JP6641794B2 - モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法 - Google Patents

モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法 Download PDF

Info

Publication number
JP6641794B2
JP6641794B2 JP2015169527A JP2015169527A JP6641794B2 JP 6641794 B2 JP6641794 B2 JP 6641794B2 JP 2015169527 A JP2015169527 A JP 2015169527A JP 2015169527 A JP2015169527 A JP 2015169527A JP 6641794 B2 JP6641794 B2 JP 6641794B2
Authority
JP
Japan
Prior art keywords
current
pulse signal
armature coil
pwm pulse
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015169527A
Other languages
English (en)
Other versions
JP2017046543A (ja
Inventor
鈴木 晴之
晴之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015169527A priority Critical patent/JP6641794B2/ja
Priority to EP16185374.2A priority patent/EP3136585B1/en
Priority to US15/245,364 priority patent/US9692335B2/en
Publication of JP2017046543A publication Critical patent/JP2017046543A/ja
Application granted granted Critical
Publication of JP6641794B2 publication Critical patent/JP6641794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/12Control or stabilisation of current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/12Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque
    • H02P8/18Shaping of pulses, e.g. to reduce torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/34Monitoring operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/90Machine drive
    • B65H2403/92Electric drive
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/60Apparatus which relate to the handling of originals
    • G03G15/602Apparatus which relate to the handling of originals for transporting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2221/00Processes not provided for by group G03G2215/00, e.g. cleaning or residual charge elimination
    • G03G2221/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts
    • G03G2221/1651Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts for connecting the different parts
    • G03G2221/1657Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements and complete machine concepts for connecting the different parts transmitting mechanical drive power

