)前記反応器中に、触媒の存在下で(a1)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3)前記反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b)前記供給流を前記反応器中に導入することを停止する工程、及び
(c)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i)は、工程(a)〜(c)の一連をn回繰り返す工程(nが、整数であり、かつ、少なくとも1である)をさらに含む。
(a1)による供給流は、プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む。
過酸化水素及び過酸化水素源の両方は、(a1)による供給流中のエポキシ化剤として使用することができる。
(a1)で使用される有機溶媒は、原則として、この目的のために知られている全ての溶媒である。好ましくは、アルコール、ニトリル、及びそれらの混合物などの有機溶媒、また、任意に水である。好ましくは、有機溶媒は、メタノール及びアセトニトリルからなる群から選択される。より好ましくは、有機溶媒はアセトニトリルである。
一般的には、(a1)による供給流は、任意の考えられる方法に従って製造することができる。したがって、(a1)中の供給流は、プロペンを含む流れ、過酸化水素又は過酸化水素源を含む流れ、及び有機溶媒を含む流れを混合することにより、換言すれば、プロペンを含む流れと有機溶媒を含む流れと混合して、得た流れを過酸化水素又は過酸化水素源を含む流れと混合することにより製造されてもよい。
少なくとも1種のカリウム塩の化学的性質に関しては、特別な制約は存在しない。好ましくは、その少なくとも1種のカリウム塩は、少なくとも1種の無機カリウム塩、少なくとも1種の有機カリウム塩、及び少なくとも1種の無機カリウム塩と少なくとも1種の有機カリウム塩との組合せからなる群から選択される。
一般的には、触媒活性材料として使用されるチタン含有ゼオライトは、以下の3つの文字記号:ABW、ACO、AEI、AEL、AEN、AET、AFG、AFI、AFN、AFO、AFR、AFS、AFT、AFX、AFY、AHT、ANA、APC、APD、AST、ASV、ATN、ATO、ATS、ATT、ATV、AWO、AWW、BCT、BEA、BEC、BIK、BOG、BPH、BRE、CAN、CAS、CDO、CFI、CGF、CGS、CHA、CHI、CLO、CON、CZP、DAC、DDR、DFO、DFT、DOH、DON、EAB、EDI、EMT、EPI、ERI、ESV、ETR、EUO、FAU、FER、FRA、GIS、GIU、GME、GON、GOO、HEU、IFR、ISV、ITE、ITH、ITW、IWR、IWW、JBW、KFI、LAU、LEV、LIO、LOS、LOV、LTA、LTL、LTN、MAR、MAZ、MEI、MEL、MEP、MER、MMFI、MFS、MON、MOR、MSO、MTF、MTN、MTT、MTW、MWW、NAB、NAT、NEES、NON、NPO、OBW、OFF、OSI、OSO、PAR、PAU、PHI、PON、RHO、RON、RRO、RSN、RTE、RTH、RUT、RWR、RWY、SAO、SAS、SAT、SAV、SBE、SBS、SBT、SFE、SFF、SFG、SFH、SFN SFO、SGT、SOD、SSY、STF、STI、STT、TER、THO、TON、TSC、UEI、UFI、UOZ、USI、UTL、VET、VFI、VNI、VSV、WEI、WEN、YUG、ZON、又はこれらの骨格構造の2つ以上の混合構造による骨格構造型を有してもよい。3つの文字記号及びそれらの定義に関しては、「Atlas of Zeolite Framework Types」、第5版、Elsevier、London、England(2001年)を参照する。
骨格構造型MWWのチタンゼオライトの亜鉛含有量は特別な制約を受けない。好ましくは、(a1)における触媒中に含まれる骨格構造型MWWのチタンゼオライトは、元素亜鉛として計算された、骨格構造型MWWのチタンゼオライトの総質量に対して0.1〜5質量%、より好ましくは0.2〜4質量%、より好ましくは0.5〜3質量%、より好ましくは1〜2質量%の範囲の量の亜鉛を含む。したがって、本発明は上記方法に関し、ここで、(a1)における触媒中に含まれる骨格構造型MWWのチタンゼオライトが、元素亜鉛として計算された、骨格構造型MWWのチタンゼオライトの総質量に対して0.1〜5質量%、好ましくは1〜2質量%の範囲の量の亜鉛を含む。
−98+/−xppmでのピーク1、
−104+/−xppmでのピーク2、
−110+/−xppmでのピーク3、
−113+/−xppmでのピーク4、
−115+/−xppmでのピーク5、
−118+/−xppmでのピーク6
で6つのピークを含む実施態様1〜5のいずれか一項に記載の成形物。ここで、いずれのピークにおいて、xは、1.5、好ましくは1.0、より好ましくは0.5であり、
Q=100*{[a1+a2]/[a4+a5+a6]}/a3
と定義されるQは、最大2.5、好ましくは最大1.6、好ましくは最大1.4であり、[a1+a2]は、ピーク1とピーク2のピーク面積の合計であり、[a4+a5+a6]は、ピーク4、5及び6のピーク面積の合計であり、a3は、ピーク3のピーク面積である。これらの29Si−NMRの特性は、WO 2013/117536の参考例4に従って決定されるものと理解されたい。
(b)(a)において提供された懸濁液を噴霧乾燥にかけて微粉末を得る工程と、
(c)(b)で得られた微粉末を任意にか焼する工程と
を含み、
(b)又は(c)、好ましくは(c)で得られた微粉末が、上記した実施態様1〜14のいずれかに記載の微粉末である、方法。
(e)(d)で得られた成形物を任意に乾燥及び/又はか焼する工程と
をさらに含む、実施態様1〜6のいずれか一項に記載の方法。
(aa)微粉末を、結合剤又は結合剤前駆体、好ましくはシリカ結合剤又はシリカ結合剤前駆体と混合して混合物を得る工程であって、シリカ結合剤中に含まれるか又はそれから得られるシリカに対する、微粉末中に含まれるZnTiMWWの質量比は3:7〜1:4の範囲にある、工程と、
(bb)(aa)で得られた混合物を成形して成形物を得る工程であって、前記成形が、好ましくは、(aa)で得られた混合物を、好ましくは、それから好ましくは1.0〜2.0mm、より好ましくは1.5〜1.7mmの範囲の直径を有するストランドを得る押出に付する工程と
を含む、実施態様7に記載の方法。
(g)水処理した成形物を任意に乾燥及び/又はか焼する工程と
さらに含み、
(f)又は(g)、好ましくは(g)で得られた成形物が、好ましくは、実施態様1〜8のいずれか一項に記載の成形物である、実施態様7〜12のいずれか一項に記載の方法。
(I)ホウ素含有構造型MWW(B−MWW)のアルミニウムを含有しないゼオライト材料を製造する工程と、
(II)B−MWWを脱ホウ素化して構造型MWW(MWW)のアルミニウムを含有しないゼオライト材料を得る工程と、
(III)チタン(Ti)をMWW中に組み込んで、Ti含有構造型MWW(TiMWW)のアルミニウムを含有しないゼオライト材料を得る工程と、
(IV)好ましくは、TiMWWを酸処理する工程と、
(V)TiMWWを亜鉛(Zn)含浸に付してZnTiMWWを得る工程と
を含む方法によって製造する。
(b)(a)で得られたB−MWW前駆体を含む母液のpHを6〜9の範囲に調整する工程と、
(c)濾過装置での濾過により、(b)で得られたpH調整した母液から、B−MWW前駆体を分離する工程と
を含む、骨格構造MWW(B−MWW)を含むアルミニウムを含有しないホウ素含有ゼオライト材料の製造方法。
(aa)酸を、B−MWW前駆体を含有する(a)から得られた母液に添加する工程であって、好ましくは、撹拌下で、添加を少なくとも部分的に実施する工程、
を含む方法によって調整する、実施態様1〜10のいずれか一項に記載の方法。
をさらに含む、実施態様1〜19のいずれか一項に記載の方法。
をさらに含む、実施態様1〜22のいずれか一項に記載の方法。
(g)B−MWW前駆体を含有する(f)から得られた懸濁液を噴霧乾燥して、噴霧粉末を得る工程と、
(h)B−MWW前駆体を含有する(g)から得られた噴霧粉末を、好ましくは、500〜700℃、より好ましくは550〜650℃、より好ましくは575〜625℃の範囲の温度で、1〜24時間、好ましくは2〜18時間、より好ましくは6〜12時間の範囲の期間か焼し、少なくとも99質量%、より好ましくは少なくとも99.5質量%がB−MWWからなる噴霧粉末を得る工程と
をさらに含む、実施態様1〜24のいずれか一項に記載の方法。
(a)段階(I)によって得られた構造型MWW(B−MWW)のホウ素含有ゼオライト材料を提供する工程と、
(b)B−MWWを液体溶媒系で処理することによってB−MWWを脱ホウ素化し、それによって、脱ホウ素化されたB−MWW(MWW)を得る工程と
を含み、
前記液体溶媒系が、水、一価アルコール、多価アルコール及びその2つ以上の混合物からなる群から選択され、前記液体溶媒系が、無機若しくは有機の酸又はその塩を含まず、前記酸が、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸、プロピオン酸、シュウ酸及び酒石酸からなる群から選択される、ゼオライト材料の製造方法。
(c.1)MWWを、液体溶媒系から分離する工程と、
(c.2)好ましくは、分離されたMWWを、好ましくは噴霧乾燥によって乾燥する工程と、
(c.3)(c.1)又は(c.2)から得られたMWWを、好ましくは500〜700℃の範囲の温度で任意にか焼する工程と
