JP6653407B1 - 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置 - Google Patents

余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置 Download PDF

Info

Publication number
JP6653407B1
JP6653407B1 JP2019193135A JP2019193135A JP6653407B1 JP 6653407 B1 JP6653407 B1 JP 6653407B1 JP 2019193135 A JP2019193135 A JP 2019193135A JP 2019193135 A JP2019193135 A JP 2019193135A JP 6653407 B1 JP6653407 B1 JP 6653407B1
Authority
JP
Japan
Prior art keywords
refractive index
cladding layer
fiber
light
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019193135A
Other languages
English (en)
Other versions
JP2020166228A (ja
Inventor
美矢子 合原
美矢子 合原
健太郎 市井
健太郎 市井
岸 達也
達也 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to PCT/JP2020/006883 priority Critical patent/WO2020195411A1/ja
Application granted granted Critical
Publication of JP6653407B1 publication Critical patent/JP6653407B1/ja
Publication of JP2020166228A publication Critical patent/JP2020166228A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】余剰光を除去する際に発生する熱が局所的に集中することを抑制できる余剰光除去ファイバを提供する。【解決手段】余剰光除去ファイバ30は、コア31と、コア31よりも外側に位置するクラッド層32と、クラッド層32の一部を被覆する樹脂38A,38B,38Cとを備える。クラッド層32は、屈折率を低下させる性質を有するドーパント(例えばフッ素)を含み、コア31の屈折率よりも低い屈折率を有している。クラッド層32は、光軸方向に沿って屈折率が上昇した屈折率上昇部35A,35B,35Cを含んでいる。樹脂38A,38B,38C、クラッド層32の屈折率上昇部35A,35B,35Cの屈折率以上の屈折率を有し、屈折率上昇部35A,35B,35Cを被覆している。【選択図】図2

