JP6677120B2 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
JP6677120B2
JP6677120B2 JP2016151489A JP2016151489A JP6677120B2 JP 6677120 B2 JP6677120 B2 JP 6677120B2 JP 2016151489 A JP2016151489 A JP 2016151489A JP 2016151489 A JP2016151489 A JP 2016151489A JP 6677120 B2 JP6677120 B2 JP 6677120B2
Authority
JP
Japan
Prior art keywords
voltage
voltage wiring
dcdc converter
low
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016151489A
Other languages
English (en)
Other versions
JP2018023189A (ja
Inventor
大介 末川
大介 末川
光徳 木村
光徳 木村
若林 健一
健一 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016151489A priority Critical patent/JP6677120B2/ja
Publication of JP2018023189A publication Critical patent/JP2018023189A/ja
Application granted granted Critical
Publication of JP6677120B2 publication Critical patent/JP6677120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

複数のDCDCコンバータの出力側が互いに並列接続されて構成される電源システムに関する。
蓄電池から昇圧回路を介して負荷に対して電力を供給する場合に、負荷に対する供給電力を増加させる構成として、2以上の昇圧回路の出力端子を並列接続する手法がある。特許文献1には、1の昇圧回路(基本コンバータ)において電圧のフィードバック制御を行い、他の昇圧回路(追加コンバータ)において電流のフィードバック制御を行う構成が開示されている。
特開2014−121221号公報
ここで、特許文献1に記載の構成では、フィードバック制御に用いる電流センサによる電流の検出を昇圧回路の入力側(蓄電池側)で行っている。また、新たに電流センサを設ける場合に、その設置位置によっては、検出値に対して外来ノイズが重畳することが懸念される。
本発明は、上記課題に鑑みてなされたものであり、複数のDCDCコンバータの出力端子を並列接続する電源システムにおいて、電流フィードバック制御を行うDCDCコンバータの出力電流を精度よく調整可能にすることを主たる目的とする。
本構成は、それぞれの出力端子が並列接続された第1DCDCコンバータ(21)及び第2DCDCコンバータ(11)と、前記第1DCDCコンバータの出力電流を検出する電流センサ(26)と、前記第2DCDCコンバータの出力電圧を検出する電圧センサ(16)と、前記電流センサによる検出値を取得し、その取得した検出値に基づいて、前記第1DCDCコンバータの前記出力電流を調整する制御を実施する第1制御部(24)と、前記電圧センサによる検出値を取得し、その取得した検出値に基づいて、前記第2DCDCコンバータの前記出力電圧を調整する制御を実施する第2制御部(14)と、を備える電源システムであって、前記電流センサは、前記第1DCDCコンバータ及び前記第1制御部が収容されている第1筐体(25)に収容されていることを特徴とする電源システムである。
本構成によれば、第1DCDCコンバータの出力側に流れる電流を電流センサによって検出し、その検出値を用いて制御を行うことで、第1DCDCコンバータの出力電流を精度よく調整することができる。さらに、電流センサを第1DCDCコンバータ及び第1制御部と同じ第1筐体内に設ける構成とすることで、出力電流の検出値に与える外来ノイズの影響を抑制することができ、その結果、第1DCDCコンバータの出力電流をより精度よく調整することができる。
本実施形態における電源システムの電気的構成を表す図。 副電源装置の制御部による定電流制御を表す機能ブロック図。
図1に示す本実施形態における電源システムは、昇圧回路11(第2DCDCコンバータ)の出力端子と、昇圧回路21(第1DCDCコンバータ)の出力端子とが並列接続されて構成されるものである。並列接続された昇圧回路11,21の出力端子は、インバータ回路12の入力端子に接続されており、昇圧回路11,21の出力電力はインバータ回路12に対して入力される。なお、昇圧回路11,21は、インバータ回路12から入力される電力を降圧してバッテリ101,102に出力することが可能である。
