JP6662100B2 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
JP6662100B2
JP6662100B2 JP2016034542A JP2016034542A JP6662100B2 JP 6662100 B2 JP6662100 B2 JP 6662100B2 JP 2016034542 A JP2016034542 A JP 2016034542A JP 2016034542 A JP2016034542 A JP 2016034542A JP 6662100 B2 JP6662100 B2 JP 6662100B2
Authority
JP
Japan
Prior art keywords
hydraulic pressure
electric motor
value
energization amount
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016034542A
Other languages
English (en)
Other versions
JP2017149319A (ja
Inventor
真一郎 幽谷
真一郎 幽谷
安井 由行
由行 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2016034542A priority Critical patent/JP6662100B2/ja
Publication of JP2017149319A publication Critical patent/JP2017149319A/ja
Application granted granted Critical
Publication of JP6662100B2 publication Critical patent/JP6662100B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、車両の制動制御装置に関する。
特許文献1には、「フィードバック制御則を用いたブレーキ制御において、良好なブレーキフィーリングを実現する」ことを目的に、「目標減速度の補正に際し、ブレーキペダルの踏み込み速度の絶対値が大きくなるほど、比例ゲインPgainが小さくなるようにし、さらに積分補正係数HoseiIを小さくして積分ゲインの影響が小さくなるようにする」ことが記載されている。具体的には、「フィードフォワード項KFFとフィードバック項KFBとを乗算して補正係数Kを演算し、この補正係数Kに基づいて目標減速度を演算する。そして、補正された目標減速度に基づいて、ホイールシリンダへ供給すべき目標油圧を演算し、これに基づいて、ホイールシリンダに供給する油圧を制御する」旨が記載されている。
特許文献1に記載の装置では、車両の減速度の変動は抑制され得るが、目標減速度が補正されるため、運転者の意図と車両の減速度と間にズレが生じることが懸念され得る。このため、本出願人は、特許文献2に記載されるような、制御アルゴリズムを採用して開発を進めている。
この制御アルゴリズムでは、制動操作部材BPの操作量Bpaに基づいて、摩擦部材MSBが回転部材KTBを押す力の目標値(目標押し力)Fbtが演算される。この目標押し力Fbtに基づいて、指示通電量Imsが演算されるとともに、目標押し力Fbtと実際の押し力Fbaとの偏差(押し力偏差)ΔFbに基づいて、押し力フィードバック通電量Iptが演算される。そして、指示通電量Ims(フィードフォワード項に相当)が押し力フィードバック通電量Ipt(フィードバック項に相当)によって調整され、目標通電量Imtが演算される。電気モータMTRは、この目標通電量Imtに基づいて制御される。
特許文献2における制動装置の構成では、電気モータMTRの回転動力は、流体を介さず、機械的な動力伝達機構によって、直接的に摩擦部材MSBに伝達される。上記制御アルゴリズムを、流体を介して動力伝達が行われる装置に適用すると、運転者が急な制動操作を行った場合に、制動液圧の変動、及び、オーバシュートが課題となり得る。
以下、このことについて、図5の時系列線図を参照して説明する。ここで、加圧ユニットKAUは電気モータMTRで駆動され、流体配管(制動パイプ)HKC、HWCを介して、ホイールシリンダWCに接続されている。また、液圧フィードバック制御を行うための液圧センサPCAは、加圧ユニットKAUに内蔵されている。
図5に示す例では、運転者は、時点u0にて制動操作部材BPの急操作を開始し、時点u1にて制動操作部材BPの操作を一定に保持する。この操作にしたがって、加圧ユニットKAUの指示液圧(目標値)Pcsは、破線で示したように、時点u0から時点u1までは急増し、時点u1以降は一定値pc0に維持される。
液圧センサPCAの検出結果(検出液圧)Pcaを実線で示す。検出液圧(吐出液圧)Pcaは、時点u0の直後には、電気モータMTRが起動されるために時間を要するため、直ちには増加されない(矢印(a)部を参照)。その後、電気モータMTRが起動されると、加圧ユニットKAUによって、制動液は、ホイールシリンダWCに向けて吐出され始める。しかし、制動配管(制動パイプ)HKC、HWC内の制動液の質量、及び、制動配管HKC、HWCの流体抵抗によって、制動液が直ちには移動されない。このため、検出液圧Pcaは急激に増加される(矢印(b)部を参照)。すると、検出液圧(実際値)Pcaが指示液圧(目標値)Pcsよりも過大となるため、液圧フィードバック制御によって、加圧ユニットKAUでの減圧が開始される。制動液がホイールシリンダWCに向けて移動され始めると、検出液圧Pcaは急激に減少される(矢印(c)部を参照)。今度は、検出液圧Pcaが指示液圧Pcsよりも過少となるため、加圧ユニットKAUによる急増圧が再度開始される(矢印(d)部を参照)。この急増圧によって、制動液圧のオーバシュートが発生し得る(矢印(e)部を参照)。