を含む方法によって、後処理する工程をさらに含む、実施態様1〜6のいずれか一項に記載の方法。
(a)段階(II)によって得られた脱ホウ素化された結晶性ゼオライト材料MWWを提供する工程と、
(b)チタンを、(a)において提供されたゼオライト材料中に組み込む工程であって、
(b.1)(i)において提供されたゼオライト材料、MWWテンプレート化合物及びチタン源を含む水性合成混合物を製造するステップであり、SiO2として計算された、(a)において提供されたゼオライト材料中に含まれているSiに対するMWWテンプレート化合物のモル比が0.5:1〜1.4:1の範囲にあるステップ、及び
(b.2)(b.1)において製造された水性合成混合物から、MWW骨格構造を有するチタン含有ゼオライト材料を水熱合成し、MWW骨格構造を有するチタン含有ゼオライト材料を含む母液を得るステップ
を含む工程と、
(c)MWW骨格構造を有するチタン含有ゼオライト材料を含む(b.2)から得られた母液を噴霧乾燥する工程と
を含む、方法。
をさらに含む、実施態様1〜13のいずれか一項に記載の方法。
をさらに含む、実施態様14〜21のいずれか一項に記載の方法。
をさらに含む、実施態様14〜23のいずれか一項に記載の方法。
をさらに含む、実施態様14〜25のいずれか一項に記載の方法。
本発明によれば、チタンシリカライト−1触媒、好ましくは固定床チタンシリカライト−1触媒を、触媒として使用することができる。チタンシリカライト−1は、アルミニウムを含有しておらず、その中でシリケート格子中のSi(IV)が、Ti(IV)としてのチタンで部分的に置き換えられている構造型MFIの微細孔ゼオライトである。この明細書において使用される「微細孔」という用語は、DIN66134に従って決定された2nm未満の細孔径を有する細孔に関する。
(a2)によれば、(a1)による供給流は、反応器中に、触媒の存在下で、エポキシ化条件に付し、プロピレンオキシド及び有機溶媒を含む反応混合物を得る。
工程(a3)によれば、プロピレンオキシド及び有機溶媒を含む生成物の流が、反応器から除去される。典型的には、前記生成物の流は、少なくとも1つのワークアップ工程に付され、生成物の流からプロピレンオキシドを単離する。さらに、エポキシ化反応の副生物を典型的に含む有機溶媒は、好ましくは1つ以上のワークアップ工程に付され、有機溶媒(好ましくは、アセトニトリル)を、好ましくは1つ以上精製工程の後に工程(a1)に再循環させる。好ましい一連のワークアップ工程は、以下の参考例2並びに図1及び2に記載されている。
工程(b)によれば、工程(a1)による反応器中に供給流を導入する工程を停止する。
(b1)過酸化水素又は過酸化水素源を含む流れを停止する工程と、
(b2)プロペンを含む流れ、及び有機溶媒を含む流れを停止する工程と、
(b3)任意に、反応器を減圧及び空にする工程と
を含み、
工程(b2)が、工程(b1)の後に、好ましくは少なくとも30分、より好ましくは少なくとも60分行われる。
工程(c)によれば、液体水性系を用いて触媒を洗浄する。
本発明の再生方法は、
(ii)工程(a)〜(c)の一連をn回繰り返した後に、(c)から得られた触媒をか焼する工程を含む段階
をさらに含む。
さらに、本発明は、本発明の方法により得られうる又は得られる、以下に記載される、触媒活性物質としての、チタン含有ゼオライトを含む再生触媒に関する。
(A1)再生触媒が触媒として使用されるプロピレンオキシドの前記製造方法において、過酸化水素の所定の転化率が達成される温度と、
(B1)他の点では(otherwise)同一のエポキシ化反応条件下で、それぞれの新鮮な触媒が触媒として使用される、プロピレンオキシドの前記製造方法において、過酸化水素の所定の転化率が達成される温度と
の絶対差として定義される。
(A2)再生触媒が触媒として使用されるプロピレンオキシドの前記製造方法において、過酸化水素に基づく選択率と、
(B2)それぞれの新鮮な触媒が、他の点では同一のエポキシ化反応条件下で触媒として使用されるプロピレンオキシドの前記製造方法において、過酸化水素に基づく選択率と
の間の%ポイントでの絶対差として定義され、
過酸化水素に基づく選択率が、製造されたプロピレンオキシドのモル数を、消費された過酸化水素のモル数で除し、100を乗じたものと定義される。
本発明によれば、エポキシ化反応を、並行して運転される、1つ以上の反応器、例えば少なくとも2つの反応器、3つの反応器又は4つの反応器中に行うことが好ましい。この方法の設計によれば、既定の反応器中で触媒を再生する間に、エポキシ化反応は、1つ以上の残りの反応器中で行われる。したがって、プロピレンオキシドは連続的に製造することができ、同時に、本発明の再生を行うこともできる。この方法の設計によれば、好ましくは、少なくとも2つの反応器中のエポキシ化反応は、それぞれの始動の間の好適な遅延を伴って順次開始される。
段階(i’)は、
(a’)第1の反応器中でのプロピレンオキシドの連続的製造工程であって、
(a1’)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する前記第1の反応器に導入する工程と、
(a2’)前記第1の反応器中に、触媒の存在下で(a1’)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3’)前記第1の反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、連続的製造工程、
(b’)前記供給流を前記第1の反応器中に導入することを停止する工程、及び
(c’)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i’)が、工程(a’)〜(c’)の一連をn’回繰り返す工程(n’が、整数であり、かつ、少なくとも1である)をさらに含み、
前記プロピレンオキシドの製造方法が、さらに段階(ii’)を含み、
段階(ii’)は、工程(a’)〜(c’)の一連を繰り返した後、(c’)から得た前記触媒をか焼する工程を含み、
段階(i’)〜(ii’)の一連を、任意にm’回繰り返し(m’が、整数であり、かつ、少なくとも1である)、
段階(i’)〜(ii’)の一連の1回の繰り返しにおいて、n’が同一であるか、又は異なり;
前記プロピレンオキシドの製造方法は、段階(i’’)をさらに含み、
段階(i’’)は、
(a’’)第2の反応器中でのプロピレンオキシドの連続的製造工程であって、
(a1’’)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する前記第2の反応器に導入する工程と、
(a2’’)前記第2の反応器中に、触媒の存在下で(a1’’)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3’’)前記第2の反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、連続的製造工程、
(b’’)前記供給流を前記第2の反応器中に導入することを停止する工程、及び
(c’’)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i’’)が、工程(a’’)〜(c’’)の一連をn’’回繰り返す工程(n’’が、整数であり、かつ、少なくとも1である)をさらに含み、
前記プロピレンオキシドの製造方法が、段階(ii’’)をさらに含み、
段階(ii’’)は、工程(a’’)〜(c’’)の一連を繰り返した後、(c’’)から得た前記触媒をか焼する工程を含み、
段階(i’’)〜(ii’’)の一連を、任意にm’’回繰り返し(m’’が、整数であり、かつ、少なくとも1である)、
段階(i’’)〜(ii’’)の一連の1回の繰り返しにおいて、n’’が同一であるか、又は異なり、
工程(b’)及び(c’)の少なくとも1つ一連、又は工程(b’)、(c’)及び(ii’)の少なくとも1つ一連の間に、(a’’)によりプロピレンオキシドを製造する。
該方法は段階(i)を含み、
段階(i)は、
(a)プロピレンオキシドの連続的製造工程であって、
(a1)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する反応器に導入する工程と、
(a2)前記反応器中に、前記触媒の存在下で(a1)による前記供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3)前記反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b)前記供給流を前記反応器中に導入することを停止する工程、及び
(c)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i)が、工程(a)〜(c)の一連をn回繰り返す工程をさらに含み、ここで、nが、整数であり、かつ、少なくとも1であり;
前記再生方法は、段階(ii)をさらに含み、
段階(ii)は、工程(a)〜(c)の一連をn回繰り返した後、(c)から得た前記触媒をか焼する工程を含み、
段階(i)〜(ii)の一連を、任意にm回繰り返し、ここで、mが、整数であり、かつ、少なくとも1であり、
段階(i)〜(ii)の一連の各回の繰り返しにおいて、nが同一又は異なる、方法。
(a11)過酸化水素又は過酸化水素源を含む流れを停止し、プロペンを含む流れ及び有機溶媒を含む流れを混合することを継続し、供給流を得る工程と、
(a12)プロペンを含む流れ及び有機溶媒を含む流れを停止する工程と、
を含み、
(a12)の後、(a11)を好ましくは30分、より好ましくは60分行い、(a12)の後、前記反応器を任意に減圧及び空にする、実施態様1から17のいずれか一項に記載の方法。