昇圧回路11とインバータ回路12とは、筐体15(第2筐体)に収容されており、主電源装置10を構成する。また、昇圧回路21は、筐体25(第1筐体)に収容されており、副電源装置20を構成している。筐体15,25は電源装置10,20の外部から内部に対して電磁ノイズ(外来ノイズ)が侵入することを抑制し、また、電源装置10,20の内部から外部に対して電磁ノイズを放射することを抑制する。筐体15,25は、例えば、金属製の箱である。以下、各電源装置10,20についての説明を行う。
主電源装置10は、主バッテリ101(蓄電池)から電力を供給され、回転電機110に対して電力を供給する。主電源装置10は、同期整流方式の昇圧回路11と、三相交流電力を出力するインバータ回路12と、電力入力部13と、制御部14と、を備えている。また、昇圧回路11と、インバータ回路12と、電力入力部13(第2インバータ実装部)と、制御部14(第2制御部)とは、筐体15に収容されている。
昇圧回路11は、バッテリ101から供給される電圧を昇圧し、インバータ回路12に出力する。昇圧回路11は、入力側コンデンサC1A、出力側コンデンサC1B、リアクトルL1、及び、スイッチSA1,SA2を備えている。スイッチSA1,SA2として、電圧制御形の半導体スイッチング素子を用いており、より具体的には、IGBTである。そして、各スイッチには、フリーホイールダイオードが逆並列にそれぞれ接続されている。
コンデンサC1Aの両端子は、それぞれバッテリ101の両端子(昇圧回路11の入力端子)に接続されている。リアクトルL1の第1端子は、バッテリ101の高圧側端子に接続されている。また、リアクトルL1の第2端子は、高電圧側のスイッチSA1と低電圧側スイッチSA2との接続点、即ち、高電圧側スイッチSA1のエミッタ、及び、低電圧側スイッチSA2のコレクタに接続されている。高電圧側スイッチSA1のコレクタは、昇圧回路11の高電圧側出力端子に接続されている。低電圧側スイッチSA2のエミッタは、昇圧回路11の低電圧側出力端子に接続されている。出力側コンデンサC1Bは、昇圧回路11の出力端子(インバータ回路12の入力端子)に接続されている。
制御部14は、昇圧回路11の出力電圧を検出する電圧センサから検出値を取得する。次に、取得した検出値に基づいて、スイッチSA1,SA2のデューティ(オン時間比率)を設定する。そして、各スイッチSA1,SA2を駆動する駆動部(図示略)に対して、そのデューティを出力する。具体的には、制御部14は、昇圧回路11において出力電圧V1が目標値V1*となるように定電圧制御を実施する。駆動部によって、スイッチSA1と、スイッチSA2とは、交互にオン状態とされる。
インバータ回路12は、高電圧側のスイッチング素子SBu,SBv,SBw(上アームスイッチ)及び低電圧側のスイッチング素子SCu,SCv,SCw(下アームスイッチ)の直列接続体が、3つ並列に接続されて構成されている。各相上、上アームスイッチと下アームスイッチの接続点には、筐体15に設けられた端子P1Aを介して、回転電機110の対応する相が接続されている。なお、本実施形態では、スイッチSB,SCとして、電圧制御形の半導体スイッチング素子を用いており、より具体的にはIGBTを用いている。そして、各スイッチには、フリーホイールダイオードが逆並列にそれぞれ接続されている。
制御部14は、回転電機110を構成する電機子巻線の各相に流れる電流を検出する相電流センサや、回転電機110の回転角を検出する回転角センサ等から検出値を取得する。そして、取得した検出値に基づいて、インバータ回路12を構成する各スイッチSB,SCをオンオフ操作すべく、各操作信号を生成する。そして、各スイッチを駆動する駆動部(図示略)に対して、生成した各操作信号を出力する。駆動部によって、上アームスイッチSBu,SBv,SBwと、対応する下アームスイッチSCu,SCv,SCwとは、交互にオン状態とされる。
ここで、主電源装置10は、インバータ回路12の入力側、言い換えると、昇圧回路11の両出力端子に並列接続されるように電力入力部13を備えている。電力入力部13の端子P1B(第2端子)には、副電源装置20の端子P2B(第1端子)が接続されており、電力入力部13は、副電源装置20から供給される電力をインバータ回路12に出力する。言い換えると、昇圧回路11の出力端子は、筐体15に設けられた端子P1Bを介して、昇圧回路21の出力端子と並列接続されている。