Description

本発明は、モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法に関する。
従来から、2組(2相)の電機子コイルに90度位相の異なる駆動電流を流し、この電流位相を次々に進めていくことにより、着磁された回転子に電磁トルクが生じて回転するステッピングモータが知られている。
また、従来のステッピングモータの駆動回路では、各電機子コイルに対応したHブリッジ回路を設け、Hブリッジ回路の下側共通接地側に電流検出抵抗を設けることで、電機子コイルに供給される駆動電流を検出することが知られている(特許文献1)。
しかしながら、従来の技術では、2つのHブリッジ回路に対して同じタイミングで電流検出を行うため、それぞれのHブリッジ回路から検出した電流をデジタル処理に用いるためには2つのA/D変換器が必要となり、コストが高くなる。
開示の技術は、コイル電流の検出にかかるコストの低減を図ることを目的としている。
開示の技術は、互いに接続しないように巻かれた2相の電機子コイルに駆動電流としての交流電流を流して、回転子を回転させるモータ駆動装置であって、第一の電機子コイルの両端にそれぞれ第一のPWMパルス信号、第二の電機子コイルの両端のそれぞれに第二のPWMパルス信号を与え、各電機子コイルに駆動電流を流す駆動部を備え、前記駆動部は、前記第一の電機子コイルの一端に与えられる第一のPWMパルス信号と、他端に与えられる第一のPWMパルス信号のパルス幅の差が所定値以下のとき、前記第一の電機子コイルの一端又は他端に与えられる前記第一のPWMパルス信号の何れか一方のパルスを前方へシフトさせる第一のシフト部と、記第二の電機子コイルの一端に与えられる第二のPWMパルス信号と、他端に与えられる第二のPWMパルス信号のパルス幅の差が所定値以下のとき、記第二の電機子コイルの一端又は他端に与えられる前記第二のPWMパルス信号の何れか一方のパルスを後方へシフトさせる第二のシフト部と、前記第一の電機子コイルに流れる電流を検出する第一の電流検出器と、前記第二の電機子コイルに流れる電流を検出する第二の電流検出器と、を有し、前記第一のシフト部によるシフトと前記第二のシフト部によるシフトにより、前記第一の電流検出器に流れる電流検出と前記第二の電流検出器に流れる電流検出とを異なるタイミングで行う。
開示の技術によれば、コイル電流の検出にかかるコストの低減を図ることができる。
第一の実施形態のモータ制御装置を説明する図である。 第一の実施形態のステッピングモータの一例を示す図である。 第一の実施形態のPWMシフト部を説明する図である。 並べ替え部の動作をプログラムで記述した場合の記述例を示す図である。 パルスシフトの条件を説明する図である。 パルスシフト量計算部の動作をプログラムで記述した場合の記述例を示す図である。 加算減算部の動作をプログラムで記述した場合の記述例を示す図である。 PWMシフト部の動作をプログラムで記述した場合の記述例を示す図である。 並べ替え回復部の動作をプログラムで記述した場合の記述例を示す図である。 PWMシフト部の動作波形の例を示す第一の図である。 PWMシフト部の動作波形の例を示す第二の図である。 Hブリッジ部と電流検出器を説明する図である。 第一の実施形態のモータ制御装置の動作を説明する第一の動作波形図である。 第一の実施形態のモータ制御装置の動作を説明する第二の動作波形図である。 第二の実施形態のモータ制御装置を説明する図である。 第二の実施形態の電流制御部のブロック線図を示す図である。 第三の実施形態のモータ駆動制御装置を説明する図である。 第三の実施形態の位置フィードバック制御部を説明する図である。 第三の実施形態のベクトル回転部の動作概念を示す第一の図である。 第三の実施形態のベクトル回転部の動作概念を示す第二の図である。 第三の実施形態のベクトル回転部の動作概念を示す第三の図である。 モータ制御装置が搭載された画像形成装置を説明する図である。 画像形成装置に接続される搬送装置の概略構成図である。
(第一の実施形態)
以下に、図面を参照して本実施形態について説明する。図1は、第一の実施形態のモータ制御装置を説明する図である。
本実施形態のステッピングモータ1は、2相の励磁コイルA相(以下、A相コイル)2と、励磁コイルB相(以下、B相コイル)3に略90度位相の異なる交流電流を流すことで永久磁石からなる回転子(ロータ)が回転する。
本実施形態のモータ制御装置100は、A相コイル2及びB相コイル3に交流電流(駆動電流)を供給する。
本実施形態のモータ制御装置100は、モータ駆動装置200、電流検出器101、102、セレクタ103、A/D変換器104、デマルチプレクサ105、タイミング発生器106を有する。
はじめに、本実施形態のモータ駆動装置200について説明する。本実施形態のモータ駆動装置200は、符号反転部210、220、PWMシフト部230、240、Hブリッジ部250、260を有する。
本実施形態のモータ駆動装置200において、符号反転部210、220、PWMシフト部230、240は、モータ駆動手段を形成し、Hブリッジ部250、260は電流検出手段を形成する。
本実施形態のモータ駆動装置200は、A相コイル2に印加される電圧相当値(電圧指令値)vaに応じたPWM(Pulse Width Modulation)パルス信号Ap、Amを、A相コイル2のコイル端子に対して出力する。また、本実施形態のモータ駆動装置200は、B相コイル3に印加される電圧相当値vbに応じたPWMパルス信号Bp、BmをB相コイル3のコイル端子に対して出力する。
また、本実施形態のモータ駆動装置200は、A相コイル2を流れるコイル電流相当値iaと、B相コイル3を流れるコイル電流相当値ibを検出する。
以下に、モータ駆動装置200の有する各部について説明する。本実施形態の符号反転部210は、A相コイル2の電圧相当値vaを反転した値vam(以下、反転電圧相当値vam)を出力する。すなわち、vam=−vaである。尚、電圧相当値vaは、ゼロを中心に正負の値をとるものとする。
符号反転部220は、符号反転部210と同様の構成であり、B相コイル3に電圧相当値vbを反転した相当値vbm(以下、反転電圧相当値vbm)を出力する。すなわち、vbm=−vbである。尚、電圧相当値vbは、ゼロを中心に正負の値をとるものとする。
PWMシフト部230は、電圧相当値vaと反転電圧相当値vamを、それぞれの値に比例したデューティをもったパルス信号apとパルス信号amに変換する。
本実施形態のPWMシフト部230は、電圧相当値va及び反転電圧相当値vamがゼロのとき、パルス信号ap、amのデューティを50%とし、正の値では50%から100%の間のパルス信号、負の値では50%から0%の間のパルス信号とした。
また、本実施形態のPWMシフト部230は、パルス信号ap、amのパルス幅の差が所定値以下のとき、パルス信号apをデューティを保ったまま時間的に前側にずらす(シフトする)。
尚、PWMシフト部230に供給される信号carは、PWM変換するためのキャリア信号である。本実施形態では、キャリア信号carは、正負対称な三角波とした。同様に、PWMシフト部230に供給される信号udは、キャリア信号carが上昇区間か下降区間かを示す信号である。信号udは、デューティを保ったままパルス信号apを時間的にずらすために用いられる。
PWMシフト部240は、PWMシフト部230と同様の構成であり、電圧相当値vbと反転電圧相当値vbmを、それぞれの値に比例したデューティをもったパルス信号bpとパルス信号bmに変換する。
PWMシフト部240は、電圧相当値vb及び反転電圧相当値vbmがゼロのとき、デューティを50%とし、正の値では50%から100%の間のパルス信号とし、負の値では50%から0%の間のパルス信号とした。
また、本実施形態のPWMシフト部240は、パルス信号bp、bmのパルス幅の差が所定値以下のとき、パルス信号bmを、デューティを保ったまま時間的に後ろ側にずらす(シフトする)。
尚、PWMシフト部240に供給される信号carは、PWM変換するためのキャリア信号である。本実施形態では、キャリア信号carは、正負対称な三角波とした。同様に、PWMシフト部240に供給される信号udは、キャリア信号carが上昇区間か下降区間かを示す信号である。信号udは、デューティを保ったままパルス信号bmを時間的にずらすために用いられる。
尚、ここではパルス信号apを前側にシフトさせ、パルス信号bmを後ろ側にシフトさせるものとしたが、これに限定されない。PWMシフト部230は、パルス信号amを後ろ側にシフトさせても良い。この場合、PWMシフト部240は、パルス信号bpを前側にシフトさせれば良い。
PWMシフト部230、240の構成と動作の詳細は後述する。
Hブリッジ部250は、パルス信号ap、amを、A相コイル2のコイル端子に印加されるPWMパルス信号Ap、Amに変換する。
Hブリッジ部260は、Hブリッジ部250と同様の構成であり、パルス信号bp、bmを、B相コイル3のコイル端子に印加されるPWMパルス信号Bp、Bmに変換する。Hブリッジ部250、260の詳細は後述する。
次に本実施形態のモータ制御装置100が有する、モータ駆動装置200以外の各部について説明する。
本実施形態の電流検出器101は、Hブリッジ部250の接地側共通母線と接地間に挿入されており、A相コイル2に流れるコイル電流Iaを出力する。
本実施形態の電流検出器102は、Hブリッジ部260の接地側共通母線と接地間に挿入されており、B相コイル3に流れるコイル電流Ibを出力する。本実施形態の電流検出器101、102は、例えば抵抗等により実現される。
本実施形態のセレクタ103は、選択指示信号iselの値が0(ローレベル:Lレベル)のとき、A相コイル2から検出されたコイル電流Iaを選択し、adin信号として出力する。また、本実施形態のセレクタ103は、選択指示信号iselの値が1(ハイレベル:Hレベル)のとき、B相コイル3から検出されたコイル電流Ibを選択し、adin信号として出力する。
本実施形態のA/D変換器104は、サンプリングトリガ信号smpにより、adin信号をデジタル値に変換する。
本実施形態のデマルチプレクサ105(ラッチ手段)は、A相電流ラッチ信号staにより、A/D変換器104の出力をラッチし、コイル電流相当値iaを出力する。また、本実施形態のデマルチプレクサ105は、B相電流ラッチ信号stbにより、A/D変換器104の出力をラッチし、コイル電流相当値iaを出力する。
つまり、コイル電流相当値iaは、電流検出器101により検出された、アナログ信号であるコイル電流Iaを、A/D変換器104によりデジタル信号に変換した値である。また、コイル電流相当値ibは、電流検出器102により検出された、アナログ信号であるコイル電流Ibを、A/D変換器104によりデジタル信号に変換した値である。
本実施形態のタイミング発生器106は、キャリア信号car、信号ud、選択指示信号isel、サンプリングトリガ信号smp、A相電流ラッチ信号sta、B相電流ラッチ信号stbを発生させる。本実施形態のタイミング発生器106は、公知の技術により実現される。
キャリア信号carは、0を中心に一定周期で正負に所定振幅をもった三角波である。信号udは、キャリア信号carの値が上昇しているとき0(Lレベル)となり、キャリア信号carの値が下降しているとき1(Hレベル)となる信号とした。
選択指示信号iselは、キャリア信号carの値が正のとき0(Lレベル)となり、キャリア信号carの値が負のとき1(Hレベル)となる信号とした。
サンプリングトリガ信号smpは、1回目はキャリア信号carが下降時で、且つ値が正の所定値のときに発生させ、2回目はキャリア信号carが下降時で、且つ値が負の所定値のときに発生させる信号とした。
