JP6639544B2 - L2MX-type complexes as phosphorescent dopants for organic LEDs - Google Patents

L2MX-type complexes as phosphorescent dopants for organic LEDs Download PDF

Info

Publication number
JP6639544B2
JP6639544B2 JP2018034710A JP2018034710A JP6639544B2 JP 6639544 B2 JP6639544 B2 JP 6639544B2 JP 2018034710 A JP2018034710 A JP 2018034710A JP 2018034710 A JP2018034710 A JP 2018034710A JP 6639544 B2 JP6639544 B2 JP 6639544B2
Authority
JP
Japan
Prior art keywords
formula
molecules
ligand
organic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2018034710A
Other languages
Japanese (ja)
Other versions
JP2018093223A (en
Inventor
トンプソン、マーク、イー
デュロヴィック、ピーター
ラマンスキー、セルゲイ
マーフィ、ドリュー
ウオォン、レイモンド
− ラザック、フェラス アブデル
− ラザック、フェラス アブデル
フォレスト、スティーブン、アール
バルドー、マーク、エイ
バーロウズ、ポール、イー
Original Assignee
ザ、トラスティーズ オブ プリンストン ユニバーシティ
ザ、トラスティーズ オブ プリンストン ユニバーシティ
ユニバーシティ オブ サザン カリフォルニア
ユニバーシティ オブ サザン カリフォルニア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23796118&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6639544(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ザ、トラスティーズ オブ プリンストン ユニバーシティ, ザ、トラスティーズ オブ プリンストン ユニバーシティ, ユニバーシティ オブ サザン カリフォルニア, ユニバーシティ オブ サザン カリフォルニア filed Critical ザ、トラスティーズ オブ プリンストン ユニバーシティ
Publication of JP2018093223A publication Critical patent/JP2018093223A/en
Application granted granted Critical
Publication of JP6639544B2 publication Critical patent/JP6639544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Abstract

A phosphorescent compound having the formula L 2 MX, wherein: M is a metal that forms octahedral complexes; L is a monoanionic bidentate ligand, which is bonded to M through an sp 2 hybridized carbon and a heteroatom; X is a monoanionic bidentate ligand; and L and X are inequivalent.

Description

I.(技術分野)
本発明は、式LMX(式中、L及びXは異なる二座配位子であり、Mは金属、特にイリジウムである)の有機金属化合物、それらの合成、及び或るホスト中のドーパントとして、有機発光デバイスの発光層を形成するために使用することに関する。
I. (Technical field)
The present invention relates to organometallic compounds of the formula L 2 MX, where L and X are different bidentate ligands and M is a metal, especially iridium, their synthesis, and dopants in certain hosts. As a method for forming a light emitting layer of an organic light emitting device.

II.(背景技術)
II.A.一般的背景
有機発光デバイス(OLED)は、幾つかの有機層から構成され、それら層の中の一つは、デバイスを通って電圧を印加することによりエレクトロルミネッセンスを生ずるようにすることができる有機材料から構成されている。C.W.タング(Tang)ら、Appl. Phys. Lett., 51, 913, (1987)。或るOLEDは、LCD系フルカラーパネルディスプレイに代わる実際的技術として用いるのに充分な輝度、色の範囲、及び作動寿命を有することが示されている〔S.R.フォレスト(Forrest)、P.E.バローズ(Burrows)、及びM.E.トンプソン(Thompson)、Laser Focus World, Feb. (1995)〕。そのようなデバイスで用いられている有機薄膜の多くは可視スペクトル範囲で透明なので、それらは、赤(R)、緑(G)、及び青(B)を発光するOLEDを垂直に積み重ねた形態で配置し、簡単な製造方法、小さなR−G−Bピクセルサイズ、及び大きな充填率を与える完全に新規な型の表示ピクセルを実現させることができる。国際特許出願No.PCT/US95/15790。
II. (Background technology)
II. A. General Background Organic light emitting devices (OLEDs) are composed of several organic layers, one of which can be made to emit electroluminescence by applying a voltage through the device. It is composed of materials. C. W. Tang et al., Appl. Phys. Lett., 51, 913, (1987). Certain OLEDs have been shown to have sufficient brightness, color range, and operating life to be used as a viable alternative to LCD-based full-color panel displays [S. R. Forrest, P.M. E. FIG. Burrows; E. FIG. Thompson, Laser Focus World, Feb. (1995)]. Since many of the organic thin films used in such devices are transparent in the visible spectral range, they are in the form of vertically stacked OLEDs emitting red (R), green (G), and blue (B). An entirely new type of display pixel can be realized that provides a simple manufacturing method, a small RGB pixel size, and a large filling factor. International Patent Application No. PCT / US95 / 15790.

大きな解像力を持ち、独立にアドレスすることができる積層R−G−Bピクセルを実現するための重要な段階を示す透明OLED(TOLED)が、国際特許出願No.PCT/US97/02681に報告されており、この場合TOLEDは、スイッチを切った時、71%より大きな透明度を示し、デバイスのスイッチを入れた時、大きな効率(1%に近い量子効率)で上及び下の両方のデバイス表面から光を出す。そのTOLEDは、ホール注入電極として透明インジウム錫酸化物(ITO)を、電子注入のためにNg−Ag−ITO電極層を用いている。Ng−Ag−ITO層のITO側が、TOLEDの上に積層された第二の別の色の発光OLEDのためのホール注入接点として用いられているデバイスが開示されている。積層OLED(SOLED)の各層は、独立にアドレスすることができ、それ自身の特性色を発光する。この着色発光は、隣接して積層された透明の独立にアドレスすることができる有機層(単数又は複数)、透明接点、及びガラス基板を通って伝達され、赤色及び青色の発光層の相対的出力を変化させることにより生ずることができるどのような色でもデバイスが発光できるようにしている。   Transparent OLEDs (TOLEDs), which represent an important step in achieving independently addressed addressable stacked RGB pixels, are disclosed in International Patent Application No. PCT / US97 / 02681, where the TOLED shows greater than 71% transparency when switched off, and with high efficiency (quantum efficiency close to 1%) when the device is switched on. And emit light from both the device surface below. The TOLED uses a transparent indium tin oxide (ITO) as a hole injection electrode and an Ng-Ag-ITO electrode layer for electron injection. A device is disclosed wherein the ITO side of the Ng-Ag-ITO layer is used as a hole injection contact for a second alternative color emitting OLED stacked on the TOLED. Each layer of a stacked OLED (SOLED) is independently addressable and emits its own characteristic color. This colored emission is transmitted through the adjacent stacked transparent and independently addressable organic layer (s), transparent contacts, and glass substrate, and the relative output of the red and blue light emitting layers To allow the device to emit any color that can be produced by changing the color.

PCT/US95/15790出願には、色調節可能な表示装置で外部から供給される電力で強度及び色の両方を独立に変化し、調節することができる集積SOLEDが開示されている。このように、PCT/US95/15790出願は、小型のピクセルサイズによって可能にされた大きな解像力を与える集積フルカラーピクセルを達成する原理を例示している。更に、従来の方法と比較して、そのようなデバイスを製造するために比較的低いコストの製造技術を用いることができる。   The PCT / US95 / 15790 application discloses an integrated SOLED in which both intensity and color can be independently changed and adjusted with externally supplied power in a color-adjustable display device. Thus, the PCT / US95 / 15790 application illustrates the principle of achieving an integrated full color pixel that provides the large resolution enabled by the small pixel size. Further, relatively low cost manufacturing techniques can be used to manufacture such devices as compared to conventional methods.

国際特許出願PCT/US95/15790号International Patent Application No. PCT / US95 / 15790 国際特許出願PCT/US97/02681号International Patent Application No. PCT / US97 / 02681

C. W.Tangら、Appl. Phys. Lett., 51, 913 (1987)C. W. Tang et al., Appl. Phys. Lett., 51, 913 (1987). S. R. Forrest、P. E. Burrows、及びM. E. Thompson、Laser Focus World, Feb. (1995)S. R. Forrest, P. E. Burrows, and M. E. Thompson, Laser Focus World, Feb. (1995)

II.B. 発光の背景
II.B.1.基礎
II.B.1.a.一重項及び三重項励起子
有機材料では分子励起状態又は励起子の崩壊により光が発生するので、それらの性質及び相互作用を理解することは、ディスプレイ、レーザー、及び他の照明用途におけるそれらの潜在的用途のため現在大きな関心が持たれている効率的な発光デバイスの設計にとって重要である。例えば、励起子の対称性が基底状態のものと異なっていると、励起子の放射性緩和は不可能になり、ルミネッセンスは遅く非効率的になる。基底状態は通常励起子を含む電子スピンの交換では反対称なので、対称性励起子の崩壊は対称性を破る。そのような励起子は三重項として知られており、この用語はその状態の縮退を反映している。OLEDでの電気的励起により形成されたどの三つの三重項励起子に対しても、唯一つの対称状態(即ち、一重項)励起子が生ずる。〔M.A.バルド(Baldo)、D.F.オブライエン(O'Brien)、M.E.トンプソン(Thompson)、及びS.R.フォレスト(Forrest)、「電気燐光に基づく非常に高い効率の緑色有機発光デバイス」(Very high-efficiency green organic light-emitting devices based on electrophosphorescence)、Applied Physics Letters, 75, 4-6, (1999)〕。対称性不可過程からのルミネッセンスは、燐光として知られている。特徴として、燐光は遷移の確率が低いため、励起後数秒間まで持続することがある。これに対し蛍光は一重項励起の早い崩壊に由来する。この過程は同じ対称性の状態の間で起きるので、それは非常に効率的である。
II. B. Luminous background
II. B. 1. Foundation
II. B. 1. a. Singlet and triplet excitons Since light is generated in organic materials due to molecular excited states or the decay of excitons, understanding their properties and interactions is critical to their potential in displays, lasers, and other lighting applications. It is important for the design of efficient light-emitting devices, which are currently of great interest for commercial applications. For example, if the symmetry of the exciton is different from that of the ground state, radiative relaxation of the exciton becomes impossible, and luminescence becomes slow and inefficient. Since the ground state is usually antisymmetric in the exchange of electron spins containing excitons, decay of symmetric excitons breaks symmetry. Such excitons are known as triplets, and this term reflects the degeneracy of that state. For any three triplet excitons formed by electrical excitation in the OLED, only one symmetric state (ie, singlet) exciton occurs. [M. A. Baldo, D.C. F. O'Brien, M .; E. FIG. Thompson, and S.M. R. Forrest, `` Very high-efficiency green organic light-emitting devices based on electrophosphorescence, '' Applied Physics Letters, 75, 4-6, (1999) . Luminescence from the unsymmetrical process is known as phosphorescence. Characteristically, phosphorescence has a low probability of transition and may last up to several seconds after excitation. Fluorescence, on the other hand, comes from the fast decay of singlet excitation. It is very efficient because this process takes place between the same states of symmetry.

多くの有機材料は一重項励起子からの蛍光を示す。しかし、ほんの僅かなものだけしか三重項による効果的室温燐光を出すことができないことも確認されている。例えば、殆どの蛍光染料では、三重項状態に含まれているエネルギーは浪費される。しかし、三重項励起状態が摂動を起こすと、例えば、スピン軌道結合(典型的には、重金属原子の存在により起きる)により摂動を起こすと、効果的燐光が一層起き易くなる。この場合、三重項励起はいくらか一重項特性をとり、それは基底状態へ放射性崩壊する一層大きな確率を有する。実際、これらの性質を有する燐光染料は、大きな効率のエレクトロルミネッセンスを示している。   Many organic materials show fluorescence from singlet excitons. However, it has also been found that only a few can provide effective room temperature phosphorescence due to triplets. For example, for most fluorescent dyes, the energy contained in the triplet state is wasted. However, when the triplet excited state causes a perturbation, for example, due to spin-orbit coupling (typically caused by the presence of heavy metal atoms), effective phosphorescence is more likely to occur. In this case, the triplet excitation takes on some singlet properties, which have a greater probability of radioactive decay to the ground state. In fact, phosphorescent dyes having these properties exhibit high efficiency of electroluminescence.

三重項による効果的室温燐光を示すことが確認されている有機材料はほんの僅かしかない。これとは対照的に、多くの蛍光染料が知られており〔C.H.チェン(Chen)、J.シ(Shi)、及びC.W.タング(Tang)、「分子状有機エレクトロルミネッセンス材料における最近の発展」(Recent developments in molecular organic electroluminescent materials)、Macromolecular Symposia., 125, 1-48, (1997);U.ブラックマン(Brackmann)、「ラムダクロム・レーザー染料」(Lambdachrome Laser Dyes)、ラムダ・フィジーク(Lambda Physik)、ゲッチンゲン、1997〕、溶液中の蛍光効率が100%に近くなることは異常なことではない(C.H.チェン、1997、上記参照)。蛍光は、大きな励起密度で燐光発光を減少させる三重項・三重項消滅によって影響を受けない〔M.A.バルドその他、「有機エレクトロルミネッセンスデバイスからの高効率燐光発光」(High efficiency phosphorescent emission from organic electroluminescent devices)、Nature, 395, 151-154, (1998);M.A.バルド、M.E.トンプソン、及びS.R.フォレスト、「電気燐光デバイスでの三重項・三重項消滅の解析モデル」(An analytic model of triplet-triplet annihilation in electrophosphorescent devices)、1999〕。従って、蛍光材料は多くのエレクトロルミネッセンス用途に適しており、特にパッシブマトリックスディスプレイに適している。   Only a few organic materials have been shown to exhibit effective room temperature phosphorescence due to triplets. In contrast, many fluorescent dyes are known [C. H. Chen, J.M. Shi, and C.I. W. Tang, "Recent developments in molecular organic electroluminescent materials", Macromolecular Symposia., 125, 1-48, (1997); Blackman, "Lambdachrome Laser Dyes", Lambda Physik, Göttingen, 1997]. It is not unusual for fluorescence efficiency in solution to approach 100% ( CH Chen, 1997, supra). Fluorescence is unaffected by triplet-triplet annihilation, which reduces phosphorescence at large excitation densities [M. A. Bard et al., "High efficiency phosphorescent emission from organic electroluminescent devices", Nature, 395, 151-154, (1998); A. Bardo, M. E. FIG. Thompson, and S.M. R. Forrest, "An analytic model of triplet-triplet annihilation in electrophosphorescent devices", 1999]. Thus, the fluorescent materials are suitable for many electroluminescent applications, especially for passive matrix displays.

II.B.1.b.本発明の基礎に関する概説
本発明は、式LL’L’’M〔式中、L、L’、及びL’’は異なる二座配位子であり、Mは八面体錯体を形成する40より大きな原子番号の金属であり、好ましくは周期表の遷移シリーズ(series)の第3系列遷移金属の金属である〕の錯体に関する。あるいは、Mは第2系列遷移金属の金属、又は主グループ金属(main group metals)、例えばZr及びSbにすることができる。そのような有機金属錯体のあるものは、エレクトロルミネッセンスを示し、最低エネルギー配位子又はMLCT状態から来た発光を示す。そのようなエレクトロルミネッセンス化合物は、発光ダイオードの発光層のホスト層中のドーパントとして用いることができる。本発明は、更に式LL’L’’M(式中、L、L’及びL’’は同じか又は異なり、L、L’、及びL’’はモノアニオン性二座配位子であり、Mは八面体錯体を形成する金属であり、好ましくは遷移金属の第3系列の金属、一層好ましくはIr又はPtであり、それら配位子を配位する原子は、sp混成軌道(hybridized)炭素及びヘテロ原子からなる)の錯体に関する。本発明は、更にLMX〔式中、L及びXは異なる二座配位子であり、Lはsp混成軌道炭素及びヘテロ原子を有するLの原子によりMに配位しており、Mは八面体錯体を形成する金属、好ましくはイリジウム(Ir)である〕に関する。これらの化合物は、有機発光ダイオードの発光層として働くホスト層中のドーパントとして働くことができる。
II. B. 1. b. Overview of the Basis of the Present Invention The present invention relates to compounds of the formula LL′L ″ M where L, L ′ and L ″ are different bidentate ligands and M is more than 40 to form an octahedral complex. High atomic number metals, preferably the metals of the third transition metal of the transition series of the periodic table]. Alternatively, M can be a metal of a second series transition metal, or main group metals, such as Zr and Sb. Some such organometallic complexes exhibit electroluminescence and exhibit luminescence coming from the lowest energy ligand or MLCT state. Such an electroluminescent compound can be used as a dopant in a host layer of a light emitting layer of a light emitting diode. The invention further relates to a compound of the formula LL′L ″ M, wherein L, L ′ and L ″ are the same or different, wherein L, L ′ and L ″ are monoanionic bidentate ligands. , M is a metal forming an octahedral complex, preferably a metal of the third series of transition metals, more preferably Ir or Pt, and the atoms coordinating the ligands are sp 2 hybridized orbitals. ) Consisting of carbon and heteroatoms). The invention further relates to L 2 MX wherein L and X are different bidentate ligands, and L is coordinated to M by an atom of L having a sp 2 hybrid orbital carbon and a heteroatom; Is a metal which forms an octahedral complex, preferably iridium (Ir). These compounds can act as dopants in a host layer that acts as a light emitting layer of an organic light emitting diode.

本発明の化合物は、式LM(μ−Cl)ML(式中、Lは二座配位子であり、MはIrなどの金属である)の塩化物架橋二量体と、二座配位子Xを導入する働きをする物質XHとの直接反応により製造することができる。XHは、例えば、アセチルアセトン、2−ピコリン酸、又はN−メチルサリチルアニリドにすることができ、Hは水素を表す。得られる生成物は式LMXを有し、この場合、Mの回りに二座配位子L、L、及びXの八面体配位を得ることができる。 The compounds of the present invention has the formula L 2 M (μ-Cl) 2 ML 2 ( wherein, L is a bidentate ligand, M is a metal such as Ir) and chloride crosslinked dimers, It can be produced by a direct reaction with a substance XH that functions to introduce a bidentate ligand X. XH can be, for example, acetylacetone, 2-picolinic acid, or N-methylsalicylanilide, where H represents hydrogen. The resulting product has the formula L 2 MX, where an octahedral coordination of the bidentate ligands L, L and X around M can be obtained.

式LMXの得られた化合物は、有機発光デバイスの燐光発光体として用いることができる。例えば、L=(2−フェニルベンゾチアゾール)、X=アセチルアセトネート、及びM=Ir(BTIrとして省略する化合物)である場合の化合物は、OLED中の発光層を形成するために4,4’−N, N’−ジカルバゾール−ビフェニル(CBP)中のドーパントとして(質量で12%のレベルで)用いた場合、12%の量子効率を示す。参考として、式CBPは、次の通りである: The resulting compound of formula L 2 MX can be used as phosphorescent emitters in organic light emitting devices. For example, compounds where L = (2-phenylbenzothiazole), X = acetylacetonate, and M = Ir (compounds abbreviated as BTIr) are 4,4 ′ to form a light emitting layer in an OLED. When used as a dopant in -N, N'-dicarbazole-biphenyl (CBP) (at a level of 12% by mass), it exhibits a quantum efficiency of 12%. For reference, the formula CBP is as follows:

MXを製造するための合成法は、L自身が蛍光体であるが、得られるLMXが燐光体である場合に有利に用いることができる。この一つの特別な例は、L=クマリン−6の場合である。 The synthesis method for producing L 2 MX can be advantageously used when L itself is a phosphor but the resulting L 2 MX is a phosphor. One particular example of this is when L = coumarin-6.

この合成法は、或る所望の特性を有するLとXの対の結合を容易にする。   This synthesis facilitates the coupling of L and X pairs with certain desired properties.

LとXを適切に選択することにより、LMに対する錯体LMXの色の調節を行うことができる。例えば、Ir(ppy)及び(ppy)Ir(acac)の両方共510nmのλmaxを有する強い緑色発光を与える[ppyはフェニルピリジンを表す]。しかし、X配位子がアセチルアセトンからではなく、ピコリン酸から形成されている場合、約15nmの小さな青色シフトがある。 By appropriate selection of L and X, the color of complex L 2 MX relative to L 3 M can be adjusted. For example, both Ir (ppy) 3 and (ppy) 2 Ir (acac) give a strong green emission with a λ max of 510 nm [ppy represents phenylpyridine]. However, when the X ligand is formed from picolinic acid, rather than from acetylacetone, there is a small blue shift of about 15 nm.

更に、Xは、発光品質の劣化を起こすことなく、キャリヤー(ホール又は電子)がX(又はL)にトラップされるように、LM錯体に対し、或るHOMOレベルを有するように選択することができる。このようにして、他のやり方では燐光体の有害な酸化又は還元を起こす原因になることがあるキャリヤー(ホール又は電子)が阻止されるであろう。遠くでトラップされるキャリヤーは分子間的に反対符合のキャリヤーと、又は隣接分子からのキャリヤーと容易に再結合するであろう。 Furthermore, X is without degrading the emission quality, as carriers (holes or electrons) are trapped in X (or L), to L 3 M complex, selected to have a certain HOMO level be able to. In this way, carriers (holes or electrons) that would otherwise cause harmful oxidation or reduction of the phosphor will be blocked. Carriers trapped at a distance will readily recombine with intermolecularly oppositely-signed carriers, or with carriers from neighboring molecules.

本発明及びその種々の態様を、下の実施例で一層詳細に論ずる。しかし、それらの態様は異なる機構によって作動させることもできる。本発明の種々の態様が作動する種々の機構を論ずるが、それらによって本発明の範囲が限定されるものではない。   The invention and its various aspects are discussed in more detail in the examples below. However, the embodiments can be operated by different mechanisms. The various mechanisms by which the various aspects of the present invention operate are discussed without, however, limiting the scope of the present invention.

II.B.1.c.デキスター(Dexter)及びフェルスター(Foerster)機構
根底にあるエネルギー移動機構の理論を論ずる事は、本発明の異なる態様を理解するのに役に立つであろう。受容体分子へのエネルギーの移動については一般に二つの機構が論じられている。デキスター移動〔D.L.デキスター、「固体中の増感ルミネッセンスの理論」(A theory of sensitized luminescence in solids)、J. Chem. Phys., 21, 836-850, (1953)〕の第一の機構では、励起は一つの分子から次の分子へ直接跳び移ることができる。これは、隣り合った分子の分子軌道の重複に依存する短距離過程である。それは供与体と受容体の対の対称性も保持する〔E.ウィグナー(Wigner)及びE.W.ウィトマー(Wittmer)、「量子力学による二原子分子スペクトルの構造」(Uber die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik)、Zeitshrift fur Physik, 51, 859-886, (1928);M.クレッシンゲル(Klessinger)及びJ.ミッチェル(Michl)、「有機分子の励起状態及び光化学」(Excited states and photochemistry of organic molecules)(VCH出版社、ニューヨーク、1995)。従って、式(1)のエネルギー移動はデキスター機構によっては不可能である。フェルスター移動の第二機構では〔T.フェルスター、「分子間エネルギー移動及び蛍光」(Zwischenmolekulare Energiewanderung and Fluoreszenz)、Annalen der Physik, 2, 55-75 (1948);T.フェルスター、「有機化合物の蛍光」(Fluoreszenz organischer Verbindugen)(Vandenhoek and Ruprecht、ゲッチンゲン、1951)〕、式(1)のエネルギー移動は可能である。フェルスターの移動では、送信機及びアンテナと同様に、供与体及び受容体分子の双極子が結合し、エネルギーは移動することができる。双極子は供与体と受容体の両方の分子中で許容された遷移によって生ずる。このことは、典型的にはフェルスター機構を一重項状態の間の移動に限定させることになる。
II. B. 1. c. Dexter and Foerster Mechanisms Discussing the theory of the underlying energy transfer mechanism will help to understand the different aspects of the present invention. Two mechanisms are generally discussed for transferring energy to the receptor molecule. Dexter movement [D. L. In the first mechanism of Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys., 21, 836-850, (1953) You can jump directly from one molecule to the next. This is a short-range process that depends on the overlap of the molecular orbitals of adjacent molecules. It also retains the symmetry of the donor-acceptor pair [E. Wigner and E.W. W. Wittmer, "Structure of diatomic molecular spectra by quantum mechanics" (Uber die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik), Zeitshrift fur Physik, 51, 859-886, (1928); Klessinger and J.M. Michl, "Excited states and photochemistry of organic molecules" (VCH Publishing Company, New York, 1995). Therefore, the energy transfer of the formula (1) is impossible by the Dexter mechanism. In the second mechanism of Forster movement, [T. Forster, "Intermolecular energy transfer and fluorescence" (Zwischenmolekulare Energiewanderung and Fluoreszenz), Annalen der Physik, 2, 55-75 (1948); Forster, "Fluorescence of Organic Compounds" (Fluoreszenz organischer Verbindugen) (Vandenhoek and Ruprecht, Göttingen, 1951)], and energy transfer of formula (1) is possible. In Forster movement, the dipoles of the donor and acceptor molecules combine, as well as the transmitter and antenna, and the energy can move. Dipoles arise from allowed transitions in both donor and acceptor molecules. This will typically limit the Forster mechanism to movement between singlet states.

それにも拘わらず、重金属原子によって導入されるスピン軌道結合によるなどして、状態の或る摂動により燐光体が光を発することができる限り、それはフェルスター移動での供与体としての役割も果たすことができる。この過程の効率は燐光体のルミネッセンス効率により決定され〔F.ウィルキンソン(Wilkinson)、「光化学の進歩」(Advances in Photochemistry)、W.A.ノイズ(Noyes)、G.ハモンド(Hammond)、及びJ.N.ピッツ(Pitts)編集、John Wiley & Sons、ニューヨーク、1964、pp.241−268〕、即ち、もし非放射性崩壊よりも放射性遷移の方が一層起き易いならば、エネルギー移動は効果的に行われるであろう。そのような三重項・一重項移動は、フェルスターによって予測されており〔T.フェルスター、「電子励起の移動機構」(Transfer mechanisms of electronic exitation)、Discussions of the Faraday Society, 27, 7-17, (1959)〕、エルモラエフ(Ermolaev)及びスベシニコワ(Sveshnikova)によって確認されており〔V.L.エルモラエフ及びE.B.スベシニコワ、「三重項状態の芳香族分子からの誘導共鳴エネルギー移動」(Inductive-resonance transfer of energy from aromatic molecules in the triplet state)、Doklady Akademii Nauk SSSR, 149, 1295-1298, (1963)〕、彼らは77K又は90Kで固体媒体中の或る範囲の燐光供与体及び蛍光受容体を用いてエネルギー移動を検出した。長距離移動が観察されており、例えば、供与体としてトリフェニルアミン、受容体としてクリソイジンを用いて、相互作用範囲は52Åである。   Nevertheless, as long as the phosphor can emit light due to some perturbation of the state, such as by spin-orbit coupling introduced by heavy metal atoms, it may also serve as a donor in Forster transfer. Can be. The efficiency of this process is determined by the luminescence efficiency of the phosphor [F. Wilkinson, "Advances in Photochemistry", W.W. A. Noise, No. Hammond, and J.M. N. Pitts Edit, John Wiley & Sons, New York, 1964, pp. 241-268], ie, if a radioactive transition is more likely to occur than a non-radioactive decay, the energy transfer will be effective. Such triplet-singlet transfer has been predicted by Forster [T. Forster, `` Transfer mechanisms of electronic exitation, '' Discussions of the Faraday Society, 27, 7-17, (1959)), Ermolaev (S.E.) and Sveshnikova (S.). V. L. Elmoraev and E.A. B. Sveshnikova, `` Inductive-resonance transfer of energy from aromatic molecules in the triplet state '', Doklady Akademii Nauk SSSR, 149, 1295-1298, (1963)), Detected energy transfer at 77K or 90K using a range of phosphorescent donors and fluorescent acceptors in a solid medium. Long distance migration has been observed, for example, using triphenylamine as donor and chrysoidin as acceptor, the interaction range is 52 °.

フェルスター移動のための残りの条件は、励起及び基底状態の分子対の間のエネルギーレベルが共鳴していると仮定して、吸収スペクトルが供与体の発光スペクトルと重なり合っていることである。本願の例1では、我々は緑燐光体facトリス(2−フェニルピリジン)イリジウム〔Ir(ppy);M.A.バルド(Baldo)、その他、Appl. Phys. Lett., 75, 4-6, (1999)〕、及び赤色蛍光染料、[2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−イリデン]プロパン−ジニトリル]〔「DCM2」;C.W.タング(Tang)、S.A.ファンスライケ(VanSlyke)、及びC.H.チェン(Chen)、「ドープした有機フイルムのエレクトロルミネッセンス」(Electroluminescence of doped organic films)、J. Appl. Phys., 65, 3610-3616, (1989)〕を用いた。DCM2は緑で吸収し、局部的分極場によりそれはλ=570nmとλ=650nmの間の波長で発光する〔V.ブロビック(Bulovic)その他、「分極誘導スペクトル移動に基づく明るい飽和赤〜黄橙色発光デバイス」(Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts)、Chem. Phys. Lett., 287, 455-460, (1998)〕。 The remaining condition for Forster transfer is that the absorption spectrum overlaps the emission spectrum of the donor, assuming that the energy levels between the excited and ground state molecule pairs are in resonance. In Example 1 of the present application, we used the green phosphor fac tris (2-phenylpyridine) iridium [Ir (ppy) 3 ; A. Baldo, et al., Appl. Phys. Lett., 75, 4-6, (1999)], and a red fluorescent dye, [2-methyl-6- [2- (2,3,6,7-tetrahydro) C.-1H, 5H-benzo [ij] quinolin-9-yl) ethenyl] -4H-pyran-ylidene] propane-dinitrile] ["DCM2"; W. Tang, S.M. A. Van Slyke, and C.I. H. Chen, "Electroluminescence of doped organic films", J. Appl. Phys., 65, 3610-3616, (1989)]. DCM2 absorbs in the green and due to the local polarization field it emits at a wavelength between λ = 570 nm and λ = 650 nm [V. Bulovic et al., `` Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts '', Chem. Phys. Lett., 287, 455-460, (1998)].

燐光性ホスト材料中に蛍光性ゲストをドーピングすることにより、三重項状態からフェルスターエネルギー移動を行わせることが可能になる。残念ながらそのような系は、全効率を低下させる競合エネルギー移動機構により影響を受ける。特にホスト及びゲストの密接な近接性が、ホストからゲスト三重項へのデキスター移動の可能性を増大する。励起子がゲスト三重項状態に近づくと、それら励起子は効果的に失われる。なぜなら、これら蛍光染料は極めて非効率的な燐光を示すのが典型的だからである。   By doping a fluorescent guest into the phosphorescent host material, it becomes possible to transfer Forster energy from the triplet state. Unfortunately, such systems are affected by competing energy transfer mechanisms that reduce overall efficiency. In particular, the close proximity of the host and guest increases the likelihood of Dexter transfer from the host to the guest triplet. As the excitons approach the guest triplet state, they are effectively lost. This is because these fluorescent dyes typically exhibit extremely inefficient phosphorescence.

ホスト三重項の蛍光染料一重項への移動を最大にするため、燐光体の三重項状態へのデキスター移動を最大にすると同時に、蛍光染料の三重項状態への移動を最小にすることが望ましい。デキスター機構は隣り合った分子間のエネルギーを移動させるので、蛍光染料の濃度を減少させると、染料への三重項・三重項移動の確率が減少する。一方、一重項状態への長距離フェルスター移動は影響を受けない。これとは対照的に、燐光体の三重項状態への移動はホスト三重項を利用するのに必要であり、燐光体の濃度を増大することにより改善することができる。   In order to maximize the transfer of the host triplet to the fluorescent dye singlet, it is desirable to maximize the Dexter transfer of the phosphor to the triplet state while minimizing the transfer of the fluorescent dye to the triplet state. Since the Dexter mechanism transfers energy between adjacent molecules, reducing the concentration of the fluorescent dye reduces the probability of triplet-triplet transfer to the dye. On the other hand, long-range Forster movement to the singlet state is not affected. In contrast, the transfer of the phosphor to the triplet state is necessary to utilize the host triplet and can be improved by increasing the concentration of the phosphor.