電力入力部13は、半導体スイッチング素子が実装されれば、インバータ回路として機能することが可能である。即ち、半導体スイッチング素子を実装可能な上アームスイッチ実装部位DAu,DAv,DAwと下アームスイッチ実装部位DBu,DBv,DBwとを備えている。各実装部位DA,DBに対して半導体スイッチング素子が実装され、実装した半導体スイッチング素子を制御部14が制御すれば、電力入力部13は昇圧回路11から入力される電力を三相交流に変換し、筐体15に設けられた端子P1Bから出力することができる。
具体的には、電力入力部13は、昇圧回路11の高電圧側出力端子が接続される高電圧配線LP1(第2高電圧配線)と、昇圧回路11の低電圧側出力端子が接続される低電圧配線LN1(第2低電圧配線)と、高電圧配線LP1及び低電圧配線LN1と絶縁されている複数の中性点(第2中性点)とを有する。また、各中性点は、それぞれ筐体15に設けられている複数の端子P1Bと接続されている。電力入力部13は、高電圧配線LP1と中性点との間(即ち、上アームスイッチ実装部位DAu,DAv,DAw)、及び、低電圧配線LN1と中性点との間(即ち、下アームスイッチ実装部位DBu,DBv,DBw)に半導体スイッチング素子が実装されれば、インバータ回路を構成可能である。
主電源装置10は、電力入力部13の各実装部位DA,DBに対して半導体スイッチング素子が実装されると、2つのインバータ回路を備える構成となる。各インバータ回路に対して、回転電機をそれぞれ接続することで、同時に2つの回転電機を駆動することが可能になる。言い換えると、本実施形態の主電源装置10は、2つのインバータ回路を備える構成の電源装置において、2つのインバータ回路のうちの一方からスイッチを省略し、電力入力部13として用いている。
本実施形態における電力入力部13は、スイッチ実装部位DAu,DBwが短絡状態とされ、他のスイッチ実装部位DAv,DAw,DBu,DBvが開放状態とされている。これにより、電力入力部13は、副電源装置20の昇圧回路21から端子P1Bを介して入力される直流電力をインバータ回路12に出力する。なお、複数の相(本実施形態では3相)のどの上アームスイッチ実装部位を短絡し、どの下アームスイッチ実装部位を短絡するかは、任意に選択可能である。言い換えると、高電圧配線LP1と中性点のうち1つとが短絡され、低電圧配線LN1と中性点のうち高電圧配線LP1と短絡されているものとは異なる1つとが短絡されていればよい。
副電源装置20は、副バッテリ102(蓄電池)から電力を供給され、主電源装置10のインバータ回路12に対して電力を供給する。副電源装置20は、同期整流方式の昇圧回路21と、インバータ実装部22と、電力出力部23(第1インバータ実装部)と、制御部24(第1制御部)と、を備えている。また、昇圧回路21と、インバータ実装部22と、電力出力部23と、制御部24とは、筐体25に収容されている。
主電源装置10と副電源装置20とは、スイッチSB,SC、電圧センサ16、及び、電流センサ17,26の実装を除いて、筐体及び基板が共通化されている。即ち、昇圧回路11と昇圧回路21とは同一の構成である。電力入力部13と、電力出力部23とは同一の構成である。インバータ回路12と、インバータ実装部22とは、スイッチの実装を除き同一の構成である。
主電源装置10と副電源装置20とで、筐体及び基板を共通化することで、製造コストを低減することができ、また、主電源装置10と副電源装置20に対する試験を共通化することができる。
また、制御部14と制御部24とは同一の回路構成であるとともに、ROMに書き込まれたプログラムが異なるものであり、異なる制御を実施する。即ち、制御部14は、昇圧回路11において電圧センサ16の検出値に基づく電圧フィードバック制御を実施するとともに、インバータ回路12において電流センサ17の検出値に基づく電流フィードバック制御を実施する。一方、制御部24は、昇圧回路21において電流センサ26の検出値に基づく電流フィードバック制御を実施する。
昇圧回路21は、バッテリ102から供給される電圧を昇圧し、電力出力部23に出力する。昇圧回路21は、昇圧回路11と同一の構成である。具体的には、昇圧回路21は、入力側コンデンサC2A、出力側コンデンサC2B、リアクトルL2、及び、スイッチSD1,SD2を備えている。スイッチSD1,SD2として、電圧制御形の半導体スイッチング素子を用いており、より具体的には、IGBTである。そして、各スイッチには、フリーホイールダイオードが逆並列にそれぞれ接続されている。
電力出力部23は、副電源装置20の筐体25に設けられた端子P2B及び主電源装置10の筐体15に設けられた端子P1Bを介して、昇圧回路21の出力端子と、昇圧回路11の出力端子とを並列接続する。これにより、昇圧回路21の出力電力をインバータ回路12に入力する。