A相電流ラッチ信号staは、1回目のサンプリングトリガ信号smpと同期して発生させる信号とした。B相電流ラッチ信号stbは、2回目のサンプリングトリガ信号smpと同期して発生させる信号とした。
次に、図2を参照して、本実施形態のステッピングモータ1について説明する。図2は、第一の実施形態のステッピングモータの一例を示す図である。
本実施形態のステッピングモータ1において、A相コイル2とB相コイル3は、互いに接続しておらず独立である。A相コイル2は、コイル端子Tap、Tamを有し、B相コイル3は、コイル端子Tbp、Tbmを有する。また、ステッピングモータ1は、ロータ4を有する。ロータ4は、円周上に永久磁石が配置あるいは着磁されている。
A相コイル2とB相コイル3は、永久磁石の発生する磁束方向に対して90度の関係に配置してあり、A相コイル2とB相コイル3に、90度位相のずれた交流電流を流すことでロータ4が回転する。尚、本実施形態では、2つのコイルの片方をA相コイル2、他方をB相コイル3とするが、A相コイルとB相コイルを逆に定義しても良い。つまり、2つのコイルのどちらをA相コイルとしても良く、その場合、他方がB相コイルとなればよい。
次に、図3を参照し、本実施形態のPWMシフト部230、240について説明する。図3は、第一の実施形態のPWMシフト部を説明する図である。
図3では、PWMシフト部230、240のそれぞれにおいて、同じ記号の信号が出てくるが、これらは同様な動作により出力される信号であるため、同じ信号名を用いて説明している。実際は、これらの信号は、PWMシフト部230、240それぞれに存在するため、異なる信号である。
まず、PWMシフト部230について説明する。本実施形態のPWMシフト部230は、並べ替え部231、パルスシフト量計算部232、加算減算部233、比較器234、235、並べ替え回復部236を有する。
また、PWMシフト部240は、並べ替え部241、パルスシフト量計算部242、加算減算部243、比較器244、245、並べ替え回復部246を有する。
本実施形態の並べ替え部231、241は、入力される2つの電圧相当値vaと反転電圧相当値vam(電圧相当値vbと反転電圧相当値vbm)のうち、値が大きい方をv1とし、小さい方をv2とする。また、並べ替え部231、241は、並べ替えの結果を信号cpmとして、並べ替え回復部236、246に出力する。
本実施形態の並べ替え部231は、電圧相当値vaが反転電圧相当値vam以上である場合、信号cpmの値を1とし、そうでない場合は、信号cpmの値を0とする。また、並べ替え部241は、電圧相当値vbが反転電圧相当値vbm以上である場合、信号cpmの値を1とし、そうでない場合は、信号cpmの値を0とする。
本実施形態の並べ替え部231、241のそれぞれの動作の記述例を図4に示す。図4は、並べ替え部の動作をプログラムで記述した場合の記述例を示す図である。尚、図4は、c言語でプログラムを記述した例を示している。
本実施形態のパルスシフト量計算部232は、図5に示すように、大きい順に並んだ電圧相当値v1、v2の差dT(dT=v1−v2)が、所定値(2×d1)以下のとき、差dTに比例したシフト量tsの算出を開始する。つまり、本実施形態では、電圧相当値v1、v2の差dTが、所定値(2×d1)以下であることが、PWMパルス信号をシフトさせるための条件である。尚、パルスシフト量計算部242の構成及び動作は、パルスシフト量計算部232と同様である。図5は、パルスシフトの条件を説明する図である。
尚、本実施形態のd1は、予め決定された定数であり、パルスシフトによって確保したい最低幅の電流検出可能時間に相当させるのが好ましい。本実施形態のd1は、例えばモータ制御装置100の有するアンプ、セレクタ等のアナログ素子の帯域等の性能によって決められる。
以下の説明では、説明を簡単にするため、電圧の単位と、パルス幅やシフト量等の時間の単位を同じにしている。これは、デジタル回路では最小時間単位を高速なシステムクロックの1クロック周期と扱うと簡単な場合が多いからである。例えば、PWM周期を100(クロック時間)とし、入力される最大電圧を100(デジタル量)とし、電圧が0から100までに対してパルス幅が0から100になる設計は容易である。このとき電圧と時間を同じ単位として扱うことができる。
図6に、パルスシフト量計算部232によるシフト量tsの算出の動作の記述例を示す。図6は、パルスシフト量計算部の動作をプログラムで記述した場合の記述例を示す図である。尚、図6は、c言語でプログラムを記述した例を示している。
本実施形態のパルスシフト量計算部232は、記述61から、差dTが所定値(2×d1)以下のとき、シフト量tsを(−dT/2)+d1としていることがわかる。
本実施形態の加算減算部233は、キャリア信号carの下降区間(信号ud=1)のとき、電圧相当値v1にシフト量tsを加算し、キャリア信号carの上昇区間(信号ud=0)のとき、電圧相当値v1からシフト量tsを減算し、修正電圧相当値mv1を出力する。
本実施形態の加算減算部243は、キャリア信号carが下降区間(信号ud=1)のとき、電圧相当値v2からシフト量tsを減算し、キャリア信号carが上昇区間(信号ud=0)のとき電圧相当値v2にシフト量tsを加算して、修正電圧相当値mv2を出力する。
加算減算部233と加算減算部243のそれぞれの動作の記述例を図7に示す。図7は、加算減算部の動作をプログラムで記述した場合の記述例を示す図である。尚、図7は、c言語でプログラムを記述した例を示している。
加算減算部233の動作の記述からもわかるように、キャリア信号carの上昇区間と下降区間の1セットがPWMパルス信号の1周期である。したがって、PWMパルス信号の1周期を通してみると、電圧相当値の平均は、v1のまま変わらない。
また、加算減算部243の動作の記述からも、PWMパルス信号の1周期を通してみると、電圧相当値の平均は、v2のまま変わらないことがわかる。
本実施形態の比較器234は、キャリア信号carと、修正電圧相当値mv1と、を比較し、比較結果をパルス信号p1として出力する。本実施形態の比較器235は、キャリア信号carと、電圧相当値v2と、を比較し、比較結果をパルス信号p2として出力する。
また、本実施形態の比較器244は、キャリア信号carと、電圧相当値v1と、を比較し、比較結果をパルス信号p1として出力する。本実施形態の比較器245は、キャリア信号carと、修正電圧相当値vm2と、を比較し、比較結果をパルス信号p2として出力する。
ここまでのPWMシフト部230、240の動作の記述例を図8に示す。図8は、PWMシフト部の動作をプログラムで記述した場合の記述例を示す図である。尚、図8は、c言語でプログラムを記述した例を示している。
図8のPWMシフト部230の動作を示す記述のうち、1行目の記述71の右辺の意味は、修正電圧相当値mv1がキャリア信号carより大きいとき論理1(Hレベル)とし、そうでないとき論理0(Lレベル)を出力することを示している。本実施形態では、PWMシフト部230、240の動作を示す他の記述おいても同様とする。
本実施形態の並べ替え回復部236、246は、並べ替え部231、241で大きい順に並べ変えた信号を元の順に戻す。そのため、並べ替え回復部236、246は、並べ替えの結果を信号cpmを用いる。
並べ替え回復部236、246のそれぞれの動作の記述例を図9に示す。図9は、並べ替え回復部の動作をプログラムで記述した場合の記述例を示す図である。尚、図9は、c言語でプログラムを記述した例を示している。
図9における並べ替え回復部236の動作の記述によれば、並べ替え回復部236は、信号cpmの値が0のとき、パルス信号p1をパルス信号ap、パルス信号p2をパルス信号amとして出力し、信号cpmの値が0でない場合はパルス信号p2をパルス信号ap、パルス信号p1をパルス信号amとして出力する。
また、図9における並べ替え回復部246の動作の記述によれば、並べ替え回復部246は、信号cpmの値が0のとき、パルス信号p1をパルス信号bp、パルス信号p2をパルス信号bmとして出力し、信号cpmの値が0でない場合はパルス信号p2をパルス信号bp、パルス信号p1をパルス信号bmとして出力する。
次に、図10を参照して本実施形態のPWMシフト部230の動作について説明する。図10は、PWMシフト部の動作波形の例を示す第一の図である。
図10では、入力される電圧相当値vaと反転電圧相当値vamの差がほぼ0で、したがって並べ替えても電圧相当値v1、v2がほぼ0の場合を示している。
図10において、キャリア信号carは、振幅が±100の三角波であり、上昇と下降を繰り替えしている。電圧相当値v1は、パルスシフト量計算部232と、加算減算部233により、キャリア信号carの1周期における前半(下降区間:信号ud=1)でシフト量tsが加算される。また、電圧相当値v1は、パルスシフト量計算部232と、加算減算部233により、キャリア信号carの1周期における後半(上昇区間:信号ud=0)でシフト量tsが減算され、修正電圧相当値mv1となる。電圧相当値v2は、変わらない。
次に、PWMシフト部230は、比較器234、235により、修正電圧相当値mv1と電圧相当値v2のそれぞれをキャリア信号carと比較した結果であるパルス信号p1、p2を得る。
図10では、パルス信号p1がシフト量tsに相当する時間だけ前側にシフトすることがわかる。また、パルス信号p1のパルス幅は、シフト量tsが0のときと変わらず維持される。尚、図10では、パルス信号p1がPWMシフト部230の出力であるパルス信号apであり、パルス信号p2がPWMシフト部230の出力であるパルス信号amである。
次に、PWMシフト部240の動作について説明する。図11は、PWMシフト部の動作波形の例を示す第二の図である。
図11では、入力される電圧相当値vbと反転電圧相当値vbmの差がほぼ0で、したがって並べ替えても電圧相当値v1、v2がほぼ0の場合を示している。
図11において、キャリア信号carは、振幅が±100の三角波であり、上昇と下降を繰り替えしている。
図11において、電圧相当値v1は、そのまま変わらない。
電圧相当値v2は、パルスシフト量計算部242と、加算減算部243により、キャリア信号carの1周期における前半(下降区間:信号ud=1)でシフト量tsが減算される。また、電圧相当値v2は、パルスシフト量計算部242と、加算減算部243により、キャリア信号carの1周期における後半(上昇区間:信号ud=0)でシフト量tsが加算され、修正電圧相当値mv2となる。
次に、PWMシフト部240は、比較器244、245により、電圧相当値v1と修正電圧相当値mv2のそれぞれをキャリア信号carと比較した結果であるパルス信号p1、p2を得る。
図11では、パルス信号p2がシフト量tsに相当する時間だけ前側にシフトすることがわかる。また、パルス信号p2のパルス幅は、シフト量tsが0のときと変わらず維持される。尚、図11では、パルス信号p1がPWMシフト部240の出力であるパルス信号bpであり、パルス信号p2がPWMシフト部240の出力であるパルス信号bmである。
本実施形態では、図10及び図11からわかるように、PWMシフト部230、240のそれぞれから出力される2つのパルス信号の幅の差が小さいとき、PWMシフト部230では片方のパルス信号が前側にシフトし、PWMシフト部240で一方のパルス信号を後ろ側にシフトする。尚、2つのパルス信号の幅の差が小さいときとは、例えば電圧相当値と反転電圧相当値の差がほぼ0の場合である。
これにより、本実施形態では、後述するように、Hブリッジ部250、260の共通母線に挿入された電流検出器101、102に流れるコイル電流が、時間的にずらしてサンプリングできるようになる。
次に、図12を参照し、本実施形態のHブリッジ部250と電流検出器101について説明する。図12は、Hブリッジ部と電流検出器を説明する図である。