上記制御アルゴリズムが、流体(制動液)を利用した制動制御装置に適用される場合には、電気モータMTRの応答性、及び、流体の移動(流体伝達における動特性)に起因する、制動トルクの増減変動(特に、減圧による上昇不足)、及び、オーバシュートの問題が懸念される。したがって、上記液圧フィードバック制御の適正な実行が望まれている。
特開2007−253676号公報 特開2013−112261号公報
本発明は、上記問題に対処するためになされたものであり、その目的は、電気モータMTRによって加圧ユニットKAUを駆動し、流体配管を介して、制動トルクを発生する車両の制動制御装置において、制動操作部材BPが急操作された場合にも、液圧フィードバック制御を適正に実行して、制動液圧の増減変動、オーバシュート等を、適切に抑制し得るものを提供することである。
本発明に係る車両の制動制御装置は、車両の制動操作部材(BP)の操作量(Bpa)を取得する操作量取得手段(BPA)と、前記車両のホイールシリンダ(WC)の液圧を、電気モータ(MTR)によって増加する加圧ユニット(KAU)と、前記加圧ユニット(KAU)に内蔵され、前記加圧ユニット(KAU)の吐出液圧(Pca)を検出する液圧センサ(PCA)と、前記操作量(Bpa)、及び、前記吐出液圧(Pca)に基づいて前記電気モータ(MTR)を制御する制御手段(CTL)と、を備える。
本発明に係る車両の制動制御装置では、前記制御手段(CTL)は、前記操作量(Bpa)に基づいて指示液圧(Pcs)を演算し、前記指示液圧(Pcs)に基づいて指示通電量(Ims)を演算し、前記指示液圧(Pcs)と前記吐出液圧(Pca)とに基づいてフィードバック通電量(Ifb、Ifc)を演算し、前記指示通電量(Ims)、及び、前記フィードバック通電量(Ifb、Ifc)に基づいて、前記吐出液圧(Pca)が前記指示液圧(Pcs)に一致するように前記電気モータ(MTR)への通電量を制御する。加えて、前記制御手段(CTL)は、前記操作量(Bpa)に基づいて操作速度(dBp)を演算し、前記操作速度(dBp)が大きいほど前記フィードバック通電量(Ifb、Ifc)を小さく修正する。
さらに、本発明に係る車両の制動制御装置では、前記制御手段(CTL)は、前記操作速度(dBp)が予め設定された上方値(dbu)以上の場合には、前記フィードバック通電量(Ifb、Ifc)をゼロにする。
上記構成によれば、制動操作部材BPの急な操作がなされた場合には、制動配管内の制動液の質量、及び、流体抵抗に起因する、加圧ユニットKAUによる不必要な吐出液圧の増減、オーバシュート等の液圧変動が抑制される。一方、制動操作部材BPが、急操作ではない、通常的な操作がなされた場合には、加圧ユニットKAUの吐出液圧(液圧センサPCAの検出液圧)Pcaが指示液圧(目標値)Pcsに一致するよう液圧の微調整によって、精度の高い液圧制御が行われ得る。
本発明に係る車両の制動制御装置を搭載した車両の全体構成図である。 制御手段(コントローラ)での処理を説明するための機能ブロック図である。 電気モータ、及び、その駆動回路を説明するための回路図である。 本発明に係る車両の制動制御装置の作用・効果を説明するための時系列線図である。 従来の制動制御装置において、制動操作部材が急操作された場合の制動液圧変化の一例を示した時系列線図である。
<本発明に係る車両の制動制御装置の全体構成>
図1の全体構成図を参照して、本発明に係る制動制御装置BCSについて説明する。制動制御装置BCSを備える車両には、制動操作部材BP、操作量取得手段BPA、制御手段CTL、マスタシリンダMCL、ストロークシミュレータSSM、シミュレータ遮断弁VSM、モータ制御装置MCS、加圧ユニットKAU、切替弁VKR、マスタシリンダ配管HMC、ホイールシリンダ配管HWC、加圧シリンダ配管HKCが備えられる。さらに、車両の各々の車輪WHには、ブレーキキャリパCRP、ホイールシリンダWC、回転部材KTB、及び、摩擦部材MSBが備えられている。
制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。制動操作部材BPが操作されることによって、車輪WHの制動トルクが調整され、車輪WHに制動力が発生される。具体的には、車両の車輪WHには、回転部材(例えば、ブレーキディスク)KTBが固定される。回転部材KTBを挟み込むようにブレーキキャリパCRPが配置される。そして、ブレーキキャリパCRPには、ホイールシリンダWCが設けられている。ホイールシリンダWC内の制動液の圧力(液圧)が増加されることによって、摩擦部材(例えば、ブレーキパッド)MSBが、回転部材KTBに押し付けられる。回転部材KTBと車輪WHとは、固定シャフトDSFを介して固定されているため、このときに生じる摩擦力によって、車輪WHに制動トルク(制動力)が発生される。
操作量取得手段(操作量センサ)BPAは、制動操作部材BPに設けられる。操作量取得手段BPAによって、運転者による制動操作部材BPの操作量(制動操作量)Bpaが取得(検出)される。具体的には、操作量取得手段BPAとして、マスタシリンダMCLの圧力を検出する液圧センサ、制動操作部材BPの操作変位を検出する操作変位センサ、及び、制動操作部材BPの操作力を検出する操作力センサのうちの少なくとも1つが採用される。即ち、操作量取得手段BPAは、マスタシリンダ液圧センサ、操作変位センサ、及び、操作力センサについての総称である。したがって、制動操作量Bpaは、マスタシリンダMCLの液圧、制動操作部材BPの操作変位、及び、制動操作部材BPの操作力のうちの少なくとも1つに基づいて決定される。操作量Bpaは、制御手段CTLに入力される。
制御手段(コントローラともいう)CTLは、制動操作量Bpaに基づいて、後述する加圧ユニットKAU、遮断弁VSM、及び、切替弁VKRを制御する。具体的には、制御手段CTLのマイクロプロセッサには、電気モータMTR、遮断弁VSM、切替弁VKRを制御するための制御アルゴリズムが、プログラムされていて、これらを制御するための信号が演算される。