電力出力部23は、主電源装置10の電力入力部13と同様に、半導体スイッチング素子が実装されれば、インバータ回路として機能することが可能である。即ち、半導体スイッチング素子を実装可能な上アームスイッチ実装部位DCu,DCv,DCwと下アームスイッチ実装部位DDu,DDv,DDwとを備えている。各実装部位DC,DDに対して半導体スイッチング素子が実装され、実装した半導体スイッチング素子を制御部24が制御すれば、電力出力部23は昇圧回路21から入力される電力を三相交流に変換し、筐体25に設けられた端子P2Bから出力することができる。
電力出力部23は、スイッチ実装部位DCu,DDwが短絡状態とされ、他のスイッチ実装部位DCv,DCw,DDu,DDvが開放状態とされている。これにより、電力出力部23は、昇圧回路21から入力される直流電力を、端子P2Bを介してインバータ回路12に出力する。なお、複数の相(本実施形態では3相)のどの上アームスイッチ実装部位を短絡し、どの下アームスイッチ実装部位を短絡するかは、任意に選択可能である。言い換えると、高電圧配線LP2(第1高電圧配線)と中性点(第1中性点)のうち1つとが短絡され、低電圧配線LN2(第1低電圧配線)と中性点(第1中性点)のうち高電圧配線LP2と短絡されているものとは異なる1つとが短絡されていればよい。
本実施形態における電力出力部23は、スイッチ実装部位DCu,DDwが短絡状態とされ、他のスイッチ実装部位DCv,DCw,DDu,DDvが開放状態とされることで、昇圧回路21から入力される直流電力を端子P2Bから出力する。
ここで、電力出力部23は、電力出力部23がインバータ回路として用いられた場合に、そのインバータ回路の出力電流を検出する相電流センサを設けることが可能なように設計されている。そこで、本実施形態では、その相電流センサの設置位置、具体的には、U相、又は、W相の出力電流を検出可能な位置に電流センサ26を設ける構成としている。
制御部24は、電流センサ26から昇圧回路21の出力電流の検出値を取得する。そして、制御部24は、電流センサ26から取得した検出値に基づいて、昇圧回路21の出力電流、即ち、副電源装置20の出力電流が、所定の目標電流となるようにスイッチSD1,SD2のオンオフ操作を行う。制御部24による電流フィードバック制御の詳細については後述する。
副電源装置20は、電力出力部23に加え、上アームスイッチ実装部位DEu,DEv,DEwと下アームスイッチ実装部位DFu,DFv,DFwとを有するインバータ実装部22を有する。スイッチ実装部位De,DFに対して半導体スイッチング素子が実装され、実装された半導体スイッチング素子を制御部24が制御すれば、インバータ実装部22は昇圧回路21から入力される電力を三相交流に変換し、端子P2Aから出力することができる。
図2に本実施形態の制御部24の機能ブロック図を示す。
制御部24の電流指令値算出部241には、上位の制御装置から副電源装置20の出力電力W2の指令値W2*が入力される。電力指令値W2*は、回転電機110に対する出力電力Wの目標値W*を電源装置の個数で割った値に設定されている(W2*=W*/2)。電流指令値算出部241は、電力指令値W2*を昇圧回路11の出力電圧V1の目標値V1*で割ることで、昇圧回路21の出力電流I2の指令値I2*を算出する(I2*=W2*/V1*)。
偏差算出部242は、電流指令値算出部241から取得する出力電流の指令値I2*と、電流センサ26から取得する出力電流I2の検出値の偏差ΔI2を算出する。PI演算部243は、偏差算出部242から取得する偏差ΔI2に基づいて、PI演算(比例・積分演算)を実施する。なお、PI演算に代えて、P演算(比例演算)や、PID演算(比例・積分・微分演算)を実施してもよい。デューティ算出部244は、PI演算部243から取得する値に基づいて、スイッチSD1,SD2のデューティ(オン時間比率)の指令値を算出する。デューティ算出部244は、デューティ指令値をスイッチSD1,SD2をそれぞれ駆動する駆動部27に出力する。駆動部27は、デューティ指令値に基づいて、スイッチSD1,SD2をそれぞれ駆動する。
主電源装置10の制御部14が昇圧回路11の定電圧制御を実施し、主電源装置10以外の電源装置である副電源装置20の制御部24が昇圧回路21の定電流制御を実施する。これにより、出力端子が並列接続されている昇圧回路11,21の双方において定電圧制御を実施した場合に、主として電圧センサの誤差に起因して出力電圧が不安定化することを抑制することができる。また、昇圧回路11,21の出力電圧及び出力電力をそれぞれ任意のものとすることができる。
以下、本実施形態の効果を述べる。
本構成によれば、昇圧回路21の出力側に流れる電流を電流センサ26によって検出し、その検出値を用いて制御を行うことで、昇圧回路21の出力電流I2を精度よく調整することができる。さらに、電流センサ26を昇圧回路21及び制御部24と同じ筐体25に収容する構成とすることで、出力電流I2の検出値に与える外来ノイズの影響を抑制することができ、その結果、昇圧回路21の出力電流I2をより精度よく調整することができる。