本実施形態のHブリッジ部250は、スイッチ素子251、252、254、255、インバータ253、256を有する。各スイッチ素子は、FET(Field Effect Transistor)等が使われる。本実施形態では、FETのゲート入力のレベルが「1(Hレベル)」のとき、ONするものとした。
Hブリッジ部250において、上側スイッチであるスイッチ素子251、254は、電源側は共通に接続され、また下側スイッチであるスイッチ素子252、255の接地側も共通に接続される。本実施形態では、これらを電源側共通母線及び接地側共通母線という。
インバータ253、256は、反転ロジックであり、同じコイル端子側では上側スイッチと下側スイッチのどちらか一方がONされるようにしている。
この構成では、パルス信号apとパルス信号amの論理に対するFETのON/OFF状態及びコイル端子のレベルは以下の表1に示すようになる。尚、表1において、Gは接地電位、Vmはステッピングモータ1の電源電圧である。
Figure 0006641794
PWMパルス信号Ap、Amは、一般的にはHレベルが電源電圧Vm、Lレベルが接地電位Gのパルスになる。Hブリッジ部250では、PWMパルス信号ApとPWMパルス信号Amのレベルが異なるとき、電源からA相コイル2を通って接地側共通母線にコイル電流Ia(シャント電流)が流れる。
また、Hブリッジ部250では、PWMパルス信号ApとPWMパルス信号Amのレベルが同じとき(表1において、VmとVm、あるいはGとG)、コイル電流Iaはブリッジ内のスイッチを還流して接地側や電源側には流れない。
例えばPWMパルス信号Ap、Amのレベルが両方ともVmのときは、上側スイッチであるスイッチ素子251、254及びA相コイル2で還流する。また、PWMパルス信号Ap、Amのレベルが両方ともGのときは、下側スイッチであるスイッチ素子252、255及びA相コイル2で還流する。
本実施形態の電流検出器101は、接地側共通母線と接地間に挿入される。一般には、電流検出器101として、小さい値の抵抗(シャント抵抗)を挿入する。小さい値の抵抗とは、例えばA相コイル2の抵抗の1/10以下の抵抗である。
本実施形態では、電流検出器101の両端の電位差が、A相コイル2を流れるコイル電流Iaを示す信号となる。
本実施形態では、電流検出器101を小さい値の抵抗とし、非接地側電位は接地電位に近い値でとしたため、これを後段で増幅したりA/D変換器に入れる場合でも、それらに高耐圧が要求されない。したがって、本実施形態によれば、モータ制御装置100にかかるコストの増大を抑制できる。
尚、本実施形態のHブリッジ部260及び電流検出器102の構成は、Hブリッジ部250及び電流検出器101と同様であるから説明を省略する。
次に、図13を参照し、本実施形態のモータ制御装置100において、コイル電流相当値ia、ibを出力するまでの動作を説明する。
図13は、第一の実施形態のモータ制御装置の動作を説明する第一の動作波形図である。図13では、電圧相当値va、vbの入力を受け、A相コイル2、B相コイル3それぞれのコイル端子に印加されるPWMパルス信号Ap、Am、Bp、Bmを経て、A相コイル2のコイル電流相当値iaとB相コイル3のコイル電流相当値ibを得るまでの動作波形を示す。
図13において、電圧相当値va、vbは、いずれも正でほぼ0付近の値とする。よって、反転電圧相当値vam、vbmのいずれも0付近の値であり、これら4つの値のレベルはほぼ0とした。
4つの値をキャリア信号carと比較した結果のパルス信号は、どれもデューティが50%付近となり、パルス信号をシフトをしなければ、全てが同じタイミングで重なってしまう。そうなると、Hブリッジ部250、260の接地側共通母線に挿入された電流検出器101、102に電流が流れず、電流検出ができなくなってしまう。
そこで、本実施形態では、PWMシフト部230の作用により、A相コイル2のコイル端子の片方に印加されるPWMパルス信号Apを前側に定数d1だけシフトさせる。つまり、PWMシフト部230は、PWMパルス信号Amの立ち上がりよりも、定数d1が示す期間早くPWMパルス信号Apを立ち上げる。
また、本実施形態では、PWMシフト部230の作用により、B相コイル3のコイル端子の片方に印加されるPWMパルス信号Bpを後ろ側に定数d1だけシフトさせる。つまり、PWMシフト部240は、PWMパルス信号Bpの立ち上がりよりも、定数d1が示す期間遅くPWMパルス信号Bmを立ち上げる。
したがって、本実施形態では、図13に示すように、デューティ50%の立ち上がりエッジを中心に、A相は前側に、B相は後ろ側に、コイル端子間のパルスの論理の異なる区間が確保される。言い換えれば、本実施形態では、A相ではデューティ50%の立ち上がりエッジよりも早いタイミングにおいて、コイル端子間のパルスの論理の異なる区間が確保される。また、本実施形態では、B相ではデューティ50%の立ち上がりエッジよりも遅いタイミングにおいて、コイル端子間のパルスの論理の異なる区間が確保される。
よって、本実施形態では、このときHブリッジ部250、260の下側スイッチを介してコイル電流Ia、Ibが流れ、それぞれの電流検出が可能になる。
また、本実施形態では、選択指示信号iselは、キャリア信号carの値が0の点、デューティ50%の立ち上がり変化点(立ち上がりエッジ)より前でコイル電流Iaを選択し、後ろでコイル電流Ibを選ぶ。よって、A/D変換器104の入力となるadin信号には、キャリア信号carの立ち上がり変化点より前の定数d1が示す期間にコイル電流Ia、立ち上がり変化点より後の定数d1が示す期間にコイル電流Ibが発現する。
A/D変換器104は、サンプリングトリガ信号smpに応じて、コイル電流Iaとコイル電流Ibのそれぞれが出現するadin信号をサンプリングし、デジタル化する。
以下に、タイミング発生器106によるサンプリングトリガ信号smpを生成を説明する。
タイミング発生器106は、1回目のサンプリングトリガ信号smpをタイミングT1を起点に、定数d2が示す期間が経過したタイミングT2で発生させる。タイミングT1は、キャリア信号carの下降区間において、電圧相当値及び反転電圧相当値が0になるタイミングから定数d1が示す期間前のタイミングである。尚、本実施形態の定数d2は、定数d1に応じて予め決められている。
定数d2は、定数d1と同様に、パルスシフトによって確保したい最低幅の電流検出可能時間に相当させるのが好ましい。本実施形態の定数d2は、例えばモータ制御装置100の有するアンプ、セレクタ等のアナログ素子の帯域等の性能によって決められる。また、本実施形態の定数d2は、定数d1以下の値としても良い。
続いて、タイミング発生器106は、2回目のサンプリングトリガ信号smpを、タイミングT3を起点に、定数d2が示す期間が経過したタイミングT4で発生させる。タイミングT3は、キャリア信号carの下降区間において、電圧相当値及び反転電圧相当値が0になるタイミングである。
すなわち、タイミング発生器106によるサンプリングトリガ信号smpの発生の動作を記述すると、
smp[1]=(ud==1)&(car==(d1−d2)); //1回目
smp[2]=(ud==1)&(car==(0−d2)); //2回目
となる。
本実施形態では、定数d2を、定数d1以下の値とすることにより、1回目のサンプリングトリガ信号smpでコイル電流Iaを、2回目のサンプリングトリガ信号smpで、コイル電流Ibをサンプリングできる。
このとき、1回目のサンプリングトリガ信号smpがA/D変換に供給されるタイミングT2は、PWMパルス信号Amのデューティ50%の変化(立ち上がり)エッジ相当時刻であるタイミングT3か、又はそれよりも前方の固定的なタイミングとした。
ここで、固定的なタイミングとは、具体的には、タイミングT1から、定数d2が示す期間経過したタイミングである。言い換れば、タイミングT2は、タイミングT3か、又はタイミングT3より所定期間前のタイミングである。
また、2回目のサンプリングトリガ信号smpがA/D変換に供給されるタイミングT4は、PWMパルス信号Bpのデューティ50%の変化(立ち上がり)エッジ相当時刻であるタイミングT3よりも後方の固定的なタイミングとなる。
ここで、固定的なタイミングとは、タイミングT3から、定数d2が示す期間経過したタイミングである。言い換れば、タイミングT4は、タイミングT3から所定期間経過したタイミングである。
A/D変換器104でサンプリングされてデジタル値になったコイル電流は、デマルチプレクサ105により、1回目のサンプリングトリガ信号smpから所定時間(A/D変換に必要な固定時間、ここではほぼ0)だけ後ろで発生させるA相電流ラッチ信号staでコイル電流相当値iaとしてラッチされる。また、コイル電流は、デマルチプレクサ105により、2回目のサンプリングトリガ信号smpから所定時間(A/D変換に必要な固定時間、ここではほぼ0)だけ後ろで発生させるB相電流ラッチ信号stbでコイル電流相当値ibとしてラッチされる。
以上のように、本実施形態によれば、1つのA/D変換器104を順次トリガすることで、2つのコイル電流Ia、Ibがサンプリング可能になる。したがって、本実施形態によれば、A/D変換器を2つ有する場合と比べ、ステッピングモータ1のコイル電流の検出にかかるコストの削減することができる。
また、コイル電流Ia、Ibのサンプリングのタイミングは、電圧や電流レベル、すなわちPWMパルス信号のデューティによらず固定的なタイミングでよいので、タイミング発生回路等が簡略にでき、コストの低減を図ることができる。
次に、図14を参照し、本実施形態のモータ制御装置100の動作をさらに説明する。図14は、第一の実施形態のモータ制御装置の動作を説明する第二の動作波形図である。
図14は、図13にPWMパルス信号をもう1周期分描いたものである。
図14におけるn周期目の動作波形は、図13と同様である。図14におけるn+1周期目は、電圧相当値vaをわずかに正のレベル、電圧相当値vbをやや大きい負のレベルとしている。図14では、どちらも各PWMパルス信号のパルス幅の差が、図5に示すパルスシフトの条件である「2×d1」よりも小さいため、PWMシフト部230、240は、PWMパルス信号のシフト量tsの算出を開始する。
尚、各PWMパルス信号のパルス幅の差とは、PWMパルス信号ApとPWMパルス信号Amのパルス幅の差及びPWMパルス信号BpとPWMパルス信号Bmのパルス幅の差である。
図14の例では、n+1周期目でも、デューティ50%の立ち上がりエッジを中心に、A相は前側に、B相は後ろ側に、コイル端子に印加されるPWMパルス信号のレベル(論理)の異なる区間が確保される。したがって、本実施形態では、このときHブリッジ部250、260の下側スイッチにコイル電流Ia、Ibが流れ、電流検出が可能になることがわかる。また、コイル電流Ia、Ibのサンプリングのタイミングは固定的で、n周期目と同じにしておけばよいこともわかる。
以上のように、本実施形態によれば、ステッピングモータのコイル電流の検出にかかるコストの低減を図ることができる。
(第二の実施形態)
以下に、第二の実施形態について説明する。第二の実施形態は、第一の実施形態のモータ制御装置100と、電流制御部とを有するモータ制御装置である。第二の実施形態の説明では、第一の実施形態と同様の機能構成を有するものには第一の実施形態の説明で用いた符号を付与し、その説明を省略する。
図15は、第二の実施形態のモータ制御装置を説明する図である。本実施形態のモータ制御装置400は、モータ制御装置100と、電流制御部410、420を有する。本実施形態のモータ制御装置400は、モータ制御装置100において検出されたコイル電流Ia、Ibを目標値にするための制御を行う。