Description

本発明は、余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置に係り、特にファイバレーザ装置において余剰光を除去するために用いられる余剰光除去ファイバに関するものである。
ファイバレーザ装置は、従来のレーザ装置と比較すると集光性が高く、取り回しのよい光ファイバを利用できることから、マーキングや材料加工など様々な分野で急速に普及してきている。このようなファイバレーザ装置においては、例えば、コアの周囲に内側クラッドと外側クラッドとを形成したダブルクラッドファイバが用いられることがある。この種のダブルクラッドファイバでは、コアの周囲を覆う内側クラッドに励起光が入射され、この内側クラッドを導波路として励起光が伝搬する。光増幅部では、内側クラッドを伝搬する励起光がコアを通過する際に、コアに添加された希土類元素イオンが励起光によって励起され、信号光が増幅される。
ここで、内側クラッドを伝搬する励起光のうち光増幅部のコアで吸収されなかった励起光は、残留励起光となって内側クラッドやコアを伝搬する。また、ファイバレーザ装置から加工対象物に照射したレーザ光が反射してファイバレーザ装置に戻り(以下、このような光を「戻り光」ということがある)、このような戻り光が内側クラッドやコアを伝搬することもある。このような残留励起光や戻り光(以下、これらを総称して「余剰光」ということがある)が励起光源に至ると、励起光源の発熱や故障の原因となることが考えられる。このため、余剰光を熱に変換して除去する余剰光除去部を光ファイバの端部に設けることも考えられている(例えば、特許文献1参照)。
しかしながら、従来の余剰光除去部は、光ファイバの端部で余剰光を熱に変換するものであるため、発生する熱が光ファイバの端部に集中し、余剰光除去部が高温となることが考えられる。特に、近年のファイバレーザ装置の高出力化に伴い、余剰光のパワーも大きくなってきているため、余剰光除去部のさらなる高温化がファイバレーザ装置の設計上の制限にもなり得る。
国際公開第2016/002947号公報
本発明は、このような従来技術の問題点に鑑みてなされたもので、余剰光を除去する際に発生する熱が局所的に集中することを抑制できる余剰光除去ファイバ及びファイバレーザ装置を提供することを第1の目的とする。
また、本発明は、余剰光を除去する際に発生する熱が局所的に集中することを抑制できる余剰光除去ファイバを簡単に製造することができる方法を提供することを第2の目的とする。
本発明の第1の態様によれば、余剰光を除去する際に発生する熱が局所的に集中することを抑制できる余剰光除去ファイバが提供される。この余剰光除去ファイバは、コアと、上記コアよりも外側に位置するクラッド層と、上記クラッド層の一部を被覆する樹脂とを備える。上記クラッド層は、屈折率を低下させる性質を有するドーパントを含み、該クラッド層の内側に隣接する層の屈折率よりも低い屈折率を有している。上記クラッド層は、屈折率が上昇した少なくとも1つの屈折率上昇部を光軸方向に沿って含んでいる。上記樹脂は、上記少なくとも1つの屈折率上昇部の屈折率以上の屈折率を有し、上記少なくとも1つの屈折率上昇部を被覆している。本明細書において「光軸方向」とは、余剰光除去ファイバ内を伝搬する光の進行方向を意味する。
このような余剰光除去ファイバによれば、クラッド層の屈折率上昇部においてクラッド層に隣接する層との屈折率差が小さくなるため、この屈折率上昇部において余剰光の一部がクラッド層に隣接する層からクラッド層に漏れ出ていきやすい構造となる。したがって、クラッド層に隣接する層を伝搬してきた余剰光が1箇所で一気にクラッド層に漏れ出ることを抑制でき、余剰光を除去する際に発生する熱が局所的に集中することを抑制することができる。
上記少なくとも1つの屈折率上昇部は、上記クラッド層の周方向における一部の領域に偏って配置されていてもよい。このように屈折率上昇部がクラッド層の周方向において一部の領域に偏って配置されている場合には、クラッド層に隣接する層を伝搬してきた余剰光が、クラッド層の周方向において屈折率上昇部が存在する側で優先的にクラッド層に漏れ出すことになる。
この場合において、上記クラッド層の周方向における一部の領域を被覆する上記樹脂が冷却板に接触していることが好ましい。このように屈折率上昇部が存在する側のクラッド層を被覆する樹脂を冷却板に接触させることで、屈折率上昇部から樹脂に漏れ出した余剰光により生じる熱を冷却板により効率的に外部に放出することができる。これにより、冷却板が配置されていない側の樹脂が意図せず高温となる可能性を低減することができる。
また、上記クラッド層の周方向における一部の領域のうちの少なくとも一部と上記冷却板とが互いに対向することが好ましい。このように、クラッド層の周方向における一部の領域のうちの少なくとも一部と冷却板とが互いに対向することで、屈折率上昇部から樹脂に漏れ出した余剰光により生じる熱を冷却板により一層効率的に外部に放出することができる。これにより、冷却板が配置されていない側の樹脂が意図せず高温となる可能性をより一層低減することができる。
上記ドーパントとしてはフッ素又はホウ素を用いることができる。また上記クラッド層の厚さは10μm以下であることが好ましい。
上記少なくとも1つの屈折率上昇部は、上記光軸方向に沿って配置された複数の屈折率上昇部を含むことが好ましい。このようにクラッド層が複数の屈折率上昇部を有することにより、除去する余剰光のパワーを複数の屈折率上昇部に分散することができ、余剰光により発生する熱が局所的に集中することを抑制することができる。