II.B.2.デバイス構造と発光との相関関係
有機光電子材料の層を用いることに基づく構造を有するデバイスは、一般に光学的発光を与える一般的機構に依存している。この機構は捕捉された電荷の発光性再結合に基づいているのが典型的である。特にOLEDは、デバイスのアノードとカソードを分離する少なくとも二つの薄い有機層を有する。これらの層の一つの材料は、特に材料のホールを輸送する能力に基づいて選択された「ホール輸送層」(HTL)であり、他方の層の材料は特に電子を輸送するその能力に従って選択された「電子輸送層」(ETL)である。そのような構造により、デバイスはダイオードとして見ることができ、アノードに印加された電位がカソードに印加された電位よりも高い時、順方向バイアスとなる。これらのバイアス条件下では、アノードはホール輸送層中へホール(正電荷キャリヤー)を注入し、一方カソードは電子輸送層に電子を注入する。これにより、ルミネッセンス媒体の、アノードに隣接した部分はホール注入及び輸送領域を形成し、一方ルミネッセンス媒体の、カソードに隣接した部分は電子注入及び輸送領域を形成する。注入されたホール及び電子は、夫々反対に帯電した電極の方へ移動する。同じ分子に電子及びホールが局在すると、フレンケル(Frenkel)励起子が形成される。この寿命の短い状態の再結合は、電子がその伝導電位から価電子帯へ落ちた時に可視化され、或る条件下では優先的に発光機構により緩和が起きる。典型的な薄層有機デバイスの作動機構のこの見解によれば、エレクトロルミネッセンス層は易動性電荷キャリヤー(電子及びホール)を各電極から受けるルミネッセンス領域を有する。
II. B. 2. Correlation Between Device Structure and Emission Devices with structures based on the use of layers of organic optoelectronic materials generally rely on general mechanisms to provide optical emission. This mechanism is typically based on luminescent recombination of the trapped charge. In particular, OLEDs have at least two thin organic layers separating the anode and cathode of the device. One material of these layers is a “hole transport layer” (HTL), which is selected based on, inter alia, the material's ability to transport holes, while the material of the other layer is specifically selected according to its ability to transport electrons. "Electron transport layer" (ETL). With such a structure, the device can be viewed as a diode and becomes forward biased when the potential applied to the anode is higher than the potential applied to the cathode. Under these bias conditions, the anode injects holes (positive charge carriers) into the hole transport layer, while the cathode injects electrons into the electron transport layer. Thus, the portion of the luminescent medium adjacent to the anode forms a hole injection and transport region, while the portion of the luminescent medium adjacent to the cathode forms an electron injection and transport region. The injected holes and electrons move toward the oppositely charged electrodes, respectively. When electrons and holes are localized on the same molecule, Frenkel excitons are formed. This short-lived recombination is visible when electrons fall from their conduction potential into the valence band, and under certain conditions relaxation occurs preferentially by the luminescence mechanism. According to this view of the working mechanism of a typical thin-layer organic device, the electroluminescent layer has a luminescent region that receives mobile charge carriers (electrons and holes) from each electrode.

上で述べたように、OLEDからの発光は、蛍光又は燐光によるのが典型的である。燐光の利用には問題がある。大きな電流密度では燐光効率は急速に低下することが認められている。長い燐光寿命は発光部位の飽和を起こし、三重項・三重項消滅も効率の低下を生ずることになる。蛍光と燐光との別の相違点は、伝導性ホストからルミネッセンスゲスト分子への三重項のエネルギー移動が一重項のものよりも遅いのが典型的であると言うことである。一重項のエネルギー移動を支配する長距離双極子・双極子結合(フェルスター移動)は、(理論的には)スピン対称性保存の原理により三重項に対しては禁止されている。従って、三重項の場合、エネルギー移動は隣り合った分子への励起子の拡散によって起きるのが典型的であり(デキスター移動)、供与体と受容体の励起波動関数のかなりの重複がエネルギー移動には必須である。別の問題は、三重項拡散距離が、約200Åの典型的な一重項拡散距離と比較して長い(例えば、>1400Å)のが典型的なことである。従って、燐光デバイスがそれらの可能性を実現できるものであるためには、デバイス構造は三重項特性に最適なものになっている必要がある。本発明では、外部量子効率を向上させるため長距離三重項拡散の性質を利用している。   As mentioned above, the emission from the OLED is typically due to fluorescence or phosphorescence. There is a problem with the use of phosphorescence. It has been observed that at high current densities, the phosphorescence efficiency drops rapidly. A long phosphorescence lifetime causes saturation of the light emitting site, and triplet / triplet annihilation also causes a decrease in efficiency. Another difference between fluorescence and phosphorescence is that the triplet energy transfer from the conductive host to the luminescent guest molecule is typically slower than that of the singlet. Long-range dipole-dipole coupling (Forster transfer) that governs singlet energy transfer is forbidden for triplets due to (theoretically) the principle of spin symmetry conservation. Thus, in the triplet case, energy transfer typically occurs by exciton diffusion into adjacent molecules (Dexter transfer), and considerable overlap of the donor and acceptor excitation wavefunctions results in energy transfer. Is required. Another problem is that the triplet diffusion distance is typically longer (eg,> 1400 °) compared to a typical singlet diffusion distance of about 200 °. Therefore, in order for a phosphorescent device to be able to realize those possibilities, the device structure needs to be optimal for triplet characteristics. In the present invention, the property of long-range triplet diffusion is used to improve external quantum efficiency.

燐光の利用に成功することは、有機エレクトロルミネッセンスデバイスの膨大な前途を約束するものである。例えば、燐光の利点は、(一つには)燐光デバイスの三重項に基づく全ての励起子(EL中でのホールと電子との再結合により形成される)が、或るエレクトロルミネッセンス材料でエネルギー移動及びルミネッセンスに関与することができることである。これに対し一重項に基づく蛍光デバイスでは、僅かな割合の励起子しか蛍光ルミネッセンスを与える結果にならない。   Successful use of phosphorescence promises enormous prospects for organic electroluminescent devices. For example, the advantage of phosphorescence is that all of the triplet-based excitons (formed by the recombination of holes and electrons in the EL) of the phosphorescent device are partially converted to energy by certain electroluminescent materials. Being able to participate in movement and luminescence. In contrast, singlet-based fluorescent devices result in only a small percentage of excitons giving fluorescence luminescence.

別の方法は、蛍光過程の効率を向上させるため燐光過程を利用することである。蛍光は原理的には、対称励起状態の3倍大きな数により75%低い効率になる。   Another method is to utilize a phosphorescence process to increase the efficiency of the fluorescence process. Fluorescence is in principle 75% less efficient with a number three times larger than the symmetrically excited state.

II.C.材料の背景
II.C.1.基本的ヘテロ構造
典型的には、少なくとも一つの電子輸送層及び少なくとも一つのホール輸送層が存在するので、ヘテロ構造を形成する異なる材料の層が存在する。エレクトロルミネッセンス発光を生ずる材料は、電子輸送層又はホール輸送層として働く材料と同じ材料である。電子輸送層又はホール輸送層が発光層としても働くそのようなデバイスは、単一ヘテロ構造を有するとして言及されている。あるいは、エレクトロルミネッセンス材料は、ホール輸送層と電子輸送層との間の別の発光層中に存在していてもよく、それは二重ヘテロ構造と呼ばれている。その別の発光層はホスト中へドープした発光分子を含んでいてもよく、または発光層は発光分子のみから本質的になっていてもよい。
II. C. Material background
II. C. 1. Basic Heterostructure Since there is typically at least one electron transport layer and at least one hole transport layer, there are layers of different materials forming the heterostructure. The material that generates the electroluminescence emission is the same material as the material that functions as the electron transport layer or the hole transport layer. Such a device in which the electron transporting or hole transporting layer also acts as a light emitting layer is referred to as having a single heterostructure. Alternatively, the electroluminescent material may be in a separate emissive layer between the hole transport layer and the electron transport layer, which is called a double heterostructure. The other emissive layer may include emissive molecules doped into the host, or the emissive layer may consist essentially of emissive molecules only.

即ち、電荷キャリヤー層、即ち、ホール輸送層又は電子輸送層中の主たる成分として存在し、電荷キャリヤー材料及び発光材料の両方として機能を果たす発光材料の外に、電荷キャリヤー層中のドーパントとして比較的低い濃度で発光材料が存在していてもよい。ドーパントが存在する場合には、電荷キャリヤー層中の主たる材料はホスト化合物又は受容性化合物と呼ぶことができる。ホスト及びドーパントとして存在する材料は、ホストからドーパント材料へ高レベルのエネルギー遷移を与えるように選択する。更に、これらの材料はOLEDのための許容可能な電気的性質を生ずることができる必要がある。更に、そのようなホスト及びドーパント材料は、便利な製造技術を用いて、特に真空蒸着法を用いてOLED中に容易に配合することができる材料を用いてOLED中へ導入することができることが好ましい。   That is, in addition to the light-emitting material, which is present as a main component in the charge carrier layer, i.e., the hole-transporting layer or the electron-transporting layer, and functions as both a charge carrier material and a light-emitting material, a relatively large amount of dopant in the charge carrier layer is used. The light emitting material may be present at a low concentration. When a dopant is present, the primary material in the charge carrier layer can be referred to as a host or accepting compound. The materials present as host and dopant are selected to provide a high level of energy transition from the host to the dopant material. Furthermore, these materials need to be able to produce acceptable electrical properties for OLEDs. Furthermore, such host and dopant materials can preferably be introduced into the OLED using convenient manufacturing techniques, especially using materials that can be easily incorporated into the OLED using vacuum deposition techniques. .

II.C.2.励起子ブロッキング層
励起子の拡散を実質的に妨げ、それによって励起子を実質的に発光層内に留め、デバイスの効率を増大させるため、OLEDデバイス内に励起子ブロッキング層(exciton blocking layer)を入れることができる。ブロッキング層の材料は、その最低空軌道(LUMO)及びその最高被占軌道(HOMO)との間のエネルギー差(禁止帯幅)を特徴とする。この禁止帯幅はブロッキング層を通る励起子の拡散を実質的に防ぐが、完成したエレクトロルミネッセンスデバイスのスイッチを入れた時の電圧で最小の効果しか持たない。従って、その禁止帯幅は発光層中で生じた励起子のエネルギーレベルよりも大きく、そのような励起子がブロッキング層中に存在することができないようにするのが好ましい。特に、ブロッキング層の禁止帯幅は、ホストの三重項状態と基底状態とのエネルギー差と少なくとも同じ位の大きさである。
II. C. 2. Exciton blocking layer An exciton blocking layer is provided in the OLED device to substantially hinder the diffusion of the exciton, thereby substantially retaining the exciton in the emissive layer and increasing the efficiency of the device. You can enter. The material of the blocking layer is characterized by an energy difference (bandwidth) between its lowest unoccupied orbit (LUMO) and its highest occupied orbit (HOMO). While this bandgap substantially prevents exciton diffusion through the blocking layer, it has minimal effect at the switched-on voltage of the completed electroluminescent device. Therefore, the band gap is preferably greater than the energy level of the excitons generated in the light emitting layer, so that such excitons cannot be present in the blocking layer. In particular, the band gap of the blocking layer is at least as large as the energy difference between the triplet state and the ground state of the host.

ホール伝導性ホストと電子輸送層との間にブロッキング層が存在する状態では、相対的重要性の順序で列挙する次の特性が求められる。   In the state where the blocking layer exists between the hole conductive host and the electron transport layer, the following properties listed in order of relative importance are required.

1. ブロッキング層のLUMOとHOMOとの間のエネルギー差が、ホスト材料の三重項と基底状態一重項とのエネルギー差よりも大きい。
2. ホスト材料中の三重項はブロッキング層によりクエンチされない。
3. ブロッキング層のイオン化ポテンシャル(IP)は、ホストのイオン化ポテンシャルよりも大きい(ホールはホスト中に保持されることを意味する)。
4. ブロッキング層のLUMOのエネルギーレベルと、ホストのLUMOのエネルギーレベルとが、デバイスの全伝導度の変化が50%より少なくなるようにエネルギーが充分近接している。
5. ブロッキング層は、発光層から隣接層への励起子の移動を効果的に遮断するのに充分な層の厚さを有することを条件として、できるだけ薄くする。
1. The energy difference between the LUMO and HOMO of the blocking layer is larger than the energy difference between the triplet and the ground state singlet of the host material.
2. Triplets in the host material are not quenched by the blocking layer.
3. The ionization potential (IP) of the blocking layer is greater than the ionization potential of the host (meaning that holes are retained in the host).
4. The LUMO energy level of the blocking layer and the LUMO energy level of the host are sufficiently close in energy so that the change in total conductivity of the device is less than 50%.
5. The blocking layer is made as thin as possible, provided that it has a layer thickness sufficient to effectively block exciton transfer from the emissive layer to the adjacent layer.

即ち、励起子及びホールを遮断するため、ブロッキング層のイオン化ポテンシャルはHTLのそれよりも大きくすべきであり、同時にブロッキング層の電子親和力は、電子を輸送し易くできるようにETLのそれとほぼ等しくなっているべきである。 [ホール輸送ホストを用いずに放射性(発光)分子を用いた場合には、ブロッキング層を選択するための上記規則は、「ホスト」と言う言葉を「発光分子」によって置き換えることにより修正する。]   That is, to block excitons and holes, the ionization potential of the blocking layer should be greater than that of the HTL, and at the same time the electron affinity of the blocking layer will be approximately equal to that of the ETL to facilitate transport of electrons. Should be. [If a radioactive (luminescent) molecule is used without a hole transport host, the above rules for selecting a blocking layer are modified by replacing the word “host” with “luminescent molecule”. ]

電子伝導性ホストとホール輸送層との間にブロッキング層を用いた補助的状態について、それらの特性を求める(重要性の順序で列挙した):   For auxiliary states using a blocking layer between the electron conducting host and the hole transport layer, determine their properties (listed in order of importance):

1. ブロッキング層のLUMOとHOMOとの間のエネルギー差が、ホスト材料の三重項と基底状態一重項とのエネルギー差よりも大きい。
2. ホスト材料中の三重項はブロッキング層によりクエンチされない。
3. ブロッキング層のLUMOのエネルギーは、(電子輸送)ホストのLUMOのエネルギーよりも大きい。(電子がホストに保持されることを意味する)。
4. ブロッキング層のイオン化ポテンシャル及びホストのイオン化ポテンシャルは、ホールが障壁からホストへ容易に注入され、デバイスの全伝導度の変化が50%より小さくなるようなものである。
5. ブロッキング層は、発光層から隣接層への励起子の移動を効果的に遮断するのに充分な層の厚さを有することを条件として、できるだけ薄くする。
1. The energy difference between the LUMO and HOMO of the blocking layer is larger than the energy difference between the triplet and the ground state singlet of the host material.
2. Triplets in the host material are not quenched by the blocking layer.
3. The LUMO energy of the blocking layer is greater than the LUMO energy of the (electron transport) host. (Meaning that the electrons are held in the host).
4. The ionization potential of the blocking layer and the ionization potential of the host are such that holes are easily injected from the barrier into the host and the change in the overall conductivity of the device is less than 50%.
5. The blocking layer is made as thin as possible, provided that it has a layer thickness sufficient to effectively block exciton transfer from the emissive layer to the adjacent layer.

[電子輸送ホストを用いずに放射性(発光)分子を用いた場合には、ブロッキング層を選択するための上記規則は、「ホスト」と言う言葉を「発光分子」によって置き換えることにより修正する。]   [If a radioactive (luminescent) molecule is used without an electron transporting host, the above rules for selecting a blocking layer are modified by replacing the word “host” with “luminescent molecule”. ]

II.D.色
色に関し、三つの主要な色、赤、緑及び青の一つに相当する選択されたスペクトル領域に近い所に中心を有する比較的狭い帯域でエレクトロルミネッセンス発光を与える材料を用いてOLEDを製造し、それらがOLED又はSOLED中の着色層として用いることができるようにすることが望ましい。そのような化合物は、真空蒸着法を用いて薄層として容易に蒸着することができ、真空蒸着有機材料から全て製造されるOLED中に容易にそれらを組み込むことができるようにすることも望ましい。
II. D. With respect to color, OLEDs are manufactured using materials that provide a relatively narrow band of electroluminescent emission centered near a selected spectral region corresponding to one of the three main colors, red, green and blue. However, it is desirable that they can be used as colored layers in OLEDs or SOLEDs. It would also be desirable to be able to easily deposit such compounds as thin layers using vacuum deposition techniques and to easily incorporate them into OLEDs made entirely from vacuum deposited organic materials.

1996年12月23日に出願された米国特許出願Serial No.08/774,333(許可された)は、飽和赤色発光を生ずる発光化合物含有OLEDに関する。   U.S. Patent Application Serial No. Ser. 08 / 774,333 (approved) relates to OLEDs containing a luminescent compound that produces a saturated red emission.

III. (発明の開示)
一般的なレベルとして、本発明は、40より大きな原子番号を有する金属Mの錯体に関し、ここでMは三つの二座配位子を有する八面体錯体を形成する。金属には、Sbなどの主グループ金属、「周期表の遷移シリーズの第2系列の遷移金属」、好ましくは「周期表の遷移シリーズの第3系列の遷移金属」、最も好ましくはIr及びPtが含まれる。有機金属錯体は、有機発光ダイオードの発光層中に用いることができる。錯体はLL’L’’M(式中、L、L’、及びL’’は二座配位子を表し、Mは金属を表す)として描くことができる。全ての配位子が異なっている例を図40に示す。
III. (Disclosure of the Invention)
At a general level, the invention relates to complexes of metal M having an atomic number greater than 40, where M forms an octahedral complex having three bidentate ligands. Metals include main group metals such as Sb, "second series transition metals of the periodic table transition series", preferably "third series transition metals of the periodic table transition series", and most preferably Ir and Pt. included. The organometallic complex can be used in a light emitting layer of an organic light emitting diode. The complex can be depicted as LL′L ″ M, where L, L ′ and L ″ represent a bidentate ligand and M represents a metal. An example in which all ligands are different is shown in FIG.

本発明は、更に金属種Mとモノアニオン性二座配位子との有機金属錯体に関し、この場合Mには配位子のsp混成軌道炭素及びヘテロ原子が配位している。錯体は、LM(この場合各配位子L物質は同じである)、LL’L’’M(この場合、各配位子物質L、L’、L’’は異なっている)、又はLMX(この場合、Xはモノアニオン性二座配位子である)の形をしていてもよい。配位子Lは、Xよりも一層発光過程に関与するものと一般に予想されている。好ましくは、Mは第3系列の遷移金属であり、最も好ましくは、MはIr又はPtである。本発明は、LMのメリジアナル(meridianal)異性体にも関し、この場合二つの配位子Lのヘテロ原子(例えば、窒素)はトランス型になっている。Mに配位子のsp混成軌道炭素及びヘテロ原子が配位した態様では、金属M、sp混成軌道炭素及びヘテロ原子を有する環は5又は6個の原子を有するのが好ましい。 The invention further relates to an organometallic complex of a metal species M with a monoanionic bidentate ligand, wherein M is coordinated with the sp 2 hybrid orbital carbon and heteroatom of the ligand. Complexes include L 3 M (where each ligand L substance is the same), LL′L ″ M (where each ligand substance L, L ′, L ″ is different), Alternatively, it may be in the form of L 2 MX, where X is a monoanionic bidentate ligand. Ligand L is generally expected to be more involved in the emission process than X. Preferably, M is a third series of transition metals, and most preferably, M is Ir or Pt. The invention also relates to the meridianal isomer of L 3 M, wherein the heteroatoms (eg nitrogen) of the two ligands L are in trans form. In the embodiment in which the sp 2 hybrid orbital carbon and the hetero atom of the ligand are coordinated to M, the ring having the metal M, the sp 2 hybrid orbital carbon and the hetero atom preferably has 5 or 6 atoms.

更に、本発明は、二座配位子LとMを有する遷移金属物質Mの錯体を、有機発光ダイオードの発光層中に式LMXの化合物として使用することに関する。好ましい態様は、有機発光ダイオード中の発光層として機能を果たすように構成されたホスト層中のドーパントとしての式LIrX(式中、L及びXは異なる二座配位子である)の化合物である。 Furthermore, the present invention relates to the use of a complex of a transition metal substance M having bidentate ligands L and M as a compound of the formula L 2 MX in the light-emitting layer of an organic light-emitting diode. Preferred embodiments are compounds of formula L 2 IrX as configured dopant in a host layer to serve as a light emitting layer in an organic light emitting diode (wherein, L and X are bidentate ligands different) It is.

本発明は、発光デバイスの発光体としての機能を果たす有機金属分子の改良された合成にも関する。本発明の化合物は、次の反応: LM(μ−Cl)ML+XH→LMX+HCl〔式中、LM(μ−Cl)MLは、Lを二座配位子とし、MをIrなどの金属とした塩化物架橋二量体であり;XHは、架橋塩化物と反応し、二座配位子Xを導入する働きをするブレンステッド酸であり、この場合XHは、例えばアセチルアセトン、2−ピコリン酸、又はN−メチルサリチルアニリドにすることができる。〕に従って製造することができる。この方法は、LM(μ−Cl)ML塩化物架橋二量体と、XH物質とを結合することを含んでいる。LMXは、Mの周りの二座配位子L、L、及びXのほぼ八面体の配置を有する。 The present invention also relates to an improved synthesis of organometallic molecules that serve as a light emitter in a light emitting device. The compound of the present invention reacts with the following reaction: L 2 M (μ-Cl) 2 ML 2 + XH → L 2 MX + HCl [wherein L 2 M (μ-Cl) 2 ML 2 is a bidentate ligand of L And XH is a Bronsted acid that reacts with the crosslinked chloride to introduce the bidentate ligand X, wherein XH Can be, for example, acetylacetone, 2-picolinic acid, or N-methylsalicylanilide. ]. The method includes binding the L 2 M (μ-Cl) 2 ML 2 chloride crosslinked dimers, and XH material. L 2 MX has a nearly octahedral arrangement of bidentate ligands L, L, and X around M.

本発明は、更に有機発光デバイス中の燐光発光体として、式LMXの化合物を使用することに関する。例えば、L=(2−フェニルベンゾチアゾール)、X=アセチルアセトネート、及びM=Irである場合の化合物(BTIrとして省略する)を、OLED中の発光層を形成するためにCBP中のドーパントとして(質量で12%のレベルで)用いた場合、12%の量子効率を示す。参考として、4,4’−N,N’−ジカルバゾール−ビフェニル(CBP)の式は、次の通りである: The present invention further as phosphorescent emitters in organic light emitting devices, relates to the use of a compound of formula L 2 MX. For example, a compound in which L = (2-phenylbenzothiazole), X = acetylacetonate, and M = Ir (abbreviated as BTIr) is used as a dopant in CBP to form a light emitting layer in an OLED. When used (at a level of 12% by mass), it exhibits a quantum efficiency of 12%. For reference, the formula for 4,4′-N, N′-dicarbazole-biphenyl (CBP) is as follows:

本発明は、更に有機金属錯体LMXに関し、この場合L自身は蛍光体であるが、得られたLMXは燐光体である。この一つの特別な例は、L=クマリン−6の場合である。 The present invention further relates to an organometallic complex L 2 MX, in this case L itself is a phosphor, resulting L 2 MX is phosphor. One particular example of this is when L = coumarin-6.

本発明は、更にLMに対し、錯体LMXの色の調節を行うためにL及びXを適切に選択することにも関する。例えば、Ir(ppy)及び(ppy)Ir(acac)の両方共510nmのλmaxを有する強い緑色発光を与える[ppyはフェニルピリジンを表す]。しかし、X配位子がアセチルアセトンからではなく、ピコリン酸から形成されている場合、約15nmの小さな青色シフトがある。 The present invention further relates to the appropriate selection of L and X for L 3 M in order to control the color of the complex L 2 MX. For example, both Ir (ppy) 3 and (ppy) 3 Ir (acac) give a strong green emission with a λ max of 510 nm [ppy represents phenylpyridine]. However, when the X ligand is formed from picolinic acid, rather than from acetylacetone, there is a small blue shift of about 15 nm.

更に、発光品質の劣化を起こすことなく、キャリヤー(ホール又は電子)がX(又はL)にトラップされるように、LM錯体に対し、或るHOMOレベルを有するようにXを選択することに関する。このようにして、他のやり方では燐光体の有害な酸化(又は還元)を起こす原因になることがあるキャリヤー(ホール又は電子)が阻止されるであろう。遠くでトラップされるキャリヤーは分子間的に反対符合のキャリヤーと、又は隣接分子からのキャリヤーと容易に再結合するであろう。 Furthermore, without causing deterioration of the light-emitting quality, as carriers (holes or electrons) are trapped in X (or L), to L 3 M complex, selecting X to have a certain HOMO level About. In this way, carriers (holes or electrons) that would otherwise cause harmful oxidation (or reduction) of the phosphor will be blocked. Carriers trapped at a distance will readily recombine with intermolecularly oppositely-signed carriers, or with carriers from neighboring molecules.

IV.図面の簡単な説明   IV. BRIEF DESCRIPTION OF THE FIGURES

PPIrについて予想される構造と共にLIrX錯体の予想される構造を示す図であり、これら錯体のために用いられるX配位子の四つの例も示されている。示した構造はacac誘導体のためのものであり、他のX型配位子についてはO−O配位子をN−O配位子で置き換える。FIG. 3 shows the predicted structures of the L 2 IrX complexes along with the predicted structures for PPir, and also shows four examples of X ligands used for these complexes. The structure shown is for an acac derivative, for other X-type ligands, replace the OO ligand with the NO ligand. Mのフェイシャル及びメリジアナル異性体の比較を示す図である。FIG. 2 shows a comparison of facial and meridianal isomers of L 3 M. ここに開示したmer異性体の分子式:mer−Ir(ppy)及びmer−Ir(bq)を示す図である。PPY(又はppy)は、フェニルピリジルを表し、BQ(又はbq)は7,8−ベンゾキノリンを表す。FIG. 3 is a diagram showing the molecular formulas of the mer isomers disclosed herein: mer-Ir (ppy) 3 and mer-Ir (bq) 3 . PPY (or ppy) represents phenylpyridyl, and BQ (or bq) represents 7,8-benzoquinoline. mer−Ir(ppy)及び(ppy)Ir(acac)のモデルを示す図である。mer-Ir (ppy) is a diagram showing a model of 3 and (ppy) 2 Ir (acac) . 図5AはCBP中に質量で12%の「BTIr」を入れた場合のエレクトロルミネッセンスデバイスのデータ(量子効率対電流密度)を示す図である。BTIrは、ビス(2−フェニルベンゾチアゾール)イリジウムアセチルアセトネートを表す。FIG. 5A is a diagram showing data (quantum efficiency vs. current density) of an electroluminescent device when “BTIr” of 12% by mass is put in CBP. BTIr stands for bis (2-phenylbenzothiazole) iridium acetylacetonate. 図5Bは、図5Aのデバイスからの発光スペクトルを示す図である。FIG. 5B shows an emission spectrum from the device of FIG. 5A. ホールをトラップするための代表的分子の図である。FIG. 3 is a diagram of a representative molecule for trapping holes. Ir(3−MeOppy)の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of Ir (3-MeOppy) 3 . tpyIrsdの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of tpyIrsd. tpyIrsd(=typIrsd)のプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of tpyIrsd (= typIrsd). thpyIrsdの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of thpyIrsd. thpyrIrsdのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of thpyrIrsd. btIrsdの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of btIrsd. btIrsdのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of btIrsd. BQIrの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BQIr. BQIrのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of BQIr. BQIrFAの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BQIrFA. THIr(=thpy;THPIr)の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of THIr (= thpy; THPIr). THPIrのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of THPIr. PPIrの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of PPir. PPIrのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of PPir. BTHPIr(=BTPIr)の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BTHPIr (= BTPIr). tpyIrの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of tpyIr. 窒素のトランス型配置を示すtpyIrの結晶構造を示す図である。FIG. 3 is a diagram showing a crystal structure of tpyIr showing a trans-type arrangement of nitrogen. C6の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of C6. C6Irの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of C6Ir. PZIrPの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of PZIrP. BONIrの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BONIr. BONIrのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of BONIr. BTIrの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BTIr. BTIrのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of BTIr. BOIrの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BOIr. BOIrのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of BOIr. BTIrQの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BTIrQ. BTIrQのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of BTIrQ. BTIrPの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BTIrP. BOIrPの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of BOIrP. 異なる配位子を有するbtIr型錯体の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of a btIr type complex which has a different ligand. mer−IrbqのプロトンNMRスペクトルを示す図である。It is a figure which shows the proton NMR spectrum of mer-Irbq. MX化合物のための他の適当なL及びX配位子を示す図である。FIG. 3 shows other suitable L and X ligands for L 2 MX compounds. LL’L’’M化合物の例を示す図である。It is a figure which shows the example of a LL'L "M compound.

V.(本発明の詳細な記述)
V.A.化学
本発明は、有機発光ダイオードの発光層のホスト層内にドープすることができる式LMXの或る有機金属分子の合成及びその使用に関する。場合により、式LMXの分子は、増大した濃度で、又はそのままで、発光層に用いることができる。本発明は、式LMX(式中、L及びXは、異なる二座配位子であり、Mは八面体錯体を形成する、好ましくは周期表の遷移元素の第三列から選択された金属で、最も好ましくはIr又はPtである)の分子を含有する発光層を有し、然も、前記発光層が或る波長λmaxで最大値を有する発光を生ずる有機発光デバイスに関する。
V. (Detailed description of the present invention)
V. A. Chemical present invention relates to the synthesis and use of the formula L 2 MX certain organometallic molecules can be doped into the light emitting layer host layer of an organic light emitting diode. Optionally, the molecules of formula L 2 MX is the increased concentrations, or as such, can be used for the light-emitting layer. The present invention relates to a compound of the formula L 2 MX, wherein L and X are different bidentate ligands and M forms an octahedral complex, preferably selected from the third row of transition elements of the periodic table An organic light-emitting device having a light-emitting layer containing molecules of a metal, most preferably Ir or Pt), said light-emitting layer producing a light emission having a maximum at a certain wavelength λ max .

V.A.1.ドーパント
ホスト相中にドープされる分子についての一般的化学式はLMX(式中、Mは八面体錯体を形成する遷移金属であり、Lは二座配位子であり、Xは異なる二座配位子である)である。
V. A. 1. The general chemical formula for the molecule doped into the dopant host phase is L 2 MX, where M is a transition metal forming an octahedral complex, L is a bidentate ligand, and X is a different bidentate Is a ligand).

Lの例は、2−(1−ナフチル)ベンゾオキサゾール、(2−フェニルベンゾオキサゾール)、(2−フェニルベンゾチアゾール)、(2−フェニルベンゾチアゾール)、(7,8−ベンゾキノリン)、クマリン、(チエニルピリジン)、フェニルピリジン、ベンゾチエニルピリジン、3−メトキシ−2−フェニルピリジン、チエニルピリジン、及びトリルピリジンである。   Examples of L include 2- (1-naphthyl) benzoxazole, (2-phenylbenzoxazole), (2-phenylbenzothiazole), (2-phenylbenzothiazole), (7,8-benzoquinoline), coumarin, (Thienylpyridine), phenylpyridine, benzothienylpyridine, 3-methoxy-2-phenylpyridine, thienylpyridine, and tolylpyridine.

Xの例は、アセチルアセトネート(acac)、ヘキサフルオロアセチルアセトネート、サリチリデン、ピコリネート、及び8−ヒドロキシキノリネートである。   Examples of X are acetylacetonate (acac), hexafluoroacetylacetonate, salicylidene, picolinate, and 8-hydroxyquinolinate.

L及びXの更に別な例は図39に与えられており、L及びXの更に別な例は「総合配位化学」(Comprehensive Coordination Chemistry)(編集主任G. Wilkinson、Pergamon Press)第2巻、特にM.カリガリス(Calligaris)及びL.ランダチオ(Randaccio)による第20.1章(第715頁以降)及びR.S.バグ(Vagg)による第20.4章(第793頁以降)に見出すことができる。   Yet another example of L and X is given in FIG. 39, and yet another example of L and X is “Comprehensive Coordination Chemistry” (Editor G. Wilkinson, Pergamon Press), Vol. Especially M.I. Calligaris and L. Chapter 20.1 (from page 715) by Randaccio and S. It can be found in Section 20.4 by Vagg (pages 793 et seq.).