本実施形態の電流制御部410は、A相のコイル電流相当値iaが目標値iatになるように、A相の電圧相当値vaをフィードバック制御する。
本実施形態の電流制御部420は、B相のコイル電流相当値ibが目標値ibtになるように、B相の電圧相当値vbをフィードバック制御する。
本実施形態の電流制御部410、420の構成としては、公知の比例・積分制御を用いることができる。図16は、第二の実施形態の電流制御部のブロック線図を示す図である。尚、電流制御部410、420は、それぞれ同様の構成であるから、図16では電流制御部410について説明する。
電流制御部410は、減算器411、ゲイン要素412、ゲイン要素413、積分要素414(1/s:sはラプラス演算子)、加算器415を有し、何れも公知の技術である。
本実施形態の電流制御部410では、以下の式(1)に示す伝達特性が得られ、ゲイン要素412のゲインG1と、ゲイン要素413のゲインG2を適切な定数とされることで、電圧相当値va、vbが計算されてコイル電流相当値ia、ibがそれぞれの目標値iat、ibtに近づくように制御される。
va=(iat−ia)×G1×(1+G2×(1/s))
vb=(ibt−ib)×G1×(1+G2×(1/s)) 式(1)
本実施形態では、目標値iatと目標値ibtを、所定の振幅で90度位相がずれた関係で入力することにより、A相コイル2とB相コイル3のコイル電流Ia、Ibが制御され、ステッピングモータ1を回転させたり、停止維持させたりできる。
この制御は、位置制御としてはオープンループであるが、制御は簡単であり停止やごく低速運転も可能なので、後述する第三の実施形態の位置推定が不可能な低速や停止維持制御時にも用いることができる。
(第三の実施形態)
以下に第三の実施形態について説明する。第三の実施形態は、第一の実施形態のモータ制御装置100を有するモータ駆動制御装置である。第三の実施形態の説明では、第一の実施形態と同様の機能構成を有するものには第一の実施形態の説明で用いた符号を付与し、その説明を省略する。
図17は、第三の実施形態のモータ駆動制御装置を説明する図である。本実施形態のモータ駆動制御装置500は、モータ制御装置100により検出されたコイル電流Ia、Ibを、さらにモータ角度に基づいて回転変換し、DC(Direct Current)電流Id、Iqに変換する。また、本実施形態のモータ駆動制御装置500は、DC電流Id、Iqを目標値に制御する電流制御ループを備え、さらにその外側ループとしてモータ位置と速度を制御する、クローズドループ制御装置である。
本実施形態のモータ駆動制御装置500は、位置フィードバック制御部501、d軸電流制御部502、q軸電流制御部503、ベクトル回転部504及び505、位置推定部506、モータ制御装置100を有する。
本実施形態の位置フィードバック制御部501は、目標位置指令値th_tと現在のロータ4の推定位置を示す位置情報th_estとを比較し、比較結果に応じて駆動電流の振幅目標値idt及びiqtを出力する。本実施形態では、この制御により、目標位置指令値th_tと位置情報th_estとが一致するように駆動電流の振幅が制御され、ロータ4の位置が制御される。
本実施形態では、目標位置指令値th_tが単位時間に一定量増加あるいは減少する場合、位置情報th_estも単位時間に一定量増加あるいは減少するように制御される。したがって、本実施形態のステッピングモータ1のロータ4は、一定速度の回転を維持する。また、本実施形態では、目標位置指令値th_tが固定値で静止している場合は、位置情報th_estも静止、すなわち現在位置を維持するように制御される。
位置フィードバック制御部501の詳細は後述する。
本実施形態のd軸電流制御部502は、ベクトル回転部505が検出したd軸電流相当値idが、d軸の駆動電流の振幅目標値idtに一致するように、d軸の駆動電圧相当値vdを出力する。本実施形態のq軸電流制御部503は、ベクトル回転部505が検出したq軸電流相当値iqが、q軸の駆動電流の振幅目標値iqtに一致するように、q軸の駆動電圧相当値vqを出力する。本実施形態のd軸電流制御部502及びq軸電流制御部503は、例えば比例積分制御を行う比例積分制御器であることが好ましい。
d軸電流制御部502、q軸電流制御部503の詳細は後述する。
本実施形態のべクトル回転部504は、ベクトル回転手段であり、d軸の駆動電圧相当値vdと、q軸の駆動電圧相当値vqを位置情報th_estだけ回転させ、A相の電圧相当値vaと、B相の電圧相当値vbを出力する。べクトル回転部504による処理は、以下の式(2)により示される。
Figure 0006641794
駆動電圧相当値vd、vqは、d軸電流制御部502、q軸電流制御部503の出力であり、直流に近い信号である。これをロータ角度相当の位置情報th_estだけ回転させるので、電圧相当値va、vbは交流信号になる。このようなベクトル回転演算を、ベクトル制御では軸変換あるいは座標変換と呼ぶことがある。
本実施形態のべクトル回転部505は、A相のコイル電流相当値iaと、B相のコイル電流相当値ibを位置情報th_estだけ回転させて、d軸電流相当値idと、q軸電流相当値iqを出力する。べクトル回転部505による処理は、以下の式(3)により示される。
Figure 0006641794
ベクトル回転部504、505は、はベクトル回転方向が逆である。コイル電流相当値ia、ibは、ロータ回転数×磁極ペア数の周波数を持つ交流信号である。これを、ロータ角度相当の位置情報th_estだけ回転させるので、d軸電流相当値idと、q軸電流相当値iqは直流に近い信号になる。
ベクトル回転部504、505の動作の詳細は後述する。
本実施形態の位置推定部506は、d軸の駆動電圧相当値vdと、q軸の駆動電圧相当値vqと、d軸電流相当値idと、q軸電流相当値iqと、からロータ4の推定位置を示す位置情報th_est及び推定速度w_estを出力する。
具体的には、位置推定部506は、駆動電圧相当値vd、vqから、ステッピングモータ1の数式モデルと推定位置th_est及び推定速度w_estに基づいて、誘起電圧及び軸電流相当値idと、q軸電流相当値iqとを推定する。そして、位置推定部506は、この推定電流と実際のd軸電流Id、q軸電流Iqが等しくなるように、推定位置th_est及び推定速度w_es1を随時修正する方法等が知られている。
次に、図18を参照し、本実施形態の位置フィードバック制御部501について説明する。図18は、第三の実施形態の位置フィードバック制御部を説明する図である。
本実施形態の位置フィードバック制御部501は、減算器601、603、ゲイン要素602、604、605、積分器606、加算器607、固定値発生部608を有する。
本実施形態の減算器601は、位置フィードバック制御部501に入力される目標位置指令値th_tから、位置情報(角度)th_estを減算する。すなわち、減算器601は、ロータ4の目標位置と現在の推定位置とを比較し、位置誤差を算出する。
ゲイン要素602は、減算器601の出力(位置誤差)を所定値G7倍に増幅し、後段の減算器603へ供給する。本実施形態では、ゲイン要素602の出力は、ロータ4の目標速度となる。
減算器603は、ゲイン要素602の出力から、速度情報w_estを減算する。速度情報w_estは、ロータ4の回転速度の速度情報である。すなわち、減算器603は、回転子の回転の目標速度と現在速度を比較し、速度誤差を算出する。
ゲイン要素604は、減算器603の出力(速度誤差)を所定値G8倍に増幅する。ゲイン要素604で増幅された速度毎は、ゲイン要素605と加算器607へ供給される。
ゲイン要素605は、ゲイン要素604の出力を所定値G9倍に増幅し、積分器606へ供給する。積分器606(sがラプラス演算子)の出力は、加算器607へ供給される。
加算器607は、ゲイン要素604の出力と、積分器606の出力とを加算し、速度誤差に対して以下の演算(伝達関数を表現している)を行って、駆動電流の振幅目標値iqtを出力する。
以下に、演算について説明する。
ロータ4の現在の推定位置と目標位置との位置誤差=th_t−th_est
ロータ4の現在の回転速度と目標速度=位置誤差×G7
ロータ4の目標速度と現在速度との速度誤差=目標速度−速度情報w_est
駆動電流の振幅目標値iqt=速度誤差×G8×(1+G9×(1/s))
本実施形態では、以上のように構成することで、位置フィードバック制御部501の内側ループにおいて、ロータ4の回転速度をフィードバック制御することができる。したがって、本実施形態では、ロータ4の位置の制御を容易に安定化させることができる。
また、本実施形態における回転速度のフィードバック制御は、比例・積分制御であるため、定常速度誤差が生じず精密な速度制御ができる。さらに、本実施形態では、ロータ4の位置が目標位置に到達し、ステッピングモータ1が静止している際には、目標速度が0となり、定常速度誤差が生じないため、目標位置に対する偏差も生じない。
尚、駆動電流の振幅目標値iqtは、位置誤差の増幅のみを用いて算出してもよい。この場合、速度誤差w_estを用いた演算は必須でない。位置誤差の増幅のみを用いて振幅目標値iqtを算出する場合、例えば位置誤差に対して、公知のPID(Proportional-Integral-Derivative:比例・積分・微分)演算により求めた駆動電流の振幅目標値iqtとしてもよい。
本実施形態において、目標振幅値idt及びiqtは、ベクトル制御において、d軸の駆動電流Id及びq軸の駆動電流Iqに相当する。そして、q軸の駆動電流Iqがトルクを示すため、簡単な制御法では、q軸の駆動電流Iqのみを制御し、d軸の駆動電流Idを0に固定する方法が知られている。本実施形態では、上記の手法を用い、固定値発生部608によりd軸の駆動電流Idの目標振幅値idtを0に固定している。
次に、本実施形態のd軸電流制御部502、q軸電流制御部503について説明する。本実施形態のd軸電流制御部502、q軸電流制御部503の構成は、第二の実施形態の電流制御部410と同様であるから、説明を省略する。
本実施形態では、伝達関数表現による演算処理は以下の式(4)ようになり、PID制御が実現される。
vd=(idt−id)×G1×(1+G2×(1/s))
vq=(iqt−iq)×G1×(1+G2×(1/s)) 式(4)
次に、図19、図20を参照して、ベクトル回転部504、505の動作について説明する。図19は、第三の実施形態のベクトル回転部の動作概念を示す第一の図である。
図19は、ベクトル回転部504の動作概念を示しており、図19において、縦軸は電圧の振幅を示し、横軸はロータ4の位相(電気角)thとした。尚、本実施形態において、実際に用いられる位相は、ロータ4の位相そのものではなく、位置推定部506により推定した位置情報th_estであるが、位置推定部506は、位置情報th_est=thとなるように推定するので、実質同じと考えてよい。
図19において、波線はd軸の駆動電圧相当値vdを示す。図19において、駆動電圧Vd=0、駆動電圧Vq=1の直流とすると、図19に示すように、
A相の電圧相当値va=−sin(th)
B相の電圧相当値vb=−cos(th)
となる。
これはA相がB相に対して90度進み、回転子の基準位相(電気角)0度に対して0度が対応する位相関係である。また駆動電圧Vd=0の場合、電圧相当値va、vbの振幅は、q軸の駆動電圧Vqのレベルで決定される。
図20は、第三の実施形態のベクトル回転部の動作概念を示す第二の図である。図20の例では、駆動電圧Vd=0.342、駆動電圧Vq=0.940とした例である。
図20の例では、電圧相当値va、vbの振幅は1のままであり、A相がロータ4の基準位相に対して、位相が20度進んでいることがわかる。