この場合において、上記複数の屈折率上昇部は、上記複数の屈折率上昇部と上記クラッド層の内側に隣接する層との屈折率差が上記光軸方向に沿って上記複数の屈折率上昇部ごとに減少するように配置されることが好ましい。このように、屈折率上昇部とクラッド層の内側に隣接する層との屈折率差が光軸方向に沿って、すなわち余剰光の伝搬方向に沿って複数の屈折率上昇部ごとに小さくなるように複数の屈折率上昇部を配置することにより、余剰光が光軸方向に伝搬するに従って相対的にコアからクラッド層に漏れにくくなるので、余剰光が1つの屈折率上昇部で一気にクラッド層に漏れ出ることが抑制され、余剰光が伝搬するにつれて徐々にそれぞれの屈折率上昇部でクラッド層に漏れ出て除去されることとなる。これにより、それぞれの屈折率上昇部において除去される余剰光の量を制御することができ、余剰光により発生する熱が局所的に集中することを抑制することができる。
本発明の第2の態様によれば、余剰光を除去する際に発生する熱が局所的に集中することを抑制できるファイバレーザ装置が提供される。このファイバレーザ装置は、希土類元素イオンが添加されたコアと、上記希土類元素イオンを励起する励起光を伝搬するクラッド層とを含む増幅用光ファイバと、上記希土類元素イオンを励起する励起光を生成する少なくとも1つの励起光源と、上述した余剰光除去ファイバとを備える。上記余剰光除去ファイバは、上記増幅用光ファイバの上流側に接続される。
本発明の第3の態様によれば、余剰光を除去する際に発生する熱が局所的に集中することを抑制できる余剰光除去ファイバを簡単に製造することができる方法が提供される。この製造方法によれば、まず、コアと、上記コアよりも外側に位置するクラッド層であって、屈折率を低下させる性質を有するドーパントを含み、該クラッド層の内側に隣接する層の屈折率よりも低い屈折率を有するクラッド層と、上記クラッド層を覆う被覆とを含む基材光ファイバを用意する。また、上記基材光ファイバの上記被覆の一部を除去して上記クラッド層を露出させ、上記露出したクラッド層を加熱して屈折率を上昇させた少なくとも1つの屈折率上昇部を形成する。上記少なくとも1つの屈折率上昇部の屈折率以上の屈折率を有する樹脂で上記少なくとも1つの屈折率上昇部を被覆して余剰光除去ファイバを作製する。
上記露出したクラッド層を加熱する際に、上記クラッド層の加熱位置を上記クラッド層の中心からずらしてもよい。このようにクラッド層の加熱位置をクラッド層の中心軸からずらすことにより、少なくとも1つの屈折率上昇部がクラッド層の周方向における一部の領域に偏って形成される。
本発明によれば、クラッド層の屈折率上昇部においてクラッド層に隣接する層との屈折率差が小さくなるため、この屈折率上昇部において余剰光の一部がクラッド層に隣接する層からクラッド層に漏れ出ていきやすい構造となる。したがって、クラッド層に隣接する層を伝搬してきた余剰光が1箇所で一気にクラッド層に漏れ出ることを抑制でき、余剰光を除去する際に発生する熱が局所的に集中することを抑制することができる。
図1は、本発明の一実施形態におけるファイバレーザ装置の構成を示す模式図である。 図2は、図1に示すファイバレーザ装置における余剰光除去ファイバの構成を光軸方向に沿った屈折率とともに示す模式的断面図である。 図3Aは、図2に示す余剰光除去ファイバを製造する工程を示す模式的断面図である。 図3Bは、図2に示す余剰光除去ファイバを製造する工程を示す模式的断面図である。 図3Cは、図2に示す余剰光除去ファイバを製造する工程を示す模式的断面図である。 図4は、図3Bに示す工程の前後における屈折率の変化を示すグラフである。 図5は、本発明の他の実施形態における余剰光除去ファイバの構成を光軸方向に沿った屈折率とともに示す模式的断面図である。 図6は、図5のA−A線断面図である。 図7は、図5に示す余剰光除去ファイバを製造する工程を示す模式的断面図である。
以下、本発明に係るファイバレーザ装置の実施形態について図1から図7を参照して詳細に説明する。なお、図1から図7において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図7においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。
図1は、本発明の一実施形態におけるファイバレーザ装置1の全体構成を示す模式的ブロック図である。図1に示すように、本実施形態におけるファイバレーザ装置1は、光共振器2と、光共振器2の上流側から光共振器2に励起光を導入する複数の前方励起光源11と、これらの前方励起光源11からの励起光を結合して光共振器2に出力する上流側光コンバイナ21と、光共振器2の下流側から光共振器2に励起光を導入する複数の後方励起光源12と、これらの後方励起光源12からの励起光を結合して光共振器2に出力する下流側光コンバイナ22と、下流側光コンバイナ22から延びるデリバリファイバ3と、デリバリファイバ3の下流側の端部に設けられたレーザ出射部4と、上流側光コンバイナ21の上流側に延びる余剰光除去ファイバ30とを備えている。なお、本明細書では、光共振器2からレーザ光Lが出射される方向を「下流側」といい、それとは逆の方向を「上流側」ということとする。
図1に示すように、光共振器2は、例えばイッテルビウム(Yb)やエルビウム(Er)、ツリウム(Tr)、ネオジム(Nd)などの希土類元素イオンが添加されたコアを有する増幅用光ファイバ10と、増幅用光ファイバ10の上流部に形成された高反射ファイバブラッググレーティング部(高反射FBG部)14と、増幅用光ファイバ10の下流部に形成された低反射ファイバブラッググレーティング部(低反射FBG部)16とを含んでいる。例えば、増幅用光ファイバ10は、コアの周囲に形成された内側クラッドと、内側クラッドの周囲に形成された外側クラッドとを有するダブルクラッドファイバによって構成される。高反射FBG部14は、光軸方向に沿ってコアの屈折率を周期的に変化させて形成されるもので、所定の波長帯の光を100%に近い反射率で反射するものである。低反射FBG部16は、高反射FBG部14と同様に、光軸方向に沿ってコアの屈折率を周期的に変化させて形成されるもので、高反射FBG部14で反射される波長帯の光の一部(例えば90%)を通過させ、残りを反射するものである。