V.A.2.式LMXの分子の合成
V.A.2.a.反応スキーム
式LMXの化合物は、次の式に従って製造することができる:
M(μ−Cl)ML+XH→LMX+HCl〔式中、LM(μ−Cl)MLは、Lを二座配位子とした塩化物架橋二量体であり、MはIrなどの金属であり;XHは、架橋塩化物と反応し、二座配位子Xを導入する働きをするブレンステッド酸であり、この場合XHは、例えばアセチルアセトン、ヘキサフルオロアセチルアセトン、2−ピコリン酸、又はN−メチルサリチルアニリドにすることができる。〕LMXは、Mの周りの二座配位子L、L、及びXのほぼ八面体の配置を有する。
V. A. 2. Synthetic V. of the molecule of formula L 2 MX A. 2. a. Compounds of Reaction Scheme formula L 2 MX can be prepared according to the following formula:
L 2 M (μ-Cl) 2 ML 2 + XH → L 2 MX + HCl [where L 2 M (μ-Cl) 2 ML 2 is a chloride-bridged dimer having L as a bidentate ligand , M is a metal such as Ir; XH is a Bronsted acid which reacts with the bridging chloride to serve to introduce the bidentate ligand X, wherein XH is, for example, acetylacetone, hexafluoroacetylacetone, It can be 2-picolinic acid or N-methylsalicylanilide. L 2 MX has a nearly octahedral arrangement of bidentate ligands L, L, and X around M.

V.A.2.b.実施例
Ir(μ−Cl)IrL錯体は、IrCl・nHO及び適当な配位子から文献の方法により製造した〔S.スプラウズ(Sprouse)、K.A.キング(King)、P.J.スペラン(Spellane)、R.J.ワッツ(Watts)、J. Am. Chem. Soc., 106, 6647-6653, (1984);一般的参考文献:G.A.カールソンその他、Inorg. Chem., 32, 4483, (1993);B.シュミット(Schmid)その他、Inorg. Chem., 33, 9, (1993);F.グラシス(Garces)その他、Inorg. Chem., 27, 3464, (1988);M.G.コロンボ(Colombo)その他、Inorg. Chem., 32, 3088, (1993);A.マモ(Mamo)その他、Inorg. Chem., 36, 5947, (1997);S.セロニ(Serroni)その他、J. Am. Chem. Soc., 116, 9086, (1994);A.P.ワイルド(Wilde)その他、J. Phys. Chem., 95, 629, (1991);J.H.ヴァン・ジーメン(van Diemen)その他、Inorg. Chem., 31, 3518, (1992);M.G.コロンボその他、Inorg. Chem., 33, 545, (1994)〕。
V. A. 2. b. Example L 2 Ir (μ-Cl) 2 IrL 2 complex was prepared from IrCl 3 .nH 2 O and the appropriate ligand by literature methods [S. Sprouse, K.S. A. King, P.M. J. Spellane, R.A. J. Watts, J. Am. Chem. Soc., 106, 6647-6653, (1984); A. Carlson et al., Inorg. Chem., 32, 4483, (1993); Schmid et al., Inorg. Chem., 33, 9, (1993); Garces et al., Inorg. Chem., 27, 3464, (1988); G. FIG. Colombo et al., Inorg. Chem., 32, 3088, (1993); Mamo et al., Inorg. Chem., 36, 5947, (1997); Seroni, et al., J. Am. Chem. Soc., 116, 9086, (1994); P. Wilde et al., J. Phys. Chem., 95, 629, (1991); H. Van Diemen et al., Inorg. Chem., 31, 3518, (1992); G. FIG. Colombo et al., Inorg. Chem., 33, 545, (1994)].

Ir(3−MeOppy)。 Ir(acac)(0.57g、1.17mM)及び3−メトキシ−2−フェニルピリジン(1.3g、7.02mM)を、30mlのグリセロール中で混合し、N中で24時間200℃に加熱した。得られた混合物を100mlの1MのHClへ添加した。沈澱物を濾過により収集し、溶離剤としてCHClを用いてカラムクロマトグラフィーにより精製し、明るい黄色固体として生成物を得た(0.35g、40%)。MS(EI):m/z(相対的強度)745(M-、100)、561(30)、372(35)。発光スペクトルは図7に示してある。 Ir (3-MeOppy) 3 . Ir (acac) 3 (0.57g, 1.17mM) and 3-methoxy-2-phenylpyridine (1.3g, 7.02mM) were mixed in glycerol 30 ml, 24 h 200 ° C. in a N 2 Heated. The resulting mixture was added to 100 ml of 1M HCl. The precipitate was collected by filtration, using CH 2 Cl 2 was purified by column chromatography as eluent to give the product as a light yellow solid (0.35g, 40%). MS (EI): m / z ( relative intensity) 745 (M -, 100) , 561 (30), 372 (35). The emission spectrum is shown in FIG.

tpyIrsd。 塩化物架橋二量体(tpyIrCl)(0.07g、0.06mM)、サリチリデン(0.022g、0.16mM)及びNaCO(0.02g、0.09mM)を、10mlの1,2−ジクロロエタン及び2mlのエタノール中で混合した。混合物を、TLCにより二量体が検出されなくなるまで、6時間N中で還流した。次に反応を冷却し、溶媒を蒸発させた。真空中で穏やかに加熱することにより、過剰のサリチリデンを除去した。残留固体をCHCl中に再溶解し、不溶性無機物質を濾過により除去した。濾液を濃縮し、溶離剤としてCHClを用いてカラムクロマトグラフィーにかけ、明るい黄色固体として生成物を得た(0.07g、85%)。MS(EI):m/z(相対的強度)663(M+、75)、529(100)、332(35)。発光スペクトルは図8に示してあり、プロトンNMRスペクトルは図9に示してある。 tpyIrsd. Chloride cross-linked dimer (tpyIrCl) 2 (0.07 g, 0.06 mM), salicylidene (0.022 g, 0.16 mM) and Na 2 CO 3 (0.02 g, 0.09 mM) were added to 10 ml of 1, Mix in 2-dichloroethane and 2 ml ethanol. The mixture until no dimer was detected by TLC, was refluxed in 6 h N 2. Then the reaction was cooled and the solvent was evaporated. Excess salicylidene was removed by gentle heating in vacuo. The residual solid was redissolved in CH 2 Cl 2 and insoluble inorganics were removed by filtration. The filtrate was concentrated and subjected to column chromatography using CH 2 Cl 2 as eluent to give the product as a light yellow solid (0.07g, 85%). MS (EI): m / z (relative intensity) 663 (M <+> , 75), 529 (100), 332 (35). The emission spectrum is shown in FIG. 8, and the proton NMR spectrum is shown in FIG.

thpyIrsd。 塩化物架橋二量体(thpyIrCl)(0.21g、0.19mM)を、(thpyIrCl)と同じやり方で処理した。収率:0.21g、84%。MS(EI):m/z(相対的強度)647(M+、100)、513(30)、486(15)、434(20)、324(25)。発光スペクトルは図10に示してあり、プロトンNMRスペクトルは図11に示してある。 thpyIrsd. Chloride cross-linked dimer (thpyIrCl) 2 (0.21 g, 0.19 mM) was treated in the same manner as (thpyIrCl) 2 . Yield: 0.21 g, 84%. MS (EI): m / z (relative intensity) 647 (M + , 100), 513 (30), 486 (15), 434 (20), 324 (25). The emission spectrum is shown in FIG. 10, and the proton NMR spectrum is shown in FIG.

btIrsd。 塩化物架橋二量体(btIrCl)(0.05g、0.039mM)を、(tpyIrCl)と同じやり方で処理した。収率:0.05g、86%。MS(EI):m/z(相対的強度)747(M+、100)、613(100)、476(30)、374(25)、286(32)。発光スペクトルは図12に示してあり、プロトンNMRスペクトルは図13に示してある。 btIrsd. Chloride cross-linked dimer (btIrCl) 2 (0.05 g, 0.039 mM) was treated in the same manner as (tpyIrCl) 2 . Yield: 0.05 g, 86%. MS (EI): m / z (relative intensity) 747 (M + , 100), 613 (100), 476 (30), 374 (25), 286 (32). The emission spectrum is shown in FIG. 12, and the proton NMR spectrum is shown in FIG.

Ir(bq)(acac)、BQIr。 塩化物架橋二量体(Ir(bq) Cl)(0.091g、0.078mM)、アセチルアセトン(0.021g)、及び炭酸ナトリウム(0.083g)を、10mlの2−エトキシエタノール中で混合した。混合物を、TLCにより二量体が検出されなくなるまで、10時間N中で還流した。次に反応を冷却し、黄色の沈澱物を濾過した。生成物を、ジクロロメタンを用いてフラッシュクロマトグラフィーにより精製した。生成物:明るい黄色固体(収率91%)。1H NMR(360MHz、アセトン−d6)、ppm:8.93(d、2H)、8.47(d、2H)、7.78(m、4H)、7.25(d、2H)、7.15(d、2H)、6.87(d、2H)、6.21(d、2H)、5.70(s、1H)、1.63(s、6H)。MS、e/z:648(M+、80%)、549(100%)。発光スペクトルは図14に示してあり、プロトンNMRスペクトルは図15に示してある。 Ir (bq) 2 (acac), BQIr. Chloride cross-linked dimer (Ir (bq) 2 Cl) 2 (0.091 g, 0.078 mM), acetylacetone (0.021 g), and sodium carbonate (0.083 g) were added in 10 ml of 2-ethoxyethanol. Mixed. The mixture until no dimer was detected by TLC, was refluxed in 10 h N 2. The reaction was then cooled and the yellow precipitate was filtered. The product was purified by flash chromatography using dichloromethane. Product: light yellow solid (91% yield). 1 H NMR (360 MHz, acetone-d 6 ), ppm: 8.93 (d, 2H), 8.47 (d, 2H), 7.78 (m, 4H), 7.25 (d, 2H), 7.15 (d, 2H), 6.87 (d, 2H), 6.21 (d, 2H), 5.70 (s, 1H), 1.63 (s, 6H). MS, e / z: 648 (M <+> , 80%), 549 (100%). The emission spectrum is shown in FIG. 14, and the proton NMR spectrum is shown in FIG.

Ir(bq)(Facac)、BQIrFA。 塩化物架橋二量体(Ir(bq)Cl)(0.091g、0.078mM)、ヘキサフルオロアセチルアセトン(0.025g)、及び炭酸ナトリウム(0.083g)を、10mlの2−エトキシエタノール中で混合した。混合物を、TLCにより二量体が検出されなくなるまで、10時間N中で還流した。次に反応を冷却し、黄色の沈澱物を濾過した。生成物を、ジクロロメタンを用いてフラッシュクロマトグラフィーにより精製した。生成物:黄色固体(収率69%)。H NMR(360MHz、アセトン−d)、ppm:8.99(d、2H)、8.55(d、2H)、7.86(m、4H)、7.30(d、2H)、7.14(d、2H)、6.97(d、2H)、6.13(d、2H)、5.75(s、1H)。MS、e/z:684(M+、59%)、549(100%)。発光スペクトルは図16に示してある。 Ir (bq) 2 (Facac), BQIrFA. Chloride cross-linked dimer (Ir (bq) 2 Cl) 2 (0.091 g, 0.078 mM), hexafluoroacetylacetone (0.025 g), and sodium carbonate (0.083 g) were added to 10 ml of 2-ethoxyethanol. Mixed in. The mixture until no dimer was detected by TLC, was refluxed in 10 h N 2. The reaction was then cooled and the yellow precipitate was filtered. The product was purified by flash chromatography using dichloromethane. Product: yellow solid (69% yield). 1 H NMR (360 MHz, acetone-d 6 ), ppm: 8.99 (d, 2H), 8.55 (d, 2H), 7.86 (m, 4H), 7.30 (d, 2H), 7.14 (d, 2H), 6.97 (d, 2H), 6.13 (d, 2H), 5.75 (s, 1H). MS, e / z: 684 (M <+> , 59%), 549 (100%). The emission spectrum is shown in FIG.

Ir(thpy)(acac)、THPIr。 塩化物架橋二量体(Ir(thpy)Cl)(0.082g、0.078mM)、アセチルアセトン(0.025g)、及び炭酸ナトリウム(0.083g)を、10mlの2−エトキシエタノール中で混合した。混合物を、TLCにより二量体が検出されなくなるまで、10時間N中で還流した。次に反応を冷却し、黄色の沈澱物を濾過した。生成物を、ジクロロメタンを用いてフラッシュクロマトグラフィーにより精製した。生成物:黄橙色固体(収率80%)。H NMR(360MHz、アセトン−d)、ppm:8.34(d、2H)、7.79(m、2H)、7.58(d、2H)、7.21(d、2H)、7.15(d、2H)、6.07(d、2H)、5.28(s、1H)、1.70(s、6H)。MS、e/z:612(M+、89%)、513(100%)。発光スペクトルは図17に示してあり(「THIr」として記してある)、プロトンNMRスペクトルは図18に示してある。 Ir (thpy) 2 (acac), THPIr. Chloride-bridged dimer (Ir (thpy) 2 Cl) 2 (0.082 g, 0.078 mM), acetylacetone (0.025 g), and sodium carbonate (0.083 g) were added in 10 ml of 2-ethoxyethanol. Mixed. The mixture until no dimer was detected by TLC, was refluxed in 10 h N 2. The reaction was then cooled and the yellow precipitate was filtered. The product was purified by flash chromatography using dichloromethane. Product: yellow-orange solid (80% yield). 1 H NMR (360 MHz, acetone-d 6 ), ppm: 8.34 (d, 2H), 7.79 (m, 2H), 7.58 (d, 2H), 7.21 (d, 2H), 7.15 (d, 2H), 6.07 (d, 2H), 5.28 (s, 1H), 1.70 (s, 6H). MS, e / z: 612 (M <+> , 89%), 513 (100%). The emission spectrum is shown in FIG. 17 (marked as “THr”) and the proton NMR spectrum is shown in FIG.

Ir(ppy)(acac)、PPIr。 塩化物架橋二量体(Ir(ppy)Cl)(0.080g、0.078mM)、アセチルアセトン(0.025g)、及び炭酸ナトリウム(0.083g)を、10mlの2−エトキシエタノール中で混合した。混合物を、TLCにより二量体が検出されなくなるまで、10時間N中で還流した。次に反応を冷却し、黄色の沈澱物を濾過した。生成物を、ジクロロメタンを用いてフラッシュクロマトグラフィーにより精製した。生成物:黄色固体(収率87%)。H NMR(360MHz、アセトン−d)、ppm:8.54(d、2H)、8.06(d、2H)、7.92(m、2H)、7.81(d、2H)、7.35(d、2H)、6.78(m、2H)、6.69(m、2H)、6.20(d、2H)、5.12(s、1H)、1.62(s、6H)。MS、e/z:600(M+、75%)、501(100%)。発光スペクトルは図19に示してあり、プロトンNMRスペクトルは図20に示してある。 Ir (ppy) 2 (acac), PPIr. Chloride cross-linked dimer (Ir (ppy) 2 Cl) 2 (0.080 g, 0.078 mM), acetylacetone (0.025 g), and sodium carbonate (0.083 g) were added in 10 ml of 2-ethoxyethanol. Mixed. The mixture until no dimer was detected by TLC, was refluxed in 10 h N 2. The reaction was then cooled and the yellow precipitate was filtered. The product was purified by flash chromatography using dichloromethane. Product: yellow solid (87% yield). 1 H NMR (360 MHz, acetone-d 6 ), ppm: 8.54 (d, 2H), 8.06 (d, 2H), 7.92 (m, 2H), 7.81 (d, 2H), 7.35 (d, 2H), 6.78 (m, 2H), 6.69 (m, 2H), 6.20 (d, 2H), 5.12 (s, 1H), 1.62 (s) , 6H). MS, e / z: 600 (M <+> , 75%), 501 (100%). The emission spectrum is shown in FIG. 19, and the proton NMR spectrum is shown in FIG.

Ir(bthpy)(acac)、BTPIr。 塩化物架橋二量体(Ir(bthpy)Cl)(0.103g、0.078mM)、アセチルアセトン(0.025g)、及び炭酸ナトリウム(0.083g)を、10mlの2−エトキシエタノール中で混合した。混合物を、TLCにより二量体が検出されなくなるまで、10時間N中で還流した。次に反応を冷却し、黄色の沈澱物を濾過した。生成物を、ジクロロメタンを用いてフラッシュクロマトグラフィーにより精製した。生成物:黄色固体(収率49%)。MS、e/z:712(M+、66%)、613(100%)。発光スペクトルは図21に示してある。 Ir (bthpy) 2 (acac), BTPIr. Chloride cross-linked dimer (Ir (bthpy) 2 Cl) 2 (0.103 g, 0.078 mM), acetylacetone (0.025 g), and sodium carbonate (0.083 g) were added in 10 ml of 2-ethoxyethanol. Mixed. The mixture until no dimer was detected by TLC, was refluxed in 10 h N 2. The reaction was then cooled and the yellow precipitate was filtered. The product was purified by flash chromatography using dichloromethane. Product: yellow solid (49% yield). MS, e / z: 712 (M <+> , 66%), 613 (100%). The emission spectrum is shown in FIG.

[Ir(ptpy)Cl]: IrCl・xHO(1.506g、5.030mM)及び2−(p−トリル)ピリジン(3.509g、20.74mM)を2−エトキシエタノール(30ml)中に入れた溶液を、25時間還流した。黄緑色の混合物を室温へ冷却し、20mlの1.0MのHClを添加し、生成物を沈澱させた。混合物を濾過し、100mlの1.0MのHClで洗浄し、次に50mlのメタノールで洗浄し、次に乾燥した。黄色粉末として生成物が得られた(1.850g、65%)。 [Ir (ptpy) 2 Cl] 2 : IrCl 2 .xH 2 O (1.506 g, 5.030 mM) and 2- (p-tolyl) pyridine (3.509 g, 20.74 mM) in 2-ethoxyethanol (30 ml) ) Was refluxed for 25 hours. The yellow-green mixture was cooled to room temperature and 20 ml of 1.0 M HCl was added to precipitate the product. The mixture was filtered, washed with 100 ml of 1.0 M HCl, then with 50 ml of methanol and then dried. The product was obtained as a yellow powder (1.850 g, 65%).

[Ir(ppz)Cl]: IrCl・xHO(0.904g、3.027mM)及び1−フェニルピラゾール(1.725g、11.96mM)を2−エトキシエタノール(30ml)中に入れた溶液を、21時間還流した。灰緑色の混合物を室温へ冷却し、20mlの1.0MのHClを添加し、生成物を沈澱させた。混合物を濾過し、100mlの1.0MのHClで洗浄し、次に50mlのメタノールで洗浄し、次に乾燥した。明灰色の粉末として生成物が得られた(1.133g、73%)。 [Ir (ppz) 2 Cl] 2 : IrCl 2 .xH 2 O (0.904 g, 3.027 mM) and 1-phenylpyrazole (1.725 g, 11.96 mM) were placed in 2-ethoxyethanol (30 ml). The solution was refluxed for 21 hours. The gray-green mixture was cooled to room temperature and 20 ml of 1.0 M HCl was added to precipitate the product. The mixture was filtered, washed with 100 ml of 1.0 M HCl, then with 50 ml of methanol and then dried. The product was obtained as a light gray powder (1.133g, 73%).

[Ir(C6)Cl]: IrCl・xHO(0.075g、0.251mM)及びクマリンC6[3−(2−ベンゾチアゾリル)−7−(ジエチル)クマリン]〔アルドリッチ(Aldrich)〕(0.350g、1.00mM)を2−エトキシエタノール(15ml)中に入れた溶液を、22時間還流した。暗赤色の混合物を室温へ冷却し、20mlの1.0MのHClを添加し、生成物を沈澱させた。混合物を濾過し、100mlの1.0MのHClで洗浄し、次に50mlのメタノールで洗浄した。生成物をメタノール中に溶解し、沈澱させた。固体を濾過し、濾液中に緑の発光が観察されなくなるまでメタノールで洗浄した。橙色の粉末として生成物が得られた(0.0657g、28%)。 [Ir (C6) 2 Cl] 2: IrCl 3 · xH 2 O (0.075g, 0.251mM) and coumarin C6 [3- (2-benzothiazolyl) -7- (diethyl) coumarin] [Aldrich (Aldrich)] A solution of (0.350 g, 1.00 mM) in 2-ethoxyethanol (15 ml) was refluxed for 22 hours. The dark red mixture was cooled to room temperature and 20 ml of 1.0 M HCl was added to precipitate the product. The mixture was filtered and washed with 100 ml of 1.0 M HCl, then with 50 ml of methanol. The product was dissolved in methanol and precipitated. The solid was filtered and washed with methanol until no green luminescence was observed in the filtrate. The product was obtained as an orange powder (0.0657 g, 28%).

Ir(ptpy)acac(tpyIr): [Ir(ptpy)Cl](1.705g、1.511mM)、2,4−ペンタンジオール(3.013g、30.08mM)、及び(1.802g、17.04mM)を1,2−ジクロロエタン(60ml)中に入れた溶液を、40時間還流した。黄緑色の混合物を室温へ冷却し、溶媒を減圧下で除去した。生成物を50mlのCHCl中に取り、セライトを通して濾液した。減圧下で溶媒を除去し、橙色結晶の生成物を得た(1.696g、89%)。発光スペクトルを図22に示す。構造のX線回折研究の結果を図23に示す。tpy(トリルピリジル)基の窒素原子はトランス型になっていることが分かった。X線研究から、反射数は4663であり、R因子(R factor)は5.4%であった。 Ir (ptpy) 2 acac (tpyIr): [Ir (ptpy) 2 Cl] 2 (1.705 g, 1.511 mM), 2,4-pentanediol (3.013 g, 30.08 mM), and (1.802 g) , 17.04 mM) in 1,2-dichloroethane (60 ml) was refluxed for 40 hours. The yellow-green mixture was cooled to room temperature and the solvent was removed under reduced pressure. The product was taken up in 50 ml of CH 2 Cl 2 and filtered through celite. Removal of the solvent under reduced pressure gave the product as orange crystals (1.696 g, 89%). FIG. 22 shows the emission spectrum. The results of an X-ray diffraction study of the structure are shown in FIG. It was found that the nitrogen atom of the tpy (tolylpyridyl) group was in a trans form. From an X-ray study, the number of reflections was 4663 and the R factor was 5.4%.

Ir(C6)acac(C6Ir): [Ir(C6)Cl]をCDCl中に入れた溶液に2滴の2,4−ペンタンジオン及び過剰のNaCOを添加した。管を50℃で48時間加熱し、次にパスツールピペットの中の短いセライト充填物に通して濾過した。溶媒及び過剰の2,4−ペンタンジオンを減圧下で除去し、橙色固体として生成物を得た。C6の発光を図24に示し、C6Irの発光を図25に示す。 Ir (C6) 2 acac (C6Ir ): was added [Ir (C6) 2 Cl] 2 of 2 drops of solution were placed in CDCl 3 2,4-pentanedione and an excess Na 2 CO 3. The tube was heated at 50 ° C. for 48 hours, then filtered through a short celite plug in a Pasteur pipette. The solvent and excess 2,4-pentanedione were removed under reduced pressure to give the product as an orange solid. FIG. 24 shows light emission of C6, and FIG. 25 shows light emission of C6Ir.

Ir(ppz)ピコリネート(PZIrp): [Ir(ppz)Cl](0.0545g、0.0530mM)、及びピコリン酸(0.0525g、0.426mM)をCHCl(15ml)中に入れた溶液を、16時間還流した。明緑色の混合物を室温へ冷却し、溶媒を減圧下で除去した。得られた固体を10mlのメタノール中にとり、明緑色の固体を溶液から沈澱させた。上澄み液を傾瀉により除去し、固体をCHCl中に溶解し、短いシリカ充填物を通して濾過した。減圧下で溶媒を除去し、明緑色結晶の生成物を得た(0.0075g、12%)。発光を図26に示す。 Ir (ppz) 2 picolinate (PZIrp): [Ir (ppz) 2 Cl] 2 (0.0545 g, 0.0530 mM), and picolinic acid (0.0525 g, 0.426 mM) in CH 2 Cl 2 (15 ml). Was refluxed for 16 hours. The light green mixture was cooled to room temperature and the solvent was removed under reduced pressure. The solid obtained was taken up in 10 ml of methanol and a light green solid precipitated out of solution. The supernatant was removed by decantation, the solid was dissolved in CH 2 Cl 2, and filtered through a short plug of silica. Removal of the solvent under reduced pressure gave the product as light green crystals (0.0075 g, 12%). The emission is shown in FIG.

2−(1−ナフチル)ベンゾオキサゾール、(BZO−Naph)。11.06g、101mMの2−アミノフェノールを、15.867g、92.2mMの1−ナフトエ酸と、ポリ燐酸の存在下で混合した。混合物を加熱し、N中で8時間240℃で撹拌した。混合物を100℃に冷却し、これに水を添加した。不溶性残留物を濾過により収集し、水で洗浄し、次に過剰の10%NaCO中で再びスラリーにした。アルカリ性スラリーを濾過し、生成物を水で完全に洗浄し、真空中で乾燥した。生成物を真空蒸留により精製した。BP 140℃/0.3mmHg。収量4.8g(21%)。 2- (1-Naphthyl) benzoxazole, (BZO-Naph). 11.06 g, 101 mM 2-aminophenol were mixed with 15.867 g, 92.2 mM 1-naphthoic acid in the presence of polyphosphoric acid. The mixture was heated and stirred at 240 ° C. for 8 hours under N 2 . The mixture was cooled to 100 ° C. and water was added to it. The insoluble residue was collected by filtration, washed with water and reslurried then in excess of 10% Na 2 CO 3. The alkaline slurry was filtered and the product was washed thoroughly with water and dried in vacuum. The product was purified by vacuum distillation. BP 140 ° C / 0.3mmHg. Yield 4.8 g (21%).

テトラキス[2−(1−ナフチル)ベンゾオキサゾールC,N](μ−ジクロロ)ジイリジウム、[(Ir(BZO−Naph)Cl)]。三塩化イリジウム水和物(0.388g)を、2−(1−ナフチル)ベンゾオキサゾール(1.2g、4.88mM)と一緒にした。混合物を2−エトキシエタノール(30ml)中に溶解し、次に24時間還流した。溶液を室温へ冷却し、得られた橙色固体生成物を遠心分離管中で収集した。二量体をメタノールで洗浄し、次にクロロホルムにより洗浄する遠心分離/再分散サイクルを4サイクル行なった。収量0.66g。 Tetrakis [2- (1-naphthyl) benzoxazole C 2, N] (μ- dichloro) diiridium, [(Ir 2 (BZO- Naph) 4 Cl) 2]. Iridium trichloride hydrate (0.388 g) was combined with 2- (1-naphthyl) benzoxazole (1.2 g, 4.88 mM). The mixture was dissolved in 2-ethoxyethanol (30 ml) and then refluxed for 24 hours. The solution was cooled to room temperature and the resulting orange solid product was collected in a centrifuge tube. Four centrifugation / redispersion cycles were performed, washing the dimer with methanol followed by chloroform. Yield 0.66 g.

ビス[2−(1−ナフチル)ベンゾオキサゾール]アセチルアセトネート、Ir(BZO−Naph)(acac)、(BONIr)。塩化物架橋二量体[Ir(BZO−Naph)Cl](0.66g、0.46mM)、アセチルアセトン(0.185g)、及び炭酸ナトリウム(0.2g)を、20mlのジクロロエタン中で混合した。混合物を、N中で60時間還流した。次に反応を冷却し、橙/赤色の沈澱物を遠心分離管中で収集した。生成物を、水/メタノール(1:1)混合物で洗浄し、次にメタノールで洗浄する遠心分離/再分散サイクルを4サイクル行なった。橙/赤色固体生成物を昇華により生成した。SP 250℃/2×10−5トール。収量0.57g(80%)。発光スペクトルは図27に示してあり、プロトンNMRスペクトルは図28に示してある。 Bis [2- (1-naphthyl) benzoxazole] acetylacetonate, Ir (BZO-Naph) 2 (acac), (BONIr). Chloride crosslinked dimer [Ir 2 (BZO-Naph) 4 Cl] 2 (0.66g, 0.46mM), acetylacetone (0.185 g), and sodium carbonate (0.2 g), in dichloroethane 20ml Mixed. The mixture was refluxed for 60 h in N 2. The reaction was then cooled and the orange / red precipitate was collected in a centrifuge tube. The product was washed with a water / methanol (1: 1) mixture, followed by four centrifugation / redispersion cycles, washing with methanol. An orange / red solid product was produced by sublimation. SP 250 ° C./2×10 −5 Torr. Yield 0.57 g (80%). The emission spectrum is shown in FIG. 27, and the proton NMR spectrum is shown in FIG.

ビス(2−フェニルベンゾチアゾール)イリジウムアセチルアセトネート(BTIr): 2.1mMの2−フェニルベンゾチアゾールイリジウム塩化物二量体(2.7g)を、120mlの2−エトキシエタノール中に入れた室温の溶液に、9.8mM(0.98g、1.0ml)の2,4−ペンタンジオンを添加した。約1gの炭酸ナトリウムを添加し、混合物を油浴中で数時間窒素中で加熱し、還流させた。反応混合物を室温へ冷却し、橙色沈澱物を真空濾過により除去した。濾液を濃縮し、メタノールを添加して更に生成物を沈澱させた。連続的濾過及び沈澱により75%の収率が得られた。発光スペクトルを図29に示し、プロトンNMRスペクトルを図30に示す。   Bis (2-phenylbenzothiazole) iridium acetylacetonate (BTIr): 2.1 mM 2-phenylbenzothiazoleiridium chloride dimer (2.7 g) was placed in 120 ml of 2-ethoxyethanol at room temperature. To the solution was added 9.8 mM (0.98 g, 1.0 ml) of 2,4-pentanedione. About 1 g of sodium carbonate was added and the mixture was heated to reflux in an oil bath for several hours under nitrogen. The reaction mixture was cooled to room temperature and the orange precipitate was removed by vacuum filtration. The filtrate was concentrated and methanol was added to further precipitate the product. Continuous filtration and precipitation gave a 75% yield. The emission spectrum is shown in FIG. 29, and the proton NMR spectrum is shown in FIG.

ビス(2−フェニルベンゾオキサゾール)イリジウムacac(BOIr):2.4mMの2−フェニルベンゾオキサゾールイリジウム塩化物二量体(3.0g)を、120mlの2−エトキシエタノール中に入れた室温の溶液に、9.8mM(0.98g、1.0ml)の2,4−ペンタンジオンを添加した。約1gの炭酸ナトリウムを添加し、混合物を油浴中で一晩(〜16時間)窒素中で加熱し、還流させた。反応混合物を室温へ冷却し、黄色沈澱物を真空濾過により除去した。濾液を濃縮し、メタノールを添加して更に生成物を沈澱させた。連続的濾過及び沈澱により60%の収率が得られた。発光スペクトルを図31に示し、プロトンNMRスペクトルを図32に示す。   Bis (2-phenylbenzoxazole) iridium acac (BOIr): A solution of 2.4 mM 2-phenylbenzoxazoleiridium chloride dimer (3.0 g) in a room temperature solution in 120 ml of 2-ethoxyethanol. , 9.8 mM (0.98 g, 1.0 ml) of 2,4-pentanedione was added. Approximately 1 g of sodium carbonate was added and the mixture was heated to reflux in an oil bath overnight (〜16 hours) under nitrogen. The reaction mixture was cooled to room temperature and the yellow precipitate was removed by vacuum filtration. The filtrate was concentrated and methanol was added to further precipitate the product. Continuous filtration and precipitation gave a 60% yield. The emission spectrum is shown in FIG. 31, and the proton NMR spectrum is shown in FIG.