本実施形態では、駆動電圧Vdと駆動電圧Vqの関係は、d軸電流制御部502及びq軸電流制御部503におけるd軸電流相当値idとq軸電流相当値iqの関係に基づき制御される。したがって、例えばステッピングモータ1の回転数が上がり、コイル電流相当値ia、ibの位相遅れが大きくなると、A相の電圧相当値vaとB相の電圧相当値vbの位相が進むように駆動電圧Vd、Vqが制御される。このため、本実施形態では、ステッピングモータ1の回転数による効率の低下を抑制できる。尚、本実施形態の効率とは、ステッピングモータ1に供給された入力電力に対する機械出力の比を示す。
図21は、第三の実施形態のベクトル回転部の動作概念を示す第三の図である。図21は、ベクトル回転部505の動作概念を示しており、条件は図20と同様に、駆動電圧Vd=0.342、駆動電圧Vq=0.940とした。
図21では、A相のコイル電流相当値iaとB相のコイル電流相当値ibの位相が、ロータ4の基準位相に対して30度(電気角)遅れている場合を示している。このとき、d軸電流相当値id及びq軸電流相当値iqは、id=0.5、iq=0.866の直流となる。
また、A相のコイル電流相当値iaとB相のコイル電流相当値ibが、ロータ4の基準位相に対して0度の遅れであれば、d軸電流相当値id及びq軸電流相当値iqは、それぞれid=0、iq=1となる。
すなわち、本実施形態では、id=0(駆動電流の目標振幅値idt=0)となるように電流を制御すれば、ロータ4の基準位相に対するA相のコイル電流相当値iaとB相のコイル電流相当値ibの位相の遅れを0度に制御できる。
さらに、本実施形態では、d軸電流相当値idの値(駆動電流の目標振幅値idtの値)を0以外の値とすることで、コイル電流相当値ia、ibの位相をロータ4の基準位相に対してずらすことができる。したがって、本実施形態では、コイル電流相当値ia、ibの位相をロータ4の基準位相に対してずらすことで、リラクタンストルクを利用することができ、電力効率を向上させることが可能となる。尚、リラクタンストルクとは、コイル電磁石とロータの導体が引き合うときのトルクである。
以上のように、本実施形態では、d軸電流制御部502、q軸電流制御部503及びベクトル回転部504、ベクトル回転部505により、コイル電流相当値ia、ibの位相をロータ4の基準位相に対して所定の関係となるように制御できる。
また、本実施形態では、交流であるコイル電流相当値ia、ibを、直流(低周波)のdq軸電流に変換して制御することで、電流制御帯域を低域に抑えることができる。例えば、交流であるコイル電流相当値ia、ibを目標信号に追従させるように制御する場合等には、交流電流であるコイル電流相当値ia、ibの周波数よりも十分高い帯域で電流を制御しなければならない。この場合、コストが高くなる。これに対し、本実施形態では、上述したように、電流を制御する帯域を低くすることができ、コストを削減できる。
(第四の実施形態)
以下に図面を参照して第四の実施形態について説明する。第四の実施形態は、第一の実施形態のモータ制御装置100を搭載した画像形成装置と搬送装置である。
図22は、モータ制御装置が搭載された画像形成装置を説明する図である。
本実施形態の画像形成装置800は、ADF(Auto Document Feeder)800Aと、装置本体800Bとを備える。装置本体800Bは、給紙部802と、画像読取部803と、画像形成部804とを含む。
ADF800Aは、原稿トレイ110と、原稿給紙ローラ111と、原稿搬送ベルト112と、原稿排紙ローラ113と、原稿排紙トレイ114とを有する。ADF800Aは、画像読取部803に対し、ヒンジなどの開閉機構を介して開閉自在に取り付けられている。
原稿給紙ローラ111は、原稿トレイ110に載置された原稿束から原稿を1枚ずつ分離して、画像読取部803に向かって搬送する。原稿搬送ベルト112は、原稿給紙ローラ111によって分離された原稿を画像読取部803に搬送する。原稿排紙ローラ113は、原稿搬送ベルト112によって画像読取部803から排紙される原稿を、原稿トレイ110の下方の原稿排紙トレイ114に排紙する。
画像読取部803は、筐体120と、走査光学ユニット121と、コンタクトガラス122と、駆動手段とを有する。走査光学ユニット121はLEDユニットを備え、筐体120の内部に設けられている。走査光学ユニット121は、LEDユニットから主走査方向に光を照射するとともに、駆動手段によって全照射領域内において副走査方向に走査される。これにより、走査光学ユニット121は、原稿の二次元カラー画像を読み取るようになっている。
コンタクトガラス122は、画像読取部803の筐体120の上部に設けられ、筐体120の上面部を構成している。駆動手段は、走査光学ユニット121に固定されたワイヤと、このワイヤに橋架される複数の従動プーリ及び駆動プーリと、駆動プーリを回転させるモータとを備えている。
給紙部802は、給紙カセット130と、給紙手段131とを有する。給紙カセット130は用紙サイズの異なる記録媒体としての用紙を収容する。給紙手段131は、給紙カセット130に収納された用紙を画像形成部804の主搬送路140まで搬送する。
また、画像形成部804の側面には、手差しトレイ132が画像形成部804に対して開閉可能に配設されており、画像形成部804に対して開いた状態でトレイ上面に紙束が手差しされる。手差しされた紙束における一番上の用紙は、手差しトレイ132の送出ローラによって主搬送路140に向けて送り出される。
主搬送路140には、レジストローラ対141aが配設されている。レジストローラ対141aは、主搬送路140内を搬送されてくる用紙をローラ間に挟み込んだ後、所定のタイミングで二次転写ニップに向けて送り込む。
画像形成部804は、露光ユニット151、タンデム作像ユニット150、中間転写ベルト154、中間転写ローラ155、二次転写装置152、定着ユニット153などを有している。また、画像形成部804は、主搬送路140、反転搬送路143、排紙路160などを有している。
図22に示すように、露光ユニット151は、タンデム作像ユニット150に隣接して配置されている。露光ユニット151は、イエロー、シアン、マゼンタ、ブラックの各色に対応して設けられた感光体ドラム170に露光を行うようになっている。
タンデム作像ユニット150は、中間転写ベルト154の上であって、中間転写ベルト154の回転方向に沿って配置されたイエロー、シアン、マゼンタ、ブラックの4つの作像ユニット171から構成されている。個々の作像ユニット171は、詳細な図示を省略するが、上記各色に対応して設けられた感光体ドラム170の周りに帯電装置、現像装置、感光体クリーニング装置、除電装置などを備えている。そして、各感光体ドラム170とその周りに設けられる上記各装置がユニット化されて1つのプロセスカートリッジを構成している。
タンデム作像ユニット150は、画像読取部803によって読み取られて色別分解された画像情報に基づいて、各感光体ドラム170に色分けしてトナーにより形成された可視画像(トナー画像)を形成するようになっている。また、各感光体ドラム170に形成された可視画像は、各感光体ドラム170と中間転写ローラ155との間で中間転写ベルト154に転写されるようになっている。
一方、中間転写ベルト154を挟んでタンデム作像ユニット150の反対側には、二次転写装置152が設けられている。二次転写装置152は、転写部材としての二次転写ローラ180を有している。この二次転写ローラ180を中間転写ベルト154に押し当てることにより、二次転写ニップを形成している。この二次転写ニップには、中間転写ベルト154に形成されたトナー画像が、給紙部802から主搬送路140を介して搬送された用紙に転写されるように構成されている。
二次転写ニップでトナー画像が転写された用紙は、2つの支持ローラ157に張架された用紙搬送ベルト156により定着ユニット153へ送り込まれる。
定着ユニット153は、無端ベルトである定着ベルト158に加圧ローラ159を押し当てて構成している。そして、定着ユニット153は、加圧ローラ159により用紙に熱と圧力を加えることにより、用紙に転写されたトナー画像のトナーを溶融して、用紙にカラー画像として定着するようになっている。
このようにしてカラー画像が定着された用紙は、排紙搬送路としての排紙路160を経由して機外の排紙トレイ161上にスタックされる。
また、図22に示すように、反転搬送路143が、二次転写装置152及び定着ユニット153の下側に設けられている。反転搬送路143は、用紙の両面に画像を形成するために、定着ユニット153から排出された用紙の表裏を反転させて再度、主搬送路140を介して二次転写装置152に供給するためのものである。
以上のように構成される画像形成装置800において、ADF800Aは、シートの一例である原稿を搬送する搬送装置800Aとして機能する。また、装置本体101Bにおける給紙部802の給紙手段131、画像形成部804の主搬送路140、反転搬送路143及び排紙路160等は、それぞれシートの一例である用紙を搬送するシート搬送装置として機能する。これらのシート搬送装置は、モータの動力によりローラ部材を回転させてシートを搬送する。本実施形態の画像形成装置800は、これらのシート搬送装置のモータを制御するために、本実施形態のモータ制御装置100を備える。
図23は、画像形成装置に接続される搬送装置の概略構成図である。図23に示すように、搬送装置700は、給紙本体部710と中継部720とを有し、中継部720を介して複数の給紙本体部710を直列に接続できる構成となっている。給紙本体部710は、給紙トレイ711、712から選択的に取り出された用紙、あるいは中継部720を介して直列に接続された上流側の給紙本体部710からの用紙を搬送経路Pに沿って搬送し、接続部713を介して接続された画像形成装置800に供給する。中継部720は、接続部721を介して上流側の給紙本体部710に接続され、上流側の給紙本体部710から供給される用紙を下流側の給紙本体部710へと搬送する。
このように構成される搬送装置700は、搬送経路Pに沿って設けられたローラ部材をモータの動力により回転させることで、シートの一例である用紙を搬送する。第一の実施形態のモータ制御装置100は、例えば搬送装置700に搭載されても良い。
また、第一の実施形態のモータ制御装置100は、画像形成装置800や搬送装置700に限らず、モータの動力によりローラ部材を回転させることでシートを搬送する構成の様々なシート搬送装置に対して有効に適用できる。
尚、特許請求の範囲の記載の第一の電機子コイルはA相コイル2に相当し、第二の電機子コイルはB相コイル3に相当し、モータはステッピングモータ1に相当し、回転子はロータ4に相当する。また、特許請求の範囲の記載の第一のPWMパルス信号は、PWMパルス信号Ap、Amに相当し、第二のPWMパルス信号は、PWMパルス信号Bp、Bmに相当する。また、特許請求の範囲の記載の駆動部は、モータ駆動装置200に相当し、シフト部は、PWMシフト部230、240に相当する。また、特許請求の範囲の記載の第一及び第二のHブリッジ部は、Hブリッジ部250、260に相当し、第一及び第二の電流検出器は、電流検出器101、102に相当する。
以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
1 ステッピングモータ
2 A相コイル
3 B相コイル
4 ロータ
100、400 モータ制御装置
101、102 電流検出器
104 A/D変換器
200 モータ駆動装置
230、240 PWMシフト部
250、260 Hブリッジ部
410、420、502、503 電流制御部
501 位置フィードバック制御部
504、505 ベクトル回転部
506 位置推定部
700 搬送装置
800 画像形成装置
特開2012−157122号公報