制御手段CTLは、操作量Bpaが所定値bp0以上になった場合に、遮断弁VSMを開位置にする駆動信号Vsmを出力するとともに、切替弁VKRが加圧シリンダ配管HKCとホイールシリンダ配管HWCとを連通状態にする駆動信号Vkrを出力する。この場合、マスタシリンダMCLはシミュレータSSMに連通状態にされ、加圧シリンダKCLはホイールシリンダWCと連通状態にされる。したがって、ホイールシリンダWC内の液圧は、加圧ユニットKAUによって制御される。
マスタシリンダMCLは、制動操作部材BPと、ピストンロッドPRDを介して、接続されている。マスタシリンダMCLによって、制動操作部材BPの操作力(ブレーキペダル踏力)が液圧に変換される。マスタシリンダMCLには、マスタシリンダ配管HMCが接続され、制動操作部材BPが操作されると、制動液は、マスタシリンダMCLからマスタシリンダ配管HMCに排出(圧送)される。マスタシリンダ配管HMCは、マスタシリンダMCLと切替弁VKRとを接続する流体路である。
ストロークシミュレータ(単に、シミュレータともいう)SSMが、制動操作部材BPに操作力を発生させるために設けられる。マスタシリンダMCL内の液圧室とシミュレータSSMとの間には、シミュレータ遮断弁(単に、遮断弁ともいう)VSMが設けられる。遮断弁VSMは、開位置と閉位置とを有する2位置の電磁弁である。遮断弁VSMが開位置にある場合には、マスタシリンダMCLとシミュレータSSMとは連通状態となり、遮断弁VSMが閉位置にある場合には、マスタシリンダMCLとシミュレータSSMとは遮断状態(非連通状態)となる。遮断弁VSMは、制御手段CTLからの駆動信号Vsmによって制御される。遮断弁VSMとして、常閉型電磁弁(NC弁)が採用され得る。
シミュレータSSMの内部には、ピストン、及び、弾性体(例えば、圧縮ばね)が備えられる。マスタシリンダMCLから制動液がシミュレータSSMに移動され、流入する制動液によりピストンが押される。ピストンは、弾性体によって制動液の流入を阻止する方向に力が加えられる。弾性体によって、制動操作部材BPが操作される場合の操作力(例えば、ブレーキペダル踏力)が形成される。
≪モータ制御装置MCS≫
モータ制御装置MCSは、加圧ユニットKAUを駆動する。モータ制御装置MCSは、制御手段CTL、駆動回路DRV、及び、電気モータMTRにて構成される。
制御手段(コントローラともいう)CTLは、マイクロプロセッサ等が実装された電気回路基板と、マイクロプロセッサにプログラムされた制御アルゴリズムにて構成されている。制御手段CTLは、操作量Bpa、回転角Mka、及び、検出液圧(実際の吐出液圧)Pcaに基づいて、電気モータMTRを駆動するための駆動信号(Su1等)を駆動回路DRVに出力する。
駆動回路DRVは、電気モータMTRを駆動するためのスイッチング素子(パワー半導体デバイス)等が実装された電気回路基板である。具体的には、駆動回路DRVにはブリッジ回路BRGが形成され、駆動信号(Su1等)に基づいて、電気モータMTRへの通電状態が制御される。駆動回路DRVには、電気モータMTRへの実際の通電量(各相の通電量)Imaを取得(検出)する通電量取得手段(電流センサ)IMAが設けられる。各相の通電量(検出値)Imaは、制御手段CTLに入力される。
電気モータMTRは、加圧シリンダKCL(加圧ユニットKAUの一部)がホイールシリンダWC内の制動液の圧力を調整(加圧、減圧等)するための動力源である。例えば、電気モータMTRとして、3相ブラシレスモータが採用される。電気モータMTRは、3つのコイルCLU、CLV、CLWを有し、駆動回路DRVによって駆動される。電気モータMTRには、電気モータMTRのロータ位置(回転角)Mkaを取得(検出)する回転角取得手段(回転角センサ)MKAが設けられる。回転角Mkaは、制御手段CTLに入力される。以上、モータ制御装置MCSについて説明した。
≪加圧ユニットKAU≫
加圧ユニットKAUは、モータ制御装置MCSを動力源として、加圧シリンダ配管HKCに制動液を排出(圧送)する。そして、圧送された制動液圧によって、加圧ユニットKAUは、車輪WHに制動トルク(制動力)を付与する。加圧ユニットKAUは、動力伝達機構DDK、出力ロッドSRD、加圧シリンダKCL、加圧ピストンPKC、及び、液圧取得手段PCAにて構成される。
動力伝達機構DDKは、電気モータMTRの回転動力を減速し、且つ、直線動力に変換して出力ロッドSRDに出力する。具体的には、動力伝達機構DDKには、減速機(図示せず)が設けられ、電気モータMTRからの回転動力が減速されてねじ部材(図示せず)に出力される。そして、ねじ部材によって、回転動力が出力ロッドSRDの直線動力に変換される。即ち、動力伝達機構DDKは、回転・直動変換機構である。
出力ロッドSRDには加圧ピストンPKCが固定される。加圧ピストンPKCは、加圧シリンダKCLの内孔に挿入され、ピストンとシリンダとの組み合わせが形成されている。具体的には、加圧ピストンPKCの外周には、シール部材(図示せず)が設けられ、加圧シリンダKCLの内孔(内壁)との間で液密性が確保される。即ち、加圧シリンダKCLと加圧ピストンPKCとによって区画される流体室Rkc(「加圧室Rkc」と称呼する)が形成される。
管継手JNTによって、加圧ユニットKAUの加圧室Rkcは、加圧シリンダ配管HKCに接続されている。管継手JNTとして、フレア式管継手が採用される。フレア式管継手JNTでは、加圧シリンダ配管HKC(パイプ)の端部が、円錐状に広げられように加工(フレア加工)され、フレアナットによって加圧ユニットKAU(特に、加圧シリンダKCL)に固定されて、接続される。
加圧シリンダKCL内にて、加圧ピストンPKCが中心軸方向に移動されることによって、加圧室Rkcの体積が変化される。この体積変化によって、制動液は、制動配管(パイプ)HKC、HWCを介して、加圧シリンダKCLとホイールシリンダWCとの間で移動される。加圧シリンダKCLからの制動液の出し入れによって、ホイールシリンダWC内の液圧が調整される。