ビス(2−フェニルベンゾチアゾール)イリジウム(8−ヒドロキシキノレート)(BTIrQ): 0.14mMの2−フェニルベンゾチアゾールイリジウム塩化物二量体(0.19g)を、20mlの2−エトキシエタノール中に入れた室温の溶液に、4.7mM(0.68g)の8−ヒドロキシキノリンを添加した。約700mgの炭酸ナトリウムを添加し、混合物を油浴中で一晩(23時間)窒素中で加熱し、還流させた。反応混合物を室温へ冷却し、赤色沈澱物を真空濾過により除去した。濾液を濃縮し、メタノールを添加して更に生成物を沈澱させた。連続的濾過及び沈澱により57%の収率が得られた。発光スペクトルを図33に示し、プロトンNMRスペクトルを図34に示す。   Bis (2-phenylbenzothiazole) iridium (8-hydroxyquinolate) (BTIrQ): 0.14 mM of 2-phenylbenzothiazoleiridium chloride dimer (0.19 g) was dissolved in 20 ml of 2-ethoxyethanol. To the room temperature solution, 4.7 mM (0.68 g) of 8-hydroxyquinoline was added. About 700 mg of sodium carbonate was added and the mixture was heated to reflux in an oil bath overnight (23 hours) under nitrogen. The reaction mixture was cooled to room temperature and the red precipitate was removed by vacuum filtration. The filtrate was concentrated and methanol was added to further precipitate the product. Continuous filtration and precipitation gave a 57% yield. The emission spectrum is shown in FIG. 33, and the proton NMR spectrum is shown in FIG.

ビス(2−フェニルベンゾチアゾール)イリジウムピコリネート(BTIrP): 0.80mMの2−フェニルベンゾチアゾールイリジウム塩化物二量体(1.0g)を、60mlのジクロロメタン中に入れた室温の溶液に、2.14mM(0.26g)のピコリン酸を添加した。混合物を油浴中で8.5時間窒素中で加熱し、還流させた。反応混合物を室温へ冷却し、黄色沈澱物を真空濾過により除去した。濾液を濃縮し、メタノールを添加して更に生成物を沈澱させた。連続的濾過及び沈澱により約900mgの不純生成物を生じた。発光スペクトルを図35に示す。   Bis (2-phenylbenzothiazole) iridium picolinate (BTIrP): 0.80 mM of 2-phenylbenzothiazoleiridium chloride dimer (1.0 g) was added to a solution at room temperature in 60 ml of dichloromethane. .14 mM (0.26 g) picolinic acid was added. The mixture was heated in an oil bath for 8.5 hours under nitrogen and brought to reflux. The reaction mixture was cooled to room temperature and the yellow precipitate was removed by vacuum filtration. The filtrate was concentrated and methanol was added to further precipitate the product. Continuous filtration and precipitation yielded about 900 mg of impure product. FIG. 35 shows the emission spectrum.

ビス(2−フェニルベンゾオキサゾール)イリジウムピコリネート(BOIrP): 0.14mMの2−フェニルベンゾオキサゾールイリジウム塩化物二量体(0.18g)を、20mlのジクロロメタン中に入れた室温の溶液に、0.52mM(0.064g)のピコリン酸を添加した。混合物を油浴中で一晩(17.5時間)窒素中で加熱し、還流させた。反応混合物を室温へ冷却し、黄色沈澱物を真空濾過により除去した。沈澱物をジクロロメタンに溶解し、ガラス瓶へ移し、溶媒を除去した。発光スペクトルを図36に示す。   Bis (2-phenylbenzoxazole) iridium picolinate (BOIrP): 0.14 mM of 2-phenylbenzoxazoleiridium chloride dimer (0.18 g) was added to a room temperature solution in 20 ml of dichloromethane at room temperature. 0.52 mM (0.064 g) picolinic acid was added. The mixture was heated in an oil bath overnight (17.5 hours) under nitrogen and refluxed. The reaction mixture was cooled to room temperature and the yellow precipitate was removed by vacuum filtration. The precipitate was dissolved in dichloromethane, transferred to a glass bottle, and the solvent was removed. FIG. 36 shows the emission spectrum.

btIr錯体中の異なるL’についての比較発光スペクトルを図37に示す。   FIG. 37 shows comparative emission spectra of different L's in the btIr complex.

V.A.2.c.従来法に勝る長所
この合成法は従来法に勝る或る長所を有する。式PtLの化合物は、分解せずに昇華させることはできない。式IrLの化合物を得ることには問題がある。或る配位子はIr(acac)ときれいに反応してトリス錯体を与えるが、しかし、我々が研究した配位子の半分以上は次の反応できれいに反応しない: 3L+Ir(acac)→LIr+acacH(式中、L=2−フェニルピリジン、ベンゾキノリン、2−チエニルピリジンである)収率は典型的には30%である。
Ir錯体への好ましい経路は、次の反応により塩化物架橋二量体LM(μ−Cl)MLによるものにすることができる: 4L+IrCl・nHO→LM(μ−Cl)ML+4HCl
我々が研究したリガンドの10%未満は高い収率でIr二量体をきれいに与えることはできなかったが、二量体のトリス錯体IrLへの転化により問題になる働きをうける配位子はほんの僅かしかない: LM(μ−Cl)ML+2Ag-+2L→LIr+2AgCl
V. A. 2. c. Advantages Over Conventional Methods This synthesis has certain advantages over conventional methods. Compounds of formula PtL 3 cannot be sublimed without decomposition. It is problematic to obtain a compound of formula IrL 3. Certain ligands react cleanly with Ir (acac) 3 to give tris complexes, but more than half of the ligands we studied do not react cleanly in the following reactions: 3L + Ir (acac) 3 → L The yield of 3 Ir + acacH, where L = 2-phenylpyridine, benzoquinoline, 2-thienylpyridine, is typically 30%.
A preferred route to the Ir complex can be by the chloride bridged dimer L 2 M (μ-Cl) 2 ML 2 by the following reaction: 4 L + IrCl 3 .nH 2 O → L 2 M (μ− Cl) 2 ML 2 + 4HCl
While less than 10% of the ligands we studied could not cleanly give Ir dimers in high yields, the ligands that work to be problematic due to the conversion of the dimers to the tris complex IrL 3 are: There are only a few: L 2 M (μ-Cl) 2 ML 2 + 2Ag +2 L → L 3 Ir + 2AgCl

燐光性錯体を製造するはるかに効果的な方法は、塩化物架橋二量体を用いて発光体を形成することであることを我々は発見した。二量体それ自身は、恐らく隣接金属(例えば、イリジウム)原子により強くクエンチされるため、強く発光することはない。塩化物配位子は次の化学変化によりキレート配位子により置換されて安定な八面体金属錯体を与えることができることが見出された: LM(μ−Cl)ML+XH→LMX+HCl We have found that a much more efficient method of producing phosphorescent complexes is to form phosphors using chloride bridged dimers. The dimer itself does not emit strong light, probably because it is strongly quenched by adjacent metal (eg, iridium) atoms. It has been found that chloride ligands can be replaced by chelating ligands to give stable octahedral metal complexes by the following chemical changes: L 2 M (μ-Cl) 2 ML 2 + XH → L 2 MX + HCl

我々はM=イリジウムの場合の系について広範に研究した。得られたイリジウム錯体は強く発光し、殆どの場合1〜3マイクロ秒(μsec)の寿命を持っている。そのような寿命は燐光であることを示している〔チャールス・キッテル(Charles Kittel)、「固体物理入門」(Introduction to Solid State Physics)参照〕。これらの材料中の遷移は金属配位子電荷移動(MLCT)である。   We have studied extensively the system for M = iridium. The obtained iridium complex emits strong light and has a life of 1 to 3 microseconds (μsec) in most cases. Such lifetimes indicate phosphorescence (see Charles Kittel, "Introduction to Solid State Physics"). The transition in these materials is metal ligand charge transfer (MLCT).

下の詳細な説明では、数多くの異なる錯体の発光スペクトル及び寿命のデーターを分析しており、それら錯体は全てLMX(M=Ir)〔式中、Lはシクロ金属化(二座)配位子であり、Xは二座配位子である〕として特徴付けることができる。ほとんどのどの場合でも、これら錯体の発光はIrとL配位子との間のMLCT遷移に基づくものであるか、又はその遷移と配位子間遷移との混合に基づくものである。特別な例を下に記述する。理論的及び分光学的研究により、錯体は金属の周りに八面体の配位を有する(例えば、L配位子の窒素複素環の場合、Ir八面体にトランス型配置が存在する)。 The detailed description below analyzes the emission spectra and lifetime data for a number of different complexes, all of which are L 2 MX (M = Ir), where L is a cyclometallated (bidentate) configuration. And X is a bidentate ligand]. In most cases, the emission of these complexes is based on the MLCT transition between Ir and the L ligand, or on a mixture of that transition and the interligand transition. A special example is described below. According to theoretical and spectroscopic studies, the complex has an octahedral coordination around the metal (eg, in the case of the nitrogen heterocycle of the L ligand, there is a trans configuration in the Ir octahedron).

特に図1には、L=2−フェニルピリジン、X=acac、ピコリネート(ピコリン酸から)、サリチルアニリド、又は8−ヒドロキシキノリネートの場合のLIrXについての構造が与えられている。 In particular, FIG. 1 gives the structure for L 2 IrX in the case of L = 2-phenylpyridine, X = acac, picolinate (from picolinic acid), salicylanilide, or 8-hydroxyquinolinate.

V.A.2.d.フェイシャル(facial)異性体対メリジアナル異性体
IrXを製造する合成経路の僅かな変化により、式LIrのメリジアナル異性体を形成することができる。前に開示したLIr錯体は、全てキレート配位子のフェイシャル配置を有する。OLED中の燐光体としてのメリジアナルLIr錯体の形成及び使用をここに開示する。二つの構造を図2に示す。
V. A. 2. d. The slight changes in the synthetic pathway for producing the facial (facial) isomer to meridianal isomer L 2 IrX, it is possible to form the meridianal isomers of formula L 3 Ir. The previously disclosed L 3 Ir complexes all have a facial configuration of chelating ligands. The formation and use of meridianal L 3 Ir complexes as phosphors in an OLED are disclosed herein. Two structures are shown in FIG.

フェイシャルLIr異性体は、式1(下記)に記載したように、還流するグリセロール中でLとIr(acac)との反応により製造されている。LIr錯体への好ましい経路は、式2+3(下記)による塩化物架橋二量体〔LIr(μ−Cl)IrL〕によるものである。式3の生成物は、Ir(acac)から形成されたものと同じフェイシャル異性体である。後者の製造法の利点は、フェイシャル−LIrの収率が一層よいことである。もし塩基及びアセチルアセトネートの存在下で(Ag+無し)第3配位子を二量体に付加するならば、メリジアナル異性体の良好な収率が得られる。メリジアナル異性体は、再結晶化、配位溶媒中での還流、又は昇華によってもフェイシャル異性体に転化しない。これらメリジアナル錯体の二つの例、mer−Irppy及びmer−Irbq(図3)が形成されているが、我々は安定なフェイシャル−LIrを与える配位子は同様にメリジアナル形態にすることができると考えている。 Facial L 3 Ir isomers have been prepared by the reaction of L with Ir (acac) 3 in refluxing glycerol, as described in Formula 1 (below). Preferred route to L 3 Ir complexes are those according to formula 2 + 3 chloride crosslinked dimers by (below) [L 2 Ir (μ-Cl) 2 IrL 2 ]. The product of Formula 3 is the same facial isomer as that formed from Ir (acac) 3 . The advantage of the latter method of preparation, facial -L 3 Ir yield is that even better. Good yields of the meridianal isomer are obtained if the third ligand is added to the dimer (without Ag +) in the presence of a base and acetylacetonate. Meridianal isomers do not convert to facial isomers by recrystallization, reflux in coordinating solvents, or sublimation. Two examples of these meridianal complexes, but mer-Irppy and mer-Irbq (Figure 3) is formed, it ligand which affords a stable facial -L 3 Ir can be made meridianal form as well I believe.

(1) 3L+Ir(acac)→フェイシャル・LIr+acacH(式中、L=2−フェニルピリジン、ベンゾキノリン、2−チエニルピリジン)典型的には収率30%。
(2) 4L+IrCl・nHO→LIr(μ−Cl)IrL+4HCl典型的には90%より大きい収率。Lの例についての添付スペクトル参照。(1)で有効な全ての配位子についても充分成り立つ。
(3) LIr(μ−Cl)IrL+2Ag++2L→2フェイシャル・LIr+2AgCl典型的には収率30%。(1)について充分有効な同じ配位子についてだけ充分成り立つ。
(4) LIr(μ−Cl)IrL+XH+NaCO+L→メリジアナル・LIr典型的には80%より大きい収率。XH=アセチルアセトン。
(1) 3L + Ir (acac) 3 → facial L 3 Ir + acacH (where L = 2-phenylpyridine, benzoquinoline, 2-thienylpyridine) Typically, 30% yield.
(2) 4L + IrCl 3 .nH 2 O → L 2 Ir (μ-Cl) 2 IrL 2 + 4HCl Typically yield greater than 90%. See attached spectrum for examples of L. All the ligands effective in (1) are sufficiently established.
(3) L 2 Ir (μ -Cl) 2 IrL 2 + 2Ag ++ 2L → 2 facial · L 3 Ir + 2AgCl typically 30% yield. Only (1) is sufficiently valid for the same ligand which is sufficiently effective.
(4) L 2 Ir (μ-Cl) 2 IrL 2 + XH + Na 2 CO 3 + L → meridianal L 3 Ir Typically yield greater than 80%. XH = acetylacetone.

思いがけないことに、メリジアナル異性体の光物理性は、フェイシャル型のものとは異なっている。このことは下で論ずるスペクトルの詳細から知ることができるが、それらスペクトルは著しい赤色シフトを示し、そのフェイシャル対応物に対しメリジアナル異性体では広くなっている。発光線は、あたかもフェイシャル・LIrの特性に赤色帯が付加されたかのように見える。メリジアナル異性体の構造は、例えば、Irの周りの配位子のN原子の配列に関して、LIrX錯体のものと同様である。特にL=ppy配位子である場合、L配位子の窒素はmer−Ir(ppy)及び(ppy)Ir(acac)の両方でトランス型になっている。更にmer−LIr錯体のL配位子の一つは、LIrX錯体のX配位子と同じ配位を有する。この点を例示するため、図4の(ppy)Ir(acac)の次にmer−Ir(ppy)のモデルが示されている。mer−Ir(ppy)のppy配位子の一つは、(ppy)Ir(acac)のacac配位子と同じ幾何学状態でIr中心に配位している。 Unexpectedly, the photophysical properties of the meridianal isomer are different from those of the facial form. This can be seen from the spectral details discussed below, which show a significant red shift and are broader in the meridianal isomer for their facial counterparts. The light-emitting line looks as if a red band was added to the characteristics of the facial L 3 Ir. The structure of the meridianal isomer is similar to that of the L 2 IrX complex, for example, with respect to the arrangement of the N atoms of the ligand around Ir. Especially when L = ppy ligand, the nitrogen of the L ligand is trans in both mer-Ir (ppy) 3 and (ppy) 2 Ir (acac). Furthermore one L ligand mer-L 3 Ir complexes has the same coordination as the X ligand of L 2 IrX complexes. To illustrate this point, the model of mer-Ir (ppy) 3 is shown after (ppy) 2 Ir (acac) in FIG. One of the ppy ligands of mer-Ir (ppy) 3 coordinates at the Ir center in the same geometric state as the acac ligand of (ppy) 2 Ir (acac).

Ir分子のHOMO及びLUMOエネルギーは、異性体の選択により明らかに影響を受ける。これらのエネルギーは、これらの燐光体を用いて製造されるOLEDの電流電圧特性及び寿命をコントロールし、非常に重要である。 The HOMO and LUMO energies of the L 3 Ir molecule are clearly affected by the choice of isomer. These energies control the current-voltage characteristics and lifetime of OLEDs manufactured using these phosphors and are very important.

図3に描いた二つの異性体のための合成は、次の通りである。   The synthesis for the two isomers depicted in FIG. 3 is as follows.

〔メリジアナル異性体の合成〕:
mer−Irbq: 91mg(0.078mM)の[Ir(bq)Cl] 二量体、35.8mg(0.2mM)の7,8−ベンゾキノリン、0.02mgのアセチルアセトン(約0.2mM)、及び83mg(0.78mM)の炭酸ナトリウムを、12mlの2−エトキシエタノール(入手したまま用いた)中で不活性雰囲気中14時間沸騰させた。冷却すると黄橙色沈澱物が形成され、濾過及びフラッシュクロマトグラフィー(シリカゲル、CHCl)により分離した(収率72%)。H NMR(360MHz、ジクロロメタン−d)、ppm:8.31(q、1H)、8.18(q、1H)、8.12(q、1H)、8.03(m、2H)、7.82(m、3H)、7.59(m、2H)、7.47(m、2H)、7.40(d、1H)、7.17(m、9H)、6.81(d、1H)、6.57(d、1H)。MS、e/z:727(100%、M)。NMRスペクトルは図38に示してある。
[Synthesis of Meridianal Isomer]:
mer-Irbq: 91 mg (0.078 mM) of [Ir (bq) 2 Cl] 2 dimer, 35.8 mg (0.2 mM) of 7,8-benzoquinoline, 0.02 mg of acetylacetone (about 0.2 mM ), And 83 mg (0.78 mM) of sodium carbonate were boiled in 12 ml of 2-ethoxyethanol (as used) in an inert atmosphere for 14 hours. Upon cooling yellow-orange precipitate formed and was isolated by filtration and flash chromatography (silica gel, CH 2 Cl 2) (72 % yield). 1 H NMR (360MHz, dichloromethane -d 2), ppm: 8.31 ( q, 1H), 8.18 (q, 1H), 8.12 (q, 1H), 8.03 (m, 2H), 7.82 (m, 3H), 7.59 (m, 2H), 7.47 (m, 2H), 7.40 (d, 1H), 7.17 (m, 9H), 6.81 (d , 1H), 6.57 (d, 1H). MS, e / z: 727 (100%, M <+> ). The NMR spectrum is shown in FIG.

mer−Ir(tpy):IrCl・xHO(0.301g、1.01mM)、2−(p−トリル)ピリジン(1.027g、6.069mM)、2,4−ペンタンジオン(0.208g、2.08mM)、及びNaCO(0.350g、3.30mM)を2−エトキシエタノール(30ml)中に入れた溶液を、65時間還流した。黄緑色の混合物を室温へ冷却し、20mlの1.0MのHClを添加し、生成物を沈澱させた。混合物を濾過し、100mlの1.0MのHClで洗浄し、次に50mlのメタノールで洗浄し、次に乾燥し、固体をCHCl中に溶解し、シリカの短い充填物に通して濾過した。溶媒を減圧除去し、黄橙色粉末として生成物を得た(0.265g、38%)。 mer-Ir (tpy) 3 : IrCl 3 .xH 2 O (0.301 g, 1.01 mM), 2- (p-tolyl) pyridine (1.027 g, 6.069 mM), 2,4-pentanedione (0 .208g, 2.08mM), and Na 2 CO 3 (0.350g, the solution was placed in a 3.30 mm) of 2-ethoxyethanol (30 ml), was refluxed for 65 hours. The yellow-green mixture was cooled to room temperature and 20 ml of 1.0 M HCl was added to precipitate the product. The mixture was filtered, washed with 100 ml of 1.0 M HCl, then with 50 ml of methanol, then dried, the solid was dissolved in CH 2 Cl 2 and filtered through a short plug of silica. did. The solvent was removed under reduced pressure to give the product as a yellow-orange powder (0.265 g, 38%).

V.A.3.可能なホスト分子
本発明は、ホスト相中に上記ドーパントを使用することに関する。このホスト相はカルバゾール部分を有する分子からなっていてもよい。本発明の範囲内に入る分子は次のものの中に含まれる:
V. A. 3. Possible host molecules The invention relates to the use of the above-mentioned dopants in a host phase. This host phase may consist of molecules having a carbazole moiety. Molecules falling within the scope of the present invention are included in the following:

[線分は、環によって示されている利用可能な炭素原子(単数又は複数)の所での、アルキル又はアリール基による可能な置換を示す。]   [Lines indicate possible substitution by alkyl or aryl groups at the available carbon atom (s) represented by the ring. ]

カルバゾール官能性を有する更に別の好ましい分子は4,4’−N,N’−ジカルバゾール−ビフェニル(CBP)であり、それは次の式を有する:   Yet another preferred molecule having carbazole functionality is 4,4'-N, N'-dicarbazole-biphenyl (CBP), which has the formula:

V.B.1.デバイス中の利用
使用するために選択されるデバイス構造は、標準的真空蒸着されたものと非常に類似している。概観として、ホール輸送層(HTL)を、ITO(インジウム錫酸化物)被覆ガラス基体上に先ず蒸着する。12%の量子効率を与えるデバイスの場合、HTLは30nm(300Å)のNPDからなる。そのNPDの上に、ホストマトリックス中へドープした有機金属の薄膜を蒸着して発光層を形成する。例として、発光層は12重量%のビス(2−フェニルベンゾチアゾール)イリジウムアセチルアセトネート(BTIrと呼ぶ)を含有するCBPであり、その層の厚さは30nm(300Å)であった。発光層の上にブロッキング層を蒸着する。ブロッキング層はバソキュプロイン(BCP)からなり、厚さは20nm(200Å)であった。ブロッキング層の上に電子輸送層を蒸着する。電子輸送層は、厚さ20nmのAlqからなっていた。電子輸送層の上にMg−Ag電極を蒸着することによりデバイスが完成する。これは100nmの厚さを有する。全ての蒸着は5×10−5トールより低い真空度で行なった。デバイスは包装することなく、空気中で試験した。
V. B. 1. Utilization in Devices The device structures chosen for use are very similar to standard vacuum deposited ones. As an overview, a hole transport layer (HTL) is first deposited on an ITO (indium tin oxide) coated glass substrate. For devices that provide 12% quantum efficiency, the HTL consists of 30 nm (300 °) NPD. On the NPD, a thin film of an organic metal doped into a host matrix is deposited to form a light emitting layer. By way of example, the light-emitting layer was CBP containing 12% by weight of bis (2-phenylbenzothiazole) iridium acetylacetonate (referred to as BTIr), and the thickness of the layer was 30 nm (300 °). A blocking layer is deposited on the light emitting layer. The blocking layer consisted of bathocuproine (BCP) and had a thickness of 20 nm (200 °). An electron transport layer is deposited on the blocking layer. Electron-transporting layer consisted of Alq 3 with a thickness of 20 nm. The device is completed by depositing a Mg-Ag electrode on the electron transport layer. It has a thickness of 100 nm. All depositions were performed at a vacuum less than 5 × 10 −5 Torr. Devices were tested in air without packaging.

カソードとアノードの間に電圧を印加すると、ホールがITOからNPDへ注入され、NPD層により輸送され、一方電子はMgAgからAlqへ注入され、Alq及びBCPを通って輸送される。次にホールと電子はEMLへ注入され、キャリヤー再結合がCBPで起き、励起状態が形成され、BTIrへのエネルギー移動が起き、最終的にBTIr分子が励起され、放射崩壊する。   When a voltage is applied between the cathode and the anode, holes are injected from the ITO into the NPD and transported by the NPD layer, while electrons are injected from MgAg into Alq and transported through Alq and BCP. Next, holes and electrons are injected into the EML, carrier recombination occurs in the CBP, an excited state is formed, energy transfer to the BTIr occurs, and finally the BTIr molecule is excited and radiatively decays.

図5に例示したように、このデバイスの量子効率は約0.01mA/cmの電流密度で12%である。 As illustrated in FIG. 5, the quantum efficiency of this device is 12% at a current density of about 0.01 mA / cm 2 .

関連する用語は以下のとおりである: ITOは、アノードとしての機能を果たすインジウム錫酸化物の透明伝導性相である。 ITOは、広帯域半導体をドープすることにより形成された縮退型半導体である。ITOのキャリヤー濃度は1019/cmを超えている。 BCPは励起子をブロックし、電子を輸送する層である。 Alqは、電子注入層である。 他のホール輸送層材料を用いてもよい。例えば、TPDホール輸送層を用いることができる。 Related terms are as follows: ITO is a transparent conductive phase of indium tin oxide that acts as an anode. ITO is a degenerate semiconductor formed by doping a broadband semiconductor. The carrier concentration of ITO is over 10 19 / cm 3 . BCP is a layer that blocks excitons and transports electrons. Alq 3 is an electron injection layer. Other hole transport layer materials may be used. For example, a TPD hole transport layer can be used.

BCPは電子輸送層及び励起子ブロッキング層としての機能を果たし、その層は約10nm(100Å)の厚さを有する。BCPは2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソキュプロインとも呼ばれている)であり、次の式を有する:   BCP serves as an electron transport layer and an exciton blocking layer, which layer has a thickness of about 10 nm (100 °). BCP is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (also called bathocuproine) and has the following formula:

電子注入/電子輸送層としての機能を果たすAlqは、次の式を有する: Alq 3 acting as an electron injection / electron transport layer has the following formula:

一般に、ドーピング量は最適ドーピング量を達成するように変化させる。   Generally, doping is varied to achieve optimal doping.

V.B.2.燐光性錯体への蛍光性配位子の配合
上で述べたように、蛍光材料はデバイス中の発光体として或る利点を有する。LMX(例えば、M=Ir)錯体を製造するのに用いられるL配位子が大きな蛍光量子効率を有するならば、配位子の三重項状態を出入りする項間交差を効率的に行わせるため、Ir金属の強いスピン軌道結合を用いることができる。この概念は、IrがL配位子を効果的な燐光中心にすると言うことにある。この方法を用いて、どのような蛍光染料を用いても、それから効果的な燐光分子を作ることができる(即ち、Lは蛍光を発するが、LMX(M=Ir)は燐光を発する)。
V. B. 2. Incorporation of Fluorescent Ligands into Phosphorescent Complexes As noted above, fluorescent materials have certain advantages as emitters in devices. If the L ligand used to make the L 2 MX (eg, M = Ir) complex has a high fluorescence quantum efficiency, efficient intersystem crossing in and out of the triplet state of the ligand is achieved. Therefore, strong spin-orbit coupling of Ir metal can be used. The concept is that Ir makes the L ligand an effective phosphorescent center. Using this method, any fluorescent dye can be used to make an effective phosphorescent molecule therefrom (ie, L fluoresces, but L 2 MX (M = Ir) fluoresces). .

一例として、L=クマリン及びX=acacである場合のLIrXを製造した。これをクマリン−6(C6Ir)として言及する。この錯体は強い橙色の発光を与えるのに対し、クマリン自身は緑色に発光する。クマリンとC6Irの両方のスペクトルが図に与えられている。 As an example, L 2 IrX where L = coumarin and X = acac was produced. This is referred to as coumarin-6 (C6Ir). This complex gives intense orange emission, while coumarin itself emits green light. The spectra for both coumarin and C6Ir are given in the figure.

他の蛍光染料も同様なスペクトルの移行を示すと予想されるであろう。色素レーザー及び他の用途のために開発された蛍光染料の数は極めて多いので、この方法は極めて広範な燐光材料をもたらすものと予想される。   Other fluorescent dyes would be expected to show similar spectral shifts. Since the number of fluorescent dyes developed for dye lasers and other applications is very large, this method is expected to result in a very wide range of phosphorescent materials.

5又は6員環メタロサイクルを形成させるためには、金属(例えば、イリジウム)によりメタレート化することができるように、適当な官能基を有する蛍光染料を必要とする。今日まで我々が研究したL配位子は、全て配位子にsp混成軌道炭素及び複素環N原子を有し、従って、Irと反応させて5員環を形成することができる。 In order to form a 5- or 6-membered metallocycle, a fluorescent dye having an appropriate functional group is required so that it can be metallated with a metal (for example, iridium). The L ligands we have studied to date all have sp 2 hybridized orbital carbon and heterocyclic N atoms in the ligand, and thus can react with Ir to form a 5-membered ring.

V.B.3.X又はL配位子でのキャリヤートラップ
ホール又は電子を含めた潜在的な劣化反応が発光層で起きることがある。得られる酸化又は還元は発光体を変え、性能を劣化させる。
V. B. 3. Potential degradation reactions, including carrier trap holes or electrons at the X or L ligand, may occur in the emissive layer. The resulting oxidation or reduction alters the phosphor and degrades performance.

燐光体ドープOLEDの最大効率を得るためには、望ましくない酸化又は還元反応を生ずるホール又は電子を制御することが重要である。これを行う一つの方法は、燐光性ドーパントの所でキャリヤー(ホール又は電子)をトラップすることである。燐光に関係する原子又は配位子から遠い位置にあるキャリヤーをトラップすることが有利である。このように遠くでトラップされるキャリヤーは、分子間的に反対キャリヤーと、又は隣接する分子からのキャリヤーと容易に再結合するであろう。   In order to obtain the maximum efficiency of a phosphor-doped OLED, it is important to control the holes or electrons that cause unwanted oxidation or reduction reactions. One way to do this is to trap carriers (holes or electrons) at the phosphorescent dopant. It is advantageous to trap carriers that are far from the atoms or ligands involved in the phosphorescence. Carriers thus trapped at a distance will readily recombine with intermolecularly opposite carriers or with carriers from neighboring molecules.

ホールをトラップするように設計した燐光体の例を図6に示す。サリチルアニリド基のジアリールアミン基は、Ir錯体のものよりも200〜300mV高いHOMOレベル(電気化学的測定に基づく)を有すると予想され、排他的にアミン基の所でホールがトラップされるようになる。ホールはアミンの所で容易にトラップされるが、この分子からの発光はMLCTから来て、Ir(フェニルピリジン)系からの配位子間遷移から来るであろう。この分子にトラップされた電子はピリジル配位子の一つの中にある場合が最も多いと思われる。分子間再結合は殆どIr(フェニルピリジン)系中での励起子の形成をもたらすであろう。トラップ部位は、ルミネッセンス過程では広範には含まれていないのが典型的なX配位子の上にあるので、トラップ部位の存在は錯体の発光エネルギーに大きな影響を与えることはないであろう。LIr系に対し遠い所で電子キャリヤーがトラップされる関連分子を設計することができる。 An example of a phosphor designed to trap holes is shown in FIG. The diarylamine group of the salicylanilide group is expected to have a HOMO level (based on electrochemical measurements) of 200-300 mV higher than that of the Ir complex, so that holes are trapped exclusively at the amine group. Become. Although the holes are easily trapped at the amine, the emission from this molecule will come from the MLCT and from the interligand transition from the Ir (phenylpyridine) system. Electrons trapped in this molecule are most likely to be in one of the pyridyl ligands. Intermolecular recombination will most likely result in exciton formation in the Ir (phenylpyridine) system. Since the trapping site is above the typical X ligand, which is not extensively involved in the luminescence process, the presence of the trapping site will not significantly affect the emission energy of the complex. Related molecules can be designed in which electron carriers are trapped far away from the L 2 Ir system.

V.B.4.色の調節
IrL系で見られるように、発光色はL配位子により大きな影響を受ける。このことは、MLCT又は配位子間遷移を含めた発光と一致している。我々がトリス錯体(即ち、IrL)及びLIrX錯体の両方を製造することができた場合の全てにおいて、発光スペクトルは非常に似ていた。例えば、Ir(ppy)及び(ppy)Ir(acac)〔アクロニム(acronym)=PPIr〕は、510nmのλmaxを有する強い緑色発光を与える。同様な傾向は、Ir(BQ) 及びIr(thpy)を、それらのLIr(acac)誘導体と比較した時にも見られ、即ち、或る場合には二つの錯体の間で発光の大きなずれはない。
V. B. 4. As seen in the color adjustment IrL 3 system, the emission color is strongly affected by the L ligand. This is consistent with luminescence including MLCT or interligand transitions. The emission spectra were very similar in all cases where we were able to produce both the Tris complex (ie, IrL 3 ) and the L 2 IrX complex. For example, Ir (ppy) 3 and (ppy) 2 Ir (acac) [acronym = PPIr] give an intense green emission with a λ max of 510 nm. A similar trend is seen when comparing Ir (BQ) 3 and Ir (thpy) 3 with their L 2 Ir (acac) derivatives, ie, in some cases the emission of light between the two complexes. There is no big gap.