Claims (7)

  1. 互いに接続しないように巻かれた2相の電機子コイルに駆動電流としての交流電流を流して、回転子を回転させるモータ駆動装置であって、
    第一の電機子コイルの両端にそれぞれ第一のPWMパルス信号、第二の電機子コイルの両端のそれぞれに第二のPWMパルス信号を与え、各電機子コイルに駆動電流を流す駆動部を備え、
    前記駆動部は、
    前記第一の電機子コイルの一端に与えられる第一のPWMパルス信号と、他端に与えられる第一のPWMパルス信号のパルス幅の差が所定値以下のとき、
    前記第一の電機子コイルの一端又は他端に与えられる前記第一のPWMパルス信号の何れか一方のパルスを前方へシフトさせる第一のシフト部と、
    記第二の電機子コイルの一端に与えられる第二のPWMパルス信号と、他端に与えられる第二のPWMパルス信号のパルス幅の差が所定値以下のとき、
    記第二の電機子コイルの一端又は他端に与えられる前記第二のPWMパルス信号の何れか一方のパルスを後方へシフトさせる第二のシフト部と、
    前記第一の電機子コイルに流れる電流を検出する第一の電流検出器と、
    前記第二の電機子コイルに流れる電流を検出する第二の電流検出器と、
    を有し、
    前記第一のシフト部によるシフトと前記第二のシフト部によるシフトにより、前記第一の電流検出器に流れる電流検出と前記第二の電流検出器に流れる電流検出とを異なるタイミングで行う、モータ制御装置。
  2. 互いに接続しないように巻かれた2相の電機子コイルに駆動電流としての交流電流を流して、回転子を回転させるモータ制御装置であって、
    第一の電機子コイルの両端にそれぞれ第一のPWMパルス信号、第二の電機子コイルの両端のそれぞれに第二のPWMパルス信号を与え、各電機子コイルに駆動電流を流す駆動部を備え、
    前記駆動部は、
    前記第一の電機子コイルの一端に与えられる第一のPWMパルス信号と、他端に与えられる第一のPWMパルス信号のパルス幅の差が所定値以下のとき、
    前記第一の電機子コイルの一端又は他端に与えられる前記第一のPWMパルス信号の何れか一方のパルスを前方へシフトさせる第一のシフト部と、
    記第二の電機子コイルの一端に与えられる第二のPWMパルス信号と、他端に与えられる第二のPWMパルス信号のパルス幅の差が所定値以下のとき、
    記第二の電機子コイルの一端又は他端に与えられる前記第二のPWMパルス信号の何れか一方のパルスを後方へシフトさせる第二のシフト部と、
    前記第一及び第二の電機子コイルのそれぞれと接続された第一及び第二のHブリッジ部と
    前記第一及び第二のHブリッジ部のそれぞれについて、接地側又は電源側共通母線に流れるシャント電流を検出する第一及び第二の電流検出器と、を有し、
    前記第一のシフト部によるシフトと前記第二のシフト部によるシフトにより、前記第一の電流検出器に流れる電流検出と前記第二の電流検出器に流れる電流検出とを異なるタイミングで行う、モータ制御装置。
  3. 前記第一及び第二の電流検出器は、
    前記第一のPWMパルス信号の論理が異なる区間における第一のタイミングで、前記シャント電流をサンプリングして前記第一の電機子コイルのコイル電流を検出し、
    前記第二のPWMパルス信号の論理が異なる区間における第二のタイミングで、前記シャント電流をサンプリングして前記第二の電機子コイルのコイル電流を検出する、請求項2記載のモータ制御装置。
  4. 前記第一のタイミングは、前記第一のPWMパルス信号のデューティが50%の際の変化点の時刻又は前記変化点の時刻よりも所定期間前のタイミングであり、
    前記第二のタイミングは、前記第二のPWMパルス信号のデューティが50%の際の変化点の時刻から所定期間が経過したタイミングである、請求項3記載のモータ制御装置。
  5. 前記第一及び第二の電流検出器が検出したコイル電流に応じた信号が目標値になるように、前記第一及び第二のPWMパルス信号のパルス幅を制御する電流制御部を有する請求項2乃至4の何れか一項に記載のモータ制御装置。
  6. 互いに接続しないように巻かれた2相の電機子コイルと、
    前記2相の電機子コイルに駆動電流としての交流電流を流して、回転子を回転させるモータ駆動装置と、を有する搬送装置であって、
    前記モータ駆動装置は、
    第一の電機子コイルの両端にそれぞれ第一のPWMパルス信号、第二の電機子コイルの両端のそれぞれに第二のPWMパルス信号を与え、各電機子コイルに駆動電流を流す駆動部を備え、
    前記駆動部は、
    前記第一の電機子コイルの一端に与えられる第一のPWMパルス信号と、他端に与えられる第一のPWMパルス信号のパルス幅の差が所定値以下のとき、
    前記第一の電機子コイルの一端又は他端に与えられる前記第一のPWMパルス信号の何れか一方のパルスを前方へシフトさせる第一のシフト部と、
    記第二の電機子コイルの一端に与えられる第二のPWMパルス信号と、他端に与えられる第二のPWMパルス信号のパルス幅の差が所定値以下のとき、
    記第二の電機子コイルの一端又は他端に与えられる前記第二のPWMパルス信号の何れか一方のパルスを後方へシフトさせる第二のシフト部と、
    前記第一の電機子コイルに流れる電流を検出する第一の電流検出器と、
    前記第二の電機子コイルに流れる電流を検出する第二の電流検出器と、
    を有し、
    前記第一のシフト部によるシフトと前記第二のシフト部によるシフトにより、前記第一の電流検出器に流れる電流検出と前記第二の電流検出器に流れる電流検出とを異なるタイミングで行う、搬送装置。
  7. 互いに接続しないように巻かれた2相の電機子コイルに駆動電流としての交流電流を流して、回転子を回転させるモータ駆動装置によるモータ駆動方法であって、
    第一の電機子コイルの両端にそれぞれ第一のPWMパルス信号、第二の電機子コイルの両端のそれぞれに第二のPWMパルス信号を与え、各電機子コイルに駆動電流を流す駆動手順を有し、
    前記駆動手順は、
    前記第一の電機子コイルの一端に与えられる第一のPWMパルス信号と、他端に与えられる第一のPWMパルス信号のパルス幅の差が所定値以下のとき、
    前記第一の電機子コイルの一端又は他端に与えられる前記第一のPWMパルス信号の何れか一方のパルスを前方へシフトさせる第一のシフト手順と、
    記第二の電機子コイルの一端に与えられる第二のPWMパルス信号と、他端に与えられる第二のPWMパルス信号のパルス幅の差が所定値以下のとき、
    記第二の電機子コイルの一端又は他端に与えられる前記第二のPWMパルス信号の何れか一方のパルスを後方へシフトさせる第二のシフト手順と、
    前記第一の電機子コイルに流れる電流を第一の電流検出器により検出する第一の電流検出手順と、
    前記第二の電機子コイルに流れる電流を第二の電流検出器により検出する第二の電流検出手順と、を有し、
    前記第一のシフト手順によるシフトと前記第二のシフト手順によるシフトにより、前記第一の電流検出手順と前記第二の電流検出手順とを異なるタイミングで行う、モータ駆動方法。
JP2015169527A 2015-08-28 2015-08-28 モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法 Active JP6641794B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015169527A JP6641794B2 (ja) 2015-08-28 2015-08-28 モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法
EP16185374.2A EP3136585B1 (en) 2015-08-28 2016-08-23 Motor driving apparatus, motor control apparatus, conveyance apparatus and motor driving method
US15/245,364 US9692335B2 (en) 2015-08-28 2016-08-24 Motor driving apparatus, motor control apparatus, conveyance apparatus and motor driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015169527A JP6641794B2 (ja) 2015-08-28 2015-08-28 モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法