本実施形態の構成は、昇圧回路21及び制御部24と同一の筐体25内に電力出力部23(インバータ実装部23)を備えている。インバータ実装部23の各中性点は、筐体25に設けられた端子P2B(第1端子)に接続されている。インバータ実装部23に対して半導体スイッチング素子を実装すれば、昇圧回路21とインバータ回路(インバータ実装部23)とが直列接続され、昇圧回路21とインバータ回路とがともに同一の筐体25内に収容された電力変換装置として機能し、端子P2Bから交流電力が出力される。
本実施形態では、インバータ実装部23において、半導体スイッチング素子を実装せず、高電圧配線LP2と中性点の1つとを短絡し、低電圧配線LN2と中性点の1つとを短絡する。これにより、昇圧回路21の出力電力を端子P2Bから取り出すことができる。つまり、昇圧回路21とインバータ回路(インバータ実装部23)とがともに同一の筐体25内に収容された電力変換装置を流用する場合に、その構成を大幅に変更することなく、昇圧回路21の出力端子と昇圧回路11の出力端子とを並列接続することが可能になる。
インバータ実装部23に対して半導体スイッチング素子を実装すれば、昇圧回路21とインバータ回路(インバータ実装部23)とが直列接続され、昇圧回路21とインバータ回路とがともに同一の筐体25内に収容された電力変換装置として機能し、端子P2Bから交流電力が出力される。ここで、インバータ回路12と同様に、インバータ回路の出力を調整する場合、インバータ回路の出力電流を検出し、その検出値に基づいて、インバータ回路を構成する半導体スイッチング素子を駆動することが一般的である。この場合、インバータ実装部23の中性点と、端子P2Bとの間に、インバータ回路の出力電流を検出する電流センサが設けられる。
一般的に電流センサは体格が大きい。このため、従来品の電力変換装置に対して、その筐体内(電力変換装置内)に新たに電流センサ26を設けるための空間を確保することは困難である。そこで、本実施形態では、インバータ実装部23がインバータ回路として用いられる場合そのインバータ回路の出力電流を検出する電流センサを設ける位置に対して、昇圧回路21の出力電流を検出する電流センサ26を設ける構成とした。これにより、筐体25内において、電流センサ26を設ける空間を容易に確保することができる。
本実施形態の構成は、昇圧回路11及び制御部14と同一の筐体15内に電力入力部13(インバータ実装部13)を備えている。インバータ実装部13の各中性点は、筐体15に設けられた端子P1Bに接続されている。インバータ実装部13に対して半導体スイッチング素子を実装すれば、昇圧回路11とインバータ回路(インバータ実装部13)とが直列接続され、昇圧回路11と複数のインバータ回路とがともに同一の筐体15内に収容された電力変換装置として機能し、端子P1A,P1Bから交流電力が出力される。
本実施形態では、インバータ実装部13において、半導体スイッチング素子を実装せず、高電圧配線LP1と中性点の1つとを短絡し、低電圧配線LN1と中性点の1つとを短絡する。そして、端子P1Bを介して、昇圧回路21の出力端子と昇圧回路11の出力端子とを並列接続する。これにより、昇圧回路11とインバータ回路(インバータ実装部13)とがともに同一の筐体内に収容された電力変換装置を流用する場合に、その構成を大幅に変更することなく、昇圧回路11の出力端子と昇圧回路21の出力端子とを並列接続することができる。
(他の実施形態)
・昇圧回路21に電力を供給するものをバッテリ102(蓄電池)から変更してもよい。例えば、一般的なキャパシタや、電気二重層キャパシタであってもよい。燃料電池を用いてもよい。太陽電池を用いてもよい。
・昇圧回路11,21として、同期整流方式の昇圧回路から変更してもよい。例えば、ダイオード整流方式の昇圧回路としてもよいし、絶縁型DCDCコンバータを用いてもよい。また、降圧回路や昇降圧回路などであってもよく、つまり、入力される直流電力を所定の直流電力に変換する回路(DCDCコンバータ)であればよい。
・上記実施形態では、1の電圧フィードバック制御を行う昇圧回路11と、1の電流フィードバック制御を行う昇圧回路21と、を並列接続して用いる構成を示したが、これを変更してもよい。具体的には、1の電圧フィードバック制御を行う昇圧回路と、任意の数の電流フィードバック制御を行う昇圧回路とを並列接続して用いる構成としてもよい。
・電流センサ26として、ホール素子型電流センサを用いる構成としたが、これを変更し、他の直流電流を検出可能な電流センサを用いてもよい。例えば、シャント抵抗及び電圧センサを備える電流センサを用いてもよい。
・電流センサ26について、筐体25内であれば、他の位置に設置してもよい。即ち、リアクトルL2の入力端子、出力端子、又は入力端子若しくは出力端子に接続されている配線に対して電流センサを設ける構成としてもよい。また、電力出力部23の入力側に電流センサを設ける構成としてもよい。