しかし、別の場合には、X配位子の選択が発光のエネルギー及び効率の両方に影響を与える。acac及びサリチルアニリドLIrX錯体は非常に類似したスペクトルを与える。今までの所我々が製造したピコリン酸誘導体は、同じ配位子のacac及びサリチルアニリド錯体に対し、それらの発光スペクトルで僅かな青色シフト(15nm)を示している。このことはBTIr、BTIrsd、及びBTIrpicのスペクトルで見ることができる。これら三つの錯体の全てにおいて、我々は発光がMLCT及び相互L遷移から主に生じ、ピコリン酸配位子は金属軌道のエネルギーを変え、それによりMLCT帯に影響を与えるものと予想している。 However, in other cases, the choice of the X ligand affects both the energy and efficiency of the emission. The acac and salicylanilide L 2 IrX complexes give very similar spectra. So far, the picolinic acid derivatives we have produced show a slight blue shift (15 nm) in their emission spectra for acac and salicylanilide complexes of the same ligand. This can be seen in the spectra of BTIr, BTIrsd, and BTIrpic. In all three of these complexes, we expect that the emission mainly comes from the MLCT and the reciprocal L transition, and that the picolinic acid ligand changes the energy of the metal orbitals, thereby affecting the MLCT band.

もし三重項レベルが「LIr」骨格よりもエネルギーが低く落ちたX配位子を用いるならば、そのX配位子からの発光を観察することができる。これは、BTIrQ錯体の場合である。この錯体では、発光強度は非常に弱く、650nmの所に中心がある。このことは全く思いがけないことである。なぜなら、BT配位子に基づく系の発光は全てほぼ550nmの所にあるからである。この場合の発光は殆ど完全にQ系遷移からのものである。重金属キノレート(例えば、IrQ又はPtQ)についての蛍光スペクトルは650nmの所に中心がある。錯体自身は非常に低い効率、<0.01で発光する。LIrQ材料のエネルギー及び効率の両方は、「X」に基づく発光と一致している。もしX配位子又は「IrX」系からの発光が効率的であるならば、これは良好な赤色発光体になったであろう。ここに列挙した例の全てが強い「L」発光体であるが、これは「X」に基づく発光から形成されている良好な燐光体を除外するものではないことに注意することは重要である。 If an X ligand is used whose triplet level is lower in energy than the “L 2 Ir” skeleton, emission from the X ligand can be observed. This is the case for the BTIrQ complex. In this complex, the emission intensity is very weak, centered at 650 nm. This is completely unexpected. This is because the emission of the system based on the BT ligand is all at approximately 550 nm. Light emission in this case is almost completely from Q-system transition. The fluorescence spectrum for heavy metal quinolates (eg, IrQ 3 or PtQ 2 ) is centered at 650 nm. The complex itself emits light with very low efficiency, <0.01. Both energy and efficiency of the L 2 IRQ materials are consistent with emission based on the "X". If the emission from the X ligand or “IrX” system was efficient, this would have been a good red emitter. It is important to note that although all of the examples listed here are strong "L" emitters, this does not preclude good phosphors being formed from "X" based emissions. .

X配位子の選択が悪くても、LIrX錯体からの発光をひどくクエンチすることがある。ヘキサフルオロ−acac及びジフェニル−acacの両方の錯体は、LIrX錯体のX配位子として用いた場合、非常に弱い発光を与えるか、又は発光を全く示さない。これらの配位子が発光をそのように強くクエンチする理由は完全には明らかになっていないが、これらの配位子の一つはacacよりも一層電子を引き付け、他のものは一層電子を与える。BQIrFAのスペクトルを図に示している。この錯体の発光スペクトルは、ヘキサフルオロacac配位子の遥かに強い電子吸引性から予測されるように、BQIrから僅かにシフトしている。BQIrFAからの発光強度は、BQIrよりも少なくとも2桁弱い。このひどいクエンチ問題のため、これらの配位子の錯体は研究しなかった。 Poor selection of the X ligand can severely quench the emission from the L 2 IrX complex. Both complexes hexafluoro -acac and diphenyl -acac, when used as X ligands L 2 IrX complex, or give a very weak emission, or show no emission. It is not completely clear why these ligands quench emission so strongly, but one of these ligands attracts more electrons than acac and the other attracts more electrons. give. The spectrum of BQIrFA is shown in the figure. The emission spectrum of this complex is slightly shifted from BQIr, as expected from the much stronger electron withdrawing of the hexafluoroacac ligand. The emission intensity from BQIrFA is at least two orders of magnitude lower than BQIr. Due to this severe quench problem, complexes of these ligands were not studied.

V.C.他の分子についての記述
ここに記載したデバイスではCBPを用いた。本発明は、OLEDのホール輸送層として働かせるための、当業者に既知の他のホール輸送分子を用いても有効である。
V. C. Description of Other Molecules CBP was used in the device described here. The present invention is also effective with other hole transport molecules known to those skilled in the art to serve as the hole transport layer of the OLED.

特に本発明は、カルバゾール官能基、又は同様なアリールアミン官能基を有する他の分子を用いても有効である。   In particular, the invention is also effective with other molecules having a carbazole function or a similar arylamine function.

V.D.デバイスの使用
本発明のOLEDは、OLEDを有する実質的にどのような型の装置にでも用いることができ、例えば、大画面ディスプレイ、乗り物、コンピュータ、テレビ、プリンター、大面積壁、劇場又はスタジアムのスクリーン、掲示板、又は標識に組み込まれるOLEDに用いることができる。
V. D. Use of the Device The OLEDs of the present invention can be used in virtually any type of device having an OLED, such as a large screen display, a vehicle, a computer, a television, a printer, a large area wall, a theater or a stadium. It can be used for OLEDs incorporated into screens, bulletin boards, or signs.

ここに記載した本発明は、次の係属中の出願と共に用いてもよい:「高信頼性、高効率、集積可能有機発光デバイス及びその製造方法」(High Reliability, High Efficiency, Integratable Organic Light Emitting Devices and Methods of Producing Same)、米国特許出願Serial No.08/774,119(1996年12月23日出願);「多色発光ダイオードのための新規な材料」(Movel Materials for Multicolor Light Emitting Devices)、Serial No.08/850,264(1997年5月2日出願);「有機遊離ラジカルに基づく電子移動及び発光層」(Electron Transporting and Light Emitting Layers Based on Organic Free Raicals)、Serial No.08/774,120(1996年12月23日出願)(1998年9月22日、米国特許第5,811,833号として公告された);「多色表示デバイス」(Multicolor Display Devices)、Serial No.08/772,333(1996年12月23日出願);「赤色発光有機発光デバイス(OLED)」(Red-Emitting Organic Light Emitting Devices (OLED's))、Serial No.08/774,087(1996年12月23日出願)(認可された);「積層有機発光デバイスのための駆動回路」(Driving Circuit For Stacked Organic Light Emitting Devices)、Serial No.08/792,050(1997年2月3日出願)(1998年5月26日、米国特許第5,757,139号として公告された);「高効率有機発光デバイス構造体」(High Efficiency Organic Light Emitting Device Structures)、Serial No.08/772,332(1996年12月23日出願)(1998年11月10日、米国特許第5,834,893号として公告された);「真空蒸着非重合体可撓性有機発光デバイス」(Vacuum Deposited, Non-Polymeric Flexible Organic Light Emitting Devices)、Serial No.08/789,319(1997年1月23日出願)(1998年12月1日、米国特許第5,844,363号として公告された);「メサピクセル構造を有する表示器」(Displays Having Mesa Pixel Configuration)、Serial No.08/794,595(1997年2月3日出願);「積層有機発光デバイス」(Stacked Organic Light Emitting Devices)、Serial No.08/792,046(1997年2月3日出願)(1999年6月29日、米国特許第5,917,280号として公告された);「高コントラスト透明有機発光デバイス」(High Contrast Transparent Organic Light Emitting Devices)、Serial No.08/792,046(1997年2月3日出願);「高コントラスト透明有機発光デバイスディスプレイ」(High Contrast Transparent Organic Light Emitting Device Display)、Serial No.08/821,380(1997年3月20日出願);「ホスト材料として5−ヒドロキシ−キノキサリンの金属錯体を含有する有機発光デバイス」(Organic Light Emitting Devices Containing A Metal Complex of 5-Hydroxy-Quinoxaline as A Host Material)、Serial No.08/838,099(1997年4月15日出願)(1999年1月19日、米国特許第5,861,219号として公告された);「高輝度を有する発光デバイス」(Light Emitting Devices Having High Brightness)、Serial No.08/844,353(1997年4月18日出願);「有機半導体レーザー」(Organic Semiconductor Laser)、Serial No.08/859,468(1997年5月19日出願);「飽和天然色積層有機発光デバイス」(Saturated Full Color Stacked Organic Light Emitting Devices)、Serial No.08/858,994(1997年5月20日出願)(1999年8月3日、米国特許第5,932,895号として公告された);「伝導性層のプラズマ処理」(Plasma Treatment of Conductive Layers)、PCT/US97/10252(1997年6月12日出願);「多色発光ダイオードのための新規な材料」(Novel Materials for Multicolor Light Emitting Diodes)、Serial No.08/814,976(1997年3月11日出願);「多色発光ダイオードのための新規な材料」(Novel Materials for Multicolor Light Emitting Diodes)、Serial No.08/771,815(1996年12月23日出願);「有機多色表示デバイスを製造するための薄膜パターン化」(Patterning of Thin Films for the Fabrication of Organic Multi-color Displays)、PCT/US97/10289(1997年6月12日出願);及び「二重ヘテロ構造赤外及び垂直空洞表面発光有機レーザー」(Double Heterostructure Infrared and Vertical Cavity Surface Emitting Organic Lasers)、1998年5月8日出願、PCT/US98/09480;1998年3月23日公告、米国特許第5,874,803;1998年1月13日公告、米国特許第5,707,745;1997年12月30日公告、米国特許第5,703,436;及び1998年5月26日公告、米国特許第5,757,026。各係属中の出願は、参考のため全体を本明細書に援用する。   The invention described herein may be used in conjunction with the following pending application: "High Reliability, High Efficiency, Integratable Organic Light Emitting Devices and Methods for Fabricating Same". and Methods of Producing Same), U.S. Patent Application Serial No. 08 / 774,119 (filed on December 23, 1996); "Movel Materials for Multicolor Light Emitting Devices", Serial No. 08 / 850,264 (filed on May 2, 1997); "Electron Transporting and Light Emitting Layers Based on Organic Free Raicals", Serial No. 08 / 774,120 (filed December 23, 1996) (published September 22, 1998 as US Pat. No. 5,811,833); "Multicolor Display Devices", Serial No. 08 / 772,333 (filed on December 23, 1996); "Red-Emitting Organic Light Emitting Devices (OLED's)", Serial No. 08 / 774,087 (filed December 23, 1996) (approved); "Driving Circuit For Stacked Organic Light Emitting Devices", Serial No. 08 / 792,050 (filed February 3, 1997) (published May 26, 1998 as U.S. Pat. No. 5,757,139); "High Efficiency Organic Light Emitting Device Structure" Light Emitting Device Structures), Serial No. 08 / 772,332 (filed December 23, 1996) (published November 10, 1998 as U.S. Pat. No. 5,834,893); "Vacuum deposited non-polymer flexible organic light emitting devices" (Vacuum Deposited, Non-Polymeric Flexible Organic Light Emitting Devices), Serial No. 08 / 789,319 (filed January 23, 1997) (published December 1, 1998 as U.S. Pat. No. 5,844,363); "Displays Having Mesa Pixel Structure" (Displays Having Mesa Pixel). Configuration), Serial No. 08 / 794,595 (filed on Feb. 3, 1997); "Stacked Organic Light Emitting Devices", Serial No. 08 / 792,046 (filed February 3, 1997) (published June 29, 1999 as U.S. Patent No. 5,917,280); "High Contrast Transparent Organic Light Emitting Device". Light Emitting Devices), Serial No. 08 / 792,046 (filed on Feb. 3, 1997); "High Contrast Transparent Organic Light Emitting Device Display", Serial No. 08 / 821,380 (filed on March 20, 1997); "Organic Light Emitting Devices Containing A Metal Complex of 5-Hydroxy-Quinoxaline as" A Host Material), Serial No. 08 / 838,099 (filed on April 15, 1997) (published Jan. 19, 1999 as U.S. Pat. No. 5,861,219); "Light Emitting Devices Having" High Brightness), Serial No. 08 / 844,353 (filed on April 18, 1997); "Organic Semiconductor Laser", Serial No. 08 / 859,468 (filed on May 19, 1997); "Saturated Full Color Stacked Organic Light Emitting Devices", Serial No. 08 / 858,994 (filed May 20, 1997) (published August 3, 1999 as U.S. Patent No. 5,932,895); "Plasma Treatment of Conductive". Layers), PCT / US97 / 10252 (filed on June 12, 1997); "Novel Materials for Multicolor Light Emitting Diodes", Serial No. 08 / 814,976 (filed on Mar. 11, 1997); "Novel Materials for Multicolor Light Emitting Diodes", Serial No. 08 / 771,815 (filed on December 23, 1996); "Patterning of Thin Films for the Fabrication of Organic Multi-color Displays", PCT / US97 / 10289 (filed June 12, 1997); and "Double Heterostructure Infrared and Vertical Cavity Surface Emitting Organic Lasers", filed May 8, 1998, PCT / US 98/09480; published March 23, 1998; U.S. Pat. No. 5,874,803; published January 13, 1998; U.S. Pat. No. 5,707,745; published December 30, 1997; U.S. Pat. , 703, 436; and published May 26, 1998, U.S. Patent No. 5,757,026. Each pending application is incorporated herein by reference in its entirety.

Claims (15)

電子輸送層、
ホール輸送層、及び
式LMX(式中、L及びXは、異なる二座配位子であり、Lはsp混成軌道炭素及び窒素原子によりMに配位しているモノアニオン性二座配位子であり、Mはイリジウムでありかつ八面体錯体を形成している)の分子及びホスト化合物を含有する発光層を含み、前記式L MXの分子が燐光体である、有機エレクトロルミネッセンスデバイス(但し、式LMXの分子が、式中のXがヘキサフルオロアセチルアセトネート及びジフェニルアセチルアセトネートからなる群から選択される分子である有機エレクトロルミネッセンスデバイスを除く)。
Electron transport layer,
A hole transport layer, and a formula L 2 MX, where L and X are different bidentate ligands, and L is a monoanionic bidentate coordinated to M by sp 2 hybrid orbital carbon and nitrogen atoms. a ligand, M is seen containing a light-emitting layer containing molecules and host compounds of forming a is and octahedral complex is iridium), molecules of the formula L 2 MX is phosphor, an organic electroluminescent luminescence device (however, the molecules of formula L 2 MX is, excluding the organic electroluminescent device is a molecule selected from the group X in the formula consists of hexafluoroacetylacetonate and diphenyl acetylacetonate).
励起子を実質的に発光層内に留めるための励起子ブロッキング層をさらに含み、前記ブロッキング層の禁止帯幅が、ホスト化合物の三重項と基底状態一重項とのエネルギー差よりも大きい、請求項1に記載の有機エレクトロルミネッセンスデバイス。 An exciton blocking layer for retaining excitons substantially in the light emitting layer, wherein a band gap of the blocking layer is larger than an energy difference between a triplet and a ground state singlet of the host compound. 2. The organic electroluminescent device according to 1. Lが、2−(1−ナフチル)ベンゾオキサゾール、(2−フェニルベンゾオキサゾール)、(2−フェニルベンゾチアゾール)、(2−フェニルベンゾチアゾール)、(7,8−ベンゾキノリン)、クマリン、(チエニルピリジン)、フェニルピリジン、ベンゾチエニルピリジン、3−メトキシ−2−フェニルピリジン、チエニルピリジン、及びトリルピリジンからなる群から選択されており、Xが、アセチルアセトネート(acac)、サリチリデン、ピコリネート、及び8−ヒドロキシキノリネートからなる群から選択されている、請求項1に記載のデバイス。 L is 2- (1-naphthyl) benzoxazole, (2-phenylbenzoxazole), (2-phenylbenzothiazole), (2-phenylbenzothiazole), (7,8-benzoquinoline), coumarin, (thienyl) Pyridine), phenylpyridine, benzothienylpyridine, 3-methoxy-2-phenylpyridine, thienylpyridine, and tolylpyridine, wherein X is acetylacetonate (acac), salicylidene, picolinate, and 8 The device of claim 1, wherein the device is selected from the group consisting of: hydroxyquinolinate. 励起子ブロッキング層のイオン化ポテンシャルが、ホスト化合物のイオン化ポテンシャルよりも大きい、請求項2に記載のデバイス。 3. The device of claim 2, wherein the ionization potential of the exciton blocking layer is greater than the ionization potential of the host compound. Mがイリジウムであり、Lが、2−(1−ナフチル)ベンゾオキサゾール、(2−フェニルベンゾオキサゾール)、(2−フェニルベンゾチアゾール)、(2−フェニルベンゾチアゾール)、(7,8−ベンゾキノリン)、クマリン、(チエニルピリジン)、フェニルピリジン、ベンゾチエニルピリジン、3−メトキシ−2−フェニルピリジン、チエニルピリジン、及びトリルピリジンからなる群から選択されており、Xが、アセチルアセトネート(acac)、サリチリデン、ピコリネート、及び8−ヒドロキシキノリネートからなる群から選択されている、請求項1に記載のデバイス。 M is iridium and L is 2- (1-naphthyl) benzoxazole, (2-phenylbenzoxazole), (2-phenylbenzothiazole), (2-phenylbenzothiazole), (7,8-benzoquinoline ), Coumarin, (thienylpyridine), phenylpyridine, benzothienylpyridine, 3-methoxy-2-phenylpyridine, thienylpyridine, and tolylpyridine, wherein X is acetylacetonate (acac), 2. The device of claim 1, wherein the device is selected from the group consisting of salicylidene, picolinate, and 8-hydroxyquinolinate. Lが蛍光体であり、LMXが燐光体である、請求項1に記載のデバイス。 The device of claim 1, wherein L is a phosphor and L 2 MX is a phosphor. 前記ホスト化合物の有機分子が、
(式中、芳香族環を通って引いた線分の記号は、前記環中のどの炭素の所でも、場合により、アルキル又はアリールにより置換されていてもよいことを意味する)
からなる群から選択されている、請求項2に記載のデバイス。
The organic molecule of the host compound,
(Wherein the symbol of the line drawn through the aromatic ring means that any carbon in the ring may be optionally substituted by alkyl or aryl)
3. The device of claim 2, wherein the device is selected from the group consisting of:
MXとLMとの間のλmaxに少なくとも15nmの差が存在するようにXが選択されており、L Mはホモレプティックイリジウム錯体であり、Lは前記L MXのLと同じ配位子であり、Mはイリジウムである、請求項1に記載のデバイス。 X has been selected such that there is at least a 15 nm difference in λ max between L 2 MX and L 3 M , L 3 M is a homoleptic iridium complex, and L is the L of said L 2 MX. The device of claim 1 , wherein M is iridium . MXが、LM(μ−Cl)MLから作られる、請求項1に記載のデバイス。 L 2 MX is made of L 2 M (μ-Cl) 2 ML 2, device of claim 1. 大型ディスプレイ、乗り物、コンピュータ、テレビ、プリンター、大画面壁、劇場又はスタジアムのスクリーン、掲示板、又は標識に組み込まれた、請求項1に記載のデバイス。 The device of claim 1, incorporated in a large display, a vehicle, a computer, a television, a printer, a large screen wall, a theater or stadium screen, a billboard, or a sign. MX(式中、Lはsp 混成軌道炭素及び窒素原子によりMに配位したモノアニオン性二座配位子であり、Mはイリジウムでありかつ八面体錯体を形成している分子を含有する発光層を有し、前記式L MXの分子が燐光体である、有機発光デバイス(但し、式LMXの分子が、式中のXがヘキサフルオロアセチルアセトネート及びジフェニルアセチルアセトネートからなる群から選択される分子である有機発光デバイスを除く)。 Wherein L 2 MX (wherein, L is monoanionic bidentate ligand coordinated to M by sp 2 hybridized carbon and nitrogen atoms, M forms a is and octahedral complex is iridium) have a light emitting layer containing the molecules, the molecules of the formula L 2 MX is phosphor, an organic light emitting device (however, the molecules of formula L 2 MX is, X in the formula is hexafluoroacetylacetonate and diphenyl Excluding organic light-emitting devices that are molecules selected from the group consisting of acetylacetonates). 式LM(μ−Cl)MLの架橋二量体と、ブレンステッド酸XHとを一緒にして式LMX(Mは八面体錯体を形成する金属であり、L及びXはモノアニオン性二座配位子である)で表される有機金属錯体を形成する工程を有する、請求項1において規定する有機エレクトロニクスデバイスに用いるための式LMXで表される有機金属錯体の製造方法。 A crosslinked dimer of formula L 2 M (μ-Cl) 2 ML 2, wherein L 2 MX (M were combined and Bronsted acid XH is a metal that forms octahedral complexes, L and X are mono- a step of forming an organic metal complex represented by an anionic bidentate ligand), preparation of the organometallic complex represented by the formula L 2 MX for use in organic electronic devices, as defined according to claim 1 Method. Lが以下のものからなる群から選択される、請求項1に記載のデバイス。
The device of claim 1, wherein L is selected from the group consisting of:
Lが置換又は非置換のフェニルピリジンである、請求項1に記載のデバイス。 2. The device of claim 1, wherein L is a substituted or unsubstituted phenylpyridine. MXの分子が1〜3マイクロ秒の発光寿命を有する、請求項1に記載のデバイス。 Molecules of formula L 2 MX has an emission lifetime of 1-3 microseconds, the device according to claim 1.
JP2018034710A 1999-12-01 2018-02-28 L2MX-type complexes as phosphorescent dopants for organic LEDs Expired - Lifetime JP6639544B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45234699A 1999-12-01 1999-12-01
US09/452,346 1999-12-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016005986A Division JP2016129232A (en) 1999-12-01 2016-01-15 Complex of l2mx type as phosphorescent dopant for organic led

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018064167A Division JP6639546B2 (en) 1999-12-01 2018-03-29 L2MX-type complexes as phosphorescent dopants for organic LEDs

Publications (2)

Publication Number Publication Date
JP2018093223A JP2018093223A (en) 2018-06-14
JP6639544B2 true JP6639544B2 (en) 2020-02-05

Family

ID=23796118

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2001541304A Expired - Lifetime JP4357781B2 (en) 1999-12-01 2000-11-29 Complexes of formula L2MX as phosphorescent dopants for organic LEDs
JP2005241794A Expired - Lifetime JP4358168B2 (en) 1999-12-01 2005-08-23 Complexes of formula L2MX as phosphorescent dopants for organic LEDs
JP2009140434A Withdrawn JP2009224795A (en) 1999-12-01 2009-06-11 Complex of formula ll'mx, ll'l''m, lmxx' and l3m as phosphorescent dopant for organic led
JP2009252135A Expired - Lifetime JP5791869B2 (en) 1999-12-01 2009-11-02 Complexes of formula LL'MX, LL'L "M, LMXX ', and L3M as phosphorescent dopants for organic LEDs
JP2012216045A Expired - Lifetime JP5642753B2 (en) 1999-12-01 2012-09-28 L2MX-type complexes as phosphorescent dopants for organic LEDs
JP2014124151A Expired - Lifetime JP6117146B2 (en) 1999-12-01 2014-06-17 L2MX-type complexes as phosphorescent dopants for organic LEDs
JP2016005986A Withdrawn JP2016129232A (en) 1999-12-01 2016-01-15 Complex of l2mx type as phosphorescent dopant for organic led
JP2018034710A Expired - Lifetime JP6639544B2 (en) 1999-12-01 2018-02-28 L2MX-type complexes as phosphorescent dopants for organic LEDs
JP2018064167A Expired - Lifetime JP6639546B2 (en) 1999-12-01 2018-03-29 L2MX-type complexes as phosphorescent dopants for organic LEDs

Family Applications Before (7)

Application Number Title Priority Date Filing Date
JP2001541304A Expired - Lifetime JP4357781B2 (en) 1999-12-01 2000-11-29 Complexes of formula L2MX as phosphorescent dopants for organic LEDs
JP2005241794A Expired - Lifetime JP4358168B2 (en) 1999-12-01 2005-08-23 Complexes of formula L2MX as phosphorescent dopants for organic LEDs
JP2009140434A Withdrawn JP2009224795A (en) 1999-12-01 2009-06-11 Complex of formula ll'mx, ll'l''m, lmxx' and l3m as phosphorescent dopant for organic led
JP2009252135A Expired - Lifetime JP5791869B2 (en) 1999-12-01 2009-11-02 Complexes of formula LL'MX, LL'L "M, LMXX ', and L3M as phosphorescent dopants for organic LEDs
JP2012216045A Expired - Lifetime JP5642753B2 (en) 1999-12-01 2012-09-28 L2MX-type complexes as phosphorescent dopants for organic LEDs
JP2014124151A Expired - Lifetime JP6117146B2 (en) 1999-12-01 2014-06-17 L2MX-type complexes as phosphorescent dopants for organic LEDs
JP2016005986A Withdrawn JP2016129232A (en) 1999-12-01 2016-01-15 Complex of l2mx type as phosphorescent dopant for organic led

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018064167A Expired - Lifetime JP6639546B2 (en) 1999-12-01 2018-03-29 L2MX-type complexes as phosphorescent dopants for organic LEDs

Country Status (9)

Country Link
EP (6) EP1252803B2 (en)
JP (9) JP4357781B2 (en)
KR (5) KR100937470B1 (en)
CN (2) CN1840607B (en)
AT (2) ATE484852T1 (en)
AU (1) AU1807201A (en)
DE (1) DE60045110D1 (en)
TW (2) TWI300092B (en)
WO (1) WO2001041512A1 (en)