上流側光コンバイナ21は、複数の前方励起光源11から出力される励起光を結合してこの励起光を増幅用光ファイバ10の内側クラッド層に導入するように構成されている。また、下流側光コンバイナ22は、複数の後方励起光源12から出力される励起光を結合してこの励起光を増幅用光ファイバ10の内側クラッド層に導入するように構成されている。このような構成により、増幅用光ファイバ10の内側クラッド層の内部を励起光が伝搬する。
光共振器2において、増幅用光ファイバ10の内側クラッド層を伝搬する励起光は、それぞれコアを通過する際に希土類元素イオンに吸収され、この希土類元素イオンが励起されて自然放出光が生じる。この自然放出光が高反射FBG部14と低反射FBG部16との間で再帰的に反射され、特定の波長(例えば1064nm)の光が増幅されてレーザ発振が生じる。光共振器2で増幅されたレーザ光(以下、「信号光」という)Lは、増幅用光ファイバ10のコア内を伝搬し、その一部が低反射FBG部16を透過して下流側に伝搬する。低反射FBG部16を透過したレーザ光Lは、デリバリファイバ3を通ってレーザ出射部4から例えば被加工物に向けて出射される。
上述したように、増幅用光ファイバ10のコアで吸収されなかった励起光やレーザ出射部4から加工対象物に照射されたレーザ光Lが加工対象物で反射してファイバレーザ装置1に戻ってきた戻り光などの余剰光は、デリバリファイバ3や増幅用光ファイバ10のコアを伝搬して、励起光源11,12に入射して励起光源11,12に至り、励起光源11,12の発熱や故障の原因となることが考えられる。このため、本実施形態においては、このような余剰光を除去するために、図1に示すように、上流側光コンバイナ21の上流側に余剰光除去ファイバ30が接続されている。ここで、上流側光コンバイナ21の上流側には、余剰光除去ファイバ30とともに励起光源11から延びる複数の光ファイバ13が接続されているが、下流から上流側光コンバイナ21に至った余剰光は、上流ファイバのコア位置に接続される光ファイバに最も伝搬しやすいため、余剰光を効率的に除去するためには、余剰光除去ファイバ30を上流側光コンバイナ21の上流ファイバのコア位置に接続し、その周囲に光ファイバ13を接続することが好ましい。
図2は、余剰光除去ファイバ30の構成を光軸方向に沿った屈折率とともに示す模式的断面図である。図2に示すように、余剰光除去ファイバ30は、例えばSiO2からなるコア31と、コア31の周囲を覆うクラッド層32と、クラッド層32の周囲を覆う被覆33とを含んでいる。クラッド層32には、屈折率を低下させる性質を有するドーパント(例えばフッ素(F)やホウ素(B))が添加されており、クラッド層32の屈折率はコア31の屈折率よりも低くなっている。すなわち、クラッド層32の屈折率は、クラッド層32の内側に隣接する層としてのコア31の屈折率よりも低くなっている。これにより、コア31の内部には光を伝搬させる光導波路が形成される。クラッド層32の厚さは10μm以下であることが好ましい。
図2に示すように、クラッド層32は、屈折率が上昇した複数の屈折率上昇部35A,35B,35Cを含んでいる。これらの屈折率上昇部35A,35B,35Cは光軸方向に離間して配置されている。クラッド層32の屈折率上昇部35A,35B,35Cが形成されている箇所では、被覆33が除去されており、屈折率上昇部35A,35B,35Cが被覆33から露出している。また、余剰光除去ファイバ30は、被覆33から露出した屈折率上昇部35A,35B,35Cをそれぞれ覆う樹脂38A,38B,38Cを含んでいる。これらの樹脂38A,38B,38Cは、クラッド層32の最大屈折率(すなわち、屈折率上昇部35A,35B,35Cの屈折率のうちで最も高い屈折率)以上の屈折率を有している。なお、図2では、クラッド層32が3つの屈折率上昇部35A,35B,35Cを含むように図示されているが、屈折率上昇部の数はこれに限られるものではなく、クラッド層32は1つ以上の屈折率上昇部を含んでいればよい。
図2の屈折率分布に示すように、屈折率上昇部35Bにおける最大屈折率は、屈折率上昇部35Aにおける最大屈折率よりも大きくなっており、屈折率上昇部35Bとコア31との屈折率差ΔBは、屈折率上昇部35Aとコア31との屈折率差ΔAよりも小さくなっている。また、屈折率上昇部35Cにおける最大屈折率は、屈折率上昇部35Bにおける屈折率より大きくなっており、屈折率上昇部35Cとコア31との屈折率差ΔCは、屈折率上昇部35Bとコア31との屈折率差ΔBよりも小さくなっている。このように、本実施形態では、屈折率上昇部35A,35B,35Cとコア31との屈折率差が光軸方向に沿って(上流側に向かって)次第に減少するようになっている。
このような構成によれば、余剰光除去ファイバ30のコア31に入射した余剰光Rは、余剰光除去ファイバ30のコア31とクラッド層32との間の屈折率差によってコア31に閉じ込められて伝搬し、余剰光除去ファイバ30のクラッド層32に入射した余剰光Rは、余剰光除去ファイバ30のクラッド層32と被覆33との間の屈折率差によってクラッド層32内に閉じ込められて伝搬する。上述したように屈折率上昇部35A,35B,35Cの屈折率は、他の部分に比べ高くなっているため、屈折率上昇部35A,35B,35Cとコア31との屈折率差は他の部分に比べて小さくなっている。したがって、余剰光除去ファイバ30のコア31を伝搬する余剰光Rは、屈折率上昇部35A,35B,35Cにおいてコア31からクラッド層32に漏れ出ていきやすく、余剰光Rの一部が屈折率上昇部35A,35B,35Cにおいてコア31からクラッド層32に漏れ出る。
ここで、屈折率上昇部35A,35B,35Cを覆っている樹脂38A,38B,38Cの屈折率は、屈折率上昇部35A,35B,35Cの屈折率以上であるため、コア31からクラッド層32に漏れ出た余剰光Rは、さらに樹脂38A,38B,38Cに漏れ出して、その一部が樹脂38A,38B,38Cに吸収されて熱に変換される。このように、屈折率上昇部35A,35B,35Cを覆う樹脂38A,38B,38Cによってクラッド層32を伝搬する余剰光Rの一部を熱に変換することができ、不要な余剰光を除去することができる。