・主電源装置10においてインバータ回路12を省略する構成としてもよい。同様に、副電源装置20において、インバータ実装部22を省略する構成としてもよい。また、主電源装置10において、電力入力部13を省略する構成としてもよい。同様に、副電源装置20において、電力出力部23を省略する構成としてもよい。
また、主電源装置10は、インバータ回路12に加え、他のインバータ回路を有する構成であってもよい。また、主電源装置10は、インバータ実装部13に加え、他のインバータ実装部を有する構成であってもよい。同様に、副電源装置20は、インバータ実装部22,23に加え、他のインバータ実装部を有する構成であってもよい。
11…昇圧回路(第2DCDCコンバータ)、14…制御部(第2制御部)、16…電圧センサ、21…昇圧回路(第1DCDCコンバータ)、24…制御部(第1制御部)、25…筐体(第1筐体)、26…電流センサ。

Claims (7)

  1. それぞれの出力端子が並列接続された第1DCDCコンバータ(21)及び第2DCDCコンバータ(11)と、
    前記第1DCDCコンバータの出力電流を検出する電流センサ(26)と、
    前記第2DCDCコンバータの出力電圧を検出する電圧センサ(16)と、
    前記電流センサによる検出値を取得し、その取得した検出値に基づいて、前記第1DCDCコンバータの前記出力電流を調整する制御を実施する第1制御部(24)と、
    前記電圧センサによる検出値を取得し、その取得した検出値に基づいて、前記第2DCDCコンバータの前記出力電圧を調整する制御を実施する第2制御部(14)と、を備える電源システムであって、
    前記電流センサは、前記第1DCDCコンバータ及び前記第1制御部が収容されている第1筐体(25)に収容されており、
    前記第1DCDCコンバータの高電圧側出力端子が接続される第1高電圧配線(LP2)と、前記第1DCDCコンバータの低電圧側出力端子が接続される第1低電圧配線(LN2)と、前記第1高電圧配線及び前記第1低電圧配線と絶縁されている複数の第1中性点と、を有し、前記第1高電圧配線と前記第1中性点との間、及び、前記第1低電圧配線と前記第1中性点との間に半導体スイッチング素子を実装可能な第1インバータ実装部(23)を備え、
    前記第1インバータ実装部は前記第1筐体内に収容されており、
    前記複数の第1中性点は、それぞれ前記第1筐体に設けられている複数の第1端子(P2B)と接続されており、
    前記第1高電圧配線と前記複数の第1中性点のうちの1つとが短絡され、前記第1低電圧配線と前記複数の第1中性点のうち前記第1高電圧配線と短絡されているものとは異なる1つとが短絡され、
    前記第1DCDCコンバータの出力端子は、前記第1中性点に接続されている前記第1端子を介して、前記第2DCDCコンバータの出力端子と並列接続されていることを特徴とする電源システム。
  2. 所定の第1DCDCコンバータ(21)の高電圧側出力端子が接続される第1高電圧配線(LP2)と、前記第1DCDCコンバータの低電圧側出力端子が接続される第1低電圧配線(LN2)と、前記第1高電圧配線及び前記第1低電圧配線と絶縁されている複数の第1中性点と、を有し、前記第1高電圧配線と前記第1中性点との間、及び、前記第1低電圧配線と前記第1中性点との間に半導体スイッチング素子を実装可能な第1インバータ実装部(23)を備え
    記複数の第1中性点は、複数の第1端子(P2B)と接続されており、
    前記第1高電圧配線と前記複数の第1中性点のうちの1つとが短絡され、前記第1低電圧配線と前記複数の第1中性点のうち前記第1高電圧配線と短絡されているものとは異なる1つとが短絡され、
    前記第1DCDCコンバータの出力端子は、前記第1中性点に接続されている前記第1端子を介して、所定の第2DCDCコンバータ(11)の出力端子と並列接続されていることを特徴とする電源システム。
  3. 前記電流センサは、前記第1筐体内であって、前記第1中性点と、その第1中性点に接続されている前記第1端子との間に設けられていることを特徴とする請求項に記載の電源システム。
  4. 前記第2DCDCコンバータの高電圧側出力端子が接続される第2高電圧配線(LP1)と、前記第2DCDCコンバータの低電圧側出力端子が接続される第2低電圧配線(LN1)と、前記第2高電圧配線及び前記第2低電圧配線と絶縁されている複数の第2中性点とを有し、前記第2高電圧配線と前記第2中性点との間、及び、前記第2低電圧配線と前記第2中性点との間に半導体スイッチング素子を実装可能な第2インバータ実装部(13)を備え、
    前記第2インバータ実装部は、前記第2DCDCコンバータ及び前記第2制御部が収容されている第2筐体(15)に収容されており、
    前記複数の第2中性点は、それぞれ前記第2筐体に設けられている複数の第2端子(P1B)と接続されており、