(A1)前記再生触媒が触媒として使用されるプロピレンオキシドの前記製造方法において、過酸化水素の所定の転化率が達成される温度と、
(B1)他の点では同一のエポキシ化反応条件下で、それぞれの新鮮な触媒が触媒として使用される、プロピレンオキシドの前記製造方法において、過酸化水素の所定の転化率が達成される温度と
の絶対差と定義される、実施態様36から38のいずれか一項に記載の再生触媒。
(A2)前記再生触媒が触媒として使用されるプロピレンオキシドの前記製造方法において、過酸化水素に基づく選択率と、
(B2)それぞれの新鮮な触媒が、他の点では同一のエポキシ化反応条件下で触媒として使用されるプロピレンオキシドの前記製造方法において、過酸化水素に基づく選択率と
の間の%ポイントでの絶対差と定義され、
前記過酸化水素に基づく選択率が、製造されたプロピレンオキシドのモルを、消費された過酸化水素のモルで除し、100を乗じたものと定義される、実施態様36から39のいずれか一項に記載の再生触媒。
該方法は段階(i’)を含み
段階(i’)は、
(a’)第1の反応器中でのプロピレンオキシドの連続的製造工程であって、
(a1’)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する前記第1の反応器に導入する工程と、
(a2’)前記第1の反応器中に、触媒の存在下で(a1’)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3’)前記第1の反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b’)前記供給流を前記第1の反応器中に導入することを停止する工程、及び
(c’)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i’)が、工程(a’)〜(c’)の一連をn’回繰り返す工程をさらに含み、ここで、n’が、整数であり、かつ、少なくとも1であり;
前記プロピレンオキシドの製造方法は、さらに段階(ii’)を含み、
段階(ii’)は、工程(a’)〜(c’)の一連を繰り返した後、(c’)から得た前記触媒をか焼する工程を含み、
段階(i’)〜(ii’)の一連を、任意にm’回繰り返し、ここで、m’が、整数であり、かつ、少なくとも1であり、
段階(i’)〜(ii’)の一連の各回の繰り返しにおいて、n’が同一又は異なり;
前記プロピレンオキシドの製造方法は、段階(i’’)をさらに含み、
段階(i’’)は、
(a’’)第2の反応器中でのプロピレンオキシドの連続的製造工程であって、
(a1’’)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのチタン含有ゼオライトを含む触媒を含有する前記第2の反応器に導入する工程と、
(a2’’)前記第2の反応器中に、触媒の存在下で(a1’’)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3’’)前記第2の反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b’’)前記供給流を前記第2の反応器中に導入することを停止する工程、及び
(c’’)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i’’)が、工程(a’’)〜(c’’)の一連をn’’回繰り返す工程をさらに含み、ここで、n’’が、整数であり、かつ、少なくとも1であり;
前記プロピレンオキシドの製造方法が、段階(ii’’)をさらに含み、
段階(ii’’)は、工程(a’’)〜(c’’)の一連を繰り返した後、(c’’)から得た前記触媒をか焼する工程を含み、
段階(i’’)〜(ii’’)の一連を、任意にm’’回繰り返し、ここで、m’’が、整数であり、かつ、少なくとも1であり、
段階(i’’)〜(ii’’)の一連の各回の繰り返しにおいて、n’’が同一又は異なり、
工程(b’)及び(c’)の少なくとも1つの一連、又は工程(b’)、(c’)及び(ii’)の少なくとも1つの一連の間に、(a’’)によりプロピレンオキシドを製造する、方法。
B エポキシ化ユニットB
C 蒸留ユニット
D 蒸留ユニット
E 蒸留ユニット
F 部分流蒸留ユニット
G 撹拌器−沈降タンクユニット
H アセトニトリル回収ユニット
I アセトニトリル再循環ユニット
(1)〜(20) 実施例に記載の特定の好ましいプロセスによる流れ
S0、S01、S02、S1、S2、S3、S4、S5、L1、L2、TL1、TL2、TL2、BL2 発明を実施するための形態及び実施例に記載の好ましいプロセスによる流れ。
F2 部分流蒸留ユニットFの第2の分別ユニット
(13)、(13a)、(14)、(15)、(15a)、(15b)、(15c)、(16)、(19)、(20) 実施例に記載の特定の好ましいプロセスによる流れ
S1、S2、S3、S4、S4a、S4b、S4c、S5、TL2 発明を実施するための形態及び実施例に記載の好ましいプロセスによる流れ。
WO 2013/117536 A2の83〜99頁に記載の実施例5、特に実施例5.1〜5.6に従って、成形品の形態での触媒を作製した。前記実施例5.1〜5.6において、前記成形品を特徴とする方法は、WO 2013/117536 A2の66〜71頁の参考例2〜10に記載されている。触媒の特徴的な特性は、WO 2013/117536 A2の図20〜27、及びWO 2013/117536 A2の104頁の前記図面の説明に示す。
略語に関しては、図1及び図2の配置を参照し、一般には「図面の簡単な説明」の部分に記載されている。全ての圧力は絶対圧力である。
a)エポキシ化主反応器(エポキシ化ユニットA)中のエポキシ化
主反応器Aは、垂直に取り付けられた5つの管(管長:12m、管内径:38mm)を有する管束反応器であった。各管は、18mmの直径を有する好適なサーモウェルに入れた10個の等間隔の測定点を有し、軸方向に置いている多点型熱電対を備えている。各管に、参考例1に従って製造した17.5KgのZnTiMWW触媒成形物(後処理した成形物)を入れた。最終的に残った空き空間に、ステアタイトスフェア(3mm直径)を充填した。反応熱は、温度自動調節の(thermostatized)伝熱媒体(水/グリコール混合物)を供給材料と並流で、シェル側に循環させることによって除去した。伝熱媒体の流速を、入口と出口間の温度差が1℃を超えないように調節した。以下で言及する反応温度を、反応器シェルに入る伝熱媒体の温度と定義した。反応器出口で、圧力を、圧力調整器で制御し、20バールで一定に保持した。
仕上げ反応器Bは、断熱的に運転される固定床反応器であった。これに関して、「断熱的」という用語は、それによって、積極的な冷却を行わず、かつ、熱損失を最少化するために仕上げ反応器を適切に断熱する運転方式による運転モードを指す。仕上げ反応器Bは、4mの長さ及び100mmの直径を有していた。反応器に、主エポキシ化反応器A中で使用したのと同じエポキシ化触媒9kgを充填した。空き空間に、ステアタイトスフェア(直径3mm)を充填した。仕上げ反応器Bの運転圧力は10バールであり、反応器出口での好適な圧力調整器により一定に保持した。硫酸チタニル法を用いて過酸化水素濃度を決定するために、仕上げ反応器Bの生成物を20分ごとにサンプリングした。
a)流れ(6)(流れS0)から軽質留分を分離して流れ(8)(流れS01)を得る工程
流れ(6)を、1.1バールで運転される軽質留分分離カラム(蒸留ユニットC)に供給した。蒸留カラムは、8.5mの長さ及び170mmの直径を有し、40個のバブルトレー、底部の蒸発器及び頂部の凝縮器を備えた。混合した洗浄/蒸留タワーとして、カラムを運転した。洗浄剤として、蒸留ユニットDの底部流れの一部(流れ11、20〜30kg/h)を取り出し、10℃まで冷却し、カラムの頂部に導入した。液体及びガス状の入口流れを、カラムの異なる箇所に導入した。流れ(6)の液体部分の供給点はバブルトレー37の上にあった;流れ(6)のガス状部分を、バブルトレー28(上から数える)の上からカラムに導入した。カラムの頂部での、冷却手段から出るガス流(7)は、主に、プロペン、プロパン(使用したポリマーグレードプロペン中の不純物として含まれる)、副産物として生成した酸素、及び少量の他の軽質留分(アセトニトリル(1〜2体積%)、プロピオンアルデヒド(約200体積ppm)、アセトン(約100体積ppm)、H2(約400体積ppm)、CO2(約400体積ppm)及びアセトアルデヒド(約100体積ppm))を含有し、プロピレンオキシドを実質的に含有していなかった(300体積ppm未満)。処分のために、このトップ流をフレアに供給した。軽質留分分離カラムの底部流(流れ(8)、すなわち流れS01)は、70℃の温度を有し、100〜200質量ppmのプロペン含有量を有していた。