液圧取得手段(液圧センサ)PCAが、加圧室Rkcの液圧Pcaを取得(検出)するために、加圧ユニットKAU(特に、加圧シリンダKCL)に内蔵される。液圧センサPCAは、管継手JNTに対して、ホイールシリンダWCとは反対側にある加圧シリンダKCLに固定され、加圧ユニットKAUとして一体となって構成される。即ち、液圧センサPCAは、管継手JNTに対して反対側に設けられた、加圧室Rckが吐出する制動液圧(検出液圧)Pcaを、直接検出する。吐出液圧(検出値)Pcaは、制御手段CTLに入力される。以上、加圧ユニットKAUについて説明した。
切替弁VKRによって、ホイールシリンダWCがマスタシリンダMCLと接続される状態と、ホイールシリンダWCが加圧シリンダKCLと接続される状態と、が切り替えられる。切替弁VKRは、制御手段CTLからの駆動信号Vkrに基づいて制御される。具体的には、制動操作が行われていない場合(Bpa<bp0)には、ホイールシリンダ配管HWCは、切替弁VKRを介して、マスタシリンダ配管HMCと連通状態にされ、加圧シリンダ配管HKCとは非連通(遮断)状態にされる。ここで、ホイールシリンダ配管HWCは、ホイールシリンダWCに接続される流体路である。制動操作が行われると(即ち、Bpa≧bp0の状態になると)、切替弁VKRが駆動信号Vkrに基づいて励磁され、ホイールシリンダ配管HWCとマスタシリンダ配管HMCとの連通は遮断され、ホイールシリンダ配管HWCと加圧シリンダ配管HKCとが連通状態にされる。
ブレーキキャリパ(単に、キャリパともいう)CRPは、車輪WHに設けられ、車輪WHに制動トルクを与え、制動力を発生させる。キャリパCRPとして、浮動型キャリパが採用され得る。キャリパCRPは、2つの摩擦部材(例えば、ブレーキパッド)MSBを介して、回転部材(例えば、ブレーキディスク)KTBを挟み込むように構成される。キャリパCRP内にて、ホイールシリンダWCが設けられる。ホイールシリンダWC内の液圧が調整されることによって、ホイールシリンダWC内のピストンが回転部材KTBに対して移動(前進、又は、後退)される。このピストンの移動によって、摩擦部材MSBが回転部材KTBに押し付けられて摩擦力が発生する。
図1では、ディスク型制動装置(ディスクブレーキ)の構成が例示されている。この場合、摩擦部材MSBはブレーキパッドであり、回転部材KTBはブレーキディスクである。ディスク型制動装置に代えて、ドラム型制動装置(ドラムブレーキ)が採用され得る。ドラムブレーキの場合、キャリパCRPに代えて、ブレーキドラムが採用される。また、摩擦部材MSBはブレーキシューであり、回転部材KTBはブレーキドラムである。
<制御手段CTLにおける処理>
図2の機能ブロック図を参照して、制御手段CTLでの処理について説明する。ここでは、電気モータMTRとして、ブラシレスモータが採用される例について説明する。
制御手段(コントローラともいう)CTLによって、後述する駆動回路DRVのスイッチング素子SU1、SU2、SV1、SV2、SW1、SW2(単に、「SU1〜SW2」とも表記)を駆動するための信号Su1、Su2、Sv1、Sv2、Sw1、Sw2(単に、「Su1〜Sw2」とも表記)が演算される。制御手段CTLは、指示液圧演算ブロックPCS、指示通電量演算ブロックIMS、操作速度演算ブロックDBP、液圧フィードバック制御ブロックPFB、目標通電量演算ブロックIMT、及び、スイッチング制御ブロックSWTにて構成される。
指示液圧演算ブロックPCSでは、制動操作量Bpa、及び、演算特性(演算マップ)CPcsに基づいて、指示液圧Pcsが演算される。ここで、指示液圧Pcsは、加圧ユニットKAUによって発生される制動液圧の目標値である。具体的には、演算特性CPcsにおいて、制動操作量Bpaがゼロ(制動操作が行われていない場合に対応)以上から所定値bp0未満の範囲では指示液圧Pcsが「0(ゼロ)」に演算され、操作量Bpaが所定値bp0以上では指示液圧Pcsが操作量Bpaの増加にしたがってゼロから単調増加するように演算される。ここで、所定値bp0は、制動操作部材BPの「遊び」に相当する値である。
指示通電量演算ブロックIMSでは、指示液圧Pcs、及び、予め設定された演算特性(演算マップ)CIsa、CIsbに基づいて、加圧ユニットKAUを駆動する電気モータMTRの指示通電量Ims(電気モータMTRを制御するための通電量の目標値)が演算される。指示通電量Ims用の演算マップは、動力伝達機構DDK等によるヒステリシスの影響を考慮して、2つの特性CIsa、CIsbで構成されている。
ここで、「通電量」とは、電気モータMTRの出力トルクを制御するための状態量(状態変数)である。電気モータMTRは電流に概ね比例するトルクを出力するため、通電量の目標値(目標通電量)として電気モータMTRの電流目標値が用いられ得る。また、電気モータMTRへの供給電圧を増加すれば、結果として電流が増加されるため、目標通電量として供給電圧値が用いられ得る。さらに、パルス幅変調におけるデューティ比によって供給電圧値が調整され得るため、このデューティ比(一周期における通電時間の割合)が通電量として用いられ得る。
操作速度演算ブロックDBPでは、操作量Bpaに基づいて、制動操作部材BPの操作速度dBpが演算される。操作速度dBpは、制動操作量Bpaの時間に対する変化量であり、操作量Bpaが時間微分されて演算される。
≪液圧フィードバック制御ブロックPFB≫
液圧フィードバック制御ブロックPFBでは、液圧の目標値(指示液圧)Pcs、及び、液圧の実際値(検出値)Pcaを制御の状態変数として、これらに基づいて、電気モータMTRのフィードバック通電量Ifbが演算される。指示通電量Imsに基づく制御だけでは、液圧誤差が発生するため、液圧フィードバック制御ブロックPFBでは、この誤差を補償することが行われる。