Families Citing this family (834)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20221915U1 (en) * 1977-06-01 2009-06-04 Idemitsu Kosan Co. Ltd. Organic electroluminescent device
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
AU5004700A (en) 1999-05-13 2000-12-05 Trustees Of Princeton University, The Very high efficiency organic light emitting devices based on electrophosphorescence
CN1840607B (en) * 1999-12-01 2010-06-09 普林斯顿大学理事会 Complexes of form l2mx as phosphorescent dopants for organic LEDs
US6821645B2 (en) 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP4701191B2 (en) * 1999-12-27 2011-06-15 富士フイルム株式会社 Light emitting device material, light emitting device and novel iridium complex comprising orthometalated iridium complex
JP2011084746A (en) * 1999-12-27 2011-04-28 Fujifilm Corp Light-emitting material comprising orthometalated iridium complex, light-emitting device, and novel iridium complex
JP3929689B2 (en) * 2000-03-28 2007-06-13 富士フイルム株式会社 Highly efficient red light emitting device, light emitting device material comprising iridium complex and novel iridium complex
US7132681B2 (en) 2000-06-30 2006-11-07 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US7276726B2 (en) 2000-06-30 2007-10-02 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US7476452B2 (en) 2000-06-30 2009-01-13 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds
US7306856B2 (en) 2000-07-17 2007-12-11 Fujifilm Corporation Light-emitting element and iridium complex
DE60143106D1 (en) 2000-07-17 2010-11-04 Fujifilm Corp Light-emitting element and azole compound
CN101924190B (en) * 2000-08-11 2012-07-04 普林斯顿大学理事会 Organometallic compounds and emission-shifting organic electrophosphorescence
JP4460743B2 (en) * 2000-09-29 2010-05-12 富士フイルム株式会社 Method for producing iridium complex or tautomer thereof
JP4006335B2 (en) * 2000-11-30 2007-11-14 キヤノン株式会社 Light emitting element and display device
KR100798562B1 (en) 2000-11-30 2008-01-31 캐논 가부시끼가이샤 Luminescent Element and Display
JP4154145B2 (en) * 2000-12-01 2008-09-24 キヤノン株式会社 Metal coordination compound, light emitting device and display device
SG138467A1 (en) 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
DE10104426A1 (en) * 2001-02-01 2002-08-08 Covion Organic Semiconductors Process for the production of high-purity, tris-ortho-metallated organo-iridium compounds
KR100874290B1 (en) * 2001-02-14 2008-12-18 산요덴키가부시키가이샤 Organic Electroluminescent Devices, Luminescent Materials, and Organic Compounds
US7998595B2 (en) 2001-02-14 2011-08-16 Sanyo Electric Co., Ltd. Organic electroluminescent device, luminescent material and organic compound
JP4438042B2 (en) 2001-03-08 2010-03-24 キヤノン株式会社 Metal coordination compound, electroluminescent element and display device
CN1267525C (en) 2001-03-08 2006-08-02 香港大学 Light-emitting organic metal material
US7294849B2 (en) 2001-03-14 2007-11-13 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
SG92833A1 (en) 2001-03-27 2002-11-19 Sumitomo Chemical Co Polymeric light emitting substance and polymer light emitting device using the same
JP2002324679A (en) * 2001-04-26 2002-11-08 Honda Motor Co Ltd Organic electroluminescent element
EP1399002A4 (en) 2001-06-15 2007-11-21 Canon Kk Organic electroluminescnece device
JP2002373786A (en) * 2001-06-15 2002-12-26 Canon Inc Light-emitting device and display device
JP2003007467A (en) * 2001-06-19 2003-01-10 Honda Motor Co Ltd Organic electroluminescence element
AU2002345362A1 (en) 2001-06-20 2003-01-08 Showa Denko K.K. Light emitting material and organic light-emitting device
JP2003007469A (en) * 2001-06-25 2003-01-10 Canon Inc Light emitting element and display equipment
JP2003133075A (en) * 2001-07-25 2003-05-09 Toray Ind Inc Luminescent element
US7037598B2 (en) 2001-08-07 2006-05-02 Fuji Photo Film Co., Ltd. Light-emitting element and novel iridium complexes
JP4409942B2 (en) * 2001-08-29 2010-02-03 ザ トラスティーズ オブ プリンストン ユニバーシテイ Organic light-emitting device having a carrier transport layer containing a metal complex
JP3960765B2 (en) * 2001-09-03 2007-08-15 三洋電機株式会社 Luminescent material for light emitting device
JP2003092186A (en) * 2001-09-17 2003-03-28 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
JP4011325B2 (en) * 2001-10-31 2007-11-21 パイオニア株式会社 Organic electroluminescence device
US7320833B2 (en) 2001-11-07 2008-01-22 E.I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US7250512B2 (en) 2001-11-07 2007-07-31 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds having red-orange or red emission and devices made with such compounds
US6734457B2 (en) 2001-11-27 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP3841695B2 (en) * 2002-02-06 2006-11-01 富士写真フイルム株式会社 Organic EL element and organic EL display
US6989273B2 (en) 2002-02-08 2006-01-24 Canon Kabushiki Kaisha Light emissive iridium (III) complexes
US6919139B2 (en) 2002-02-14 2005-07-19 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds
JP2003253257A (en) * 2002-02-28 2003-09-10 Jsr Corp Phosphorescent luminescent agent, method for producing the same and luminescent composition
JPWO2003080761A1 (en) * 2002-03-25 2005-07-21 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
US7205366B2 (en) 2002-04-02 2007-04-17 E. I. Du Pont De Nemours And Company Hole transport polymers and devices made with such polymers
US7282275B2 (en) 2002-04-19 2007-10-16 3M Innovative Properties Company Materials for organic electronic devices
AU2003231528A1 (en) * 2002-04-26 2003-11-10 Nippon Hoso Kyokai Phosphorescent polymer compound, light emitting material and organic electroluminescent (el) device using the compound
DE10224617A1 (en) * 2002-06-04 2003-12-24 Starck H C Gmbh Conjugated phosphorescent and luminescent polymers containing covalently-bonded metal complexes, useful as emitters in light-emitting systems such as diodes and displays
US7416791B1 (en) 2002-06-11 2008-08-26 University Of Washington Osmium complexes and related organic light-emitting devices
US7090929B2 (en) 2002-07-30 2006-08-15 E.I. Du Pont De Nemours And Company Metallic complexes covalently bound to conjugated polymers and electronic devices containing such compositions
EP1394171A1 (en) * 2002-08-09 2004-03-03 Bayer Aktiengesellschaft Multinuclear metal complexes as Phosphorescence emitter in electroluminescent layered structure
US6963005B2 (en) 2002-08-15 2005-11-08 E. I. Du Pont De Nemours And Company Compounds comprising phosphorus-containing metal complexes
US7303826B2 (en) 2002-08-29 2007-12-04 Fujifilm Corporation Light emitting element and iridium complex
ATE404609T1 (en) 2002-09-24 2008-08-15 Du Pont WATER DISPERSIBLE POLYTHIOPHENES PRODUCED USING COLLOIDS BASED ON POLYMERIC ACIDS
US7317047B2 (en) 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
CA2500304A1 (en) 2002-09-24 2004-04-08 E. I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
AU2003279014A1 (en) 2002-09-24 2004-04-19 E.I. Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US7371336B2 (en) 2002-09-24 2008-05-13 E.I. Du Pont Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US7094902B2 (en) 2002-09-25 2006-08-22 3M Innovative Properties Company Electroactive polymers
WO2004048395A1 (en) * 2002-11-26 2004-06-10 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent compound and electroluminescent element including the same
CN100468813C (en) * 2002-12-13 2009-03-11 皇家飞利浦电子股份有限公司 Organic electroluminescent component with triplet emitter complex
US7338820B2 (en) 2002-12-19 2008-03-04 3M Innovative Properties Company Laser patterning of encapsulated organic light emitting diodes
US7816016B1 (en) 2003-02-13 2010-10-19 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds and devices made therefrom
JP4158562B2 (en) 2003-03-12 2008-10-01 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
EP2241570B1 (en) * 2003-03-24 2014-08-13 University Of Southern California Biphenyl- and fluorenyl-pyrazole derivatives and iridium complexes thereof
US7192657B2 (en) 2003-04-15 2007-03-20 3M Innovative Properties Company Ethynyl containing electron transport dyes and compositions
US7271406B2 (en) 2003-04-15 2007-09-18 3M Innovative Properties Company Electron transport agents for organic electronic devices
JP5318347B2 (en) 2003-04-15 2013-10-16 メルク パテント ゲーエムベーハー Mixture of matrix material and organic semiconductor capable of emitting light, use thereof, and electronic component comprising said mixture
WO2004094389A1 (en) * 2003-04-18 2004-11-04 Semiconductor Energy Laboratory Co. Ltd. Quinoxaline derivatives, and organic semiconductor devices, electroluminescent devices and electronic appliances, made by using the derivatives
US7390438B2 (en) 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
JP2004327634A (en) 2003-04-23 2004-11-18 Semiconductor Energy Lab Co Ltd Laser oscillator
DE10320103A1 (en) * 2003-05-05 2004-12-02 Basf Ag Process for the preparation of phenylpyridine metal complexes and use of such complexes in OLEDs
WO2004104136A1 (en) * 2003-05-22 2004-12-02 Mitsubishi Chemical Corporation Light-emitting device and phosphor
JP2004355899A (en) * 2003-05-28 2004-12-16 Konica Minolta Holdings Inc Organic electroluminescent element, illumination device, and display device
JP4203732B2 (en) * 2003-06-12 2009-01-07 ソニー株式会社 Organic electroluminescent material, organic electroluminescent element, and heterocyclic iridium complex compound
WO2005003253A2 (en) 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mixtures of organic emissive semiconductors and matrix materials, their use and electronic components comprising said materials
US7667228B2 (en) * 2003-07-22 2010-02-23 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescent device using same
WO2005009979A1 (en) 2003-07-28 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and luminescent element comprising the same
GB2421242B (en) 2003-08-04 2008-01-02 Sumitomo Chemical Co Aromatic monomer-and conjugated polymer-metal complexes
KR100696461B1 (en) * 2003-08-07 2007-03-19 삼성에스디아이 주식회사 Iridium compound and organic electroluminescence device employing the same
JP4198654B2 (en) 2003-08-07 2008-12-17 三星エスディアイ株式会社 Iridium compound and organic electroluminescence device employing the same
DE10338550A1 (en) 2003-08-19 2005-03-31 Basf Ag Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs)
US7198730B2 (en) 2003-08-28 2007-04-03 E. I. Du Pont De Nemours And Company Phosphorescent material
EP1665897B1 (en) 2003-09-24 2011-11-23 FUJIFILM Corporation Electroluminescent device
KR100683659B1 (en) * 2003-10-25 2007-02-20 삼성에스디아이 주식회사 Carbazole ring containing compound and organic electroluminescence display device
DE10350606A1 (en) 2003-10-30 2005-06-09 Covion Organic Semiconductors Gmbh Process for the preparation of heteroleptic, ortho-metallated organometallic compounds
DE602004008104T2 (en) * 2003-11-18 2008-04-24 Philips Intellectual Property & Standards Gmbh LIGHT-EMITTING DEVICE WITH IRIDIUM COMPLEX
US7880379B2 (en) 2003-11-25 2011-02-01 Merck Patent Gmbh Phosphorescent organic electroluminescent device having no hole transporting layer
KR100560790B1 (en) * 2003-11-25 2006-03-13 삼성에스디아이 주식회사 Electroluminescent display device having a good performance at high temperature
DE10356099A1 (en) 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh Organic electroluminescent element
CN100356197C (en) * 2003-12-02 2007-12-19 铼宝科技股份有限公司 Laser colour conversion microlens baseplate and its laser colour conversion microlens array
CN1890255B (en) 2003-12-02 2010-06-09 株式会社半导体能源研究所 Organic metal complex and light-emitting device using same
DE10357315A1 (en) 2003-12-05 2005-07-07 Covion Organic Semiconductors Gmbh Organic electroluminescent element
US7101631B2 (en) 2003-12-05 2006-09-05 Eastman Kodak Company Organic element for electroluminescent devices
CN1895004A (en) * 2003-12-15 2007-01-10 出光兴产株式会社 Material for organic electroluminescent element and organic electroluminescent element using same
DE10360681A1 (en) * 2003-12-19 2005-07-14 Basf Ag Use of Main Group Metal Diketonato Complexes as Luminescent Materials in Organic Light Emitting Diodes (OLEDs)
ATE504639T1 (en) * 2003-12-26 2011-04-15 Idemitsu Kosan Co MATERIAL FOR ORGANIC ELECTROLUMINESCENCE DEVICE AND ORGANIC ELECTROLUMINESCENCE DEVICE BASED THEREOF
US7011871B2 (en) * 2004-02-20 2006-03-14 E. I. Du Pont De Nemours And Company Charge transport compounds and electronic devices made with such compounds
US7365230B2 (en) 2004-02-20 2008-04-29 E.I. Du Pont De Nemours And Company Cross-linkable polymers and electronic devices made with such polymers
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
CN101002506B (en) 2004-03-31 2014-06-25 E.I.内穆尔杜邦公司 Triarylamine compounds for use as charge transport materials
KR100556421B1 (en) * 2004-04-09 2006-03-03 엘지전자 주식회사 organic electroluminescence device for blue phosphorescence
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
EP1749424B1 (en) 2004-05-20 2011-10-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US8294166B2 (en) 2006-12-11 2012-10-23 The Regents Of The University Of California Transparent light emitting diodes
US7316756B2 (en) 2004-07-27 2008-01-08 Eastman Kodak Company Desiccant for top-emitting OLED
US20060040139A1 (en) 2004-08-18 2006-02-23 Norman Herron Electronic devices made with metal Schiff base complexes
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
KR100787423B1 (en) * 2004-11-05 2007-12-26 삼성에스디아이 주식회사 Organic electroluminescence display
DE102004057072A1 (en) 2004-11-25 2006-06-01 Basf Ag Use of Transition Metal Carbene Complexes in Organic Light Emitting Diodes (OLEDs)
US7795429B2 (en) 2004-12-03 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the organometallic complex
US7771844B2 (en) 2004-12-03 2010-08-10 Semiconductor Energy Laboratory Co., Ltd Organic metal complex and photoelectronic device, light-emitting element and light-emitting device using the same
WO2006062144A1 (en) 2004-12-07 2006-06-15 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emittng device using the same
US20060125379A1 (en) * 2004-12-09 2006-06-15 Au Optronics Corporation Phosphorescent organic optoelectronic structure
US7504769B2 (en) 2004-12-16 2009-03-17 E. I. Du Pont De Nemours + Company Aromatic chalcogen compounds and their use
US8063230B1 (en) 2004-12-22 2011-11-22 E. I. Du Pont De Nemours And Company Tris(N-aryl benzimidazole)benzenes and their use in electronic devices
US7273939B1 (en) 2004-12-22 2007-09-25 E. I. Du Pont De Nemours And Company Methods of making tris(N-aryl benzimidazoles)benzenes and their use in electronic devices
US8950328B1 (en) 2004-12-29 2015-02-10 E I Du Pont De Nemours And Company Methods of fabricating organic electronic devices
US8063551B1 (en) 2004-12-29 2011-11-22 E.I. Du Pont De Nemours And Company Pixel intensity homogeneity in organic electronic devices
US7230107B1 (en) 2004-12-29 2007-06-12 E. I. Du Pont De Nemours And Company Metal quinoline complexes
US7838127B1 (en) 2004-12-29 2010-11-23 E. I. Du Pont De Nemours And Company Metal quinoline complexes
KR20070103402A (en) 2004-12-30 2007-10-23 이 아이 듀폰 디 네모아 앤드 캄파니 Containment structure and method
EP1836001A4 (en) 2004-12-30 2009-08-05 Du Pont Organic electronic devices and methods
US7759428B1 (en) 2004-12-30 2010-07-20 Dupont Displays, Inc. Conjugated heteroaryl-containing polymers
US8148885B2 (en) 2004-12-30 2012-04-03 E. I. Du Pont De Nemours And Company Methods of conditioning getter materials
KR20070097085A (en) 2004-12-30 2007-10-02 이 아이 듀폰 디 네모아 앤드 캄파니 Device patterning using irradiation
US7670506B1 (en) 2004-12-30 2010-03-02 E. I. Du Pont De Nemours And Company Photoactive compositions for liquid deposition
US7781588B1 (en) 2004-12-30 2010-08-24 E.I. Du Pont De Nemours And Company Acridan monomers and polymers
US7732062B1 (en) 2004-12-30 2010-06-08 E. I. Du Pont De Nemours And Company Charge transport layers and organic electron devices comprising same
US7563392B1 (en) 2004-12-30 2009-07-21 E.I. Du Pont De Nemours And Company Organic conductive compositions and structures
US7723546B1 (en) 2004-12-30 2010-05-25 E. I. Du Pont De Nemours And Company Arylamine compounds and their use in electronic devices
US7811624B1 (en) 2004-12-30 2010-10-12 Dupont Displays, Inc. Self-assembled layers for electronic devices
US7524923B1 (en) 2004-12-30 2009-04-28 Dupont Displays, Inc. Suzuki polycondensation for preparing aryl polymers from dihalide monomers
US7736540B1 (en) 2004-12-30 2010-06-15 E. I. Du Pont De Nemours And Company Organic compositions for depositing onto fluorinated surfaces
WO2006074062A2 (en) 2004-12-30 2006-07-13 E.I. Dupont De Nemours And Company Encapsulation tool and methods
EP1841773B1 (en) 2004-12-30 2012-06-27 E.I. Du Pont De Nemours And Company Derivatized 3,4-alkylenedioxythiophene monomers, methods of making them, and use thereof
US7781550B1 (en) 2004-12-30 2010-08-24 E. I. Du Pont De Nemours And Company Charge transport compositions and their use in electronic devices
US8217181B2 (en) 2004-12-30 2012-07-10 E. I. Du Pont De Nemours And Company Dihalogen indolocarbazole monomers and poly (indolocarbazoles)
US7781960B2 (en) 2005-01-07 2010-08-24 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescent element using the same
KR101256385B1 (en) 2005-02-23 2013-04-25 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electroluminescent device with iridium complex
US7554112B1 (en) 2005-03-10 2009-06-30 E. I. Du Pont De Nemours And Company Organic electronic device and processes for forming and using the same
CN100359712C (en) * 2005-05-11 2008-01-02 友达光电股份有限公司 Organic electroluminescent elements and producing method thereof, and two-dimensional display applying the same
WO2006132173A1 (en) 2005-06-07 2006-12-14 Nippon Steel Chemical Co., Ltd. Organic metal complex and organic electroluminescent device using same
GB2476003B (en) 2005-06-09 2011-09-14 Konica Minolta Holdings Inc Organic electroluminescent element, illuminator and display
US7638072B2 (en) 2005-06-27 2009-12-29 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007002682A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
US7722785B2 (en) 2005-06-27 2010-05-25 E.I. Du Pont De Nemours And Company Electrically conductive polymer compositions
US7727421B2 (en) 2005-06-27 2010-06-01 E. I. Du Pont De Nemours And Company Dupont Displays Inc Electrically conductive polymer compositions
WO2007002737A2 (en) 2005-06-28 2007-01-04 E. I. Du Pont De Nemours And Company High work function transparent conductors
WO2007002740A2 (en) 2005-06-28 2007-01-04 E. I. Du Pont De Nemours And Company Buffer compositions
US7652283B2 (en) 2005-08-09 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light emitting element and electronic appliance using the same
KR20140028143A (en) 2005-09-12 2014-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
WO2007032203A1 (en) 2005-09-12 2007-03-22 Nippon Steel Chemical Co., Ltd. Process for production of ortho-metallized 1:3 complex of iridium with homoligand
US8956738B2 (en) 2005-10-26 2015-02-17 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
KR20080069216A (en) 2005-10-31 2008-07-25 신닛테츠가가쿠 가부시키가이샤 Organic electroluminescent device
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
EP1956022B1 (en) * 2005-12-01 2012-07-25 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent element and organic electroluminescent element
US7651791B2 (en) 2005-12-15 2010-01-26 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and electroluminescence device employing the same
JP5290581B2 (en) 2005-12-15 2013-09-18 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
US8173995B2 (en) 2005-12-23 2012-05-08 E. I. Du Pont De Nemours And Company Electronic device including an organic active layer and process for forming the electronic device
US8440324B2 (en) 2005-12-27 2013-05-14 E I Du Pont De Nemours And Company Compositions comprising novel copolymers and electronic devices made with such compositions
US7785489B2 (en) 2005-12-28 2010-08-31 E.I. Du Pont De Nemours And Company Solvent formulations for solution deposition of organic materials onto low surface energy layers
US20070170401A1 (en) 2005-12-28 2007-07-26 Che-Hsiung Hsu Cationic compositions of electrically conducting polymers doped with fully-fluorinated acid polymers
EP2412699A1 (en) 2005-12-28 2012-02-01 E.I. Du Pont De Nemours And Company Compositions comprising novel compounds and electronic devices made with such compositions
US7807992B2 (en) 2005-12-28 2010-10-05 E.I. Du Pont De Nemours And Company Organic electronic device having dual emitter dopants
US7838627B2 (en) 2005-12-29 2010-11-23 E. I. Du Pont De Nemours And Company Compositions comprising novel compounds and polymers, and electronic devices made with such compositions
US8470208B2 (en) 2006-01-24 2013-06-25 E I Du Pont De Nemours And Company Organometallic complexes
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
EP2243785B1 (en) 2006-02-10 2016-02-03 Universal Display Corporation Phosphorescent condensed ring carbene metal complexes for use in organic light emitting devices
US8124172B2 (en) 2006-03-02 2012-02-28 E.I. Du Pont De Nemours And Company Process for making contained layers and devices made with same
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
EP2355198B1 (en) 2006-05-08 2015-09-09 Global OLED Technology LLC OLED electron-injecting layer
DE102006025777A1 (en) * 2006-05-31 2007-12-06 Merck Patent Gmbh New materials for organic electroluminescent devices
JP5061184B2 (en) 2006-06-05 2012-10-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming organic light-emitting diode and device manufactured by the method
EP2041222B1 (en) 2006-06-30 2012-12-05 E.I. Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially-fluorinated acid polymers
US7718276B2 (en) 2006-07-18 2010-05-18 Global Oled Technology Llc Light emitting device containing phosphorescent complex
US7736756B2 (en) 2006-07-18 2010-06-15 Global Oled Technology Llc Light emitting device containing phosphorescent complex
JP5009922B2 (en) 2006-08-31 2012-08-29 新日鐵化学株式会社 Organic electroluminescent element material and organic electroluminescent element
WO2008035595A1 (en) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Organic electroluminescent devices
JP4388590B2 (en) * 2006-11-09 2009-12-24 新日鐵化学株式会社 Compound for organic electroluminescence device and organic electroluminescence device
US8372525B2 (en) 2006-11-13 2013-02-12 E I Du Pont De Nemours And Company Organic electronic device
US8153029B2 (en) 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
DE102007002714A1 (en) 2007-01-18 2008-07-31 Merck Patent Gmbh New materials for organic electroluminescent devices
US8178216B2 (en) 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
EP3327100B1 (en) 2007-03-08 2020-05-06 Universal Display Corporation Phosphorescent materials
KR20090130024A (en) 2007-03-09 2009-12-17 스미또모 가가꾸 가부시키가이샤 Polymer compound and composition containing the same
KR101474232B1 (en) 2007-03-26 2014-12-18 신닛테츠 수미킨 가가쿠 가부시키가이샤 Compound for organic electroluminescent device and organic electroluminescent device
US20100127616A1 (en) 2007-03-27 2010-05-27 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device
US20080251768A1 (en) 2007-04-13 2008-10-16 Che-Hsiung Hsu Electrically conductive polymer compositions
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
JP5484690B2 (en) 2007-05-18 2014-05-07 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5127300B2 (en) 2007-05-28 2013-01-23 キヤノン株式会社 Fluorene compound, organic light emitting device using the same, and display device
TWI468489B (en) * 2007-05-29 2015-01-11 Nippon Steel & Sumikin Chem Co Organic electroluminescent element compounds and organic electroluminescent elements
JP5053713B2 (en) 2007-05-30 2012-10-17 キヤノン株式会社 Phosphorescent material, organic electroluminescent element and image display device using the same
KR101005160B1 (en) 2007-05-30 2011-01-04 신닛테츠가가쿠 가부시키가이샤 Compound for organic electroluminescent device and organic electroluminescent device
KR101554751B1 (en) 2007-06-01 2015-09-22 이 아이 듀폰 디 네모아 앤드 캄파니 Green luminescent materials
KR101554750B1 (en) 2007-06-01 2015-09-22 이 아이 듀폰 디 네모아 앤드 캄파니 Chrysenes for deep blue luminescent applications
EP2176374A2 (en) 2007-06-01 2010-04-21 E. I. Du Pont de Nemours and Company Charge transport materials for luminescent applications
JP5008470B2 (en) 2007-06-18 2012-08-22 キヤノン株式会社 Organic electroluminescence device
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
JP5804703B2 (en) 2007-07-05 2015-11-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Organic light emitting diode comprising at least one disilyl compound selected from disilylcarbazole, disilyldibenzofuran, disilyldibenzothiophene, disilyldibenzophosphole, disilyldibenzothiophene S-oxide and disilyldibenzothiophene S, S-dioxide
JP2009076865A (en) 2007-08-29 2009-04-09 Fujifilm Corp Organic electroluminescence device
JP5311785B2 (en) 2007-09-13 2013-10-09 キヤノン株式会社 Organic light emitting device and display device
JP5438941B2 (en) 2007-09-25 2014-03-12 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5553758B2 (en) 2007-10-02 2014-07-16 ビーエーエスエフ ソシエタス・ヨーロピア Use of acridine derivatives as matrix materials and / or electron blockers in OLEDs
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
JP5337811B2 (en) 2007-10-26 2013-11-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Methods and materials for manufacturing confinement layers and devices manufactured using the same
JP5305637B2 (en) 2007-11-08 2013-10-02 キヤノン株式会社 Organometallic complex, organic light emitting device using the same, and display device
DE102007053771A1 (en) 2007-11-12 2009-05-14 Merck Patent Gmbh Organic electroluminescent devices
JP5489446B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP5489445B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
US8063399B2 (en) 2007-11-19 2011-11-22 E. I. Du Pont De Nemours And Company Electroactive materials
JP5082800B2 (en) * 2007-11-27 2012-11-28 コニカミノルタホールディングス株式会社 Manufacturing method of organic EL element
US8900722B2 (en) 2007-11-29 2014-12-02 Global Oled Technology Llc OLED device employing alkali metal cluster compounds
JP5574598B2 (en) 2007-12-03 2014-08-20 株式会社半導体エネルギー研究所 Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
WO2009073246A1 (en) 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands
WO2009073245A1 (en) 2007-12-06 2009-06-11 Universal Display Corporation Light-emitting organometallic complexes
US8040048B2 (en) 2007-12-12 2011-10-18 Lang Charles D Process for forming an organic electronic device including an organic device layer
JP5438955B2 (en) 2007-12-14 2014-03-12 ユー・ディー・シー アイルランド リミテッド Platinum complex compound and organic electroluminescence device using the same
US8308988B2 (en) 2007-12-17 2012-11-13 E I Du Pont De Nemours And Company Electroactive materials
US8174185B2 (en) 2007-12-21 2012-05-08 E I Du Pont De Nemours And Company Charge transport materials for luminescent applications
CN101918370B (en) 2007-12-27 2013-06-12 新日铁化学株式会社 Compound for organic electroluminescent device and organic electroluminescent device using the same
EP2086034A1 (en) 2008-02-01 2009-08-05 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Electronic device and method of manufacturing thereof
JP5243972B2 (en) 2008-02-28 2013-07-24 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
TWI472074B (en) 2008-03-17 2015-02-01 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
EP2272828B1 (en) 2008-03-24 2018-06-27 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device
JP4555358B2 (en) 2008-03-24 2010-09-29 富士フイルム株式会社 Thin film field effect transistor and display device
DE102008015526B4 (en) 2008-03-25 2021-11-11 Merck Patent Gmbh Metal complexes
DE102008017591A1 (en) 2008-04-07 2009-10-08 Merck Patent Gmbh New materials for organic electroluminescent devices
JP4531836B2 (en) 2008-04-22 2010-08-25 富士フイルム株式会社 Organic electroluminescent device, novel platinum complex compound and novel compound that can be a ligand
JP4531842B2 (en) 2008-04-24 2010-08-25 富士フイルム株式会社 Organic electroluminescence device
WO2009136595A1 (en) 2008-05-08 2009-11-12 新日鐵化学株式会社 Compound for organic electric field light-emitting element and organic electric field light-emitting element
KR101571114B1 (en) 2008-05-08 2015-11-23 신닛테츠 수미킨 가가쿠 가부시키가이샤 Compound for organic electroluminescent elements and organic electroluminescent element
TW201005813A (en) 2008-05-15 2010-02-01 Du Pont Process for forming an electroactive layer
US8216685B2 (en) 2008-05-16 2012-07-10 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
JP5876292B2 (en) 2008-05-19 2016-03-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Apparatus and method for solution coating thin layers
DE102008027005A1 (en) 2008-06-05 2009-12-10 Merck Patent Gmbh Organic electronic device containing metal complexes
KR102028264B1 (en) 2008-06-20 2019-10-02 유디씨 아일랜드 리미티드 Cyclic phosphazene compounds and use thereof in organic light emitting diodes
TW201008374A (en) 2008-06-26 2010-02-16 Du Pont Organic light-emitting diode luminaires
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
KR101830592B1 (en) 2008-07-18 2018-02-20 유디씨 아일랜드 리미티드 Azapyrenes for electronic applications
DE102008036982A1 (en) 2008-08-08 2010-02-11 Merck Patent Gmbh Organic electroluminescent device
EP2161272A1 (en) 2008-09-05 2010-03-10 Basf Se Phenanthrolines
US8618533B2 (en) 2008-10-07 2013-12-31 Osram Opto Semiconductors Gmbh Siloles substituted by fused ring systems and use thereof in organic electronics
DE102008050841B4 (en) 2008-10-08 2019-08-01 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008056688A1 (en) 2008-11-11 2010-05-12 Merck Patent Gmbh Materials for organic electroluminescent devices
US8865321B2 (en) 2008-11-11 2014-10-21 Merck Patent Gmbh Organic electroluminescent devices
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh Organic electroluminescent devices
US8643000B2 (en) 2008-11-18 2014-02-04 E I Du Pont De Nemours And Company Organic electronic device with low-reflectance electrode
JP2010153820A (en) 2008-11-21 2010-07-08 Fujifilm Corp Organic electroluminescent element
WO2010065497A2 (en) 2008-12-01 2010-06-10 E. I. Du Pont De Nemours And Company Electroactive materials
EP2352802A4 (en) 2008-12-01 2012-10-31 Du Pont Electroactive materials
EP2352803B1 (en) 2008-12-04 2020-02-05 LG Chem, Ltd. Electroactive materials
KR101517651B1 (en) 2008-12-09 2015-05-04 이 아이 듀폰 디 네모아 앤드 캄파니 Electrically conductive polymer compositions
JP2012511623A (en) 2008-12-09 2012-05-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive polymer composition
DE102008063490B4 (en) 2008-12-17 2023-06-15 Merck Patent Gmbh Organic electroluminescent device and method for adjusting the color locus of a white-emitting electroluminescent device
DE102008063470A1 (en) 2008-12-17 2010-07-01 Merck Patent Gmbh Organic electroluminescent device
US8263973B2 (en) 2008-12-19 2012-09-11 E I Du Pont De Nemours And Company Anthracene compounds for luminescent applications
US8461758B2 (en) 2008-12-19 2013-06-11 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
EP2361009A4 (en) 2008-12-22 2012-12-05 Du Pont Electronic device including phenanthroline derivative
US8278651B2 (en) 2008-12-22 2012-10-02 E I Du Pont De Nemours And Company Electronic device including 1,7-phenanthroline derivative
US8278405B2 (en) 2008-12-22 2012-10-02 E I Du Pont De Nemours And Company Vinylphenoxy polymers
JP5279583B2 (en) 2008-12-24 2013-09-04 出光興産株式会社 Organic EL device
US8766239B2 (en) 2008-12-27 2014-07-01 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8785913B2 (en) 2008-12-27 2014-07-22 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
WO2010075589A2 (en) 2008-12-27 2010-07-01 E. I. Du Pont De Nemours And Company Apparatus and method for preventing splatter for continuous printing
EP2202819A1 (en) 2008-12-29 2010-06-30 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Electro-optic device and method for manufacturing the same
TWI458694B (en) 2009-01-19 2014-11-01 Nippon Steel & Sumikin Chem Co Organic light field components
DE102009005290A1 (en) 2009-01-20 2010-07-22 Merck Patent Gmbh Connections for electronic devices
JP2010186723A (en) 2009-02-13 2010-08-26 Fujifilm Corp Organic el device and method of manufacturing the same
DE102009009277B4 (en) 2009-02-17 2023-12-07 Merck Patent Gmbh Organic electronic device, process for its production and use of compounds
KR101705213B1 (en) 2009-02-26 2017-02-09 노발레드 게엠베하 Quinone compounds as dopants in organic electronics
TWI466980B (en) 2009-02-27 2015-01-01 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
DE102009011223A1 (en) 2009-03-02 2010-09-23 Merck Patent Gmbh metal complexes
JP2010232163A (en) 2009-03-03 2010-10-14 Fujifilm Corp Method of manufacturing light-emitting display device, light-emitting display device, and light-emitting display
JP2010205650A (en) 2009-03-05 2010-09-16 Fujifilm Corp Organic el display device
KR20110134452A (en) 2009-03-06 2011-12-14 이 아이 듀폰 디 네모아 앤드 캄파니 Process for forming an electroactive layer
DE102009012346B4 (en) 2009-03-09 2024-02-15 Merck Patent Gmbh Organic electroluminescent device and method for producing the same
JP2012519950A (en) 2009-03-09 2012-08-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming electroactive layer
JP5701782B2 (en) 2009-03-09 2015-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for forming electroactive layer
EP2406796A2 (en) 2009-03-12 2012-01-18 E. I. du Pont de Nemours and Company Electrically conductive polymer compositions for coating applications
DE102009014513A1 (en) 2009-03-23 2010-09-30 Merck Patent Gmbh Organic electroluminescent device
EP2413663A1 (en) 2009-03-27 2012-02-01 FUJIFILM Corporation Coating solution for organic electroluminescent element
TWI471405B (en) 2009-03-31 2015-02-01 Nippon Steel & Sumikin Chem Co A phosphorescent element material, and an organic electroluminescent device using the same
JP4870245B2 (en) 2009-03-31 2012-02-08 新日鐵化学株式会社 Phosphorescent light emitting device material and organic electroluminescent device using the same
JP5567656B2 (en) 2009-04-03 2014-08-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroactive materials
KR101102079B1 (en) * 2009-04-08 2012-01-04 한국화학연구원 Polymers incorporating carbazole derivatives and organic photovoltaic devices using them
DE102009017064A1 (en) 2009-04-09 2010-10-14 Merck Patent Gmbh Organic electroluminescent device
JP5587980B2 (en) 2009-04-21 2014-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive polymer composition and film made therefrom
TW201100482A (en) 2009-04-24 2011-01-01 Du Pont Electrically conductive polymer compositions and films made therefrom
DE102009023156A1 (en) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymers containing substituted indenofluorene derivatives as a structural unit, process for their preparation and their use
DE102009023154A1 (en) 2009-05-29 2011-06-16 Merck Patent Gmbh A composition comprising at least one emitter compound and at least one polymer having conjugation-interrupting units
US9028979B2 (en) 2009-06-18 2015-05-12 Basf Se Phenanthroazole compounds as hole transporting materials for electro luminescent devices
CN102421858A (en) 2009-06-22 2012-04-18 默克专利有限公司 Conducting formulation
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009032922B4 (en) 2009-07-14 2024-04-25 Merck Patent Gmbh Materials for organic electroluminescent devices, processes for their preparation, their use and electronic device
CN102470660B (en) 2009-07-27 2014-11-19 E.I.内穆尔杜邦公司 Process and materials for making contained layers and devices made with same
US20120135239A1 (en) 2009-07-31 2012-05-31 Masayuki Hayashi Deposition material for organic device, and method for producing organic device
JP5778148B2 (en) 2009-08-04 2015-09-16 メルク パテント ゲーエムベーハー Electronic devices containing polycyclic carbohydrates
EP2284922A1 (en) 2009-08-06 2011-02-16 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method of manufacturing an opto-electric device
EP2464709B1 (en) 2009-08-13 2014-07-16 E. I. du Pont de Nemours and Company Chrysene derivative materials
JP2013502743A (en) 2009-08-24 2013-01-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Organic light-emitting diode luminaire
CN102484219A (en) * 2009-08-24 2012-05-30 E.I.内穆尔杜邦公司 Organic light-emitting diode luminaires
US20110204338A1 (en) * 2009-08-24 2011-08-25 E. I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
US8993754B2 (en) 2009-08-27 2015-03-31 National Institute Of Advanced Industrial Science And Technology Iridium complex and light emitting material formed from same
JP5779318B2 (en) 2009-08-31 2015-09-16 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP2011060549A (en) 2009-09-09 2011-03-24 Fujifilm Corp Optical member for organic el device, and organic el device
JP5657243B2 (en) 2009-09-14 2015-01-21 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
JP5473506B2 (en) 2009-09-14 2014-04-16 ユー・ディー・シー アイルランド リミテッド Color filter and light emitting display element
KR101931922B1 (en) 2009-09-16 2018-12-21 메르크 파텐트 게엠베하 Formulations for the production of electronic devices
DE102009041289A1 (en) 2009-09-16 2011-03-17 Merck Patent Gmbh Organic electroluminescent device
DE102009053645A1 (en) 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent device
DE102009053644B4 (en) 2009-11-17 2019-07-04 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20120091144A (en) 2009-09-29 2012-08-17 이 아이 듀폰 디 네모아 앤드 캄파니 Deuterated compounds for luminescent applications
DE102009048791A1 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2013508380A (en) 2009-10-19 2013-03-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds for electronic applications
KR20120086319A (en) 2009-10-19 2012-08-02 이 아이 듀폰 디 네모아 앤드 캄파니 Triarylamine compounds for electronic applications
KR101233380B1 (en) * 2009-10-21 2013-02-15 제일모직주식회사 Novel compound for organic photoelectric device and organic photoelectric device including the same
US8716699B2 (en) 2009-10-29 2014-05-06 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
US8674343B2 (en) 2009-10-29 2014-03-18 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
JP2013509723A (en) 2009-10-29 2013-03-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Organic light-emitting diode luminaire
CN102596950A (en) 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 Deuterated compounds for electronic applications
US8716700B2 (en) 2009-10-29 2014-05-06 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
JP2011100944A (en) 2009-11-09 2011-05-19 Fujifilm Corp Organic electroluminescent element
DE102009052428A1 (en) 2009-11-10 2011-05-12 Merck Patent Gmbh Connection for electronic devices
DE102009053382A1 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
DE102009053836A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2011121876A (en) 2009-12-08 2011-06-23 Canon Inc New iridium complex and organic light-emitting device containing the same
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
JP5836970B2 (en) 2009-12-22 2015-12-24 メルク パテント ゲーエムベーハー Formulations containing functional materials
EP2517537B1 (en) 2009-12-22 2019-04-03 Merck Patent GmbH Electroluminescent functional surfactants
JP5968786B2 (en) 2009-12-22 2016-08-10 メルク パテント ゲーエムベーハー Electroluminescence formulation
US9178156B2 (en) 2009-12-23 2015-11-03 Merck Patent Gmbh Compositions comprising polymeric binders
KR20170093267A (en) 2009-12-23 2017-08-14 메르크 파텐트 게엠베하 Compositions comprising organic semiconducting compounds
US9461250B2 (en) 2009-12-28 2016-10-04 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device
EP2346108A1 (en) 2010-01-15 2011-07-20 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Foil shaped electro-optical product, semi-finished product and method and apparatus for manufacturing the same
DE102010004803A1 (en) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materials for organic electroluminescent devices
DE102010005697A1 (en) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Connections for electronic devices
JP5620125B2 (en) 2010-01-28 2014-11-05 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
DE102010006377A1 (en) 2010-01-29 2011-08-04 Merck Patent GmbH, 64293 Styrene-based copolymers, in particular for use in optoelectronic components
TWI429650B (en) 2010-02-12 2014-03-11 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
TWI477579B (en) 2010-02-12 2015-03-21 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
DE102010009193B4 (en) 2010-02-24 2022-05-19 MERCK Patent Gesellschaft mit beschränkter Haftung Composition containing fluorine-fluorine associates, processes for their production, their use and organic electronic devices containing them
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Connections for electronic devices
DE102010010481A1 (en) 2010-03-06 2011-09-08 Merck Patent Gmbh Organic electroluminescent device
KR101757016B1 (en) 2010-03-11 2017-07-11 메르크 파텐트 게엠베하 Radiative fibers
KR20130020883A (en) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 Fibers in therapy and cosmetics
JP5567407B2 (en) * 2010-03-15 2014-08-06 ユー・ディー・シー アイルランド リミテッド Method for manufacturing organic electroluminescent device
CN102812573B (en) 2010-03-23 2015-09-30 默克专利有限公司 For the material of organic electroluminescence device
DE102010012738A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
JP5912224B2 (en) * 2010-03-26 2016-04-27 ユー・ディー・シー アイルランド リミテッド White organic electroluminescence device
DE102010013068A1 (en) 2010-03-26 2011-09-29 Merck Patent Gmbh Connections for electronic devices
US20130026421A1 (en) 2010-04-12 2013-01-31 Merck Patent Gmbh Composition and method for preparation of organic electronic devices
JP2013527980A (en) 2010-04-12 2013-07-04 メルク パテント ゲーエムベーハー Composition with improved performance
DE102010014933A1 (en) 2010-04-14 2011-10-20 Merck Patent Gmbh Materials for electronic devices
JP5627917B2 (en) * 2010-04-15 2014-11-19 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
CN102421772B (en) 2010-04-20 2015-11-25 出光兴产株式会社 Bicarbazole derivative, material for organic electroluminescent element, and organic electroluminescent element using same
DE102010018321A1 (en) 2010-04-27 2011-10-27 Merck Patent Gmbh Organic electroluminescent device
KR20110122051A (en) 2010-05-03 2011-11-09 제일모직주식회사 Compound for organic photoelectric device and organic photoelectric device including the same
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
DE102010019306B4 (en) 2010-05-04 2021-05-20 Merck Patent Gmbh Organic electroluminescent devices
DE102010020044A1 (en) 2010-05-11 2011-11-17 Merck Patent Gmbh Organic electroluminescent device
RU2012156386A (en) 2010-05-27 2014-07-10 Мерк Патент Гмбх COMPOSITION AND METHOD FOR PRODUCING ORGANIC ELECTRONIC DEVICES
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
WO2011147521A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Down conversion
EP2398086A1 (en) 2010-06-17 2011-12-21 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Opto-electric device and method of manufacturing thereof
DE102010024335A1 (en) 2010-06-18 2011-12-22 Merck Patent Gmbh Connections for electronic devices
CN102947415B (en) 2010-06-18 2016-01-06 巴斯夫欧洲公司 Comprise the organic electronic devices of the layer of pyridine compounds and oxine root conjunction alkaline-earth metal or alkali metal complex
JP5990515B2 (en) 2010-06-18 2016-09-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Organic electronic device comprising a layer of a dibenzofuran compound and an 8-hydroxyquinolinolato alkaline earth metal complex or an 8-hydroxyquinolinolato alkali metal complex
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
DE102010024542A1 (en) 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices
DE102010024897A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
EP2599142A1 (en) 2010-07-26 2013-06-05 Merck Patent GmbH Nanocrystals in devices
JP5968885B2 (en) 2010-07-30 2016-08-10 メルク パテント ゲーエムベーハー Organic electroluminescence device
DE102010033080A1 (en) 2010-08-02 2012-02-02 Merck Patent Gmbh Polymers with structural units that have electron transport properties
DE102010033548A1 (en) 2010-08-05 2012-02-09 Merck Patent Gmbh Materials for electronic devices
JP5299381B2 (en) * 2010-08-18 2013-09-25 コニカミノルタ株式会社 Manufacturing method of organic EL element
TWI510488B (en) 2010-09-13 2015-12-01 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
DE102010045369A1 (en) 2010-09-14 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010045405A1 (en) 2010-09-15 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010046412B4 (en) 2010-09-23 2022-01-13 Merck Patent Gmbh metal-ligand coordination compounds
KR20130124494A (en) 2010-09-29 2013-11-14 바스프 에스이 Security element
WO2012046714A1 (en) * 2010-10-06 2012-04-12 シャープ株式会社 Luminescent material, and organic light-emitting element, wavelength-converting light-emitting element, light-converting light-emitting element, organic laser diode light-emitting element, dye laser, display device, and illumination device using same
US9079872B2 (en) 2010-10-07 2015-07-14 Basf Se Phenanthro[9, 10-B]furans for electronic applications
CN107266398A (en) 2010-10-07 2017-10-20 Udc 爱尔兰有限责任公司 Phenanthro- [9,10 b] furans for electronic application
DE102010048074A1 (en) 2010-10-09 2012-04-12 Merck Patent Gmbh Materials for electronic devices
EP2629345B1 (en) 2010-10-13 2017-12-06 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
DE102010048497A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Formulations for organic electroluminescent devices
DE102010048498A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010048608A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010048607A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Connections for electronic devices
US9200023B2 (en) 2010-10-28 2015-12-01 National Institute of Advanced Industrial Science and Technology & Furuya Metal Co. Ltd. Method for producing complex of trisortho-metalated iridium, light-emitting material using said complex, and light-emitting element
JP5980796B2 (en) 2010-11-24 2016-08-31 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
US9343685B2 (en) 2010-11-25 2016-05-17 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
WO2012080052A1 (en) 2010-12-13 2012-06-21 Basf Se Bispyrimidines for electronic applications
DE102010054316A1 (en) 2010-12-13 2012-06-14 Merck Patent Gmbh Substituted tetraarylbenzenes
US8362246B2 (en) 2010-12-13 2013-01-29 Basf Se Bispyrimidines for electronic applications
DE102010054525A1 (en) 2010-12-15 2012-04-26 Merck Patent Gmbh Organic electroluminescent device
WO2012087955A1 (en) 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications
CN103270032B (en) 2010-12-20 2016-05-04 出光兴产株式会社 Aromatic heterocyclic derivative and organic electroluminescent element using same
DE102010055901A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
DE102010055902A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
DE102010056151A1 (en) 2010-12-28 2012-06-28 Merck Patent Gmbh Materials for organic electroluminescent devices
US10008677B2 (en) 2011-01-13 2018-06-26 Universal Display Corporation Materials for organic light emitting diode
WO2012095143A1 (en) 2011-01-13 2012-07-19 Merck Patent Gmbh Compounds for organic electroluminescent devices
DE102012000064A1 (en) 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices
US8751777B2 (en) 2011-01-28 2014-06-10 Honeywell International Inc. Methods and reconfigurable systems to optimize the performance of a condition based health maintenance system
KR101720444B1 (en) 2011-02-07 2017-03-27 이데미쓰 고산 가부시키가이샤 Biscarbazole derivative and organic electroluminescent element using same
CN103313980B (en) 2011-02-07 2017-04-19 出光兴产株式会社 Biscarbazole derivative and organic electroluminescent element using same
DE102011010841A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh (1,3) -dioxane-5-one compounds
DE102011011104A1 (en) 2011-02-12 2012-08-16 Merck Patent Gmbh Substituted dibenzonaphthacenes
EP2675524B1 (en) 2011-02-14 2017-05-10 Merck Patent GmbH Device and method for treatment of cells and cell tissue
CN105932170B (en) 2011-02-16 2018-04-06 株式会社半导体能源研究所 Light-emitting component
KR102523324B1 (en) 2011-02-16 2023-04-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
DE102011011539A1 (en) 2011-02-17 2012-08-23 Merck Patent Gmbh Connections for electronic devices
US9543526B2 (en) 2011-03-16 2017-01-10 Nippon Steel & Sumikin Chemical Co., Ltd. Nitrogen-containing aromatic compounds and organic electroluminescent device
KR102112967B1 (en) 2011-03-23 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
JP6356060B2 (en) 2011-03-24 2018-07-11 メルク パテント ゲーエムベーハー Organic ionic functional materials
EP2688889B1 (en) 2011-03-25 2016-05-18 Basf Se 4h-imidazo[1,2-a]imidazoles for electronic applications
US9806270B2 (en) 2011-03-25 2017-10-31 Udc Ireland Limited 4H-imidazo[1,2-a]imidazoles for electronic applications
CN103477462B (en) 2011-04-05 2016-05-25 默克专利有限公司 Organic electroluminescence device
EP2697226B1 (en) 2011-04-13 2017-01-18 Merck Patent GmbH Compounds for electronic devices
EP2697225B1 (en) 2011-04-13 2015-10-07 Merck Patent GmbH Materials for electronic devices
KR101979469B1 (en) 2011-04-18 2019-05-16 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR101929602B1 (en) 2011-04-18 2018-12-14 메르크 파텐트 게엠베하 Compounds for electronic devices
WO2012149992A1 (en) 2011-05-04 2012-11-08 Merck Patent Gmbh Device for preserving fresh goods
EP2705550B1 (en) 2011-05-05 2017-07-05 Merck Patent GmbH Compounds for electronic devices
CN103503187B (en) 2011-05-05 2016-11-02 默克专利有限公司 compound for electronic device
KR20140093607A (en) 2011-05-11 2014-07-28 이데미쓰 고산 가부시키가이샤 Novel compound, material for organic electroluminescence device, and organic electroluminescence device
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
DE102011102586A1 (en) 2011-05-27 2012-11-29 Merck Patent Gmbh Organic electronic device
WO2012163465A1 (en) 2011-06-03 2012-12-06 Merck Patent Gmbh Organic electroluminescence device
DE102011104745A1 (en) 2011-06-17 2012-12-20 Merck Patent Gmbh Materials for organic electroluminescent devices
JP5321649B2 (en) * 2011-06-23 2013-10-23 コニカミノルタ株式会社 Organic electroluminescence device
JP5532020B2 (en) * 2011-06-28 2014-06-25 コニカミノルタ株式会社 Organic electroluminescence element and display device using the same
JP6174024B2 (en) 2011-07-25 2017-08-02 メルク パテント ゲーエムベーハー Copolymers with functional side chains
CN103718316B (en) 2011-07-29 2017-11-10 默克专利有限公司 Compound for electronic device
JP6141274B2 (en) 2011-08-03 2017-06-07 メルク パテント ゲーエムベーハー Materials for electronic devices
KR102138351B1 (en) 2011-08-18 2020-07-28 이데미쓰 고산 가부시키가이샤 Biscarbazole derivative and organic electroluminescence element using same
DE102012016192A1 (en) 2011-08-19 2013-02-21 Merck Patent Gmbh New compounds capable of forming hydrogen bonds are useful in electronic device, e.g. organic electroluminescent device, organic light-emitting transistor and organic light-emitting electrochemical cell
US9466802B2 (en) 2011-09-12 2016-10-11 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
KR20140076572A (en) 2011-09-12 2014-06-20 신닛테츠 수미킨 가가쿠 가부시키가이샤 Organic electroluminescent element material having silicon-containing four membered ring structure, and organic electroluminescent element
KR101992874B1 (en) 2011-09-12 2019-06-26 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Organic electroluminescent element
CN103842339B (en) 2011-09-21 2017-08-08 默克专利有限公司 Carbazole derivates for organic electroluminescence device
JP2013093541A (en) 2011-10-06 2013-05-16 Udc Ireland Ltd Organic electroluminescent element and compound and material for organic electroluminescent element usable therefor, and luminescent device, display device and lighting device using the element
US9356242B2 (en) 2011-10-06 2016-05-31 Merck Patent Gmbh Organic electroluminescent device
JP2013084732A (en) 2011-10-07 2013-05-09 Udc Ireland Ltd Organic field light-emitting element and light-emitting material for the same, and light-emitting device, display device and illuminating device
DE102011116165A1 (en) 2011-10-14 2013-04-18 Merck Patent Gmbh Benzodioxepin-3-one compounds
JP5760941B2 (en) * 2011-10-18 2015-08-12 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP6165746B2 (en) 2011-10-20 2017-07-19 メルク パテント ゲーエムベーハー Materials for organic electroluminescence devices
WO2013058087A1 (en) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 Organic electroluminscent element
EP2782975B1 (en) 2011-10-27 2018-01-10 Merck Patent GmbH Materials for electronic devices
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
EP2773721B1 (en) 2011-11-01 2015-11-25 Merck Patent GmbH Organic electroluminescent device
JP2013118349A (en) 2011-11-02 2013-06-13 Udc Ireland Ltd Organic electroluminescent element, material for organic electroluminescent element, and light emitting device, display device and illumination device which employ said organic electroluminescent element
US9502664B2 (en) 2011-11-10 2016-11-22 Udc Ireland Limited 4H-imidazo[1,2-a]imidazoles for electronic applications
KR102115018B1 (en) 2011-11-17 2020-05-26 메르크 파텐트 게엠베하 Spirodihydroacridine derivatives and the use thereof as materials for organic electroluminescent devices
JP5913938B2 (en) 2011-11-30 2016-05-11 富士フイルム株式会社 Light diffusing transfer material, method of forming light diffusing layer, and method of manufacturing organic electroluminescent device
JP5898683B2 (en) 2011-12-05 2016-04-06 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device
WO2013088934A1 (en) 2011-12-12 2013-06-20 新日鉄住金化学株式会社 Organic electroluminescent element material and organic electroluminescent element using same
KR20180126629A (en) 2011-12-12 2018-11-27 메르크 파텐트 게엠베하 Compounds for electronic devices
KR101986570B1 (en) 2011-12-15 2019-06-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Organic electroluminescent element
DE102012022880A1 (en) 2011-12-22 2013-06-27 Merck Patent Gmbh Electronic device e.g. organic integrated circuits, organic field-effect transistors, organic thin-film transistors, organic light emitting transistors, comprises an organic layer comprising substituted heteroaryl compounds
WO2013094885A1 (en) * 2011-12-23 2013-06-27 주식회사 엘지화학 Organic light-emitting diode and method for manufacturing same
JP5981770B2 (en) 2012-01-23 2016-08-31 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device, charge transport material for organic electroluminescence device, and light emitting device, display device and illumination device using the device
US9385337B2 (en) 2012-01-30 2016-07-05 Merck Patent Gmbh Nanocrystals on fibers
JP6118034B2 (en) 2012-02-06 2017-04-19 ユー・ディー・シー アイルランド リミテッド ORGANIC ELECTROLUMINESCENT ELEMENT, COMPOUND USABLE FOR THE SAME, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, AND LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE ELEMENT
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
CN104160525B (en) 2012-03-12 2016-10-12 新日铁住金化学株式会社 Organic electroluminescent device
KR102417945B1 (en) * 2012-03-14 2022-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element
KR20210068605A (en) 2012-03-15 2021-06-09 메르크 파텐트 게엠베하 Electronic devices
WO2013139431A1 (en) 2012-03-23 2013-09-26 Merck Patent Gmbh 9,9'-spirobixanthene derivatives for electroluminescent devices
TWI585091B (en) 2012-03-30 2017-06-01 新日鐵住金化學股份有限公司 Organic electroluminescent elements
US8916897B2 (en) * 2012-05-31 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
DE102012011335A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Connections for Organic Electronic Devices
JP5445629B2 (en) * 2012-06-27 2014-03-19 コニカミノルタ株式会社 Manufacturing method of organic EL element
WO2014002629A1 (en) 2012-06-28 2014-01-03 新日鉄住金化学株式会社 Organic electroluminescence element and material for organic electroluminescence element
KR102451454B1 (en) 2012-07-10 2022-10-06 유디씨 아일랜드 리미티드 Benzimidazo[1,2-a]benzimidazole derivatives for electronic applications
US10622567B2 (en) 2012-07-10 2020-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
US9614166B2 (en) 2012-07-19 2017-04-04 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
KR102284234B1 (en) 2012-07-23 2021-07-30 메르크 파텐트 게엠베하 Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them
KR102196432B1 (en) 2012-07-23 2020-12-29 메르크 파텐트 게엠베하 Compounds and organic electroluminescent devices
KR102268222B1 (en) 2012-07-23 2021-06-22 메르크 파텐트 게엠베하 Fluorenes and electronic devices containing them
CN104507932B (en) 2012-07-23 2016-12-07 默克专利有限公司 Material for organic electroluminescence device
KR102015270B1 (en) 2012-08-10 2019-08-28 메르크 파텐트 게엠베하 Materials for organic electroluminescence devices
CN104640958B (en) 2012-09-18 2017-04-05 默克专利有限公司 For the material of electronic device
CN104662023B (en) 2012-09-20 2017-08-18 Udc 爱尔兰有限责任公司 The azepine dibenzofurans of supplied for electronic application
TWI637543B (en) 2012-09-21 2018-10-01 半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, electronic device, and lighting device
TWI599570B (en) 2012-09-28 2017-09-21 新日鐵住金化學股份有限公司 Compounds for organic electroluminescent devices and organic electroluminescent devices
EP2906661B1 (en) 2012-10-11 2016-10-26 Merck Patent GmbH Materials for organic electroluminescent devices
WO2014070888A1 (en) 2012-10-30 2014-05-08 Massachusetts Institute Of Technology Organic conductive materials and devices
EP2915199B1 (en) 2012-10-31 2021-03-31 Merck Patent GmbH Electronic device
WO2014072320A1 (en) 2012-11-06 2014-05-15 Basf Se Phenoxasiline based compounds for electronic application
JP6306033B2 (en) 2012-11-12 2018-04-04 メルク パテント ゲーエムベーハー Materials for electronic devices
EP2923391A1 (en) 2012-11-20 2015-09-30 Merck Patent GmbH Formulation in high-purity solvent for producing electronic devices
KR102173856B1 (en) 2012-11-30 2020-11-04 메르크 파텐트 게엠베하 Electronic device
CN104798221B (en) 2012-12-05 2017-04-12 默克专利有限公司 Electronic apparatus having an oxygen ion pump
WO2014103724A1 (en) 2012-12-26 2014-07-03 新日鉄住金化学株式会社 Material for organic electroluminescent elements and organic electroluminescent element using same
CN104871335B (en) 2012-12-26 2017-03-15 新日铁住金化学株式会社 Material for organic electroluminescence device and the organic electroluminescent device using which
US9793484B2 (en) 2012-12-28 2017-10-17 Merck Patent Gmbh Composition comprising polymeric organic semiconducting compounds
JP6367230B2 (en) 2013-01-03 2018-08-01 メルク パテント ゲーエムベーハー Electronic element
US20150329772A1 (en) 2013-01-03 2015-11-19 Merck Patent Gmbh Materials for Electronic Devices
WO2014106524A2 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Materials for electronic devices
KR102037375B1 (en) 2013-02-13 2019-10-29 삼성디스플레이 주식회사 Organometallic complex and Organic light emitting diode comprising the same
JP6436901B2 (en) 2013-02-28 2018-12-12 日鉄ケミカル&マテリアル株式会社 Boron compound for organic electroluminescence device and organic electroluminescence device
TWI609022B (en) 2013-03-20 2017-12-21 Udc愛爾蘭責任有限公司 Azabenzimidazole carbene complexes as efficiency booster in oleds
JP6307494B2 (en) 2013-04-11 2018-04-04 新日鉄住金化学株式会社 Adamantane compound for organic electroluminescence device and organic electroluminescence device
KR20160027087A (en) 2013-07-02 2016-03-09 바스프 에스이 Monosubstituted diazabenzimidazole carbene metal complexes for use in organic light emitting diodes
US20160181537A1 (en) 2013-07-29 2016-06-23 Merck Patent Gmbh Electroluminescence Device
EP3028318A1 (en) 2013-07-29 2016-06-08 Merck Patent GmbH Electro-optical device and the use thereof
KR20180129977A (en) 2013-07-30 2018-12-05 메르크 파텐트 게엠베하 Materials for electronic devices
EP3712229A1 (en) 2013-07-30 2020-09-23 Merck Patent GmbH Materials for electronic devices
JP6226671B2 (en) * 2013-09-27 2017-11-08 日本放送協会 Organic electroluminescence device
EP3054495B1 (en) 2013-09-30 2018-02-14 Nippon Steel & Sumikin Chemical Co., Ltd. Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2015045705A1 (en) 2013-09-30 2015-04-02 新日鉄住金化学株式会社 Material for organic electroluminescent element and organic electroluminescent element using the same
EP3904361A3 (en) 2013-10-02 2022-04-20 Merck Patent GmbH Boron containing compounds
EP3063153B1 (en) 2013-10-31 2018-03-07 Idemitsu Kosan Co., Ltd. Azadibenzothiophenes for electronic applications
KR102445509B1 (en) 2013-12-06 2022-09-20 메르크 파텐트 게엠베하 Compounds and organic electronic devices
CN105793246B (en) 2013-12-06 2019-07-05 默克专利有限公司 Substituted oxepin
KR20160094430A (en) 2013-12-06 2016-08-09 메르크 파텐트 게엠베하 Compositions containing a polymeric binder which comprises acrylic and/or methacrylic acid ester units
KR101993129B1 (en) 2013-12-12 2019-06-26 메르크 파텐트 게엠베하 Materials for electronic devices
JP6542228B2 (en) 2013-12-19 2019-07-10 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Heterocyclic spiro compounds
US10283721B2 (en) 2013-12-26 2019-05-07 Nippon Steel Chemical & Material Co., Ltd. Material for organic electroluminescent elements, and organic electroluminescent element using same
JP6402114B2 (en) 2013-12-26 2018-10-10 新日鉄住金化学株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
CN103819511A (en) * 2014-02-28 2014-05-28 上海和辉光电有限公司 Aggregation-induced phosphorescence emission iridium complex and electroluminescence device thereof
CN106165139B (en) 2014-03-24 2018-04-20 新日铁住金化学株式会社 Organic electric-field light-emitting element material and use its organic electric-field light-emitting element
EP3125325B8 (en) 2014-03-24 2019-06-12 NIPPON STEEL Chemical & Material Co., Ltd. Organic-electroluminescent-element material and organic electroluminescent element using it
US10446767B2 (en) 2014-03-28 2019-10-15 Nippon Steel Chemical & Material Co., Ltd. Organic-electroluminescent-element material and organic electroluminescent element using same
EP3126371B1 (en) 2014-03-31 2021-11-10 UDC Ireland Limited Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
AU2015201628A1 (en) 2014-03-31 2015-10-15 Commonwealth Scientific And Industrial Research Organisation Phenylenediamine compounds for phosphorescent diazaborole metal complexes
EP2927221A1 (en) 2014-03-31 2015-10-07 Commonwealth Scientific and Industrial Research Organisation Diamine compounds for phosphorescent diazaborole metal complexes and electroluminescent devices
JP6789825B2 (en) 2014-04-30 2020-11-25 メルク パテント ゲーエムベーハー Materials for electronic devices
JP6890975B2 (en) 2014-05-05 2021-06-18 メルク パテント ゲーエムベーハー Materials for OLED devices
DE102014008722A1 (en) 2014-06-18 2015-12-24 Merck Patent Gmbh Compositions for electronic devices
US10644246B2 (en) 2014-06-25 2020-05-05 Merck Patent Gmbh Materials for organic electroluminescent devices
EP4037000A1 (en) 2014-07-21 2022-08-03 Merck Patent GmbH Materials for electronic devices
EP3174885B1 (en) 2014-07-28 2019-10-02 Idemitsu Kosan Co., Ltd. 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676B1 (en) 2014-08-07 2018-04-11 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215B1 (en) 2014-09-04 2019-06-19 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
KR102388865B1 (en) 2014-09-05 2022-04-20 메르크 파텐트 게엠베하 Formulations and electronic devices
TWI666803B (en) 2014-09-17 2019-07-21 日商日鐵化學材料股份有限公司 Organic electric field light emitting element and manufacturing method thereof
JP6563943B2 (en) 2014-09-29 2019-08-21 日鉄ケミカル&マテリアル株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
EP3015469B1 (en) 2014-10-30 2018-12-19 Idemitsu Kosan Co., Ltd. 5-(benzimidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
CN107108500A (en) 2014-11-11 2017-08-29 默克专利有限公司 The material of organic electroluminescence device
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
JP2016103497A (en) * 2014-11-27 2016-06-02 コニカミノルタ株式会社 Luminescent composition, display device and lighting system
WO2016086885A1 (en) 2014-12-04 2016-06-09 广州华睿光电材料有限公司 Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
CN107004777B (en) 2014-12-04 2019-03-26 广州华睿光电材料有限公司 Polymer includes its mixture, composition, organic electronic device and monomer
CN107004779B (en) 2014-12-11 2019-03-08 广州华睿光电材料有限公司 Organic compound, mixture, composition and organic electronic device comprising it
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3241248A1 (en) 2014-12-30 2017-11-08 Merck Patent GmbH Formulations and electronic devices
WO2016112761A1 (en) 2015-01-13 2016-07-21 广州华睿光电材料有限公司 Conjugated polymer containing ethynyl crosslinking group, mixture, composition, organic electronic device containing the same and application thereof
US20180006237A1 (en) 2015-01-30 2018-01-04 Merck Patent Gmbh Materials for electronic devices
WO2016120007A1 (en) 2015-01-30 2016-08-04 Merck Patent Gmbh Formulations with a low particle content
EP3054498B1 (en) 2015-02-06 2017-09-20 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3053918B1 (en) 2015-02-06 2018-04-11 Idemitsu Kosan Co., Ltd. 2-carbazole substituted benzimidazoles for electronic applications
EP3061759B1 (en) 2015-02-24 2019-12-25 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144B1 (en) 2015-03-17 2018-02-28 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
US10236450B2 (en) 2015-03-24 2019-03-19 Massachusetts Institute Of Technology Organic conductive materials and devices
EP3072943B1 (en) 2015-03-26 2018-05-02 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3279962B1 (en) 2015-03-30 2019-09-25 NIPPON STEEL Chemical & Material Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element in which same is used
JP6800879B2 (en) 2015-03-30 2020-12-16 メルク パテント ゲーエムベーハー Formulations of organic functional materials containing siloxane solvents
WO2016158363A1 (en) 2015-03-30 2016-10-06 新日鉄住金化学株式会社 Organic electroluminescent element
US11600786B2 (en) 2015-03-30 2023-03-07 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
EP3075737B1 (en) 2015-03-31 2019-12-04 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
US10629817B2 (en) 2015-05-18 2020-04-21 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2018525331A (en) 2015-06-10 2018-09-06 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
JP6873927B2 (en) 2015-06-12 2021-05-19 メルク パテント ゲーエムベーハー Esters Containing Non-Aromatic Rings as Solvents for OLED Formulations
CN107836046B (en) 2015-07-15 2020-08-04 默克专利有限公司 Compositions comprising organic semiconducting compounds
EP3326218B1 (en) 2015-07-22 2021-02-17 Merck Patent GmbH Materials for organic electroluminescent devices
US11538995B2 (en) 2015-07-29 2022-12-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017016630A1 (en) 2015-07-30 2017-02-02 Merck Patent Gmbh Materials for organic electroluminescent devices
CN107922335B (en) 2015-08-13 2021-06-04 默克专利有限公司 Hexamethylindane
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
JP2018527733A (en) 2015-08-28 2018-09-20 メルク パテント ゲーエムベーハー Formulation of organic functional material containing epoxy group-containing solvent
US20180327339A1 (en) 2015-08-28 2018-11-15 Merck Patent Gmbh Compounds for electronic devices
EP3150606B1 (en) 2015-10-01 2019-08-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604B1 (en) 2015-10-01 2021-07-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolylyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
KR20180077216A (en) 2015-10-27 2018-07-06 메르크 파텐트 게엠베하 Material for organic electroluminescence device
KR20180079328A (en) 2015-11-04 2018-07-10 이데미쓰 고산 가부시키가이샤 Benzimidazole condensed heteroaryl
WO2017080326A1 (en) 2015-11-12 2017-05-18 广州华睿光电材料有限公司 Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017092545A1 (en) 2015-12-04 2017-06-08 广州华睿光电材料有限公司 Organometallic complex and application thereof in electronic device
EP3387077B1 (en) 2015-12-10 2023-10-18 Merck Patent GmbH Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
KR20180096676A (en) 2015-12-16 2018-08-29 메르크 파텐트 게엠베하 Formulation containing a solid solvent
EP3390550B1 (en) 2015-12-16 2022-09-28 Merck Patent GmbH Formulations containing a mixture of at least two different solvents
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
JP7051691B2 (en) 2016-02-05 2022-04-11 メルク パテント ゲーエムベーハー Materials for electronic devices
EP3417033B1 (en) 2016-02-17 2021-02-24 Merck Patent GmbH Formulation of an organic functional material
CN108699437A (en) 2016-03-03 2018-10-23 默克专利有限公司 Material for organic electroluminescence device
JP6454292B2 (en) * 2016-03-15 2019-01-16 株式会社日立製作所 Passenger conveyor
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
TWI745361B (en) 2016-03-17 2021-11-11 德商麥克專利有限公司 Compounds having spirobifluorene structures
TWI805547B (en) 2016-04-11 2023-06-21 德商麥克專利有限公司 Heterocyclic compounds having dibenzofuran and/or dibenzothiophene structures
US10968229B2 (en) 2016-04-12 2021-04-06 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
KR102385482B1 (en) 2016-04-29 2022-04-12 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US11121324B2 (en) 2016-05-27 2021-09-14 Lg Chem, Ltd. Dihetero amines in electrically conductive polymer compositions
CN116283864A (en) 2016-06-03 2023-06-23 默克专利有限公司 Material for organic electroluminescent device
KR20190019138A (en) 2016-06-16 2019-02-26 메르크 파텐트 게엠베하 Formulation of organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017221999A1 (en) 2016-06-22 2017-12-28 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
TW201815998A (en) 2016-06-28 2018-05-01 德商麥克專利有限公司 Formulation of an organic functional material
EP3481796B1 (en) 2016-07-08 2021-02-17 Merck Patent GmbH Materials for organic electroluminescent devices
JP6980757B2 (en) 2016-08-04 2021-12-15 メルク パテント ゲーエムベーハー Formulation of organic functional materials
EP3512841B1 (en) 2016-09-14 2023-04-26 Merck Patent GmbH Compounds with spirobifluorene-structures
TW201827425A (en) 2016-09-14 2018-08-01 德商麥克專利有限公司 Compounds having carbazole structures
US10916714B2 (en) * 2016-09-27 2021-02-09 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same
TWI766884B (en) 2016-09-30 2022-06-11 德商麥克專利有限公司 Compounds having diazadibenzofuran or diazadibenzothiophene structures, process for preparing the same and use thereof
JP7051832B2 (en) 2016-09-30 2022-04-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Diazadibenzofuran or carbazole with a diazadibenzothiophene structure
TWI764942B (en) 2016-10-10 2022-05-21 德商麥克專利有限公司 Electronic device
DE102017008794A1 (en) 2016-10-17 2018-04-19 Merck Patent Gmbh Materials for use in electronic devices
KR102451842B1 (en) 2016-10-31 2022-10-07 메르크 파텐트 게엠베하 Formulation of organic functional materials
EP3532566B1 (en) 2016-10-31 2021-04-21 Merck Patent GmbH Formulation of an organic functional material
KR20190079646A (en) 2016-11-02 2019-07-05 메르크 파텐트 게엠베하 Materials for electronic devices
CN110088112A (en) 2016-11-08 2019-08-02 默克专利有限公司 Compound for electronic device
EP3538521A1 (en) 2016-11-09 2019-09-18 Merck Patent GmbH Materials for organic electroluminescent devices
TWI756292B (en) 2016-11-14 2022-03-01 德商麥克專利有限公司 Compounds having an acceptor group and a donor group
EP3541890B1 (en) 2016-11-17 2020-10-28 Merck Patent GmbH Materials for organic electroluminescent devices
TW201833118A (en) 2016-11-22 2018-09-16 德商麥克專利有限公司 Materials for electronic devices
WO2018095388A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Organic compound
US11239428B2 (en) 2016-11-23 2022-02-01 Guangzhou Chinaray Optoelectronic Materials Ltd. Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device
WO2018095389A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Nitrogen-containing fused heterocyclic ring compound and application thereof
US11634444B2 (en) 2016-11-23 2023-04-25 Guangzhou Chinaray Optoelectronic Materials Ltd. Metal organic complex, high polymer, composition, and organic electronic component
CN109790407B (en) 2016-11-23 2021-12-07 广州华睿光电材料有限公司 Printing ink composition, preparation method and application thereof
EP3547385B1 (en) 2016-11-23 2020-11-04 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture, composition, and organic electronic component
CN109791992B (en) 2016-11-23 2021-07-23 广州华睿光电材料有限公司 High polymers, mixtures, compositions and organic electronic devices comprising the same, and monomers for polymerization
CN109963856A (en) 2016-11-25 2019-07-02 默克专利有限公司 Indeno [1,2-B] fluorene derivative and related compound condensed as double benzofurans of the material for organic electroluminescence device (OLED)
CN109963857A (en) 2016-11-25 2019-07-02 默克专利有限公司 2,8- diamino indeno [1,2-B] fluorene derivative and related compound condensed as double benzofurans of the material for organic electroluminescence device (OLED)
WO2018099846A1 (en) 2016-11-30 2018-06-07 Merck Patent Gmbh Compounds having valerolactam structures
WO2018104194A1 (en) 2016-12-05 2018-06-14 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20190086028A (en) 2016-12-05 2019-07-19 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
TW201831468A (en) 2016-12-05 2018-09-01 德商麥克專利有限公司 Nitrogen-containing heterocycles
TWI769198B (en) 2016-12-06 2022-07-01 德商麥克專利有限公司 Preparation process for an electronic device
EP3553152B1 (en) 2016-12-08 2021-02-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Mixture, composition and organic electronic device
CN109790193B (en) * 2016-12-13 2022-03-22 广州华睿光电材料有限公司 Transition metal complex, application thereof, mixture and organic electronic device
JP7091337B2 (en) 2016-12-13 2022-06-27 メルク パテント ゲーエムベーハー Formulation of organic functional materials
CN109790118A (en) 2016-12-13 2019-05-21 广州华睿光电材料有限公司 Conjugated polymer and its application in organic electronic device
WO2018114744A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh A white light emitting solid state light source
WO2018113785A1 (en) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 Polymer containing furan crosslinking group and use thereof
US20200098996A1 (en) 2016-12-22 2020-03-26 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018114882A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Materials for electronic devices
WO2018113786A1 (en) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 Cross-linkable polymer based on diels-alder reaction and use thereof in organic electronic device
CN110049986A (en) 2017-01-04 2019-07-23 默克专利有限公司 Material for organic electroluminescence device
KR102594781B1 (en) 2017-01-23 2023-10-26 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
WO2018138039A1 (en) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazole derivatives
TWI791481B (en) 2017-01-30 2023-02-11 德商麥克專利有限公司 Method for forming an organic electroluminescence (el) element
US11407766B2 (en) 2017-01-30 2022-08-09 Merck Patent Gmbh Materials for organic electroluminescent devices
TWI763772B (en) 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
US20200013960A1 (en) 2017-02-02 2020-01-09 Merck Patent Gmbh Materials for electronic devices
TW201835075A (en) 2017-02-14 2018-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN110268544A (en) 2017-03-01 2019-09-20 默克专利有限公司 Organic electroluminescence device
KR102557516B1 (en) 2017-03-02 2023-07-20 메르크 파텐트 게엠베하 Materials for Organic Electronic Devices
TW201843143A (en) 2017-03-13 2018-12-16 德商麥克專利有限公司 Compounds containing arylamine structures
WO2018166934A1 (en) 2017-03-15 2018-09-20 Merck Patent Gmbh Materials for organic electroluminescent devices
CN110446611B (en) 2017-03-31 2021-05-25 默克专利有限公司 Printing method for Organic Light Emitting Diodes (OLEDs)
KR102632027B1 (en) 2017-04-10 2024-01-31 메르크 파텐트 게엠베하 Formulation of organic functional materials
US11778907B2 (en) 2017-04-13 2023-10-03 Merck Patent Gmbh Composition for organic electronic devices
CN110573515B (en) 2017-04-25 2023-07-25 默克专利有限公司 Compounds for electronic devices
KR20200003068A (en) 2017-05-03 2020-01-08 메르크 파텐트 게엠베하 Formulations of Organic Functional Materials
KR102592391B1 (en) 2017-05-11 2023-10-20 메르크 파텐트 게엠베하 Organoboron complexes for organic electroluminescent devices
KR102592390B1 (en) 2017-05-11 2023-10-20 메르크 파텐트 게엠베하 Carbazole-based bodypiece for organic electroluminescent devices
JP2020520970A (en) 2017-05-22 2020-07-16 メルク パテント ゲーエムベーハー Hexacyclic heteroaromatic compounds for electronic devices
TW201920343A (en) 2017-06-21 2019-06-01 德商麥克專利有限公司 Materials for electronic devices
KR20200020841A (en) 2017-06-23 2020-02-26 메르크 파텐트 게엠베하 Materials for Organic Electroluminescent Devices
EP3645766A1 (en) 2017-06-26 2020-05-06 Merck Patent GmbH Homogeneous mixtures
WO2019002190A1 (en) 2017-06-28 2019-01-03 Merck Patent Gmbh Materials for electronic devices
TWI813576B (en) 2017-07-03 2023-09-01 德商麥克專利有限公司 Formulations with a low content of phenol type impurities
CN110785415A (en) 2017-07-05 2020-02-11 默克专利有限公司 Composition for organic electronic device
JP7247121B2 (en) 2017-07-05 2023-03-28 メルク パテント ゲーエムベーハー Compositions for organic electronic devices
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
TWI779067B (en) 2017-07-28 2022-10-01 德商麥克專利有限公司 Materials for electronic devices
WO2019048443A1 (en) 2017-09-08 2019-03-14 Merck Patent Gmbh Materials for electronic devices
US11370965B2 (en) 2017-09-12 2022-06-28 Merck Patent Gmbh Materials for organic electroluminescent devices
US11325934B2 (en) * 2017-09-29 2022-05-10 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent materials containing tetraphenylene ligands
EP3466954A1 (en) 2017-10-04 2019-04-10 Idemitsu Kosan Co., Ltd. Fused phenylquinazolines bridged with a heteroatom
KR20200066647A (en) 2017-10-06 2020-06-10 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
CN108675975A (en) 2017-10-17 2018-10-19 默克专利有限公司 Material for organic electroluminescence device
EP3700909B1 (en) 2017-10-24 2024-01-24 Merck Patent GmbH Materials for organic electroluminescent devices
TWI785142B (en) 2017-11-14 2022-12-01 德商麥克專利有限公司 Composition for organic electronic devices
US20190157575A1 (en) * 2017-11-17 2019-05-23 Chuanjun Xia Metal complex containing azabenzothiazole
EP4242286A3 (en) 2017-11-23 2023-10-04 Merck Patent GmbH Materials for electronic devices
EP3713945A1 (en) 2017-11-24 2020-09-30 Merck Patent GmbH Materials for organic electroluminescent devices
TWI820057B (en) 2017-11-24 2023-11-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
US11674080B2 (en) 2017-12-14 2023-06-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex, polymer, mixture, formulation and use thereof
US11594690B2 (en) 2017-12-14 2023-02-28 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device
CN111247159A (en) 2017-12-14 2020-06-05 广州华睿光电材料有限公司 Transition metal complex material and application thereof in electronic device
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
US20200308129A1 (en) 2017-12-15 2020-10-01 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
TW201938562A (en) 2017-12-19 2019-10-01 德商麥克專利有限公司 Heterocyclic compounds
EP3728275A1 (en) 2017-12-20 2020-10-28 Merck Patent GmbH Heteroaromatic compounds
TWI811290B (en) 2018-01-25 2023-08-11 德商麥克專利有限公司 Materials for organic electroluminescent devices
JP7247231B2 (en) 2018-02-26 2023-03-28 メルク パテント ゲーエムベーハー Formulation of organic functional material
TW201938761A (en) 2018-03-06 2019-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
TWI802656B (en) 2018-03-06 2023-05-21 德商麥克專利有限公司 Materials for organic electroluminescent devices
US20210020843A1 (en) 2018-03-16 2021-01-21 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2019229011A1 (en) 2018-05-30 2019-12-05 Merck Patent Gmbh Composition for organic electronic devices
WO2019233904A1 (en) 2018-06-07 2019-12-12 Merck Patent Gmbh Organic electroluminescence devices
JP7379389B2 (en) 2018-06-15 2023-11-14 メルク パテント ゲーエムベーハー Formulations of organic functional materials
CN112384595A (en) 2018-07-09 2021-02-19 默克专利有限公司 Material for organic electroluminescent device
WO2020016264A1 (en) 2018-07-20 2020-01-23 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3604477A1 (en) 2018-07-30 2020-02-05 Idemitsu Kosan Co., Ltd. Polycyclic compound, organic electroluminescence device, and electronic device
EP3608319A1 (en) 2018-08-07 2020-02-12 Idemitsu Kosan Co., Ltd. Condensed aza cycles as organic light emitting device and materials for use in same
WO2020043646A1 (en) 2018-08-28 2020-03-05 Merck Patent Gmbh Materials for organic electroluminescent devices
US11466022B2 (en) 2018-08-28 2022-10-11 Merck Patent Gmbh Materials for organic electroluminescent devices
TWI823993B (en) 2018-08-28 2023-12-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
TW202030902A (en) 2018-09-12 2020-08-16 德商麥克專利有限公司 Electroluminescent devices
TWI826522B (en) 2018-09-12 2023-12-21 德商麥克專利有限公司 Electroluminescent devices
JP7459065B2 (en) 2018-09-12 2024-04-01 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
KR20210056432A (en) 2018-09-24 2021-05-18 메르크 파텐트 게엠베하 Method of manufacturing granular material
JP2022502436A (en) 2018-09-27 2022-01-11 メルク パテント ゲーエムベーハー Compounds that can be used as active compounds in organic electronic devices
KR20210065972A (en) 2018-09-27 2021-06-04 메르크 파텐트 게엠베하 Method for producing sterically hindered nitrogen-containing heteroaromatic compound
EP3873887A1 (en) 2018-10-31 2021-09-08 Merck Patent GmbH Materials for organic electroluminescent devices
US11917906B2 (en) 2018-11-05 2024-02-27 Merck Patent Gmbh Compounds that can be used in an organic electronic device
TW202034551A (en) 2018-11-06 2020-09-16 德商麥克專利有限公司 Method for forming an organic element of an electronic device
EP3877373B1 (en) 2018-11-06 2023-01-11 Merck Patent GmbH 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorine and 6-phenyl-6h-dibenzo[c,e][1,2]thiazine-5,5-dioxide derivatives and related compounds as organic electroluminescent materials for oleds
WO2020099349A1 (en) 2018-11-14 2020-05-22 Merck Patent Gmbh Compounds that can be used for producing an organic electronic device
EP3880682B1 (en) 2018-11-15 2023-06-14 Merck Patent GmbH Materials for organic electroluminescent devices
TW202039493A (en) 2018-12-19 2020-11-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
US20220127285A1 (en) 2019-01-16 2022-04-28 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202035345A (en) 2019-01-17 2020-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN113424332A (en) 2019-02-18 2021-09-21 默克专利有限公司 Composition for organic electronic device
US20220127286A1 (en) 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials
US20220162205A1 (en) 2019-03-12 2022-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20210141593A (en) 2019-03-20 2021-11-23 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
CN113614082A (en) 2019-03-25 2021-11-05 默克专利有限公司 Material for organic electroluminescent device
TW202104238A (en) 2019-04-11 2021-02-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
KR20220035467A (en) 2019-07-22 2022-03-22 메르크 파텐트 게엠베하 Method for preparing ortho-metalized metal compounds
EP4021903A1 (en) 2019-08-26 2022-07-06 Merck Patent GmbH Materials for organic electroluminescent devices
CN114341117A (en) 2019-09-02 2022-04-12 默克专利有限公司 Material for organic electroluminescent device
TW202122558A (en) 2019-09-03 2021-06-16 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN114450286A (en) 2019-09-16 2022-05-06 默克专利有限公司 Material of organic electroluminescent device
EP4031638A1 (en) 2019-09-19 2022-07-27 Merck Patent GmbH Mixture of two host materials, and organic electroluminescent device comprising same
EP4031549A1 (en) 2019-09-20 2022-07-27 Merck Patent GmbH Peri-condensed heterocyclic compounds as materials for electronic devices
JP7276059B2 (en) * 2019-10-07 2023-05-18 三菱ケミカル株式会社 Composition for organic electroluminescent device, organic electroluminescent device, display device and lighting device
WO2021078710A1 (en) 2019-10-22 2021-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices
CN114630831A (en) 2019-10-25 2022-06-14 默克专利有限公司 Compounds useful in organic electronic devices
TW202130783A (en) 2019-11-04 2021-08-16 德商麥克專利有限公司 Organic electroluminescent device
KR20220092590A (en) 2019-11-04 2022-07-01 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
TW202134252A (en) 2019-11-12 2021-09-16 德商麥克專利有限公司 Materials for organic electroluminescent devices
TW202136181A (en) 2019-12-04 2021-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
TW202136471A (en) 2019-12-17 2021-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
KR20220116013A (en) 2019-12-18 2022-08-19 메르크 파텐트 게엠베하 Aromatic compounds for organic electroluminescent devices
JP2023506570A (en) 2019-12-19 2023-02-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polycyclic compounds for organic electroluminescent devices
CN115052865A (en) 2020-01-29 2022-09-13 默克专利有限公司 Benzimidazole derivatives
WO2021170522A1 (en) 2020-02-25 2021-09-02 Merck Patent Gmbh Use of heterocyclic compounds in an organic electronic device
EP4115457A1 (en) 2020-03-02 2023-01-11 Merck Patent GmbH Use of sulfone compounds in an organic electronic device
CN115244723A (en) 2020-03-11 2022-10-25 默克专利有限公司 Organic electroluminescent device
WO2021180614A1 (en) 2020-03-11 2021-09-16 Merck Patent Gmbh Organic electroluminescent apparatus
US20230157170A1 (en) 2020-03-17 2023-05-18 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
US20230147279A1 (en) 2020-03-17 2023-05-11 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
CN115244060A (en) 2020-03-23 2022-10-25 默克专利有限公司 Material for organic electroluminescent device
EP4126868A1 (en) 2020-03-24 2023-02-08 Merck Patent GmbH Materials for electronic devices
KR20220158771A (en) 2020-03-26 2022-12-01 메르크 파텐트 게엠베하 Cyclic compounds for organic electroluminescent devices
CN115335382A (en) 2020-04-02 2022-11-11 默克专利有限公司 Material for organic electroluminescent device
US20230183269A1 (en) 2020-04-06 2023-06-15 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
US20230151235A1 (en) 2020-04-21 2023-05-18 Merck Patent Gmbh Formulation of an organic functional material
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
KR20230017816A (en) 2020-05-29 2023-02-06 메르크 파텐트 게엠베하 organic electroluminescent device
US20230234937A1 (en) 2020-06-18 2023-07-27 Merck Patent Gmbh Indenoazanaphthalenes
EP4169082A1 (en) 2020-06-23 2023-04-26 Merck Patent GmbH Method for producing a mixture
EP4165052A1 (en) 2020-06-29 2023-04-19 Merck Patent GmbH Heterocyclic compounds for organic electroluminescent devices
WO2022002772A1 (en) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
WO2022017997A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
EP4193399A2 (en) 2020-08-06 2023-06-14 Merck Patent GmbH Electronic device
WO2022029096A1 (en) 2020-08-06 2022-02-10 Merck Patent Gmbh Materials for organic electroluminescent devices
CN116134113A (en) 2020-08-13 2023-05-16 默克专利有限公司 Metal complex
KR20230053629A (en) 2020-08-18 2023-04-21 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
EP4200289A1 (en) 2020-08-19 2023-06-28 Merck Patent GmbH Materials for organic electroluminescent devices
TW202229215A (en) 2020-09-30 2022-08-01 德商麥克專利有限公司 Compounds for structuring of functional layers of organic electroluminescent devices
TW202222748A (en) 2020-09-30 2022-06-16 德商麥克專利有限公司 Compounds usable for structuring of functional layers of organic electroluminescent devices
KR20230088748A (en) 2020-10-16 2023-06-20 메르크 파텐트 게엠베하 Compounds Containing Heteroatoms for Organic Electroluminescent Devices
US20230389423A1 (en) 2020-10-16 2023-11-30 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2022101171A1 (en) 2020-11-10 2022-05-19 Merck Patent Gmbh Sulfurous compounds for organic electroluminescent devices
EP4255905A1 (en) 2020-12-02 2023-10-11 Merck Patent GmbH Heterocyclic compounds for organic electroluminescent devices
CN116635491A (en) 2020-12-08 2023-08-22 默克专利有限公司 Ink system and method for inkjet printing
EP4259628A2 (en) 2020-12-10 2023-10-18 Merck Patent GmbH Materials for organic electroluminescent devices
TW202241899A (en) 2020-12-18 2022-11-01 德商麥克專利有限公司 Aromatic compounds for organic electroluminescent devices
EP4263746A1 (en) 2020-12-18 2023-10-25 Merck Patent GmbH Nitrogenous heteroaromatic compounds for organic electroluminescent devices
US20240124769A1 (en) 2020-12-18 2024-04-18 Merck Patent Gmbh Nitrogenous compounds for organic electroluminescent devices
JP2024502093A (en) 2021-01-05 2024-01-17 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
CN116710454A (en) 2021-01-25 2023-09-05 默克专利有限公司 Nitrogen-containing compounds for organic electroluminescent devices
KR20230154439A (en) 2021-03-02 2023-11-08 메르크 파텐트 게엠베하 Compounds for organic electroluminescent devices
CN117043302A (en) 2021-03-18 2023-11-10 默克专利有限公司 Heteroaromatic compounds for organic electroluminescent devices
KR20240000559A (en) 2021-04-23 2024-01-02 메르크 파텐트 게엠베하 Formulation of organic functional materials
WO2022229126A1 (en) 2021-04-29 2022-11-03 Merck Patent Gmbh Materials for organic electroluminescent devices
CN117279902A (en) 2021-04-29 2023-12-22 默克专利有限公司 Material for organic electroluminescent device
EP4330257A1 (en) 2021-04-30 2024-03-06 Merck Patent GmbH Nitrogenous heterocyclic compounds for organic electroluminescent devices
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2022200638A1 (en) 2021-07-06 2022-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023041454A1 (en) 2021-09-14 2023-03-23 Merck Patent Gmbh Boronic heterocyclic compounds for organic electroluminescent devices
WO2023052313A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
WO2023052272A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
WO2023052275A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
WO2023052314A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
TW202349760A (en) 2021-10-05 2023-12-16 德商麥克專利有限公司 Method for forming an organic element of an electronic device
WO2023072799A1 (en) 2021-10-27 2023-05-04 Merck Patent Gmbh Boronic and nitrogenous heterocyclic compounds for organic electroluminescent devices
WO2023094412A1 (en) 2021-11-25 2023-06-01 Merck Patent Gmbh Materials for electronic devices
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
WO2023110742A1 (en) 2021-12-13 2023-06-22 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117837A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Process for preparing deuterated organic compounds
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023152063A1 (en) 2022-02-09 2023-08-17 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023152346A1 (en) 2022-02-14 2023-08-17 Merck Patent Gmbh Materials for electronic devices
WO2023161168A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatic hetreocycles for organic electroluminescent devices
WO2023161167A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Nitrogenous heterocycles for organic electroluminescent devices
WO2023213837A1 (en) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2023222559A1 (en) 2022-05-18 2023-11-23 Merck Patent Gmbh Process for preparing deuterated organic compounds
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2023247662A1 (en) 2022-06-24 2023-12-28 Merck Patent Gmbh Composition for organic electronic devices
WO2023247663A1 (en) 2022-06-24 2023-12-28 Merck Patent Gmbh Composition for organic electronic devices
WO2024013004A1 (en) 2022-07-11 2024-01-18 Merck Patent Gmbh Materials for electronic devices
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024061942A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing compounds for organic electroluminescent devices
WO2024061948A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing hetreocycles for organic electroluminescent devices