    前記第2高電圧配線と前記複数の第2中性点のうち1つとが短絡され、前記第2低電圧配線と前記複数の第2中性点のうち前記第2高電圧配線と短絡されているものとは異なる1つとが短絡され、
    前記第2DCDCコンバータの出力端子は、前記第2中性点に接続されている前記第2端子を介して、前記第1DCDCコンバータの出力端子と並列接続されていることを特徴とする請求項1又は3に記載の電源システム。
  5. それぞれの出力端子が並列接続された第1DCDCコンバータ(21)及び第2DCDCコンバータ(11)と、
    前記第1DCDCコンバータの出力電流を検出する電流センサ(26)と、
    前記第2DCDCコンバータの出力電圧を検出する電圧センサ(16)と、
    前記電流センサによる検出値を取得し、その取得した検出値に基づいて、前記第1DCDCコンバータの前記出力電流を調整する制御を実施する第1制御部(24)と、
    前記電圧センサによる検出値を取得し、その取得した検出値に基づいて、前記第2DCDCコンバータの前記出力電圧を調整する制御を実施する第2制御部(14)と、を備える電源システムであって、
    前記電流センサは、前記第1DCDCコンバータ及び前記第1制御部が収容されている第1筐体(25)に収容されており、
    前記第2DCDCコンバータの高電圧側出力端子が接続される第2高電圧配線(LP1)と、前記第2DCDCコンバータの低電圧側出力端子が接続される第2低電圧配線(LN1)と、前記第2高電圧配線及び前記第2低電圧配線と絶縁されている複数の第2中性点とを有し、前記第2高電圧配線と前記第2中性点との間、及び、前記第2低電圧配線と前記第2中性点との間に半導体スイッチング素子を実装可能な第2インバータ実装部(13)を備え、
    前記第2インバータ実装部は、前記第2DCDCコンバータ及び前記第2制御部が収容されている第2筐体(15)に収容されており、
    前記複数の第2中性点は、それぞれ前記第2筐体に設けられている複数の第2端子(P1B)と接続されており、
    前記第2高電圧配線と前記複数の第2中性点のうち1つとが短絡され、前記第2低電圧配線と前記複数の第2中性点のうち前記第2高電圧配線と短絡されているものとは異なる1つとが短絡され、
    前記第2DCDCコンバータの出力端子は、前記第2中性点に接続されている前記第2端子を介して、前記第1DCDCコンバータの出力端子と並列接続されていることを特徴とする電源システム。
  6. 前記第2DCDCコンバータの高電圧側出力端子が接続される第2高電圧配線(LP1)と、前記第2DCDCコンバータの低電圧側出力端子が接続される第2低電圧配線(LN1)と、前記第2高電圧配線及び前記第2低電圧配線と絶縁されている複数の第2中性点とを有し、前記第2高電圧配線と前記第2中性点との間、及び、前記第2低電圧配線と前記第2中性点との間に半導体スイッチング素子を実装可能な第2インバータ実装部(13)を備え
    記複数の第2中性点は、複数の第2端子(P1B)と接続されており、
    前記第2高電圧配線と前記複数の第2中性点のうち1つとが短絡され、前記第2低電圧配線と前記複数の第2中性点のうち前記第2高電圧配線と短絡されているものとは異なる1つとが短絡され、
    前記第2DCDCコンバータの出力端子は、前記第2中性点に接続されている前記第2端子を介して、前記第1DCDCコンバータの出力端子と並列接続されていることを特徴とする請求項1乃至のいずれか1項に記載の電源システム。
  7. 所定の第2DCDCコンバータ(11)の高電圧側出力端子が接続される第2高電圧配線(LP1)と、前記第2DCDCコンバータの低電圧側出力端子が接続される第2低電圧配線(LN1)と、前記第2高電圧配線及び前記第2低電圧配線と絶縁されている複数の第2中性点とを有し、前記第2高電圧配線と前記第2中性点との間、及び、前記第2低電圧配線と前記第2中性点との間に半導体スイッチング素子を実装可能な第2インバータ実装部(13)を備え
    記複数の第2中性点は、複数の第2端子(P1B)と接続されており、
    前記第2高電圧配線と前記複数の第2中性点のうち1つとが短絡され、前記第2低電圧配線と前記複数の第2中性点のうち前記第2高電圧配線と短絡されているものとは異なる1つとが短絡され、
    前記第2DCDCコンバータの出力端子は、前記第2中性点に接続されている前記第2端子を介して、所定の第1DCDCコンバータ(21)の出力端子と並列接続されていることを特徴とする電源システム。