さらに、液圧フィードバック制御ブロックPFBでは、操作速度dBpに基づいて演算された修正係数Kfbによって、フィードバック通電量Ifbが修正されて、修正後のフィードバック通電量Ifcが出力される。これは、図5を参照して説明した、液圧フィードバック制御の液圧変動等の課題を解消するためのものである。
以下、液圧フィードバック制御ブロックPFBについて説明する。液圧フィードバック制御ブロックPFBは、比較演算、フィードバック通電量演算ブロックIFB、修正係数演算ブロックKFB、及び、修正演算にて構成される。
比較演算によって、液圧の目標値(指示液圧)Pcsと実際値(検出値)Pcaとが比較される。ここで、液圧の実際値Pcaは、液圧センサPCAによって取得(検出)される液圧の検出値(吐出液圧)である。例えば、比較演算では、指示液圧(目標値)Pcsと、吐出液圧(検出値)Pcaとの偏差(液圧偏差)ePcが演算される。液圧偏差ePc(制御変数)は、フィードバック通電量演算ブロックIFBに入力される。
フィードバック通電量演算ブロックIFBには、比例要素ブロックHEL、微分要素ブロックBEL、及び、積分要素ブロックSELが含まれる。比例要素ブロックHELでは、液圧偏差ePcに比例ゲインKpが乗算されて、液圧偏差ePcの比例要素が演算される。微分要素ブロックBELでは、液圧偏差ePcが微分されて、これに微分ゲインKdが乗算されて、液圧偏差ePcの微分要素が演算される。積分要素ブロックSELでは、液圧偏差ePcが積分されて、これに積分ゲインKiが乗算されて、液圧偏差ePcの積分要素が演算される。そして、比例要素、微分要素、及び、積分要素が、加算されることによって、フィードバック通電量Ifbが演算される。即ち、フィードバック通電量演算ブロックIFBでは、液圧の実際値(検出値)Pcaが液圧の目標値(指示液圧)Pcsに一致するよう(即ち、偏差ePcが「0(ゼロ)」に近づくよう)、所謂、液圧に基づくPID制御ループが形成されている。
修正係数演算ブロックKFBでは、操作速度dBp、及び、演算特性(演算マップ)CKfbに基づいて、フィードバック通電量Ifbを修正するための係数(修正係数)Kfbが演算される。具体的には、操作速度dBpが、「0(ゼロ)」以上、下方値dbs未満の範囲(「0≦dBp<dbs」の条件)では、修正係数Kfbは「1」に演算される。操作速度dBpが、下方値dbs以上、上方値dbu未満の範囲(「dbs≦dBp<dbu」の条件)では、操作速度dBpの増加にしたがって、修正係数Kfbは「1」から「0」に単調減少するように演算される。そして、操作速度dBpが、上方値dbu以上の場合(「dBp≧dbu」の条件)には、修正係数Kfbは「0(ゼロ)」に演算される。ここで、下方値dbs、及び、上方値dbuは、予め設定された所定値(判定用のしきい値)であり、上方値dbuは下方値dbs以上の値である。換言すれば、下方値dbsは上方値dbu以下の値である。例えば、液圧フィードバック制御の滑らかな遷移(例えば、制御禁止から制御実行への遷移)のため、上方値dbuは、下方値dbsよりも所定値db0だけ大きい値として設定され得る。なお、上方値dbuは、制動配管内における、制動液の質量、及び、流体抵抗に基づいて予測された、フィードバック制御によって液圧変動の発生の蓋然性が高くなる領域を示す値である。
修正演算によって、フィードバック通電量Ifbが、修正係数Kfbに基づいて修正され、修正フィードバック通電量Ifcとして演算される。具体的には、フィードバック通電量Ifbに修正係数Kfbが乗算されて、修正フィードバック通電量Ifcが演算される。操作速度dBpが相対的に遅く、「0≦dBp<dbs」の場合には、「Kfb=1」にされるため、フィードバック通電量Ifbが修正されず、そのまま、修正フィードバック通電量Ifcとして、液圧フィードバック制御ブロックPFBから出力される。この場合、吐出液圧(検出値)Pcaを指示液圧(目標値)Pcsに一致させようとする、通常の液圧フィードバック制御が実行される。操作速度dBpが相対的に速くなり、「dbs≦dBp<dbu」の場合には、操作速度dBpの増加にともない、修正係数Kfbは「1」から減少され、修正フィードバック通電量Ifcはフィードバック通電量Ifbよりも小さく演算(修正)される。このように、修正係数Kfbが小さい値に変更されることによって、液圧フィードバック制御の効果(効き具合)が弱められる。そして、操作速度dBpが過大であり、「dBp≧dbu」の場合には、「Kfb=0」にされ、「Ifc=0」が演算される。即ち、液圧フィードバック制御の実行が行われない。
液圧フィードバック制御ブロックPFBでは、液圧偏差ePc(即ち、吐出液圧Pca)を状態変数とするフィードバック制御が実行される。さらに、この液圧フィードバック制御の程度(効き具合)は、操作速度dBpに基づいて修正(調整)される。そして、液圧フィードバック制御ブロックPFBからは、修正後のフィードバック通電量Ifcが出力される。具体的には、運転者による制動操作が急激であり、操作速度dBpが非常に大である場合には、この液圧フィードバック制御の実行が禁止される。以上、液圧フィードバック制御ブロックPFBについて説明した。
目標通電量演算ブロックIMTでは、指示通電量(目標値)Ims、及び、修正フィードバック通電量(補償値)Ifcに基づいて、通電量の最終的な目標値である目標通電量Imtが演算される。具体的には、指示通電量Imsに対して、修正フィードバック通電量Ifcが加えられ、それらの和が目標通電量Imtとして演算される(即ち、Imt=Ims+Ifc)。
目標通電量演算ブロックIMTでは、電気モータMTRの回転すべき方向(即ち、液圧の増減方向)に基づいて、目標通電量Imtの符号(値の正負)が決定される。また、電気モータMTRの出力すべき回転動力(即ち、液圧の増減量)に基づいて、目標通電量Imtの大きさが演算される。具体的には、制動液圧を増加する場合には、目標通電量Imtの符号が正符号(Imt>0)に演算され、電気モータMTRが正転方向に駆動される。一方、制動液圧を減少させる場合には、目標通電量Imtの符号が負符号(Imt<0)に決定され、電気モータMTRが逆転方向に駆動される。さらに、目標通電量Imtの絶対値が大きいほど電気モータMTRの出力トルク(回転動力)が大きくなるように制御され、目標通電量Imtの絶対値が小さいほど出力トルクが小さくなるように制御される。