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238808A (en) * 1984-10-31 1993-08-24 Igen, Inc. Luminescent metal chelate labels and means for detection
US5112974A (en) 1985-01-18 1992-05-12 The Trustees Of Columbia University In The City Of New York Mixed ligand complexes and uses thereof as binding agents to DNA
JP2788531B2 (en) * 1990-04-03 1998-08-20 三井化学株式会社 Organic complex light emitting device
US5840897A (en) * 1990-07-06 1998-11-24 Advanced Technology Materials, Inc. Metal complex source reagents for chemical vapor deposition
US6017696A (en) * 1993-11-01 2000-01-25 Nanogen, Inc. Methods for electronic stringency control for molecular biological analysis and diagnostics
JPH07133481A (en) * 1992-12-18 1995-05-23 Toyo Ink Mfg Co Ltd Organic electroluminescence element
JP3332491B2 (en) 1993-08-27 2002-10-07 三洋電機株式会社 Organic EL device
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5707745A (en) * 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
WO1996021006A1 (en) 1995-01-06 1996-07-11 The Regents Of The University Of California Novel phosphoprotein secreted in the extracellular matrices of mammalian organs and methods for use thereof
KR100229101B1 (en) 1995-12-28 1999-11-01 유무성 Apparatus and method of eye-red illuminant control for camera
AU3487197A (en) 1996-06-12 1998-01-07 Trustees Of Princeton University, The Patterning of thin films for the fabrication of organic multi-color displays
US6259202B1 (en) 1996-06-12 2001-07-10 The Trustees Of Princeton University Plasma treatment of conductive layers
US6048630A (en) 1996-07-02 2000-04-11 The Trustees Of Princeton University Red-emitting organic light emitting devices (OLED's)
US5844363A (en) 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US5834893A (en) 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6013982A (en) 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US5811833A (en) 1996-12-23 1998-09-22 University Of So. Ca Electron transporting and light emitting layers based on organic free radicals
US5986401A (en) 1997-03-20 1999-11-16 The Trustee Of Princeton University High contrast transparent organic light emitting device display
US5874803A (en) 1997-09-09 1999-02-23 The Trustees Of Princeton University Light emitting device with stack of OLEDS and phosphor downconverter
US6046543A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University High reliability, high efficiency, integratable organic light emitting devices and methods of producing same
US5861219A (en) 1997-04-15 1999-01-19 The Trustees Of Princeton University Organic light emitting devices containing a metal complex of 5-hydroxy-quinoxaline as a host material
US6045930A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University Materials for multicolor light emitting diodes
US6091195A (en) 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6125226A (en) 1997-04-18 2000-09-26 The Trustees Of Princeton University Light emitting devices having high brightness
US5917280A (en) 1997-02-03 1999-06-29 The Trustees Of Princeton University Stacked organic light emitting devices
US5757139A (en) 1997-02-03 1998-05-26 The Trustees Of Princeton University Driving circuit for stacked organic light emitting devices
US6111902A (en) 1997-05-09 2000-08-29 The Trustees Of Princeton University Organic semiconductor laser
EP0980595B1 (en) 1997-05-09 2004-10-27 The Trustees of Princeton University Organic lasers
US5932895A (en) 1997-05-20 1999-08-03 The Trustees Of Princeton University Saturated full color stacked organic light emitting devices
US7314711B2 (en) * 1997-05-23 2008-01-01 Bioveris Corporation Assays employing electrochemiluminescent labels and electrochemiluminescence quenchers
GB9712483D0 (en) * 1997-06-17 1997-08-20 Kathirgamanathan Poopathy Fabrication of light emitting devices from chelates of transition metals, lanthanides and actinides
JPH11256148A (en) * 1998-03-12 1999-09-21 Oki Electric Ind Co Ltd Luminous material and organic el element using the same
AU5004700A (en) * 1999-05-13 2000-12-05 Trustees Of Princeton University, The Very high efficiency organic light emitting devices based on electrophosphorescence
CN1840607B (en) * 1999-12-01 2010-06-09 普林斯顿大学理事会 Complexes of form l2mx as phosphorescent dopants for organic LEDs
WO2001091203A2 (en) 2000-05-22 2001-11-29 Showa Denko K. K. Organic electroluminescent device and light-emitting material
US20020121638A1 (en) * 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN101924190B (en) * 2000-08-11 2012-07-04 普林斯顿大学理事会 Organometallic compounds and emission-shifting organic electrophosphorescence
US8345655B2 (en) 2007-04-30 2013-01-01 Apple Inc. Techniques for improving control channel acquisition in a wireless communication system
WO2009074286A2 (en) 2007-12-10 2009-06-18 Ratiopharm Gmbh Pharmaceutical formulation comprising ezetimibe
US8838099B2 (en) 2008-03-11 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) System and method for using subscriber role information in a mobile communication system
US8547910B2 (en) 2008-06-26 2013-10-01 Qualcomm Incorporated Fair resource sharing in wireless communications
CN102405439B (en) 2009-02-19 2014-10-22 株式会社理光 Camera body, imaging unit mounted/removed on/from the camera body and imaging apparatus
CA2663119A1 (en) 2009-04-16 2010-10-16 Sulphur Solutions Inc. Dispersible sulphur fertilizer pellets
AU2010276578A1 (en) 2009-07-27 2012-02-02 Merck Sharpe & Dohme, Corp. Diaphragm valve with improved sealing performance and leak detection
US8771815B2 (en) 2009-12-17 2014-07-08 Exxonmobil Research And Engineering Company Process for making triglyceride plasticizer
AU2011204267B2 (en) 2010-01-08 2015-12-03 Zafgen Corporation Fumagillol type compounds and methods of making and using same
US8859468B2 (en) 2010-03-12 2014-10-14 The Johns Hopkins University Hypermethylation biomarkers for detection of cervical cancer
US8774087B2 (en) 2010-03-26 2014-07-08 T-Mobile Usa, Inc. Signaling message prioritization
JP5573415B2 (en) 2010-06-29 2014-08-20 富士通株式会社 Information terminal, information processing method, and computer program
WO2012033815A1 (en) 2010-09-09 2012-03-15 Rutgers, The State University Of New Jersey Arylpropionyl-alpha-pyrone antibacterial agents
US8774333B2 (en) 2010-10-31 2014-07-08 Mediatek Inc. Signal processing apparatus and related method for generating target estimated signal of specific signal component in input signal
WO2012165426A1 (en) 2011-05-30 2012-12-06 オリンパスメディカルシステムズ株式会社 Antenna device, antenna and antenna holder
CN202205653U (en) 2011-08-23 2012-04-25 合利美股份有限公司 Water level sensing switch
CN103015552B (en) 2011-09-22 2014-11-05 同济大学 Shock and breakage preventive deformation recording type buckling restrained brace and manufacturing method thereof
WO2013129871A1 (en) 2012-02-29 2013-09-06 엘지전자 주식회사 Method for reducing inter-cell interference in cooperative multi-cell wireless communication system, and apparatus for same
CN103376058A (en) 2012-04-28 2013-10-30 鸿富锦精密工业(深圳)有限公司 Temperature compensation system and method
US9203624B2 (en) 2012-06-04 2015-12-01 Apple Inc. Authentication and notification heuristics
CN103793217B (en) 2012-10-31 2017-03-01 国际商业机器公司 Method and system for software rapid configuration
US9145315B2 (en) 2013-03-01 2015-09-29 Paradigm Environmental Technologies Inc. Wastewater treatment process and system