流れS01からプロピレンオキシドを分離するために、上記のセクション1.2 a)により得られた流れS01を蒸留カラム(蒸留ユニットD)に導入した。該カラムは、50mの高さ及び220mmの直径を有し、パッキング(Sulzer BX64)を備えていた。該パッキングは、それぞれ3060mmの長さを有する8つの床、及びそれぞれ1530mmの長さを有する2つの床に分けた27.5mのパッキング全長を有する。それぞれの床の間に、中間流ディストリビューターを取り付けた。750ミリバールの最高圧で、カラムを運転した。流れS01の供給点は、上から数えると第4のパッキング床の下にあった。カラムのオーバーヘッド流を凝縮して、還流として(還流比が約5:1である)カラムに戻った。10.1kg/hの流速を有する残り(流れ(9))をオーバーヘッド生成物と見なし、実質的に99.9質量%を超える純度を有するプロピレンオキシドからなった。底部流中のプロピレンオキシド濃度が100質量ppm未満であるように、底部の蒸発器を運転した。得られた底部流の温度は約69℃であった。その後、流れS02を2つに分けた。その大部分(約85kg/hの流速を有する流れ(10))を、次の蒸留カラム(蒸留ユニットE)に供給した。残り(流れ(11)、20〜30kg/h)を冷却し、上記のセクション1.2 a)に記載した洗浄剤として軽質留分分離カラム(蒸留ユニットC)の頂部に再循環させた。この流れS02は、約80質量%のアセトニトリル含有量、100質量ppm未満のプロピレンオキシド含有量、約20質量%の水含有量、約0.1質量%のプロペングリコール含有量、及び約0.1質量%のヒドロキシプロパノール含有量を有していた。
上記のセクション1.2 b)により得られた流れS02を軽質分離カラム(蒸留ユニットE)に導入した。この軽質分離カラムは、8mの高さ及び150mmの呼び径を有し、35個のバブルトレーを備えていた。2バールの最高圧でカラムを運転し、流れS02を第7のバブルトレー(下から数える)の上に導入した。得られたオーバーヘッド流(流れ(12)、流速が約1kg/h)を40〜45℃の温度でカラムから出、内部還流を使用しないでカラムを運転したので、それを凝縮しなかった。アセトニトリル(6500体積ppm)以外、このオーバーヘッド流は、主に、2バールの値でのカラム運転温度を維持するために使用する窒素、及び少量の軽質留分(アセトアルデヒド(900体積ppm)、酸素(300体積ppm)、及びプロピオンアルデヒド(320体積ppm))を含有していた。このトップ流を、処分のためのフレアに供給した。一定量(5kg/h)の飽和流を16バールの圧力でサンプ蒸発器に供給することにより、サンプ蒸発器を運転した。カラムの底部温度は100℃であった。底部流、流れS1は、主にアセトニトリル及び水からなり、残りは高沸点留分であった。この流れS1は、約80質量%のアセトニトリル含有量及び約20質量%の水含有量を有していた。
工程(c)において、上記のセクション1.2 c)により得られた流速86kg/hの流れS1を、流れS2(図1による流れ(13a))及びS3(図1による流れ14)の2つの流れに分けた。流れS2は84kg/hの流速を有し、流れS3は2kg/hの流速を有していた。流れS3、すなわち2.3%の流れS1を、部分流蒸留ユニットF(部分流蒸留カラム)に供給した。
第1の分取ユニット、すなわち第1の蒸留カラムF1は、9.5mの高さ及び85mmの直径を有し、3つの同一の床に取り付けた金属構造Rombopak 9Mパッキング6.5メートルを備えていた。上から数えて構造パッキングの第1の床の上から、流れS3((流れS14))を第1の蒸留カラムに導入した。流れS3の温度は60±3℃であった。約1.4バールの最高圧及び92±5℃の底部温度で、第1の蒸留カラムを運転した。還流を適用しなかった。底部のアセトニトリルの濃度が10〜25質量%の範囲となるように、第1の蒸留ユニットの底部蒸発器への流れの供給量を制御した。底部流S4b(流れ(15b)、流れS3の約3%)を除去した。この流れは、主に、水(72〜85質量%)及びアセトニトリル(10〜24質量%)からなった。全ての分析した高沸点留分成分(27つの成分)の合計は2〜10質量%の範囲内で変化した。85±3℃の温度を有する、頂部流、すなわち蒸気留分流S4a(流れS15a)を、凝縮せず、第2の分取ユニット、すなわち第2の蒸留カラムF2の底部に通過させた。S4aは、上から数えて構造パッキングの最後の床の下でF2に入った。F2は、9.5mの高さ及び85mmの直径を有し、3つの同一の床に取り付けた金属構造Rombopak 9Mパッキング6.5メートルを備えていた。約1.25バールの最高圧及び85±5℃の底部温度で、第2の蒸留カラムを運転した。頂部流、すなわち留分流S4c(流れ(S15c)、流れS4aの1%以下)を、外部オーバーヘッド凝縮器(図2に示されていない)により完全に凝縮し、凝縮した液体流を還流として使用するために、実質的完全に第2の蒸留カラムに適用した。液体の底部流S4(流れS15)を取り出して、次の工程(流れS4の再循環)に移した。流れS4は、約80質量%のアセトニトリル含有量及び約20質量%の水含有量を有していた。
a)液体流S5の作製
流れS4(図1及び図2による流れ15)を流れS2(図1及び図2による流れ(13a))と混合した。したがって、流れS4を、ポンプを用いてバルクプロセスアセトニトリル溶媒流中に戻った。混合は、流れS3を流れS1から分けた下流点で行った。86kg/hの流速を有するこの組み合わせた流れを、液体流P(図1及び図2中の流れ(20)と称する)と混合し、流れS5を得た。流れPはプロパンを含有する新鮮なプロペン流(ポリマーグレード、純度>96質量%、加圧下で液化する、供給速度:10.9kg/h)であった。流れS5を得るために、S2及びS4の組み合わせた流れを、さらに2つの他の流れ(それらの第1の流れは、図1による流れ(16)であり、蒸留ユニットHの頂部から得られた;それらの第2の流れは、図1による流れ(19)であり、アセトニトリル回収ユニットIの頂部から得られた)と混合した。以下、流れ(16)と(19)の両方を詳細に記載している。
その後、130kg/h±10kg/hの流速を有する流れS5を、18バール及び15±5℃の温度で運転する撹拌器−沈降タンクユニットに供給した。沈降タンクは5.3リットルの容積を有していた。2つの液相L1及びL2、すなわち水相L2及び有機相L1を得た。上部の有機相L1を流れ(17)として沈降タンクから除去し、下部の水相L2を流れ(18)として沈降タンクから除去した。流れ(17)は、110kg/h±11kg/hの流速を有していた。その後、流れ(17)をアセトニトリル再循環ユニットIに移した。流れ(18)を、それから上述した流れ(16)を得たアセトニトリル回収ユニットHに移した。こうして得られた流れ(17)は、約45〜51質量%のアセトニトリル含有量、約49〜55質量%のプロペン含有量、及び約2〜5質量%の水含有量を有していた。こうして得られた流れ(18)は、約19〜21質量%のアセトニトリル含有量、約79〜81質量%の水含有量、及び0.5質量%未満のプロペン含有量を有していた。
できる限り多くの溶媒を再循環させ、アセトニトリルの損失を最小にするために、流れ(18)をそれから流れ(16)(流れTL2とも称される)を頂部流として得た蒸留カラムに導入し、前記頂部流が上述した溶媒流中に再循環された。この目的のため、9.5mの高さ及び100mmの直径を有し、かつ、50個のバブルトレーを備える蒸留カラムを使用した。1.5バールの最高圧及び1:4の還流比でカラムを運転した。バブルトレー26(下から数える)の上で、流れ(18)をカラムに導入した。底部温度は約113℃であり、底部の生成物は主に、高沸点副産物を含有する水からなる。底部流の典型的な組成は、以下であった(括弧内の数値単位は質量%である):水(>99.0)、プロペングリコール(0.5)、アセトニトリル(0.001以下)、ジプロピレングリコール(0.06)、アセトアミド(0.01)、酢酸(0.03)、TOC(2.4)。任意に計量及び分析した後、この流れを廃棄した。オーバーヘッド生成部(流れ(16)=流れTL2)は、下記の組成範囲(括弧内の数値単位は質量%である)を有していた:アセトニトリル(75〜80)、水(15〜20)、軽質留分(例えばプロペン、1)。上述したように、流れ(16)を、撹拌器−沈降タンクユニットに通過させる供給流に再循環させる。
アセトニトリルの再循環において、10mの高さ及び200mmの呼び径を有し、かつ40個のバブルトレーを備える蒸留カラム中に、撹拌器−沈降タンクユニットGから得られた流れ(17)を導入した。18バールの最高圧及び1:4の還流比でカラムを運転した。バブルトレー26(上から数える)の上で、流れ(17)をカラムに導入した。少量のプロパン(約1〜3体積%)を有するプロペン(約97体積%)を主として含有する頂部生成物(流れ(19))(流れTL1とも称する)を、上述したように撹拌器−沈降タンクユニットGの供給に戻った。したがって、過剰なプロペンを流れ(17)から取り出して再循環させた。底部流(流れ(2)、流れBL1とも称する)は106〜110℃の温度を有していた。流れ(2)と共に反応器中に戻ったプロペンの量が、流れ(1)中のプロペンの過酸化水素に対するモル比が約1:1.43であったような範囲中にあるように、カラムの正確な運転パラメーター、例えばサンプ中のエネルギー入力を調整する。このことは、上述した15kg/hの供給速度の水性過酸化水素において、流れ(2)中のプロペンの流速が約9.7kg/hであったように条件を調整する必要があることを意味する。流れ(2)を主エポキシ化反応器Aに供給する前に、アセトニトリル(流れ(4)、化学グレード、Ineos製、約99.9%の純度、70〜180質量ppmのプロピオニトリル、5〜20質量ppmのアセトアミド及び<100質量ppmの水を不純物として含有する)を任意に添加し、可能な溶媒損失を補った。