JP2016151489A 2016-08-01 2016-08-01 電源システム Active JP6677120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151489A JP6677120B2 (ja) 2016-08-01 2016-08-01 電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151489A JP6677120B2 (ja) 2016-08-01 2016-08-01 電源システム

Publications (2)

Publication Number Publication Date
JP2018023189A JP2018023189A (ja) 2018-02-08
JP6677120B2 true JP6677120B2 (ja) 2020-04-08

Family

ID=61165973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151489A Active JP6677120B2 (ja) 2016-08-01 2016-08-01 電源システム

Country Status (1)

Country Link
JP (1) JP6677120B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087864B2 (ja) * 2018-09-11 2022-06-21 株式会社デンソー 電力変換装置
WO2021019642A1 (ja) * 2019-07-29 2021-02-04 三菱電機株式会社 電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621619B2 (ja) * 2011-01-24 2014-11-12 パナソニック株式会社 電源装置
JP2014121221A (ja) * 2012-12-19 2014-06-30 Honda Motor Co Ltd 電源システム
JP6127948B2 (ja) * 2013-12-05 2017-05-17 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
JP2018023189A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
US10523091B2 (en) Control unit and electric power steering device employing control unit
JP6397795B2 (ja) 電力変換装置
WO2016098410A1 (ja) 電力変換装置及びこれを用いた電動パワーステアリング装置
US20110134666A1 (en) Redundant control method for a polyphase converter with distributed energy stores
US9742304B2 (en) Driver board and power converter
AU2013219020A1 (en) Power supply control device
JP2013046541A (ja) 電源装置
JP2018023195A5 (ja)
JP6729404B2 (ja) 車載用電源装置の故障検出装置及び車載用電源装置
JP6677120B2 (ja) 電源システム
CN111213312B (zh) 逆变器控制基板
JP5362657B2 (ja) 電力変換装置
US10897213B2 (en) Power converter and distributed power supply system
JP2011178236A (ja) 電源回路及びこれを用いた電動パワーステアリング装置
JP6573198B2 (ja) 電力変換装置
JP2018148693A (ja) 電動モータの駆動制御装置
JP6390806B1 (ja) インバータ装置
JP6139422B2 (ja) 基準電圧出力回路および電源装置
JP6529040B2 (ja) 電力変換装置及びその制御方法
JP6677905B2 (ja) 異常検出装置及び電源装置
JP2018074623A (ja) 無停電電源装置
WO2019150921A1 (ja) 車載用電源装置の異常検出装置及び車載用電源装置
JP2019054627A (ja) 電力変換装置、並びに電力変換装置の調整方法
JP2015053762A (ja) 多相dc/dcコンバータ
JP6281117B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R151 Written notification of patent or utility model registration

Ref document number: 6677120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250