Also Published As

Publication number Publication date
ATE484852T1 (en) 2010-10-15
JP2014170969A (en) 2014-09-18
KR100840637B1 (en) 2008-06-24
JP2003515897A (en) 2003-05-07
JP4357781B2 (en) 2009-11-04
JP2010070764A (en) 2010-04-02
EP1933395A1 (en) 2008-06-18
KR20080103112A (en) 2008-11-26
JP2018142707A (en) 2018-09-13
EP1252803B1 (en) 2010-10-13
AU1807201A (en) 2001-06-12
EP3379591A1 (en) 2018-09-26
JP2009224795A (en) 2009-10-01
ATE511222T1 (en) 2011-06-15
KR100946314B1 (en) 2010-03-09
JP5642753B2 (en) 2014-12-17
KR20080027968A (en) 2008-03-28
JP6117146B2 (en) 2017-04-19
EP2911211B1 (en) 2018-05-02
DE60045110D1 (en) 2010-11-25
CN1413426A (en) 2003-04-23
EP1933395B1 (en) 2011-05-25
TW581762B (en) 2004-04-01
KR20020070299A (en) 2002-09-05
EP1252803B2 (en) 2015-09-02
CN1840607B (en) 2010-06-09
EP2270895A2 (en) 2011-01-05
JP2005344124A (en) 2005-12-15
JP2016129232A (en) 2016-07-14
TWI300092B (en) 2008-08-21
KR100890980B1 (en) 2009-03-27
KR100794975B1 (en) 2008-01-16
EP2278637A1 (en) 2011-01-26
EP1252803A4 (en) 2003-04-16
JP5791869B2 (en) 2015-10-07
EP2278637B2 (en) 2021-06-09
JP4358168B2 (en) 2009-11-04
EP2278637B1 (en) 2015-02-25
JP6639546B2 (en) 2020-02-05
KR100937470B1 (en) 2010-01-19
CN1224297C (en) 2005-10-19
KR20090122930A (en) 2009-12-01
TW200407054A (en) 2004-05-01
JP2013012777A (en) 2013-01-17
EP2911211A1 (en) 2015-08-26
EP1933395B2 (en) 2019-08-07
EP1252803A1 (en) 2002-10-30
KR20070087061A (en) 2007-08-27
EP2270895A3 (en) 2011-03-30
WO2001041512A1 (en) 2001-06-07
CN1840607A (en) 2006-10-04
JP2018093223A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6639544B2 (en) L2MX-type complexes as phosphorescent dopants for organic LEDs
US6830828B2 (en) Organometallic complexes as phosphorescent emitters in organic LEDs
US8574726B2 (en) Organometallic complexes as phosphorescent emitters in organic LEDs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R150 Certificate of patent or registration of utility model

Ref document number: 6639544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term