上記の参考例2に記載のエポキシ化反応の設定に基づいて、一部のZnTiMWW触媒の再生を行った。反応器を、参考例1によるZnTiMWW触媒で装填した。工程(a)を行う最初の1000時間の間に、過酸化水素に基づいて(a2)中のプロピレンオキシドの生成に関する選択率が、過酸化水素に基づいて(a2)中のプロピレンオキシドの生成に関する平均選択率に対して2%低下したまで、エポキシ化反応を連続的に運転した。その後、反応を停止し、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。減圧及び空にした後、70℃で脱塩水を用いて、約7m/hのLHSV(LHSVは、空のチューブの横断面に基づく)で上から下まで反応器を少なくとも3時間洗い流した。この時間の後、反応器から出た液体水性系は、検出した最大値の0.1%未満の全有機炭素濃度を示し、洗浄プロセスにおいて反応器から得られた液体水性系の総体積は反応器の容積より大きかった。その後、反応器を空にして再開した。参考例2による連続的運転を、再開し、反応温度がその再生の前の値に再び至るまで約1500時間行った。
比較例として、触媒を再生せず、参考例2によるプロセスを2500時間行った。
以下、実施例1及び比較例1からの結果を、検討し、表1に示す。実施例1及び比較例1の両方において、過酸化水素転化率を90〜92%の範囲に実質的一定に維持するために(参考例2、セクション1.1aに参照)、参考例2による連続的運転の間に、エポキシ化ユニットAの熱伝達媒体の入口温度を調整した。実施例1及び比較例1の両方について、2,500時間の合計運転時間の後の、エポキシ化ユニットAの熱伝達媒体(冷却水)の得る温度を、表1に示す。さらに、失活率は、実験終了時と実験開始時の入口での熱伝達媒体の温度差を、2500時間の合計運転時間で割った比(℃/日で表示する)として与える。またさらに、2,500時間の合計運転時間の後の、過酸化水素に基づくエポキシ化反応の選択率Sを表1に示す。選択率S/%=(n(PO)/n(H2O2))x100であり、式中、n(PO)は、ユニットBの直ぐ下流で検出されたプロピレンオキシドのモル量であり、n(H2O2)は、エポキシ化反応で変換された過酸化水素のモル量である。
上記の参考例2に記載のエポキシ化反応の設定に基づいて、一部のZnTiMWW触媒の再生を行った。
上記の参考例2に記載のエポキシ化反応の設定に基づいて、一部のZnTiMWW触媒の再生を行った。主反応器を、参考例1によるZnTiMWW触媒で装填した。エポキシ化反応開始時に出発値が30℃であった主反応器のジャケットの入口での熱伝達媒体の温度として定義された「エポキシ化反応温度」が50℃の値に至るまで、エポキシ化反応を約1300時間連続的に運転した。その時点で、過酸化水素の流れを停止することによりエポキシ化反応を停止させた;アセトニトリル及びプロペン流れを、チューブ中のエポキシ化が完了するまで続けた。その後、アセトニトリル及び水の混合物(80質量%のアセトニトリル、20質量%の水)を反応器に通過させ(ここで、この反応混合物の温度は50℃であった)、次にアセトニトリル及び水の混合物の大部分を反応器から排出することにより、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。
続いて、70℃の温度を有する水を用いて、反応チューブに下から充填し、その後、チューブを通して70℃の温度を有する水を上から下向き約6時間通過させた。流出水の導電率が200マイクロジーメンス未満になると、水洗を停止した。その後、水を反応器から排出した。
参考例2による連続的運転を、再開し、反応温度が再び50℃に至るまで約1400時間行った。その時点で、過酸化水素の流れを停止することによりエポキシ化反応を停止させた;アセトニトリル及びプロペン流れを、チューブ中のエポキシ化が完了するまで続けた。その後、アセトニトリル及び水の混合物(80質量%のアセトニトリル、20質量%の水)を反応器に通過させ(ここで、この反応混合物の温度が50℃であった)、次にアセトニトリル及び水の混合物の大部分を反応器から排出することにより、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。
続いて、70℃の温度を有する水を用いて、反応チューブに下から充填し、その後、チューブを通して70℃の温度を有する水を上から下向き約6時間通過させた。流出水の導電率が200マイクロジーメンス未満になると、水洗を停止した。その後、水を反応器から排出した。
参考例2による連続的運転を、再開し、反応温度が再び50℃に至るまで約1200時間行った。その時点で、過酸化水素の流れを停止することによりエポキシ化反応を停止させた;アセトニトリル及びプロペン流れを、チューブ中のエポキシ化が完了するまで続けた。その後、アセトニトリル及び水の混合物(80質量%のアセトニトリル、20質量%の水)を反応器に通過させ(ここで、この反応混合物の温度が50℃であった)、次にアセトニトリル及び水の混合物の大部分を反応器から排出することにより、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。
続いて、70℃の温度を有する水を用いて、反応チューブに下から充填し、その後、チューブを通して70℃の温度を有する水を上から下向き約6時間通過させた。流出水の導電率が200マイクロジーメンス未満になると、水洗を停止した。その後、水を反応器から排出した。
その後、70℃の初期温度での窒素を約60時間触媒床に通過させ、ここで、10K/hでこの温度を100℃の値に上昇させた。続いて、空気及び窒素のガス混合物を0.58kg/sの流速で触媒床に通過させることにより、触媒をか焼した。前記混合物の温度を、10K/hで100℃のその初期値から450℃の最終値までさらに連続的に上げ、その後、450℃の値で6時間実質的一定に維持した。か焼開始時、反応器に通過させるガス混合物は、4体積%の酸素含有量を有していた。450℃になると、前記酸素含有量を21体積%の値に調整した。450℃でのか焼の後、反応器を約30℃の温度まで冷却した。
参考例2による連続的運転を、再開し、約1000時間行った。
上記の参考例2に記載のエポキシ化反応の設定に基づいて、一部のZnTiMWW触媒の再生を行った。
主反応器を、参考例1によるZnTiMWW触媒で装填した。エポキシ化反応開始時に出発値が30℃であった主反応器のジャケットの入口での熱伝達媒体の温度として定義された「エポキシ化反応温度」が50℃の値に至るまで、エポキシ化反応を約1200時間連続的に運転した。その時点で、過酸化水素の流れを停止することによりエポキシ化反応を停止させた;アセトニトリル及びプロペン流れを、チューブ中のエポキシ化が完了するまで続けた。その後、アセトニトリル及び水の混合物(80質量%のアセトニトリル、20質量%の水)を反応器に通過させ(ここで、この反応混合物の温度が50℃であった)、次にアセトニトリル及び水の混合物の大部分を反応器から排出することにより、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。
続いて、70℃の温度を有する水を用いて、反応チューブに下から充填し、その後、チューブを通して70℃の温度を有する水を上から下向き約6時間通過させた。流出水の導電率が200マイクロジーメンス未満になると、水洗を停止した。その後、水を反応器から排出した。
参考例2による連続的運転を、再開し、反応温度が再び50℃に至るまで約1300時間行った。その時点で、過酸化水素の流れを停止することによりエポキシ化反応を停止させた;アセトニトリル及びプロペン流れを、チューブ中のエポキシ化が完了するまで続けた。その後、アセトニトリル及び水の混合物(80質量%のアセトニトリル、20質量%の水)を反応器に通過させ(ここで、この反応混合物の温度は50℃であった)、次にアセトニトリル及び水の混合物の大部分を反応器から排出することにより、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。70℃の温度での窒素を触媒床に通過させることにより、アセトニトリル及び水の残存量を反応器から除去した。
続いて、70℃の温度を有する水を用いて、反応チューブに下から充填し、その後、チューブを通して70℃の温度を有する水を上から下向き約6時間通過させた。流出水の導電率が200マイクロジーメンス未満になると、水洗を停止した。その後、水を反応器から排出した。
その後、70℃の初期温度での窒素を約60時間触媒床に通過させ、ここで、10K/hでこの温度を100℃の値に上げた。続いて、空気及び窒素のガス混合物を0.58kg/sの流速で触媒床に通過させることにより、触媒をか焼した。前記混合物の温度を、10K/hで100℃のその初期値から450℃の最終値までさらに連続的に上げ、その後、450℃の値で6時間実質的一定に維持した。か焼開始時、反応器に通過させるガス混合物は、4体積%の酸素含有量を有していた。450℃になると、前記酸素含有量を21体積%の値に調整した。450℃でのか焼の後、反応器を約30℃の温度まで冷却した。
参考例2による連続的運転を、再開し、約1000時間行った。
エポキシ化
上記の参考例2に記載のエポキシ化反応の設定に基づいて、ZnTiMWW触媒の再生を行った。主反応器を、参考例1によるZnTiMWW触媒で装填した。エポキシ化反応開始時に出発値が30℃であった主反応器のジャケットの入口での熱伝達媒体の温度として定義された「エポキシ化反応温度」が50℃の値に至ったまで、エポキシ化反応を約2200時間連続的に運転した。その時点で、過酸化水素の流れを停止することによりエポキシ化反応を停止させた;アセトニトリル及びプロペン流れを、チューブ中のエポキシ化が完了するまで続けた。その後、アセトニトリル及び水の混合物(80質量%のアセトニトリル、20質量%の水)を反応器に通過させ(ここで、この反応混合物の温度は50℃であった)、次にアセトニトリル及び水の混合物の大部分を反応器から排出することにより、H2O2、プロピレン及びプロピレンオキシドを含有しないように反応器を洗い流した。