スイッチング制御ブロックSWTでは、目標通電量Imtに基づいて、各スイッチング素子SU1〜SW2についてパルス幅変調を行うための駆動信号Su1〜Sw2が演算される。電気モータMTRがブラシレスモータである場合、目標通電量Imt、及び、回転角Mkaに基づいて、各相(U相、V相、W相)の通電量の目標値Iut、Ivt、Iwtが演算される。各相の目標通電量Iut、Ivt、Iwtに基づいて、各相のパルス幅のデューティ比(一周期に対するオン時間の割合)Dut、Dvt、Dwtが決定される。そして、デューティ比(目標値)Dut、Dvt、Dwtに基づいて、ブリッジ回路BRGを構成する各スイッチング素子SU1〜SW2をオン状態(通電状態)にするか、或いは、オフ状態(非通電状態)にするかの駆動信号Su1〜Sw2が演算される。駆動信号Su1〜Sw2は、駆動回路DRVに出力される。
6つの駆動信号Su1〜Sw2によって、6つのスイッチング素子SU1〜SW2の通電、又は、非通電の状態が、個別に制御される。ここで、デューティ比が大きいほど、各スイッチング素子において、単位時間当りの通電時間が長くされ、より大きな電流がコイルに流される。したがって、電気モータMTRの回転動力が大とされる。
駆動回路DRVには、各相に通電量取得手段(例えば、電流センサ)IMAが備えられ、実際の通電量(各相の総称)Imaが取得(検出)される。各相の検出値(例えば、実際の電流値)Imaは、スイッチング制御ブロックSWTに入力される。そして、各相の検出値Imaが、目標値Iut、Ivt、Iwtと一致するよう、所謂、電流フィードバック制御が実行される。具体的には、実際の各通電量Imaと目標通電量Iut、Ivt、Iwtとの偏差に基づいて、デューティ比Dut、Dvt、Dwtが修正(微調整)される。この電流フィードバック制御によって、高精度なモータ制御が達成され得る。
<3相ブラシレスモータMTR、及び、その駆動回路DRV>
図3の回路図を参照して、電気モータMTRとして、U相コイルCLU、V相コイルCLV、及び、W相コイルCLWの3つのコイル(巻線)を有する、3相ブラシレスモータが採用される例について説明する。ブラシレスモータMTRでは、回転子(ロータ)側に磁石が、固定子(ステータ)側に巻線回路(コイル)が配置される。電気モータMTRは、回転子の磁極に合わせたタイミングで、駆動回路DRVによって転流が行われ、回転駆動される。
電気モータMTRには、電気モータMTRの回転角(ロータ位置)Mkaを検出する回転角センサMKAが設けられる。回転角センサMKAとして、ホール素子型のものが採用される。また、回転角センサMKAとして、可変リラクタンス型レゾルバが採用され得る。検出された回転角Mkaは、制御手段CTLに入力される。
駆動回路DRVは、電気モータMTRを駆動する電気回路である。駆動回路DRVによって、制御手段CTLからの各相の駆動信号Su1、Su2、Sv1、Sv2、Sw1、Sw2(「Su1〜Sw2」とも表記)に基づいて、電気モータMTRが駆動される。駆動回路DRVは、6つのスイッチング素子(パワートランジスタ)SU1、SU2、SV1、SV2、SW1、SW2(「SU1〜SW2」とも表記)にて形成された3相ブリッジ回路(単に、ブリッジ回路ともいう)BRG、及び、安定化回路LPFにて構成される。
3相ブリッジ回路(インバータ回路ともいう)BRGの入力側には、安定化回路LPFを介して、蓄電池BATが接続され、ブリッジ回路BRGの出力側には電気モータMTRが接続されている。ブリッジ回路BRGでは、スイッチング素子を直列接続した上下アーム構成の電圧型ブリッジ回路を1つの相として、3つの相(U相、V相、W相)が形成されている。3つの相の上アームは、蓄電池BATの陽極側に接続された電力線PW1と接続される。また、3つの相の下アームは、蓄電池BATの陰極側に接続された電力線PW2と接続される。ブリッジ回路BRGでは、各相の上下アームは、蓄電池BATと並列に電力線PW1、PW2に接続されている。
U相上アームは、還流ダイオードDU1がスイッチング素子SU1に逆並列接続され、U相下アームは、還流ダイオードDU2がスイッチング素子SU2に逆並列接続される。同様に、V相上アームは、還流ダイオードDV1がスイッチング素子SV1に逆並列接続され、V相下アームは、還流ダイオードDV2がスイッチング素子SV2に逆並列接続される。また、W相上アームは、還流ダイオードDW1がスイッチング素子SW1に逆並列接続され、W相下アームは、還流ダイオードDW2がスイッチング素子SW2に逆並列接続される。各相の上アームと下アームとの接続部PCU、PCV、PCWは、ブリッジ回路BRGの出力端(交流出力端)を形成する。これらの出力端には電気モータMTRが接続されている。
6つのスイッチング素子SU1〜SW2は、電気回路の一部をオン又はオフできる素子である。例えば、スイッチング素子SU1〜SW2として、MOS−FET、IGBTが採用される。ブラシレスモータMTRでは、回転角(ロータ位置)Mkaに基づいて、ブリッジ回路BRGを構成するスイッチング素子SU1〜SW2が制御される。そして、3つの各相(U相、V相、W相)のコイルCLU、CLV、CLWの通電量の方向(即ち、励磁方向)が、順次切り替えられ、電気モータMTRが回転駆動される。即ち、ブラシレスモータMTRの回転方向(正転方向、或いは、逆転方向)は、ロータと励磁する位置との関係によって決定される。ここで、電気モータMTRの正転方向は、加圧ユニットKAUの吐出液圧Pcaの増加に対応する回転方向であり、電気モータMTRの逆転方向は、吐出液圧Pcaの減少に対応する回転方向である。