Publications (2)

Publication Number Publication Date
JP2017046543A JP2017046543A (ja) 2017-03-02
JP6641794B2 true JP6641794B2 (ja) 2020-02-05

Family

ID=56799318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015169527A Active JP6641794B2 (ja) 2015-08-28 2015-08-28 モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法

Country Status (3)

Country Link
US (1) US9692335B2 (ja)
EP (1) EP3136585B1 (ja)
JP (1) JP6641794B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133255B2 (en) 2016-07-08 2018-11-20 Ricoh Compant, Ltd. Motor controller, motor driver, and motor driving system
JP2019022421A (ja) * 2017-07-21 2019-02-07 東芝テック株式会社 ステッピングモータ駆動装置及びプリンタ装置
JP6647262B2 (ja) * 2017-10-04 2020-02-14 キヤノン株式会社 モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6953289B2 (ja) * 2017-11-20 2021-10-27 キヤノン株式会社 モータ制御装置及び画像形成装置
US11695354B2 (en) * 2020-05-25 2023-07-04 Canon Kabashiki Kaisha Motor control apparatus, optical apparatus, and robot manipulator apparatus

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474405A (en) * 1977-11-25 1979-06-14 Olympus Optical Co Ltd Automatic stopper for tape recorder
EP0313046B1 (en) * 1987-10-21 1992-09-02 Canon Kabushiki Kaisha Motor control apparatus
JPH05344779A (ja) * 1992-06-04 1993-12-24 Hitachi Ltd 電流制御装置および演算装置
JP3419157B2 (ja) * 1995-07-20 2003-06-23 株式会社日立製作所 モータ駆動方法及びそれを用いた電気機器
US5729067A (en) * 1995-08-30 1998-03-17 Eaton Corporation Method and apparatus for closed loop position control in a linear motor system
US6118235A (en) * 1999-06-22 2000-09-12 Redlich; Robert Walter Circuits for controlling reciprocation amplitude of a linear motor
JP3664040B2 (ja) * 2000-05-17 2005-06-22 日産自動車株式会社 モータ制御用pwmインバータ
JP3863844B2 (ja) 2002-12-27 2006-12-27 松下電器産業株式会社 ステッピングモータ駆動装置、及びステッピングモータ駆動方法
US7109742B2 (en) * 2004-07-12 2006-09-19 Motorola, Inc. Current sensing in a two-phase motor
DE102006047707A1 (de) * 2005-10-18 2007-04-26 Siemens Ag Verfahren zur Messung eines Motorstromes
JP5618197B2 (ja) 2010-09-16 2014-11-05 株式会社リコー モータ駆動装置
JP5178799B2 (ja) * 2010-09-27 2013-04-10 株式会社東芝 モータ制御装置
JP5785718B2 (ja) * 2011-01-25 2015-09-30 ローム株式会社 ステッピングモータの駆動回路、その集積回路およびそれを備える電子機器
US9654040B2 (en) * 2011-01-25 2017-05-16 Rohm Co., Ltd. Drive circuit of stepping motor, integrated circuit thereof, and electronic equipment including same, and method for controlling drive circuit of stepping motor
JP2012253542A (ja) 2011-06-02 2012-12-20 Ricoh Co Ltd モータ速度制御装置、及び画像形成装置
JP2013108971A (ja) 2011-10-25 2013-06-06 Ricoh Co Ltd 角度検出装置、モータ駆動装置及び画像形成装置
JP6014989B2 (ja) 2011-10-28 2016-10-26 株式会社リコー モータ駆動制御装置及び方法
JP5919730B2 (ja) 2011-10-28 2016-05-18 株式会社リコー モータ駆動制御装置及び方法
JP6064576B2 (ja) 2012-03-12 2017-01-25 株式会社リコー モータ制御装置およびモータ制御方法
JP6175809B2 (ja) 2013-03-05 2017-08-09 株式会社リコー モータ制御装置およびモータ制御方法
JP6160258B2 (ja) 2013-05-30 2017-07-12 株式会社リコー モータ制御装置
JP2016046859A (ja) 2014-08-20 2016-04-04 株式会社リコー モータ駆動制御装置及びモータ駆動制御方法
JP6344151B2 (ja) 2014-08-29 2018-06-20 株式会社リコー 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
US10680471B2 (en) 2014-11-26 2020-06-09 Ricoh Company, Ltd. Permanent magnet motor, position estimation apparatus and motor drive control apparatus

Also Published As

Publication number Publication date
JP2017046543A (ja) 2017-03-02
EP3136585A3 (en) 2017-03-22
US20170063264A1 (en) 2017-03-02
EP3136585A2 (en) 2017-03-01
EP3136585B1 (en) 2021-05-12
US9692335B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6641794B2 (ja) モータ駆動装置、モータ制御装置、搬送装置及びモータ駆動方法
US10305406B2 (en) Motor control apparatus, sheet conveying apparatus, document feeding apparatus, document reading apparatus, and image forming apparatus
US10547263B2 (en) Motor driving apparatus, sheet conveyance apparatus, document feeding apparatus, document reading apparatus and image forming apparatus
US10734932B2 (en) Motor controller, conveyor, image forming apparatus, and motor control method
JP2011087440A (ja) モータ駆動制御装置及び画像形成装置
US10669112B2 (en) Motor control apparatus, sheet conveyance apparatus, and image forming apparatus
JP2016220407A (ja) モータ制御装置及び画像形成装置
JP5412969B2 (ja) モータドライバ制御装置、モータ制御装置、及び画像形成装置
US11223309B2 (en) Motor control device, method of estimating initial position of magnetic pole of rotor, and image forming apparatus
JP2019022417A (ja) モータ制御装置および画像形成装置
JP5621960B2 (ja) モータ駆動装置、および画像形成装置
JP2018007467A (ja) モータ制御装置及び画像形成装置
JP2017073877A (ja) モータ制御装置及び画像形成装置
JP2016226217A (ja) モータ制御装置及び画像形成装置
US10790767B2 (en) Control device of permanent magnet synchronous motor and image forming device
JP2017135768A (ja) モータ駆動システム、画像形成装置及び搬送装置
US20200270083A1 (en) Sheet conveying apparatus
JP6770610B2 (ja) モータ駆動装置及び画像形成装置
US20190238076A1 (en) Motor control device
US20190068099A1 (en) Motor controller and image forming apparatus
JP2017135881A (ja) 角度推定装置、モータ駆動装置、及びそれを備えたモータ駆動システム、並びにそれを適用した画像形成装置、及び搬送装置
JP2017046427A (ja) モータ制御装置、モータ駆動装置、搬送装置及びモータ制御方法
JP7346174B2 (ja) モータ制御装置および画像形成装置
US11323054B2 (en) Motor control device and image forming apparatus
JP2018033268A (ja) モータ制御装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6641794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151