続いて、70℃の温度を有する水を用いて、反応チューブに下から充填し、その後、チューブを通して70℃の温度を有する水を上から下向き約6時間通過させた。流出水の導電率が200マイクロジーメンス未満になると、水洗を停止した。その後、水を反応器から排出した。
その後、70℃の初期温度での窒素を約60時間触媒床に通過させ、ここで、10K/hでこの温度を100℃の値に上げた。続いて、空気及び窒素のガス混合物を0.58kg/sの流速で触媒床に通過させることにより、触媒をか焼した。前記混合物の温度を、10K/hで100℃のその初期値から450℃の最終値までさらに連続的に上げ、その後、450℃の値で6時間実質的一定に維持した。か焼開始時、反応器に通過させるガス混合物は、4体積%の酸素含有量を有していた。450℃になると、前記酸素含有量を21体積%の値に調整した。450℃でのか焼の後、反応器を約30℃の温度まで冷却した。
参考例2による連続的運転を、再開し、約1000時間行った。
以下、実施例2.1及び2.2並びに比較例2からの結果を、検討し、下記の表2に示す。実施例2.1及び2.2並びに比較例2の両方において、過酸化水素転化率を約96%に実質的一定に維持するために、参考例2による連続的運転の間に、エポキシ化ユニットAの熱伝達媒体の入口温度を調整した。表2に提供した過酸化水素に基づくエポキシ化反応の選択率Sを(n(PO)/n(H2O2))x100として定義し、式中、n(PO)は、ユニットBの直ぐ下流で検出されたプロピレンオキシドのモル量であり、n(H2O2)は、エポキシ化反応で変換された過酸化水素のモル量である。
Claims (16)
- 触媒活性材料としてのMWW骨格構造のチタン含有ゼオライトを含む触媒の再生方法であって、
該方法は段階(i)を含み、
段階(i)は、
(a)プロピレンオキシドの連続的製造工程であって、
(a1)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのMWW骨格構造のチタン含有ゼオライトを含む触媒を含有する反応器に導入する工程と、
(a2)前記反応器中に、前記触媒の存在下で(a1)による前記供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3)前記反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b)前記供給流を前記反応器中に導入することを停止する工程、及び
(c)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i)が、工程(a)〜(c)の一連をn回繰り返す工程をさらに含み、ここで、nが、整数であり、かつ、少なくとも1であり;
前記再生方法が、段階(ii)をさらに含み、
段階(ii)は、工程(a)〜(c)の一連をn回繰り返した後、(c)から得た前記触媒をか焼する工程を含み、前記か焼が、300〜600℃の範囲の前記触媒の温度で、酸素を含むガス流を用いて行われ、
段階(i)の工程(c)による液体水性系を用いて前記触媒を洗浄する工程を少なくとも1回行い、その後のか焼を行わなく、
段階(i)〜(ii)の一連を、任意にm回繰り返し、ここで、mが、整数であり、かつ、少なくとも1であり、
段階(i)〜(ii)の一連の各回の繰り返しにおいて、nが同一又は異なる、方法。 - 前記有機溶媒が、メタノール又はアセトニトリル、好ましくはアセトニトリルである、請求項1に記載の方法。
- 前記MWW骨格構造のチタン含有ゼオライトの骨格構造の少なくとも99質量%、好ましくは少なくとも99.5質量%、より好ましくは少なくとも99.9質量%が、ケイ素、チタン及び酸素からなる、請求項1又は2に記載の方法。
- 前記MWW骨格構造のチタン含有ゼオライトがZnを含む、請求項1から3のいずれか一項に記載の方法。
- MWW骨格構造のチタン含有ゼオライトを含む前記触媒が、固定床触媒として前記反応器中に存在する、請求項1から4のいずれか一項に記載の方法。
- (c)による前記液体水性系が、前記液体水性系の総質量に対して、少なくとも95質量%、好ましくは少なくとも99.9質量%の水を含有する、請求項1から5のいずれか一項に記載の方法。
- (c)により、前記触媒の洗浄が、触媒を含有する反応器中に連続モードで行われる、請求項1から6のいずれか一項に記載の方法。
- (a)による前記反応器が管状反応器又は管束反応器であり、(c)による前記洗浄が、液体水性系を用いて、1〜20m/h、好ましくは5〜10m/hの範囲の液空間速度(LHSV)で行われる、請求項7に記載の方法。
- (c)による前記洗浄が、30〜90℃、好ましくは40〜80℃の範囲の前記液体水性系の温度で行われる、請求項1から8のいずれか一項に記載の方法。
- (c)による前記洗浄を、前記触媒と接触させた後の前記液体水性系の全有機炭素濃度が、(c)における前記洗浄の間に検出される全有機炭素濃度の最大値の5%以下、好ましくは1%以下となるまで行う、請求項1から9のいずれか一項に記載の方法。
- (a2)によるエポキシ化反応の選択率が、工程(a)を行う最初の100時間の間に(a2)によるエポキシ化反応の平均選択率に対して、4%以下、好ましくは3%以下、より好ましくは2%以下低下した際に、工程(b)及び(c)の一連を行い、前記エポキシ化反応の選択率が、(a2)において変換された過酸化水素のモル量に対する、(a2)において得られたプロピレンオキシドのモル量として定義される、請求項1から10のいずれか一項に記載の方法。
- nが、1〜6、好ましくは1〜4の範囲にある、請求項1から11のいずれか一項に記載の方法。
- 段階(ii)による前記か焼が、350〜550℃、好ましくは400〜500℃の範囲の前記触媒の温度で、好ましくは、酸素及び窒素を含むガス流を用いて行われ、前記ガス流が、好ましくは空気又はリーンエアである、請求項1から12のいずれか一項に記載の方法。
- 段階(ii)による前記か焼が前記触媒を含有する反応器中で行われる、請求項1から13のいずれか一項に記載の方法。
- 段階(i)〜(ii)の一連をm回繰り返し、mが1〜6、より好ましくは1〜4の範囲の整数である、請求項1から14のいずれか一項に記載の方法。
- プロピレンオキシドの連続的製造方法であって、
該方法は段階(i’)を含み
段階(i’)は、
(a’)第1の反応器中でのプロピレンオキシドの連続的製造工程であって、
(a1’)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのMWW骨格構造のチタン含有ゼオライトを含む触媒を含有する前記第1の反応器に導入する工程と、
(a2’)前記第1の反応器中に、触媒の存在下で(a1’)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3’)前記第1の反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、前記連続的製造工程、
(b’)前記供給流を前記第1の反応器中に導入することを停止する工程、及び
(c’)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i’)が、工程(a’)〜(c’)の一連をn’回繰り返す工程をさらに含み、ここで、n’が、整数であり、かつ、少なくとも1であり;
前記プロピレンオキシドの製造方法が、さらに段階(ii’)を含み、
段階(ii’)は、工程(a’)〜(c’)の一連をn’回繰り返した後、(c’)から得た前記触媒をか焼する工程を含み、前記か焼が、300〜600℃の範囲の前記触媒の温度で、酸素を含むガス流を用いて行われ、
段階(i’)の工程(c’)による液体水性系を用いて前記触媒を洗浄する工程を少なくとも1回行い、その後のか焼を行わなく、
段階(i’)〜(ii’)の一連を、任意にm’回繰り返し、ここで、m’が、整数であり、かつ、少なくとも1であり、
段階(i’)〜(ii’)の一連の各回の繰り返しにおいて、n’が同一又は異なり;
前記プロピレンオキシドの製造方法は、段階(i’’)をさらに含み、
段階(i’’)は、
(a’’)第2の反応器中でのプロピレンオキシドの連続的製造工程であって、
(a1’’)プロペン、過酸化水素又は過酸化水素源、及び有機溶媒を含む供給流を、触媒活性材料としてのMWW骨格構造のチタン含有ゼオライトを含む触媒を含有する前記第2の反応器に導入する工程と、
(a2’’)前記第2の反応器中に、触媒の存在下で(a1’’)による供給流をエポキシ化条件に付して、プロピレンオキシド及び有機溶媒を含む反応混合物を得る工程と、
(a3’’)前記第2の反応器から、プロピレンオキシド及び有機溶媒を含む生成物流を除去する工程と、
を含む、連続的製造工程、
(b’’)前記供給流を前記第2の反応器中に導入することを停止する工程、及び
(c’’)液体水性系を用いて前記触媒を洗浄する工程、
を含み、
段階(i’’)が、工程(a’’)〜(c’’)の一連をn’’回繰り返す工程をさらに含み、ここで、n’’が、整数であり、かつ、少なくとも1であり;
前記プロピレンオキシドの製造方法が、段階(ii’’)をさらに含み、
段階(ii’’)は、工程(a’’)〜(c’’)の一連をn’’回繰り返した後、(c’’)から得た前記触媒をか焼する工程を含み、前記か焼が、300〜600℃の範囲の前記触媒の温度で、酸素を含むガス流を用いて行われ、
段階(i’)の工程(c’)による液体水性系を用いて前記触媒を洗浄する工程を少なくとも1回行い、その後のか焼を行わなく、
段階(i’’)〜(ii’’)の一連を、任意にm’’回繰り返し、ここで、m’’が、整数であり、かつ、少なくとも1であり、
段階(i’’)〜(ii’’)の一連の各回の繰り返しにおいて、n’’が同一又は異なり、