ブリッジ回路BRGと電気モータMTRとの間の実際の通電量(例えば、電流値)Ima(各相の総称)を検出する通電量取得手段(電流センサ)IMAが、3つの相毎に設けられる。検出された各相の通電量Imaは、コントローラCTLに入力される。
駆動回路DRVは、電力源(蓄電池BAT、発電機ALT)から電力の供給を受ける。供給された電力(電圧)の変動を低減するために、駆動回路DRVには、安定化回路(ノイズ低減回路ともいう)LPFが設けられる。安定化回路LPFは、少なくとも1つのコンデンサ(キャパシタ)、及び、少なくとも1つのインダクタ(コイル)の組み合わせにて構成され、所謂、LC回路(LCフィルタともいう)である。
電気モータMTRとして、ブラシレスモータに代えて、ブラシ付モータ(単に、ブラシモータともいう)が採用され得る。この場合、ブリッジ回路BRGとして、4つのスイッチング素子(パワートランジスタ)にて形成されるHブリッジ回路が用いられる。即ち、ブラシモータのブリッジ回路BRGでは、ブラシレスモータの3つの相のうちの1つが省略される。ブラシレスモータの場合と同様に、電気モータMTRには、回転角センサMKAが設けられ、駆動回路DRVには、安定化回路LPFが設けられる。さらに、駆動回路DRVには、通電量取得手段IMAが設けられる。
<作用・効果>
図4の時系列線図を参照して、本発明に係る制動制御装置の作用・効果について説明する。ここで、運転者は、値bp1に向けて、急激に制動操作量Bpaを増加するような、急操作の状況を想定する。
先ず、制動操作が行われない場合(「Bpa=0」の場合)には、修正係数Kfbは「1」に設定されている。時点t0にて、運転者は制動操作部材(ブレーキペダル)BPの操作を開始する。時点t0の直後は、制動操作部材の操作速度dBpは未だ小さく、修正係数Kfbは「1」のままである(操作速度dBpは、領域(A)内に留まる)。時間の経過にしたがって、操作速度dBpが急激に増加する。操作速度dBpが下方値(所定のしきい値)dbsを超過した時点(演算周期)t1から、修正係数Kfbは「1」から減少され始める(操作速度dBpは、領域(B)内で変化する)。そして、操作速度dBpが上方値(所定のしきい値)dbuを超過した時点(演算周期)t2にて、修正係数Kfbは「0(ゼロ)」にされる(操作速度dBpは、領域(B)から領域(C)に遷移する)。ここで、上方値dbu、下方値dbsは、予め設定された、操作速度dBpに対応するしきい値である。
制動操作部材BPの操作速度dBpが上方値dbu以上の状態が継続される時点t2から時点t3に亘って、修正係数Kfbは「0」に維持される(操作速度dBpは、領域(C)に維持される)。操作速度dBpが、上方値dbuを下回る時点(演算周期)t3から、操作速度dBpの減少にしたがって、修正係数Kfbは「0」から徐々に増加される(操作速度dBpは、領域(B)内で徐々に変化する)。そして、制動操作量Bpaが概ね値bp1となり、操作速度dBpが下方値dbs未満の条件を満足した時点t4にて、修正係数Kfbは「1」に戻される(操作速度dBpは、領域(A)内に戻る)。
制動操作部材BPが急操作された状態は、操作速度dBpが上方値dbu以上であることによって判定(領域(B)から領域(C)に遷移したことの判定)がなされ、修正係数Kfbが「0」とされる(例えば、時点t2〜t3までの期間を参照)。そして、加圧ユニットKAUに内蔵された液圧センサPCAよって検出された吐出液圧Pcaが状態変数として用いられたフィードバック通電量Ifcが「0」にされ、液圧フィードバック制御が禁止される。この結果、急操作時における、制動配管HKC、HWC内の制動液の質量、及び、流体抵抗に起因した課題(図5を参照)が解消され得る。
具体的には、加圧ユニットKAUからの吐出液圧Pcaにおいて、不必要な増加・減少による液圧変動が抑制され得る。例えば、不必要な減圧(図5(c)を参照)による液圧増加の遅れが解消され、液圧応答性が向上される。加えて、液圧のオーバシュート(図5(d)(e)を参照)が抑制される。なお、液圧フィードバック制御が禁止される期間(時点t2〜t3までの期間)は、非常に短時間である。このため、液圧フィードバック制御が禁止されることは、液圧精度の観点においては問題とはならない。
さらに、制動操作部材BPの急操作終了が、操作速度dBpが下方値dbs未満であることによって判定され、修正係数Kfbが「1」とされる(例えば、時点t4の後を参照)。そして、修正フィードバック通電量Ifcとして、フィードバック通電量Ifbがそのまま演算され、通常操作時における(急操作時ではない)通常の液圧フィードバック制御が実行される。この結果、加圧ユニットKAUの吐出液圧(液圧センサPCAの検出液圧)Pcaが指示液圧(目標値)Pcsに一致するように(偏差ePcが「0」に収束するように)液圧の微調整が行われ、精度の高い液圧制御が行われる。
吐出液圧Pcaを用いたフィードバック制御による液圧変動の発生の蓋然性は、制動配管内の制動液の質量、及び、流体抵抗に基づいて予測され得る。したがって、上方値dbuは、液圧変動の蓋然性が高くなる領域を示す値である。また、下方値dbsは、その蓋然性が低い領域を示す値である。
上方値dbuは、下方値dbs以上の値として設定される。即ち、上方値dbuが下方値dbsと一致していてもよい。この場合、修正係数Kfbは、操作速度dBpに基づいて、「0」、及び、「1」のうちの何れか一方が選択される。即ち、検出液圧Pcaに基づく、通常の液圧フィードバック制御が実行されるか、否か(禁止されるか)が、選択的に実行される。この場合においても、「急操作時の液圧変動抑制(昇圧応答性の向上)」、及び、「通常操作時の高精度の液圧制御」という、上記同様の効果を奏する。
上方値dbuは、下方値dbsよりも所定速度(所定値)db0だけ大きい値として設定され得る。この場合、操作速度dBpが所定値db0の範囲に亘って、操作速度dBpの変化(増加、減少)にしたがって、修正係数Kfbが「1」から「0」までの間にて、徐々に変化される。例えば、時点t3〜t4の区間が所定速度db0の範囲に相当し、修正係数Kfbが「0」から滑らかに「1」にまで増加される。上記効果に加え、液圧フィードバック制御の禁止状態(「Kfb=0」に対応)から通常状態(「Kfb=1」に対応)への遷移が円滑に行われ得る。