このように、本実施形態によれば、クラッド層32の屈折率上昇部35A,35B,35Cにおいてコア31との屈折率差が小さくなっているため、この屈折率上昇部35A,35B,35Cにおいて余剰光Rの一部がコア31からクラッド層32に漏れ出ていきやすい構造となっている。したがって、コア31を伝搬してきた余剰光Rが1箇所で一気にクラッド層32に漏れ出ることを抑制でき、余剰光Rを除去する際に発生する熱が局所的に集中することを抑制することができる。
また、本実施形態のように複数の屈折率上昇部35A,35B,35Cを設けることにより、除去する余剰光Rのパワーを複数の屈折率上昇部35A,35B,35Cに分散することができ、余剰光により発生する熱が局所的に集中することを抑制することができる。この場合において、複数の屈折率上昇部35A,35B,35Cは、本実施形態のように、屈折率上昇部35A,35B,35Cとコア31との屈折率差が上流に向かって次第に減少するように配置することが好ましい。このような配置にすることにより、上流側の屈折率上昇部に比べて下流側の屈折率上昇部では余剰光Rが相対的にコア31からクラッド層32に漏れにくくなる。したがって、余剰光Rが下流側の屈折率上昇部で一気にクラッド層32に漏れ出ることが抑制され、余剰光Rが上流に向かって伝搬するにつれて徐々にそれぞれの屈折率上昇部でクラッド層32に漏れ出て除去される。これにより、それぞれの屈折率上昇部において除去される余剰光Rの量を制御することができ、余剰光により発生する熱が局所的に集中することを抑制することができる。
なお、図1に示すように、余剰光除去ファイバ30でも除去できなかった余剰光Rを除去するために、余剰光除去ファイバ30の上流側に放熱部90を設けてもよい。
次に、このような余剰光除去ファイバ30の製造方法について図3Aから図3Cを参照して説明する。まず、図3Aに示すように、SiO2からなるコア131と、屈折率を低下させる性質を有するドーパントとして例えばフッ素が添加されたクラッド層132と、クラッド層132の周囲を覆う被覆133とを含む基材光ファイバ130を用意する。ここで、クラッド層132には、屈折率を低下させる性質を有するドーパントが添加されているため、クラッド層132の屈折率はコア131の屈折率よりも低い。
そして、この基材光ファイバ130の被覆133の一部133Aを除去してクラッド層132を露出させ、図3Bに示すように、露出させたクラッド層132を例えばバーナー140やアーク放電のための電極棒を用いて周囲から加熱する。クラッド層132の加熱により、クラッド層132に添加されたフッ素が拡散する結果、クラッド層132の屈折率が上昇する。
図4は、この加熱工程の前後における基材光ファイバ130の屈折率の変化を示している。図4において、点線は加熱前の屈折率、実線は加熱後の屈折率を示している。この図4から、加熱工程によってクラッド層132の屈折率が上昇することがわかる。したがって、基材光ファイバ130の露出させたクラッド層132を加熱することにより、図3Cに示すように、局所的に屈折率が上昇した屈折率上昇部135をクラッド層132内に形成することができる。好ましくは、このような屈折率上昇部135を基材光ファイバ130の光軸方向に沿った複数箇所において形成する。屈折率上昇部135を冷却した後、屈折率上昇部135が形成されたクラッド層132の露出部を、屈折率上昇部135の屈折率以上の屈折率を有する樹脂(図2の樹脂38A,38B,38C)で被覆することにより、図2に示すような余剰光除去ファイバ30が得られる。なお、図2では、それぞれの屈折率上昇部35A,35B,35Cに対して樹脂38A,38B,38Cが形成されているが、複数の屈折率上昇部35A,35B,35Cにわたって単一の樹脂を形成してもよい。ただし、余剰光から生じる熱を複数の箇所で分散させて除去する点においては、それぞれの屈折率上昇部35A,35B,35Cに対して樹脂38A,38B,38Cを形成することが好ましい。
ここで、図2に示す屈折率上昇部35A,35B,35Cから樹脂38A,38B,38Cに漏れ出た余剰光Rにより生じた熱を外部に除去するために、余剰光除去ファイバ30の中心に対して一方の側(例えば図2における下側)に冷却板を配置し、この冷却板を樹脂38A,38B,38Cに接触させることで冷却板を介して熱を外部に除去することが考えられる。しかしながら、図2に示す例では、屈折率上昇部35A,35B,35Cのそれぞれがクラッド層32の全周にわたって形成されているため、クラッド層32の全周から余剰光Rが樹脂38A,38B,38Cに漏れ出して熱に変換される。このため、冷却板と接触している側の樹脂38A,38B,38Cの部分(例えば下側の樹脂38A,38B,38Cの部分)からは熱が効果的に除去されるが、冷却板と接触していない側の樹脂38A,38B,38Cの部分(例えば上側の樹脂38A,38B,38Cの部分)からは熱が十分に除去されず、意図せずに高温となるおそれがある。
このような観点から、上述した屈折率上昇部135をクラッド層32の周方向における一部の領域(例えば図2におけるクラッド層32の下側の領域)に偏って配置してもよい。図5は、クラッド層32の周方向における一部の領域に偏って配置された屈折率上昇部を含む余剰光除去ファイバ230の構成を示す模式的断面図、図6は、図5のA−A線断面図である。図5及び図6に示す余剰光除去ファイバ230のクラッド層32は、屈折率が上昇した複数の屈折率上昇部235A,235B,235Cを含んでいるが、これらの屈折率上昇部235A,235B,235Cは、それぞれクラッド層32の周方向における一部の領域(図5及び図6では下側の領域)に偏って配置されている。
屈折率上昇部235A,235B,235Cが形成されている箇所では、クラッド層32の全周にわたって被覆33が除去されており、クラッド層32が被覆33から露出している。余剰光除去ファイバ230は、被覆33から露出するクラッド層32をそれぞれ覆う樹脂238A,238B,238Cを含んでいる。これらの樹脂238A,238B,238Cは、クラッド層32の最大屈折率(すなわち、屈折率上昇部235A,235B,235Cの屈折率のうちで最も高い屈折率)以上の屈折率を有している。
図5及び図6に示すように、余剰光除去ファイバ230に隣接して、例えば銅やアルミニウムなどからなる放熱をするための冷却板240が配置されており、この冷却板240は樹脂238A,238B,238Cと接触している。本実施形態では、屈折率上昇部235A,235B,235Cが形成されている側(図5及び図6における下側)の樹脂238A,238B,238Cが冷却板240に接触している。
このように、図5に示す例では、屈折率上昇部235A,235B,235Cがクラッド層32の周方向における一部の領域に偏って配置されているため、余剰光除去ファイバ230のコア31を伝搬する余剰光Rは、クラッド層32の秀峰高において屈折率上昇部235A,235B,235Cが存在する側(すなわち図5及び図6における下側)で優先的にコア31からクラッド層32に漏れ出すことになる。したがって、屈折率上昇部235A,235B,235Cが形成されている側(図5及び図6における下側)の樹脂238A,238B,238Cを冷却板240に接触させることで、屈折率上昇部235A,235B,235Cから樹脂238A,238B,238Cに漏れ出した余剰光Rにより生じる熱を冷却板240により効率的に外部に放出することができる。これにより、冷却板240が配置されていない側(図5及び図6における上側)の樹脂238A,238B,238Cが意図せず高温となる可能性を低減することができる。
この場合において、屈折率上昇部235A,235B,235Cが偏って配置されているクラッド層32の周方向における一部の領域のうちの少なくとも一部が冷却板240と対向していることが好ましい。このように、屈折率上昇部235A,235B,235Cが偏って配置されているクラッド層32の周方向における一部の領域のうちの少なくとも一部が冷却板240と対向することで、屈折率上昇部から樹脂に漏れ出した余剰光により生じる熱を冷却板により一層効率的に外部に放出することができる。これにより、冷却板が配置されていない側の樹脂が意図せず高温となる可能性をより一層低減することができる。
図5に示す例においても、余剰光により発生する熱が局所的に集中することを抑制するために、屈折率上昇部235A,235B,235Cとコア31との屈折率差が光軸方向に沿って(上流側に向かって)次第に減少するように構成することが好ましい。また、図5に示す例では、クラッド層32が3つの屈折率上昇部235A,235B,235Cを含むように図示されているが、屈折率上昇部の数はこれに限られるものではなく、クラッド層32は1つ以上の屈折率上昇部を含んでいればよい。
図5に示す余剰光除去ファイバ230は、例えば図3Bに示す基材光ファイバ130のクラッド層132を加熱する際に、図7に示すように、例えばバーナー140による加熱位置をクラッド層132の中心軸Cから一方にずらすことにより製造することができる。このようにクラッド層132の加熱位置をクラッド層132の中心軸Cからずらすことにより、クラッド層132に添加されたフッ素が周方向において一部の領域に偏って拡散する結果、上述した屈折率上昇部がクラッド層の周方向における一部の領域に偏って形成される。また、加熱するためにアーク放電のための電極棒を用いる場合には、電極棒による加熱位置をクラッド層132の中心軸Cから一方にずらすことで、上述した屈折率上昇部をクラッド層の周方向における一部の領域に偏って形成することができる。さらに、バーナー140や電極棒の位置を固定して、基材光ファイバ130のクラッド層132の位置をずらすことでも、屈折率上昇部をクラッド層の周方向における一部の領域に偏って形成することができる。
上述した実施形態では、余剰光除去ファイバ30,230は単一のクラッド層32を有しているが、余剰光除去ファイバ30,230が複数のクラッド層32を有していてもよい。その場合には、最外層のクラッド層(最外クラッド層)が上述した屈折率上昇部を有することとなる。この最外クラッド層の屈折率は、最外クラッド層の内側に隣接するクラッド層の屈折率よりも低く、樹脂38,238が最外クラッド層の屈折率上昇部を被覆する。樹脂38,238は、最外クラッド層の屈折率上昇部の屈折率以上の屈折率を有する。このような構成によれば、最外クラッド層の屈折率上昇部において最外クラッド層に隣接する層との屈折率差が小さくなるため、この屈折率上昇部において余剰光の一部が最外クラッド層に隣接する層から最外クラッド層に漏れ出ていきやすい構造となる。したがって、最外クラッド層に隣接する層を伝搬してきた余剰光が1箇所で一気に最外クラッド層に漏れ出ることを抑制でき、余剰光を除去する際に発生する熱が局所的に集中することを抑制することができる。
これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
1 ファイバレーザ装置
2 光共振器
3 デリバリファイバ
4 レーザ出射部
10 増幅用光ファイバ
11 前方励起光源
12 後方励起光源
13 光ファイバ
14 高反射FBG部
16 低反射FBG部
21 上流側光コンバイナ
22 下流側光コンバイナ
30 余剰光除去ファイバ
31 コア
32 クラッド層
33 被覆
35A,35B,35C 屈折率上昇部
38A,38B,38C 樹脂
90 放熱部
130 基材光ファイバ
131 コア
132 クラッド層
133 被覆
135 屈折率上昇部
140 バーナー
230 余剰光除去ファイバ
235A,235B,235C 屈折率上昇部
238A,238B,238C 樹脂
240 冷却板
R 余剰光
C 中心軸
L レーザ光(信号光)

Claims (12)

  1. コアと、
    前記コアよりも外側に位置するクラッド層であって、屈折率を低下させる性質を有するドーパントを含み、該クラッド層の内側に隣接する層の屈折率よりも低い屈折率を有するクラッド層と、
    前記クラッド層の一部を被覆する樹脂と
    を備え、
    前記クラッド層は、屈折率が上昇した少なくとも1つの屈折率上昇部を光軸方向に沿って含み、
    前記樹脂は、前記少なくとも1つの屈折率上昇部の屈折率以上の屈折率を有し、前記少なくとも1つの屈折率上昇部を被覆している、
    余剰光除去ファイバ。
  2. 前記少なくとも1つの屈折率上昇部は、前記クラッド層の周方向における一部の領域に偏って配置される、請求項1に記載の余剰光除去ファイバ。
  3. 前記クラッド層の周方向における一部の領域を被覆する前記樹脂は冷却板に接触する、請求項2に記載の余剰光除去ファイバ。
  4. 前記クラッド層の周方向における一部の領域のうちの少なくとも一部と前記冷却板とが互いに対向する、請求項3に記載の余剰光除去ファイバ。
  5. 前記ドーパントはフッ素である、請求項1から4のいずれか一項に記載の余剰光除去ファイバ。
  6. 前記クラッド層の厚さは10μm以下である、請求項1から5のいずれか一項に記載の余剰光除去ファイバ。
  7. 前記少なくとも1つの屈折率上昇部は、前記光軸方向に沿って配置された複数の屈折率上昇部を含む、請求項1から6のいずれか一項に記載の余剰光除去ファイバ。
  8. 前記複数の屈折率上昇部は、前記複数の屈折率上昇部と前記クラッド層の内側に隣接する層との屈折率差が前記光軸方向に沿って前記複数の屈折率上昇部ごとに減少するように配置される、請求項7に記載の余剰光除去ファイバ。
  9. 希土類元素イオンが添加されたコアと、前記希土類元素イオンを励起する励起光を伝搬するクラッド層とを含む増幅用光ファイバと、
    前記希土類元素イオンを励起する励起光を生成する少なくとも1つの励起光源と、
    請求項1から8のいずれか一項に記載の余剰光除去ファイバであって、前記増幅用光ファイバの上流側に接続される余剰光除去ファイバと
    を備える、ファイバレーザ装置。
  10. コアと、前記コアよりも外側に位置するクラッド層であって、屈折率を低下させる性質を有するドーパントを含み、該クラッド層の内側に隣接する層の屈折率よりも低い屈折率を有するクラッド層と、前記クラッド層を覆う被覆とを含む基材光ファイバを用意し、
    前記基材光ファイバの前記被覆の一部を除去して前記クラッド層を露出させ、
    前記露出したクラッド層を加熱して屈折率を上昇させた少なくとも1つの屈折率上昇部を形成し、
    前記少なくとも1つの屈折率上昇部の屈折率以上の屈折率を有する樹脂で前記少なくとも1つの屈折率上昇部を被覆して余剰光除去ファイバを作製する、
    余剰光除去ファイバの製造方法。
  11. 前記露出したクラッド層を加熱する際に、前記クラッド層の加熱位置を前記クラッド層の中心軸からずらす、請求項10に記載の余剰光除去ファイバの製造方法。
  12. 前記ドーパントはフッ素である、請求項10又は11に記載の余剰光除去ファイバの製造方法。
JP2019193135A 2019-03-28 2019-10-24 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置 Active JP6653407B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006883 WO2020195411A1 (ja) 2019-03-28 2020-02-20 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063249 2019-03-28
JP2019063249 2019-03-28

Publications (2)

Publication Number Publication Date
JP6653407B1 true JP6653407B1 (ja) 2020-02-26
JP2020166228A JP2020166228A (ja) 2020-10-08

Family

ID=69624510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193135A Active JP6653407B1 (ja) 2019-03-28 2019-10-24 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置

Country Status (2)

Country Link
JP (1) JP6653407B1 (ja)
WO (1) WO2020195411A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210121685A (ko) * 2020-03-31 2021-10-08 주식회사 이상테크 고출력 광섬유 레이저용 클래드 모드 스트리퍼 및 그 제작 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035709A (ja) * 1989-06-02 1991-01-11 Amada Co Ltd レーザビーム伝送用光ファイバー
JPH09297227A (ja) * 1996-04-30 1997-11-18 Tatsuta Electric Wire & Cable Co Ltd 光導波路及びその製造方法
JP3859836B2 (ja) * 1997-09-11 2006-12-20 株式会社フジクラ 光ファイバグレーティングの製造方法
US8433161B2 (en) * 2010-09-21 2013-04-30 Textron Systems Corporation All glass fiber laser cladding mode stripper
KR102003689B1 (ko) * 2013-08-07 2019-07-25 코랙티브 하이-테크 인코퍼레이티드 공간 변조된 클래딩 모드 제거기 및 이를 구비한 광섬유
JP2015132773A (ja) * 2014-01-15 2015-07-23 株式会社フジクラ 光デバイスおよびその製造方法
JP2017187651A (ja) * 2016-04-06 2017-10-12 株式会社フジクラ クラッドモードストリッパ
JP6295305B1 (ja) * 2016-10-04 2018-03-14 株式会社フジクラ 光ファイバ及びファイバレーザ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210121685A (ko) * 2020-03-31 2021-10-08 주식회사 이상테크 고출력 광섬유 레이저용 클래드 모드 스트리퍼 및 그 제작 방법
KR102428105B1 (ko) 2020-03-31 2022-08-03 주식회사 이상테크 고출력 광섬유 레이저용 클래드 모드 스트리퍼 및 그 제작 방법

Also Published As

Publication number Publication date
WO2020195411A1 (ja) 2020-10-01
JP2020166228A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5260885B2 (ja) 光ファイバの漏洩光処理構造
JP3247292B2 (ja) 光通信システム
US8498044B2 (en) Amplification optical fiber, and optical fiber amplifier and resonator using the same
JP6356856B1 (ja) クラッドモード光除去構造及びレーザ装置
JP5236081B2 (ja) 光コンバイナ、及び、それを用いるファイバレーザ装置
JP6511235B2 (ja) ファイバレーザ装置
JP7306870B2 (ja) 光結合器および光出力装置
JP2007250951A (ja) ダブルクラッドファイバ及びそれを備えたファイバレーザ
WO2018207615A1 (ja) マルチモードファイバ、光増幅器、及びファイバレーザ
WO2019146627A1 (ja) フィルタ素子、レーザ装置、ファイバレーザ装置、フィルタ方法、及びレーザ装置の製造方法
JP2021163814A (ja) 光ファイバ増幅器および光通信システム
JP6653407B1 (ja) 余剰光除去ファイバ、余剰光除去ファイバの製造方法、及びファイバレーザ装置
JP2010232373A (ja) 光源装置
JP4134511B2 (ja) 希土類元素添加光ファイバ及びそれを用いた光デバイス
JP2015090909A (ja) 光増幅部品及びファイバレーザ装置
WO2019131971A1 (ja) 光ファイバ、及び、レーザ装置
CN108603983B (zh) 光学模块及光输出装置
JP7268245B2 (ja) 活性元素添加光ファイバ、活性元素添加光ファイバ用母材、共振器、及び、ファイバレーザ装置
WO2019172398A1 (ja) 余剰光除去装置及びファイバレーザ
JP2021136242A (ja) ファイバレーザ装置
WO2019131970A1 (ja) 光ファイバ、及び、レーザ装置
WO2020045569A1 (ja) クラッドモード光除去構造、レーザ装置、及びクラッドモード光除去構造の製造方法
JP2019045853A (ja) クラッドモード光除去構造、クラッドモード光処理構造、及びレーザ装置
JP7473365B2 (ja) 光デバイス及びレーザ装置
JP2020167245A (ja) ファイバレーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191113

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R151 Written notification of patent or utility model registration

Ref document number: 6653407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250