工程(b’)及び(c’)の少なくとも1つの一連、又は工程(b’)、(c’)及び(ii’)の少なくとも1つの一連の間に、(a’’)によりプロピレンオキシドを製造する、方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562115658P | 2015-02-13 | 2015-02-13 | |
US62/115,658 | 2015-02-13 | ||
EP15154998.7 | 2015-02-13 | ||
EP15154998 | 2015-02-13 | ||
PCT/EP2016/052983 WO2016128538A1 (en) | 2015-02-13 | 2016-02-12 | Process for the regeneration of a titanium zeolite catalyst for propylene epoxidation |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018511459A JP2018511459A (ja) | 2018-04-26 |
JP2018511459A5 JP2018511459A5 (ja) | 2019-03-22 |
JP6685315B2 true JP6685315B2 (ja) | 2020-04-22 |
Family
ID=52472215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017542404A Active JP6685315B2 (ja) | 2015-02-13 | 2016-02-12 | プロピレンのエポキシ化のためのチタンゼオライト触媒の再生方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US10195598B2 (ja) |
EP (1) | EP3256252B1 (ja) |
JP (1) | JP6685315B2 (ja) |
KR (1) | KR102512661B1 (ja) |
CN (2) | CN107530693A (ja) |
BR (1) | BR112017017269B1 (ja) |
MX (1) | MX2017010402A (ja) |
MY (1) | MY189272A (ja) |
PL (1) | PL3256252T3 (ja) |
SG (1) | SG11201706530RA (ja) |
WO (1) | WO2016128538A1 (ja) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2017014148A (es) | 2015-05-04 | 2018-03-15 | Basf Se | Proceso para la preparacion de melonal. |
EP3322685A1 (en) | 2015-07-15 | 2018-05-23 | Basf Se | Process for preparing an arylpropene |
RU2732326C2 (ru) | 2015-07-22 | 2020-09-15 | Басф Се | Способ получения фуран-2,5-дикарбоновой кислоты |
EP3170828A1 (de) | 2015-11-23 | 2017-05-24 | Basf Se | Verfahren zur herstellung von verbindungen mit 16-oxabicyclo[10.3.1]pentadecengerüst und deren folgeprodukten |
EP3380226B1 (en) | 2015-11-27 | 2019-10-23 | Basf Se | Ultrafast high space-time-yield synthesis of metal-organic frameworks |
EP3178788A1 (en) | 2015-12-08 | 2017-06-14 | Basf Se | A tin-containing zeolitic material having a bea framework structure |
US10737944B2 (en) | 2015-12-08 | 2020-08-11 | Basf Se | Tin-containing zeolitic material having a BEA framework structure |
US10618873B2 (en) | 2016-02-01 | 2020-04-14 | Basf Se | Method for producing C4-C15 lactams |
MX2018016297A (es) | 2016-06-29 | 2019-09-16 | Basf Se | Proceso para la preparacion de aldehidos alfa, beta insaturados mediante oxidacion de alcoholes en presencia de una fase liquida. |
WO2018007481A1 (en) | 2016-07-08 | 2018-01-11 | Basf Se | Process for preparing an organic sulfone |
BR112018075464B1 (pt) | 2016-07-20 | 2022-11-22 | Basf Se | Processo para purificação de óxido de propileno |
KR102445812B1 (ko) | 2016-07-29 | 2022-09-21 | 바스프 코포레이션 | FAU-타입 골격 구조를 갖는 제올라이트성 물질의 제조 방법 및 NOx의 선택적 접촉 환원에서의 이의 용도 |
EP3544730A1 (en) | 2016-11-28 | 2019-10-02 | Basf Se | Catalyst composite comprising an alkaline earth metal containing cha zeolite and use thereof in a process for the conversion of oxygenates to olefins |
WO2018099967A1 (en) | 2016-11-30 | 2018-06-07 | Basf Se | Process for the conversion of ethylene glycol to ethylenediamine employing a zeolite catalyst |
WO2018099964A1 (en) | 2016-11-30 | 2018-06-07 | Basf Se | Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the mor framework structure |
HUE066373T2 (hu) | 2016-12-13 | 2024-07-28 | Basf Se | Eljárás titántartalmú zeolit elõállítására |
EP3728173A1 (en) * | 2017-12-21 | 2020-10-28 | Basf Se | Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase |
EP3604222A1 (en) * | 2018-07-30 | 2020-02-05 | Evonik Operations GmbH | Process for the purification of hydrogen cyanide |
AU2018449272B2 (en) * | 2018-11-15 | 2022-09-01 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Method for preparing hierarchical porous titanosilicate TS-1 molecular sieve |
TW202045484A (zh) * | 2019-02-08 | 2020-12-16 | 德商贏創運營有限公司 | 有機化合物的氧化 |
CN110252393A (zh) * | 2019-05-21 | 2019-09-20 | 江西农业大学 | 一种用于合成环氧大豆油的钛硅沸石负载镉催化剂、制备方法及应用 |
CN110075914A (zh) * | 2019-05-28 | 2019-08-02 | 江苏扬农化工集团有限公司 | 一种hppo工艺失活钛硅分子筛催化剂器内再生的方法 |
EP3812375A1 (en) * | 2019-10-21 | 2021-04-28 | Evonik Operations GmbH | Process for the epoxidation of propene |
CN112354557B (zh) * | 2020-11-16 | 2023-03-24 | 华东师范大学 | 一种整体式钛沸石催化剂制备方法及其应用 |
CN112678866B (zh) * | 2020-12-24 | 2023-07-04 | 中国石油化工股份有限公司 | 一种烯烃聚合工业废酸渣资源化处理方法 |
CN112844468A (zh) * | 2021-01-19 | 2021-05-28 | 中国科学院大连化学物理研究所 | 一种用于丙烯气相环氧化制环氧丙烷的催化剂及其制备方法 |