BP…制動操作部材、MTR…電気モータ、KAU…加圧ユニット、CTL…制御手段(コントローラ)、BPA…操作量取得手段(操作量センサ)、PCA…液圧取得手段(液圧センサ)、Bpa…操作量、dBp…操作速度、Pca…吐出液圧(検出液圧)、Ifb…フィードバック通電量、Ifc…修正フィードバック通電量、Kfb…修正係数。

Claims (2)

  1. 車両の制動操作部材の操作量を取得する操作量取得手段と、
    前記車両のホイールシリンダの液圧を、電気モータによって増加する加圧ユニットと、
    前記加圧ユニットに内蔵され、前記加圧ユニットの吐出液圧を検出する液圧センサと、
    前記操作量、及び、前記吐出液圧に基づいて前記電気モータを制御する制御手段と、
    を備える車両の制動制御装置において、
    前記制御手段は、
    前記操作量に基づいて指示液圧を演算し、
    前記指示液圧に基づいて指示通電量を演算し、
    前記指示液圧と前記吐出液圧とに基づいてフィードバック通電量を演算し、
    前記指示通電量、及び、前記フィードバック通電量に基づいて、前記吐出液圧が前記指示液圧に一致するように前記電気モータへの通電量を制御するとともに、
    前記操作量に基づいて操作速度を演算し、
    前記操作速度が大きいほど前記フィードバック通電量を小さく修正するよう構成された、車両の制動制御装置。
  2. 請求項1に記載の車両の制動制御装置において、
    前記制御手段は、
    前記操作速度が予め設定された上方値以上の場合には、前記フィードバック通電量をゼロにするよう構成された、車両の制動制御装置。
JP2016034542A 2016-02-25 2016-02-25 車両の制動制御装置 Active JP6662100B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034542A JP6662100B2 (ja) 2016-02-25 2016-02-25 車両の制動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034542A JP6662100B2 (ja) 2016-02-25 2016-02-25 車両の制動制御装置

Publications (2)

Publication Number Publication Date
JP2017149319A JP2017149319A (ja) 2017-08-31
JP6662100B2 true JP6662100B2 (ja) 2020-03-11

Family

ID=59739488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034542A Active JP6662100B2 (ja) 2016-02-25 2016-02-25 車両の制動制御装置

Country Status (1)

Country Link
JP (1) JP6662100B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769190A (ja) * 1993-09-03 1995-03-14 Honda Motor Co Ltd 車両のブレーキ力制御方法
JP4779742B2 (ja) * 2006-03-22 2011-09-28 トヨタ自動車株式会社 ブレーキ制御装置
JP6191506B2 (ja) * 2014-02-28 2017-09-06 株式会社アドヴィックス 車両の制動制御装置

Also Published As

Publication number Publication date
JP2017149319A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5968805B2 (ja) モータ装置およびモータ駆動装置
US11001242B2 (en) Braking control device for vehicle
CN108883761B (zh) 车辆的制动控制装置
WO2017141939A1 (ja) 車両のモータ制御装置
JP6699228B2 (ja) 車両の制動制御装置
US11407391B2 (en) Braking control device for vehicle
JP7017940B2 (ja) 電動式アクチュエータおよび電動ブレーキ装置
JP6575421B2 (ja) 車両の制動制御装置
JP6662100B2 (ja) 車両の制動制御装置
WO2019132019A1 (ja) 電動ブレーキ装置
JP6634868B2 (ja) 車両のモータ制御装置
JP6652023B2 (ja) 車両の制動制御装置
WO2019132022A1 (ja) 電動ブレーキ装置
JP6821939B2 (ja) 車両の制動制御装置
JP2019050649A (ja) 電動式アクチュエータおよび電動モータ装置
JP6707981B2 (ja) 車両の制動制御装置
JP6508112B2 (ja) 車両の制動制御装置
JP6855708B2 (ja) 車両の制動制御装置
JP2017147826A (ja) 車両のモータ制御装置
JP6707961B2 (ja) 車両の制動制御装置
JP6648655B2 (ja) 車両の制動制御装置
JP6816381B2 (ja) 圧力調整ユニット、及び、該ユニットを備える車両の制動制御装置
JP2018030492A (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6662100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150