WO2022263437A1 (en) | 2021-06-15 | 2022-12-22 | Basf Se | Shutdown method for a process for preparing an olefin oxide |
CN113368895B (zh) * | 2021-07-13 | 2023-09-29 | 福州大学 | 一种具有高转化率的丙烯气相环氧化催化剂的制备方法 |
KR20240069738A (ko) * | 2021-09-30 | 2024-05-20 | 바스프 코포레이션 | 탈수소화 및 기타 반응에 사용하기 위한 다공성 금속 산화물 촉매의 전처리 |
WO2024115737A1 (en) | 2022-12-02 | 2024-06-06 | Basf Se | Process for regeneration of an epoxidation reactor |
CN117504927B (zh) * | 2023-11-10 | 2025-04-29 | 江西师范大学 | 一种负载型Ti-MWW分子筛与金属氧化物的复合催化剂及其制备与应用 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19723751A1 (de) | 1997-06-06 | 1998-12-10 | Basf Ag | Formkörper und Verfahren zu dessen Herstellung |
US6114551A (en) | 1999-10-04 | 2000-09-05 | Mobil Oil Corporation | Olefin epoxidation catalysts |
DE10044798A1 (de) | 2000-09-11 | 2002-04-04 | Basf Ag | Verfahren zur Regenerierung eines Zeolith-Katalysators |
ATE475654T1 (de) | 2001-01-08 | 2010-08-15 | Evonik Degussa Gmbh | Verfahren zur epoxidierung von olefinen |
DE10320635A1 (de) * | 2003-05-08 | 2004-11-18 | Basf Ag | Verfahren zur Herstellung von Propylenoxid |
EP1489074A1 (en) | 2003-06-18 | 2004-12-22 | Degussa AG | Process for the epoxidation of propene |
US20050277542A1 (en) * | 2004-06-14 | 2005-12-15 | Kaminsky Mark P | Catalyst regeneration process |
KR101166932B1 (ko) | 2005-07-27 | 2012-07-19 | 에스케이이노베이션 주식회사 | 티타늄 함유 분자체 촉매의 재생방법 |
JP2009233656A (ja) * | 2008-03-05 | 2009-10-15 | Sumitomo Chemical Co Ltd | チタノシリケート触媒の再生方法 |
CN101480623B (zh) * | 2009-02-24 | 2011-06-08 | 江苏扬农化工集团有限公司 | 一种钛硅分子筛催化剂的再生方法 |
EP2547447A1 (en) * | 2010-03-18 | 2013-01-23 | Sumitomo Chemical Company, Limited | Method for regenerating titanosilicate catalysts |
WO2013117536A2 (en) | 2012-02-07 | 2013-08-15 | Basf Se | Micropowder and molding containing a zeolitic material containing ti and zn |
CN104014365B (zh) * | 2013-02-28 | 2016-08-24 | 中国石油化工股份有限公司 | 一种钛硅分子筛的再生方法 |
MY182811A (en) * | 2013-07-24 | 2021-02-05 | Basf Se | Regeneration of a titanium containing zeolite |
-
2016
- 2016-02-12 CN CN201680020837.XA patent/CN107530693A/zh active Pending
- 2016-02-12 MY MYPI2017001194A patent/MY189272A/en unknown
- 2016-02-12 EP EP16704206.8A patent/EP3256252B1/en active Active
- 2016-02-12 WO PCT/EP2016/052983 patent/WO2016128538A1/en active Application Filing
- 2016-02-12 MX MX2017010402A patent/MX2017010402A/es unknown
- 2016-02-12 SG SG11201706530RA patent/SG11201706530RA/en unknown
- 2016-02-12 US US15/550,581 patent/US10195598B2/en active Active
- 2016-02-12 JP JP2017542404A patent/JP6685315B2/ja active Active
- 2016-02-12 PL PL16704206T patent/PL3256252T3/pl unknown
- 2016-02-12 KR KR1020177025695A patent/KR102512661B1/ko active Active
- 2016-02-12 BR BR112017017269-0A patent/BR112017017269B1/pt active IP Right Grant
- 2016-02-12 CN CN202311377139.3A patent/CN119456024A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
SG11201706530RA (en) | 2017-09-28 |
JP2018511459A (ja) | 2018-04-26 |
KR20170117509A (ko) | 2017-10-23 |
KR102512661B1 (ko) | 2023-03-21 |
EP3256252B1 (en) | 2021-04-07 |
CN107530693A (zh) | 2018-01-02 |
BR112017017269A2 (pt) | 2018-04-17 |
US10195598B2 (en) | 2019-02-05 |
MY189272A (en) | 2022-01-31 |
BR112017017269B1 (pt) | 2022-05-24 |
PL3256252T3 (pl) | 2021-10-25 |
WO2016128538A1 (en) | 2016-08-18 |
EP3256252A1 (en) | 2017-12-20 |
US20180036723A1 (en) | 2018-02-08 |
CN119456024A (zh) | 2025-02-18 |
MX2017010402A (es) | 2018-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6685315B2 (ja) | プロピレンのエポキシ化のためのチタンゼオライト触媒の再生方法 | |
CN105579138B (zh) | 含钛沸石的再生 | |
US9302257B2 (en) | Process for the preparation of a titanium zeolite catalyst | |
CN104271241B (zh) | 包括含Ti和Zn的沸石材料的超细粉和模制品 | |
RU2678844C2 (ru) | Способ получения пропиленоксида | |
JP4406606B2 (ja) | ゼオライトを含有する固体の製造方法 | |
RU2673676C2 (ru) | Способ получения пропиленоксида | |
RU2702349C2 (ru) | Способ регенерации катализатора на основе титан-содержащего цеолита для эпоксидирования пропилена |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171020 |
|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A529 Effective date: 20171013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190206 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6685315 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |