JP2003007467A - Organic electroluminescence element - Google Patents

Organic electroluminescence element

Info

Publication number
JP2003007467A
JP2003007467A JP2001184995A JP2001184995A JP2003007467A JP 2003007467 A JP2003007467 A JP 2003007467A JP 2001184995 A JP2001184995 A JP 2001184995A JP 2001184995 A JP2001184995 A JP 2001184995A JP 2003007467 A JP2003007467 A JP 2003007467A
Authority
JP
Japan
Prior art keywords
chemical formula
chemical
formula
group
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001184995A
Other languages
Japanese (ja)
Inventor
Hodaka Tsuge
穂高 柘植
Akihiro Komatsuzaki
明広 小松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001184995A priority Critical patent/JP2003007467A/en
Publication of JP2003007467A publication Critical patent/JP2003007467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescence element, which has high luminescence efficiency, by making luminescence of high luminosity possible. SOLUTION: Concerning to the organic electroluminescense element, which has a luminescence layer, which is formed between both electrode layers of a positive electrode layer and a negative electrode layer, and has a host agent and a dope agent, which emits phosphorescence, a bipolar nature is provided by using oxadiazole group expressed with formula 1 or an electron transportation nature substance, which has triazole group expressed with formula 2, and using an electron hole transportation nature substance, which has carbazolyl group expressed with formula 3, as a host agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高輝度での発光が
可能な有機エレクトロルミネッセンス素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device capable of emitting light with high brightness.

【0002】[0002]

【従来の技術】従来、米国特許第6097147号によ
り、燐光を放射する物質を含有する発光層を備えた多層
積層構造で形成された有機エレクトロルミネッセンス素
子が知られている。
2. Description of the Related Art Conventionally, from US Pat. No. 6,097,147, there is known an organic electroluminescence device having a multi-layered structure having a light emitting layer containing a substance emitting phosphorescence.

【0003】このものでは、励起一重項状態による発
光、即ち、蛍光のみを利用して発光させる場合の内部量
子効率の理論的限界が25%であるのに対し、燐光によ
る発光は、三重項状態の励起エネルギーが発光に寄与す
るため内部量子効率の理論的限界を100%と考えてよ
い。このため、駆動電圧に対する発光輝度で定義される
発光効率の向上が期待できる。
In this case, the theoretical limit of the internal quantum efficiency in the case of light emission by the excited singlet state, that is, in the case of emitting light only by using fluorescence, is 25%, whereas the light emission by phosphorescence is in the triplet state. Since the excitation energy of 1 contributes to light emission, the theoretical limit of the internal quantum efficiency may be considered to be 100%. Therefore, it can be expected that the light emission efficiency defined by the light emission luminance with respect to the drive voltage is improved.

【0004】ところで、上記従来例の実施の態様では、
発光層中のホスト剤として、[化24]に示すカルバゾ
ールビフェニル(以下CBPともいう。)を用い、ま
た、発光層中のドープ剤として、
By the way, in the embodiment of the above-mentioned conventional example,
Carbazole biphenyl (hereinafter also referred to as CBP) shown in [Chemical Formula 24] was used as a host agent in the light emitting layer, and as a doping agent in the light emitting layer,

【0005】[0005]

【化29】 [Chemical 29]

【0006】[化29]に示す2,3,7,8,12,
13,17,18−オクタエチル−21H,23H−白
金(II)ポルフィン(以下PtOEPとも言う。)を用
い、ホスト剤たるCBPを励起子として作用させてドー
プ剤たるPtOEPに燐光を放射させている。
2, 3, 7, 8, 12, shown in [Chemical Formula 29]
Using 13,17,18-octaethyl-21H, 23H-platinum (II) porphine (hereinafter also referred to as PtOEP), CBP as a host agent acts as an exciton to cause PtOEP as a dopant to emit phosphorescence.

【0007】ところが、上記CBPは、構造中に有する
カルバゾリル基に起因して正孔移動性を有する。このた
め、陽極層と陰極層の各電極層からそれぞれ注入される
正孔と電子とが再結合するときのエネルギーを受容して
励起子として挙動する際に、本来は発光層中に拡散すべ
きホスト剤たるCBPが、発光層中の陰極層側に偏在す
ることになる。これに伴い、発光領域も発光層に隣接す
る陰極層側の薄膜層(正孔ブロック層や電子輸送層な
ど)との界面部分に集中し、発光輝度が充分に得られな
いことがある。このような不具合は、有機エレクトロル
ミネッセンス素子の駆動電圧が高くなると特に顕著とな
り、量子効率の低下として示される。そして、これが所
期の発光効率の向上を阻害する要因になる。
However, the CBP has hole mobility due to the carbazolyl group contained in the structure. Therefore, when the holes and electrons injected from the respective electrode layers of the anode layer and the cathode layer recombine with each other and act as excitons, they should originally diffuse into the light emitting layer. CBP, which is a host agent, is unevenly distributed on the cathode layer side in the light emitting layer. Along with this, the light emitting region is also concentrated at the interface portion with the thin film layer (hole blocking layer, electron transporting layer, etc.) on the cathode layer side adjacent to the light emitting layer, and sufficient emission brightness may not be obtained. Such a problem becomes particularly noticeable as the driving voltage of the organic electroluminescence element increases, and is shown as a decrease in quantum efficiency. Then, this becomes a factor that hinders the desired improvement of the luminous efficiency.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、高輝度の発光を可能にして、高い発光効率を有
する有機エレクトロルミネッセンス素子を提供すること
を課題としている。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide an organic electroluminescence device which enables high brightness light emission and has high light emission efficiency.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、陽極層及び陰極層の両電極層間に形成さ
れ、ホスト剤と燐光を放射するドープ剤とを有する発光
層を具備する有機エレクトロルミネッセンス素子におい
て、前記ホスト剤が、バイポーラ性、即ち、ラジカルカ
チオン化及びラジカルアニオン化の複極性を有するよう
に構成する。このものは、正孔移動性と電子移動性との
両方を有するため、発光層中の特定界面側に集中せず、
発光輝度を向上することができる。
In order to solve the above problems, the present invention comprises a light emitting layer formed between both electrode layers of an anode layer and a cathode layer and having a host agent and a dopant emitting phosphorescence. In the organic electroluminescence device, the host agent is constructed so as to have a bipolar property, that is, have a dual polarity of radical cationization and radical anionization. Since this one has both hole mobility and electron mobility, it does not concentrate on the specific interface side in the light emitting layer,
The emission brightness can be improved.

【0010】また、この場合、前記ホスト剤として、正
孔輸送性物質と電子輸送性物質とを用いれば、バイポー
ラ性、即ち、ラジカルカチオン化及びラジカルアニオン
化し易い複極性をホスト剤に確実に具備できる。
Further, in this case, if a hole transporting substance and an electron transporting substance are used as the host agent, the host agent is surely provided with a bipolar property, that is, a double polarity which easily forms radical cation and radical anion. it can.

【0011】さらに、この場合、ホスト剤に用いる電子
輸送性物質は、構造式[化1]で表されるオキサジアゾ
ール基を有する化合物から成ることが好適である。
Further, in this case, the electron transporting substance used as the host agent is preferably composed of a compound having an oxadiazole group represented by the structural formula [Chemical Formula 1].

【0012】そして、上記[化1]で表されるオキサジ
アゾール基を有する化合物としては、 [化2] に示す2
−(4−ビフェニリル)−5−(4−tert−ブチル
フェニル)−1,3,4−オキサジアゾール、(以下P
BDともいう。)、[化3]に示す2,5−ビス(1−
ナフチル)−1.3.4−オキサジアゾール(以下にB
NDともいう。)、[化4]に示す2,5−ビス(4−
ビフェニリル)−1,3,4−オキサジアゾール(以下
BBDともいう。)、[化5]に示す1,3,5−トリ
(5−(4−tert−ブチルフェニル)−1,3,4
−オキサジアゾール)フェニル(以下OXD−1ともい
う。)、[化6]に示す1,3―ジ(5−(4−ter
t−ブチルフェニル)−1,3,4−オキサジアゾー
ル)フェニル(以下OXD−7ともいう。)、または、
[化7]若しくは[化8]で表されるオキサジアゾール
系高分子化合物のうち一種類以上を用いることが可能で
ある。
As a compound having an oxadiazole group represented by the above [Chemical formula 1], a compound represented by the following [Chemical formula 2]
-(4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, (hereinafter P
Also called BD. ), 2,5-bis (1-
Naphthyl) -1.3.4-oxadiazole (hereinafter B
Also called ND. ), 2,5-bis (4-
Biphenylyl) -1,3,4-oxadiazole (hereinafter also referred to as BBD), 1,3,5-tri (5- (4-tert-butylphenyl) -1,3,4 shown in [Chemical Formula 5]
-Oxadiazole) phenyl (hereinafter also referred to as OXD-1), 1,3-di (5- (4-ter) shown in [Chemical Formula 6]
t-butylphenyl) -1,3,4-oxadiazole) phenyl (hereinafter also referred to as OXD-7), or
It is possible to use one or more of the oxadiazole-based polymer compounds represented by [Chemical Formula 7] or [Chemical Formula 8].

【0013】また、ホスト剤に用いる電子輸送性物質と
して、構造式[化9]で表されるトリアゾール基を有す
る化合物を用いることも好適である。
It is also preferable to use a compound having a triazole group represented by the structural formula [Chem. 9] as the electron transporting substance used as the host agent.

【0014】そして、上記[化9]で表されるトリアゾ
ール基を有する化合物としては、[化10]に示す3−
(4−ビフェニリル)−5−(4−tert−ブチルフ
ェニル)−4−フェニル−1,2,4−トリアゾール
(以下、TAZともいう。)、[化11]に示す3,
4,5―トリ(1−ナフチル)―1,2,4―トリアゾ
ール、[化12]に示す3,5−ジ(4−ビフェニリ
ル)−4−フェニル―1,2,4―トリアゾール、[化
13]に示す4−(1−ナフチル)―3,5―ジフェニ
ル−1,2,4―トリアゾール、[化14]に示す1,
3,5―トリ(5−(4−tert−ブチルフェニル)
―1−フェニル−1,3,4−トリアゾール)フェニ
ル、[化15]に示す1,3―ジ(5−(4−tert
−ブチルフェニル)−1−フェニル−1,3,4―トリ
アゾール)フェニル、または、[化16]乃至[化1
8]の一般式で示されるトリアゾール系高分子化合物の
うち一種類以上を用いることが可能である。
The compound having a triazole group represented by the above [Chemical formula 9] is represented by the following [Chemical formula 10]:
(4-biphenylyl) -5- (4-tert-butylphenyl) -4-phenyl-1,2,4-triazole (hereinafter also referred to as TAZ), 3, shown in [Chemical Formula 11]
4,5-tri (1-naphthyl) -1,2,4-triazole, 3,5-di (4-biphenylyl) -4-phenyl-1,2,4-triazole shown in [Chemical Formula 12], 13-] 4- (1-naphthyl) -3,5-diphenyl-1,2,4-triazole shown in [Chemical Formula 14]
3,5-tri (5- (4-tert-butylphenyl)
-1-Phenyl-1,3,4-triazole) phenyl, 1,3-di (5- (4-tert) shown in [Chemical Formula 15]
-Butylphenyl) -1-phenyl-1,3,4-triazole) phenyl, or [Chemical Formula 16] to [Chemical Formula 1]
It is possible to use one or more of the triazole-based polymer compounds represented by the general formula [8].

【0015】また、これらの電子輸送性物質に対して、
ホスト剤に用いる正孔輸送性物質として、構造式[化1
9]で表されるカルバゾリル基を有する化合物を用いる
ことが好適である。
Further, for these electron transporting substances,
As the hole-transporting substance used for the host agent,
It is preferable to use a compound having a carbazolyl group represented by [9].

【0016】そして、上記カルバゾリル基を有する化合
物として、[化20]で示すカルバゾール、[化21]
で示すNメチルカルバゾール、[化22]で示すNビニ
ルカルバゾール、[化23]で示すNフェニルカルバゾ
ール、[化24]で示すCBP、[化25]で示すポリ
(N−ビニルカルバゾール)(以下PVKともい
う。)、一般式[化26]で示されるポリカルバゾール
化合物のうち一種類以上を用いることが可能である。
As the compound having a carbazolyl group, carbazole represented by [Chemical Formula 20], [Chemical Formula 21]
N methylcarbazole represented by [Chemical Formula 22], N vinylcarbazole represented by [Chemical Formula 23], N phenylcarbazole represented by [Chemical Formula 24], CBP represented by [Chemical Formula 24], poly (N-vinylcarbazole) represented by [Chemical Formula 25] (hereinafter PVK It is also possible to use one or more of the polycarbazole compounds represented by the general formula [Chemical Formula 26].

【0017】また、上記のようにバイポーラ性を有する
ホスト剤に対して、燐光を放射するドープ剤として一般
式[化27]または[化28]に示される化合物を用い
ると、このようなドープ剤は、発光層中に拡散・分散さ
れているホスト剤に励起されて燐光を放射するので、こ
れらのホスト剤とドープ剤とを有する発光層を備える有
機エレクトロルミネッセンス素子では、発光領域が偏在
せずに高輝度の発光が得られる。
When a compound represented by the general formula [Chemical formula 27] or [Chemical formula 28] is used as a phosphorescent emitting dopant for the host agent having a bipolar property as described above, such a dopant is used. Emits phosphorescence when excited by a host agent that is diffused / dispersed in the light-emitting layer, so that in an organic electroluminescent element including a light-emitting layer having these host agent and dopant, the light-emitting region is not unevenly distributed. Highly bright light can be obtained.

【0018】[0018]

【発明の実施の形態】図1は、発光効率の向上を目的と
して多層に積層された素子構造を有する有機エレクトロ
ルミネッセンス素子の基本構造を示す。有機エレクトロ
ルミネッセンス素子の素子構造は、図外の基板上に形成
された陽極層10に、正孔輸送層20、電子ブロック層
30、発光層40、正孔ブロック層50及び電子輸送層
60の各薄膜層が、陽極層10と陰極層70との両電極
層間で順次積層されて成る多層積層構造であり、発光層
40は、発光層ドープ剤41と発光層ホスト剤42とを
有して構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a basic structure of an organic electroluminescence device having a device structure laminated in multiple layers for the purpose of improving luminous efficiency. The element structure of the organic electroluminescence element is such that each of the hole transport layer 20, the electron block layer 30, the light emitting layer 40, the hole block layer 50, and the electron transport layer 60 is formed on the anode layer 10 formed on a substrate (not shown). The thin film layer has a multi-layered structure in which the anode layer 10 and the cathode layer 70 are sequentially laminated between both electrode layers, and the light emitting layer 40 includes a light emitting layer doping agent 41 and a light emitting layer host agent 42. Has been done.

【0019】図1で示される素子構造において、陽極層
10は、例えばガラス基板のような透明絶縁性支持体に
形成された透明な導電性物質が用いられ、その材料とし
ては、酸化錫、酸化インジウム、酸化錫インジウム(I
TO)などの導電性酸化物、あるいは、金、銀、クロム
などの金属、よう化銅、硫化銅などの無機導電性物質、
ポリチオフェン、ポリピロール、ポリアニリン等の導電
性ポリマーなどを用いることができる。
In the element structure shown in FIG. 1, for the anode layer 10, a transparent conductive substance formed on a transparent insulating support such as a glass substrate is used, and its material is tin oxide or oxide. Indium, indium tin oxide (I
Conductive oxides such as TO) or metals such as gold, silver and chromium, inorganic conductive substances such as copper iodide and copper sulfide,
Conductive polymers such as polythiophene, polypyrrole, and polyaniline can be used.

【0020】また、陰極層70が透明な材料で形成され
ている場合には、陽極層10は不透明な材料で形成され
ても良い。
When the cathode layer 70 is made of a transparent material, the anode layer 10 may be made of an opaque material.

【0021】また、図1で示される素子構造において、
陰極層70には、リチウム、ナトリウム、カリウム、ル
ビジウム、セシウム、マグネシウム、カルシウム、スト
ロンチウム、バリウム、硼素、アルミニウム、銅、銀、
金などの単体または合金が使用できる。さらに、これら
を積層して使用することもできる。また、テトラヒドロ
アルミン酸塩により湿式で形成することもできる。この
場合、陰極層70に用いられるテトラヒドロアルミン酸
塩としては、特に、水素化アルミニウムリチウム、水素
化アルミニウムカリウム、水素化アルミニウムマグネシ
ウム、水素化アルミニウムカルシウムを挙げることがで
きる。この中で、水素化アルミニウムリチウムが、特に
電子輸送層への電子注入性に優れている。
In addition, in the device structure shown in FIG.
The cathode layer 70 includes lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, boron, aluminum, copper, silver,
A simple substance such as gold or an alloy can be used. Further, these may be laminated and used. It can also be formed by a wet process using tetrahydroaluminate. In this case, examples of the tetrahydroaluminate used for the cathode layer 70 include lithium aluminum hydride, potassium aluminum hydride, magnesium aluminum hydride, and aluminum calcium hydride. Among these, lithium aluminum hydride is particularly excellent in the electron injection property into the electron transport layer.

【0022】また、正孔輸送層20は、陽極層10から
注入される正孔を輸送するための層であり、正孔輸送性
有機物を含む有機層である。正孔輸送層性有機物の例と
して、[化25]で示すPVK、[化26]で示すポリ
カルバゾール化合物、
The hole transport layer 20 is a layer for transporting holes injected from the anode layer 10, and is an organic layer containing a hole transporting organic substance. As an example of the hole transport layer organic compound, PVK represented by [Chemical Formula 25], a polycarbazole compound represented by [Chemical Formula 26],

【0023】[0023]

【化30】 [Chemical 30]

【0024】[化30]に示すポリ(パラ−フェニレン
ビニレン)、
Poly (para-phenylene vinylene) shown in [Chemical Formula 30],

【0025】[0025]

【化31】 [Chemical 31]

【0026】[化31]で示されるN―フェニルポリカル
バゾールなどの高分子からなることが好ましい。あるい
は、[化20]で示すカルバゾール、[化21]で示す
Nメチルカルバゾール、[化22]で示すNビニルカル
バゾール、[化23]で示すNフェニルカルバゾール、
[化24]で示すCBP、
It is preferably composed of a polymer such as N-phenylpolycarbazole represented by the chemical formula [31]. Alternatively, carbazole represented by [Chemical Formula 20], N methylcarbazole represented by [Chemical Formula 21], N vinylcarbazole represented by [Chemical Formula 22], N phenylcarbazole represented by [Chemical Formula 23],
CBP shown in [Chemical 24],

【0027】[0027]

【化32】 [Chemical 32]

【0028】[化32]に示すN,N’−ジフェニル−
N,N’−ビス(3−メチルフェニル)−1,1’−ビ
フェニル−4,4’−ジアミン(以下TPDともい
う。)、
N, N'-diphenyl-shown in [Chemical Formula 32]
N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (hereinafter also referred to as TPD),

【0029】[0029]

【化33】 [Chemical 33]

【0030】[化33]に示すN,N’−ジフェニル−
N,N’−ビス(1−ナフチル)―1,1’−ビフェニ
ル−4,4’−ジアミン(以下、NPDとも言う。)
N, N'-diphenyl-shown in [Chemical Formula 33]
N, N′-bis (1-naphthyl) -1,1′-biphenyl-4,4′-diamine (hereinafter, also referred to as NPD)

【0031】[0031]

【化34】 [Chemical 34]

【0032】[化34]に示す4,4’−ビス(10−
フェノチアジニル)ビフェニル、
4,4'-bis (10-
Phenothiazinyl) biphenyl,

【0033】[0033]

【化35】 [Chemical 35]

【0034】[化35]に示すカッパーフタロシアニン
等が挙げられる。
Examples include copper phthalocyanine shown in [Chemical Formula 35].

【0035】また、電子ブロック層30は、陰極層70
から発光層40へ注入された電子がそのまま陽極層10
へ通過してしまうことを防ぐため電子をブロックするた
めの層であり、電子ブロック性物質で構成される。電子
ブロック性物質としては、例えば、[化25]で示すPV
K、[化30]で示されるポリ(パラ−フェニレンビニレ
ン)、[化24]で示されるCBP、[化32]で示さ
れるTPD、[化33]で示されるNPD、[化34]で
示される4,4’−ビス(10−フェノチアジニル)ビ
フェニル、
Further, the electron block layer 30 is the cathode layer 70.
Electrons injected into the light emitting layer 40 from the anode layer 10 as they are.
It is a layer for blocking electrons in order to prevent it from passing through, and is composed of an electron blocking substance. As the electron blocking substance, for example, PV shown in [Chemical Formula 25]
K, poly (para-phenylene vinylene) represented by [Chemical Formula 30], CBP represented by [Chemical Formula 24], TPD represented by [Chemical Formula 32], NPD represented by [Chemical Formula 33], represented by [Chemical Formula 34] 4,4′-bis (10-phenothiazinyl) biphenyl,

【0036】[0036]

【化36】 [Chemical 36]

【0037】[化36]に示す2,4,6−トリフェニル
−1,3,5−トリアゾール、
2,4,6-triphenyl-1,3,5-triazole represented by the formula:

【0038】[0038]

【化37】 [Chemical 37]

【0039】[化37]に示すフローレン、などを挙げる
ことができる。
Examples thereof include Florene shown in [Chemical Formula 37].

【0040】また、発光層40はドープ剤41とホスト
剤42とを有し、これらドープ剤41とホスト剤42と
を均一に分散させるため、バインダ高分子を添加するこ
とも可能である。
Further, the light emitting layer 40 has a doping agent 41 and a host agent 42, and in order to disperse the doping agent 41 and the host agent 42 uniformly, it is possible to add a binder polymer.

【0041】ホスト剤42は、陽極層10及び陰極層7
0からそれぞれ注入された正孔と電子とが発光層40に
おいて再結合する際に賦活されて励起子として作用する
物質であり、[化2] に示すPBD、[化3]に示すB
ND、[化4]に示すBBD、[化5]に示すOXD−
1、[化6]に示すOXD−7、または、[化7]若し
くは[化8]で表されるオキサジアゾール系高分子化合
物、[化10]に示すTAZ、[化11]に示す3,
4,5―トリ(1−ナフチル)―1,2,4―トリアゾ
ール、[化12]に示す3,5−ジ(4−ビフェニリ
ル)−4−フェニル―1,2,4―トリアゾール、[化
13]に示す4−(1−ナフチル)―3,5―ジフェニ
ル−1,2,4―トリアゾール、[化14]に示す1,
3,5―トリ(5−(4−tert−ブチルフェニル)
―1−フェニル−1,3,4−トリアゾール)フェニ
ル、[化15]に示す1,3―ジ(5−(4−tert
−ブチルフェニル)−1−フェニル−1,3,4―トリ
アゾール)フェニル、
The host agent 42 is used for the anode layer 10 and the cathode layer 7.
A substance which is activated when the holes and electrons respectively injected from 0 are recombined in the light emitting layer 40 and acts as excitons, and is a PBD shown in [Chemical Formula 2] and a BBD shown in [Chemical Formula 3].
ND, BBD shown in [Chemical Formula 4], OXD- shown in [Chemical Formula 5]
1, OXD-7 shown in [Chemical Formula 6], or an oxadiazole-based polymer compound represented by [Chemical Formula 7] or [Chemical Formula 8], TAZ shown in [Chemical Formula 10], and 3 shown in [Chemical Formula 11]. ,
4,5-tri (1-naphthyl) -1,2,4-triazole, 3,5-di (4-biphenylyl) -4-phenyl-1,2,4-triazole shown in [Chemical Formula 12], 13-] 4- (1-naphthyl) -3,5-diphenyl-1,2,4-triazole shown in [Chemical Formula 14]
3,5-tri (5- (4-tert-butylphenyl)
-1-Phenyl-1,3,4-triazole) phenyl, 1,3-di (5- (4-tert) shown in [Chemical Formula 15]
-Butylphenyl) -1-phenyl-1,3,4-triazole) phenyl,

【0042】[0042]

【化38】 [Chemical 38]

【0043】[0043]

【化39】 [Chemical Formula 39]

【0044】[0044]

【化40】 [Chemical 40]

【0045】[化38]乃至[化40]で示されるよう
なトリアゾール系高分子化合物、[化20]で示すカル
バゾール、[化21]で示すNメチルカルバゾール、
[化22]で示すNビニルカルバゾール、[化23]で
示すNフェニルカルバゾール、[化24]で示すCB
P、[化25]で示すポリ(N−ビニルカルバゾール)
(以下PVKともいう。)、一般式[化26]で示され
るポリカルバゾール化合物などのカルバゾール系化合
物、
Triazole polymer compounds represented by [Chemical Formula 38] to [Chemical Formula 40], carbazole represented by [Chemical Formula 20], N-methylcarbazole represented by [Chemical Formula 21],
N vinylcarbazole represented by [Chemical Formula 22], N phenylcarbazole represented by [Chemical Formula 23], CB represented by [Chemical Formula 24]
P, poly (N-vinylcarbazole) represented by [Chemical Formula 25]
(Hereinafter also referred to as PVK), a carbazole compound such as a polycarbazole compound represented by the general formula [Chemical Formula 26],

【0046】[0046]

【化41】 [Chemical 41]

【0047】(化学式[化41]中のRは、それぞれ独立
に脂肪族炭化水素基、芳香族炭化水素基、エーテル基、
複素環基のいずれかを示す。)示す。) [化41]を繰り返し単位として有するポリフルオレン化
合物、などが挙げられる。
(R in the chemical formula [Chemical Formula 41] independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group,
Indicates any of the heterocyclic groups. ) Show. ) A polyfluorene compound having [Chemical Formula 41] as a repeating unit, and the like.

【0048】また、これらのホスト剤を二種類以上併用
することも可能である。このような併用は、例えば、電
子輸送性を有する、[化2]乃至[化8]に示されオキサジ
アゾール系化合物や[化10]乃至[化15]及び[化38]
乃至[化40]に示されるトリアゾール系化合物に対し
て、正孔輸送性を有する、[化20]乃至[化26]に示さ
れるカルバゾール系化合物を併用したときに、発光領域
の特定界面側への偏在を防止できるという効果がある。
It is also possible to use two or more of these host agents in combination. Such combined use is, for example, an oxadiazole-based compound represented by [Chemical Formula 2] to [Chemical Formula 8] having an electron transporting property or [Chemical Formula 10] to [Chemical Formula 15] and [Chemical Formula 38].
When a carbazole compound represented by [Chemical formula 20] to [Chemical formula 26] having a hole-transporting property is used in combination with the triazole-based compound represented by [Chemical formula 40], a specific interface side of the light emitting region is obtained. There is an effect that uneven distribution of can be prevented.

【0049】一方、発光層40のドープ剤41は、励起
子たるホスト剤42の励起エネルギーにより燐光を放射
する物質であり、
On the other hand, the dopant 41 of the light emitting layer 40 is a substance which emits phosphorescence by the excitation energy of the host agent 42 which is an exciton,

【0050】[0050]

【化42】 [Chemical 42]

【0051】[化42]に示すトリ(2フェニルピリジ
ン)イリジウム錯体(以下Ir(ppy)3とも言
う。)、
A tri (2phenylpyridine) iridium complex represented by [Chemical Formula 42] (hereinafter also referred to as Ir (ppy) 3 ),

【0052】[0052]

【化43】 [Chemical 43]

【0053】[0053]

【化44】 [Chemical 44]

【0054】[0054]

【化45】 [Chemical formula 45]

【0055】[0055]

【化46】 [Chemical formula 46]

【0056】[0056]

【化47】 [Chemical 47]

【0057】[0057]

【化48】 [Chemical 48]

【0058】(化学式[化48]中、acacは、(In the chemical formula [Chemical Formula 48], acac is

【0059】[0059]

【化49】 [Chemical 49]

【0060】[化49]で示される官能基を示す。下記
[化50]乃至[化54]に示す化学式において同じ。)
A functional group represented by [Chemical Formula 49] is shown. following
The same applies to the chemical formulas shown in [Chemical Formula 50] to [Chemical Formula 54]. )

【0061】[0061]

【化50】 [Chemical 50]

【0062】[0062]

【化51】 [Chemical 51]

【0063】[0063]

【化52】 [Chemical 52]

【0064】[0064]

【化53】 [Chemical 53]

【0065】[0065]

【化54】 [Chemical 54]

【0066】[化43]乃至[化48]、[化50]乃至[化
54]で示されるイリジウム錯体化合物、[化29]に
示すPtOEP、などを挙げることができる。
Examples include iridium complex compounds represented by [Chemical formula 43] to [Chemical formula 48] and [Chemical formula 50] to [Chemical formula 54], PtOEP represented by [Chemical formula 29], and the like.

【0067】また、発光層40に添加可能なバインダ高
分子の例として、ポリスチレン、ポリビニルビフェニ
ル、ポリビニルフェナントレン、ポリビニルアントラセ
ン、ポリビニルペリレン、ポリ(エチレン−co−ビニ
ルアセテート)、ポリブタジエンのcisとtran
s、ポリ(2−ビニルナフタレン)、ポリビニルピロリ
ドン、ポリスチレン、ポリ(メチルメタクリレート)、
ポリ(ビニルアセテート)、ポリ(2−ビニルピリジン
−co−スチレン)、ポリアセナフチレン、ポリ(アク
リロニトリル−co−ブタジエン)、ポリ(ベンジルメ
タクリレート)、ポリ(ビニルトルエン)、ポリ(スチ
レン−co−アクリロニトリル)、ポリ(4−ビニルビ
フェニル)、ポリエチレングリコールなどが挙げられ
る。
Examples of the binder polymer that can be added to the light emitting layer 40 include polystyrene, polyvinylbiphenyl, polyvinylphenanthrene, polyvinylanthracene, polyvinylperylene, poly (ethylene-co-vinylacetate), polybutadiene cis and tran.
s, poly (2-vinylnaphthalene), polyvinylpyrrolidone, polystyrene, poly (methylmethacrylate),
Poly (vinyl acetate), poly (2-vinyl pyridine-co-styrene), polyacenaphthylene, poly (acrylonitrile-co-butadiene), poly (benzyl methacrylate), poly (vinyltoluene), poly (styrene-co-) Acrylonitrile), poly (4-vinylbiphenyl), polyethylene glycol and the like.

【0068】また、正孔ブロック層50は、陽極層10
から発光層40へ注入された正孔がそのまま陰極層70
へ通過してしまうことを防ぐため正孔をブロックするた
めの層であり、正孔ブロック性物質で構成される。正孔
ブロック性物質としては、例えば、[化2] に示すPB
D、[化3]に示すBND、[化4]に示されるBB
D、[化5]に示すOXD−1、[化7]または[化8]
に示すようなオキサジアゾール系高分子化合物、[化1
0]に示すTAZ、
Further, the hole blocking layer 50 is the anode layer 10
The holes injected into the light emitting layer 40 from the cathode layer 70 as they are.
It is a layer for blocking holes in order to prevent the holes from passing through and is composed of a hole blocking substance. Examples of the hole blocking substance include PB shown in [Chemical Formula 2].
D, BND shown in [Chemical Formula 3], BB shown in [Chemical Formula 4]
D, OXD-1 shown in [Chemical Formula 5], [Chemical Formula 7] or [Chemical Formula 8]
An oxadiazole-based polymer compound as shown in
0] shown in FIG.

【0069】[0069]

【化55】 [Chemical 55]

【0070】[化55]に示すバソキュプロイン(以下B
CPともいう。)、
Bathocuproine (hereinafter referred to as B
Also called CP. ),

【0071】[0071]

【化56】 [Chemical 56]

【0072】[化56]に示すトリス(8−ヒドロキシ
キノリナート)アルミニウム(以下Alq3ともい
う。)、
Tris (8-hydroxyquinolinato) aluminum (hereinafter also referred to as Alq3) shown in [Chemical Formula 56],

【0073】[0073]

【化57】 [Chemical 57]

【0074】[化57]に示す4,4’−ビス(1,1
−ジフェニルエテニル)ビフェニル(以下にDPVBi
ともいう。)、
4,4'-bis (1,1) shown in [Chemical Formula 57]
-Diphenylethenyl) biphenyl (hereinafter DPVBi
Also called. ),

【0075】[0075]

【化58】 [Chemical 58]

【0076】[化58]に示される4,4’−ビス
(1,1−ビス(4−メチルフェニル)エテニル)ビフ
ェニル(以下DTVBiとも言う。)、
4,4'-bis (1,1-bis (4-methylphenyl) ethenyl) biphenyl (hereinafter also referred to as DTVBi) represented by [Chemical Formula 58],

【0077】[0077]

【化59】 [Chemical 59]

【0078】[0078]

【化60】 [Chemical 60]

【0079】[化59]、[化60]で示すようなトリ
アゾール系高分子化合物、などを挙げることができる。
Examples thereof include triazole polymer compounds represented by [Chemical Formula 59] and [Chemical Formula 60].

【0080】また、電子輸送層60は、陰極層70から
注入される電子を輸送するための層であり、電子輸送剤
を含む。電子輸送剤は、電子輸送性高分子で構成され、
さらに電子輸送性低分子を含む構成が可能である。
The electron transport layer 60 is a layer for transporting electrons injected from the cathode layer 70 and contains an electron transport agent. The electron transport agent is composed of an electron transporting polymer,
Further, a structure containing a low molecule having an electron transport property is possible.

【0081】ここで、電子輸送性低分子の例として、
[化2]に示すPBD、[化3]に示すBND、[化
4]に示すBBD、[化5]に示すOXD−1、[化
6]に示すOXD−7、[化10]に示すTAZ、[化
11]に示す3,4,5―トリ(1−ナフチル)―1,
2,4―トリアゾール、[化12]に示す3,5−ジ
(4−ビフェニリル)−4−フェニル―1,2,4―ト
リアゾール、[化13]に示す4−(1−ナフチル)―
3,5―ジフェニル−1,2,4―トリアゾール、[化
14]に示す1,3,5―トリ(5−(4−tert−
ブチルフェニル)―1−フェニル−1,3,4−トリア
ゾール)フェニル、[化15]に示す1,3―ジ(5−
(4−tert−ブチルフェニル)−1−フェニル−
1,3,4―トリアゾール)フェニル、[化56]に示
すAlq3、[化57]に示すDPVBi、[化58]
に示すDTVBiなどを挙げることができる。
Here, as an example of the electron transporting low molecule,
PBD shown in [Chemical Formula 2], BND shown in [Chemical Formula 3], BBD shown in [Chemical Formula 4], OXD-1 shown in [Chemical Formula 5], OXD-7 shown in [Chemical Formula 6], and shown in [Chemical Formula 10] TAZ, 3,4,5-tri (1-naphthyl) -1, shown in [Chemical Formula 11]
2,4-triazole, 3,5-di (4-biphenylyl) -4-phenyl-1,2,4-triazole shown in [formula 12], 4- (1-naphthyl) -shown in [formula 13]
3,5-diphenyl-1,2,4-triazole, 1,3,5-tri (5- (4-tert-
Butylphenyl) -1-phenyl-1,3,4-triazole) phenyl, 1,3-di (5-
(4-tert-butylphenyl) -1-phenyl-
1,3,4-triazole) phenyl, Alq3 shown in [Chemical Formula 56], DPVBi shown in [Chemical Formula 57], [Chemical Formula 58]
Examples thereof include DTVBi.

【0082】また、電子輸送性高分子の例として、[化
7]、[化8]で示されるようなオキサジアゾール系高
分子化合物、[化38]乃至[化40]及び[化5
9]、[化60]で示されるようなトリアゾール系高分
子化合物、
As examples of the electron transporting polymer, oxadiazole-based polymer compounds represented by [Chemical formula 7] and [Chemical formula 8], [Chemical formula 38] to [Chemical formula 40] and [Chemical formula 5]
9], a triazole-based polymer compound represented by [Chemical Formula 60],

【0083】[0083]

【化61】 [Chemical formula 61]

【0084】(化学式[化61]中、Rはそれぞれ独立に
脂肪族炭化水素基、芳香族炭化水素基、エーテル基、複
素環基のいずれかを示す。) [化61]を繰り返し単位に有するポリフルオレン化合
物、などが挙げられる。
(In the chemical formula [Chemical Formula 61], each R independently represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group or a heterocyclic group.] [Chemical Formula 61] is contained in the repeating unit. Examples thereof include polyfluorene compounds.

【0085】発光効率のさらなる向上や構造の簡素化の
ため、図1に示す有機エレクトロルミネッセンス素子の
基本構造に変更を加えたものとして、図2乃至図4に示
す素子構造が可能である。
The element structures shown in FIGS. 2 to 4 can be obtained by modifying the basic structure of the organic electroluminescence element shown in FIG. 1 in order to further improve the luminous efficiency and simplify the structure.

【0086】図2で示される有機エレクトロルミネッセ
ンス素子の素子構造は、本発明の有機エレクトロルミネ
ッセンス素子の第1の実施形態を示す。図1の電子ブロ
ック層30と正孔ブロック層50とが省略されている
が、図2において、正孔輸送層20に電子ブロック効果
を、電子輸送層60に正孔ブロック効果をそれぞれ持た
せて、発光効率を維持させることができる。
The element structure of the organic electroluminescent element shown in FIG. 2 shows the first embodiment of the organic electroluminescent element of the present invention. Although the electron blocking layer 30 and the hole blocking layer 50 in FIG. 1 are omitted, in FIG. 2, the hole transporting layer 20 has an electron blocking effect and the electron transporting layer 60 has a hole blocking effect. The luminous efficiency can be maintained.

【0087】図3で示される有機エレクトロルミネッセ
ンス素子の素子構造は、図1で示す素子構造において、
電子ブロック層30を省略したものである。
The element structure of the organic electroluminescence element shown in FIG. 3 is the same as the element structure shown in FIG.
The electron block layer 30 is omitted.

【0088】図4で示される有機エレクトロルミネッセ
ンス素子の素子構造は、図1で示す素子構造から、電子
ブロック層30と正孔ブロック層50とを省略し、陰極
層70と電子輸送層60との間に電子注入性物質で構成
される電子注入層61を追加したものである。
In the element structure of the organic electroluminescence element shown in FIG. 4, the electron blocking layer 30 and the hole blocking layer 50 are omitted from the element structure shown in FIG. 1, and the cathode layer 70 and the electron transport layer 60 are formed. An electron injection layer 61 made of an electron injection material is added between them.

【0089】電子注入性物質としては、たとえば、フッ
化リチウム、酸化リチウム、
Examples of the electron injecting substance include lithium fluoride, lithium oxide,

【0090】[0090]

【化62】 [Chemical formula 62]

【0091】[化62]で示される8−ヒドロキシキノリ
ナートリチウム(以下Liqともいう。)などが挙げら
れる。
Examples thereof include 8-hydroxyquinolinato lithium (hereinafter also referred to as Liq) represented by [Chemical Formula 62].

【0092】次に、図2を本発明の第1の実施形態とし
て、有機エレクトロルミネッセンス素子の製造方法を説
明する。
Next, with reference to FIG. 2 as a first embodiment of the present invention, a method for manufacturing an organic electroluminescence element will be described.

【0093】まず、基板(図示せず)となる透明絶縁性
支持体、例えばガラス基板上に陽極層10を蒸着法また
はスパッタ法にて形成する。
First, the anode layer 10 is formed by a vapor deposition method or a sputtering method on a transparent insulating support, which is a substrate (not shown), such as a glass substrate.

【0094】次に、正孔輸送性高分子または正孔輸送性
低分子を溶媒に溶解または分散した第1の溶液を作成す
る。ここで、第1の溶液に、さらにバインダ高分子を溶
解または分散することも可能である。そして、第1の溶
液を用いた湿式法によって、陽極層10上に正孔輸送層
20を形成する。
Next, a first solution is prepared by dissolving or dispersing the hole transporting polymer or the hole transporting low molecule in a solvent. Here, it is also possible to further dissolve or disperse the binder polymer in the first solution. Then, the hole transport layer 20 is formed on the anode layer 10 by a wet method using the first solution.

【0095】さらに、発光層40のドープ剤41とホス
ト剤42とを溶媒に溶解または分散した第2の溶液を作
成する。ここで、第2の溶液に、さらにバインダ高分子
を溶解または分散することも可能である。そして、その
第2の溶液を用いた湿式法によって、上記正孔輸送層2
0上に発光層40を形成する。
Further, a second solution is prepared by dissolving or dispersing the doping agent 41 and the host agent 42 of the light emitting layer 40 in a solvent. Here, it is also possible to further dissolve or disperse the binder polymer in the second solution. Then, the hole transport layer 2 is formed by the wet method using the second solution.
The light emitting layer 40 is formed on the transparent layer 0.

【0096】さらに、電子輸送性高分子または電子輸送
性低分子を溶媒に溶解または分散した第3の溶液を作成
する。ここで、第3の溶液に、さらにバインダ高分子を
溶解または分散することも可能である。その第3の溶液
を用いた湿式法によって、発光層40上に電子輸送層6
0を形成する。
Further, a third solution is prepared by dissolving or dispersing the electron transporting polymer or the electron transporting low molecule in a solvent. Here, the binder polymer can be further dissolved or dispersed in the third solution. The electron transport layer 6 is formed on the light emitting layer 40 by a wet method using the third solution.
Form 0.

【0097】また、第2の溶液に用いた溶媒の溶解度パ
ラメータは、発光層40の成膜温度において、正孔輸送
層20に含まれる物質(正孔輸送性高分子または正孔輸
送性低分子など)に対して可溶範囲外を示す値を有す
る。このような溶媒を用いた、湿式法による発光層40
の形成において、下層の正孔輸送層20に含まれる有機
物を溶解することがない。
The solubility parameter of the solvent used in the second solution is determined by the substance contained in the hole transport layer 20 (hole transporting polymer or hole transporting low molecule at the film formation temperature of the light emitting layer 40). , Etc.) outside the soluble range. Light emitting layer 40 by a wet method using such a solvent
In the formation of, the organic substance contained in the lower hole transport layer 20 is not dissolved.

【0098】また、第3の溶液に用いる溶媒の溶解度パ
ラメータは、電子輸送層60の成膜温度において、発光
層40に含まれる物質(ドープ剤41、ホスト剤42及
びバインダ高分子など)に対して可溶範囲外を示す値を
有する。このような溶媒を用いた、湿式法による電子輸
送層60の形成において、下層の発光層40に含まれる
有機物を溶解することがない。
The solubility parameter of the solvent used in the third solution is determined by the substances contained in the light emitting layer 40 (the dopant 41, the host agent 42, the binder polymer, etc.) at the film formation temperature of the electron transport layer 60. Has a value outside the soluble range. When the electron transport layer 60 is formed by the wet method using such a solvent, the organic substance contained in the lower light emitting layer 40 is not dissolved.

【0099】この時、上記の第1乃至第3の溶液に用い
る溶媒は自然乾燥によって蒸発することにより、正孔輸
送層20と発光層40と電子輸送層60とが形成され
る。この場合、加熱、紫外線の照射による重合、硬化等
の処理を行う必要がなく、従って、製造工程が簡単であ
り、生産効率を向上させることができる。
At this time, the solvent used for the above-mentioned first to third solutions is evaporated by natural drying to form the hole transport layer 20, the light emitting layer 40 and the electron transport layer 60. In this case, there is no need to perform treatments such as heating, polymerization by irradiation of ultraviolet rays, curing, etc. Therefore, the manufacturing process is simple and the production efficiency can be improved.

【0100】本発明で使用される湿式法には、たとえば
キャスティング法、ブレードコート法、浸漬塗工法、ス
ピンコート法、スプレイコート法、ロール塗工法、イン
クジェット塗工法などの通常の塗工法が含まれる。
The wet method used in the present invention includes ordinary coating methods such as casting method, blade coating method, dip coating method, spin coating method, spray coating method, roll coating method and ink jet coating method. .

【0101】最後に、電子輸送層60上に、蒸着法など
を用いて陰極層70を形成し、本発明の有機エレクトロ
ルミネッセンス素子が得られる。
Finally, the cathode layer 70 is formed on the electron transport layer 60 by using the vapor deposition method or the like to obtain the organic electroluminescence device of the present invention.

【0102】なお、溶解度パラメータSPは、モル蒸発
熱ΔH、モル体積Vの液体の絶対温度Tにおいて、 SP={(ΔH−RT)/V}1/2 で定義される。ただし、上記式中、SPは溶解度パラメ
ータ(単位:(cal/cm31/2)であり、ΔHはモ
ル蒸発熱(単位:cal/mol)であり、Rは気体定
数(単位:cal/(mol・K))であり、Tは絶対
温度(単位:K)であり、Vはモル体積(単位:cm3
/mol)である。
The solubility parameter SP is defined by SP = {(ΔH-RT) / V} 1/2 at the absolute temperature T of the liquid having a molar evaporation heat ΔH and a molar volume V. However, in the above formula, SP is a solubility parameter (unit: (cal / cm 3 ) 1/2 ), ΔH is a heat of molar evaporation (unit: cal / mol), and R is a gas constant (unit: cal / mol). (Mol · K)), T is the absolute temperature (unit: K), and V is the molar volume (unit: cm 3).
/ Mol).

【0103】また、図3は、本発明の有機エレクトロル
ミネッセンス素子の第2の実施形態であり、上記図2で
示される素子構造の製造工程中、電子輸送層60の形成
前に、発光層40上に[化2]に示すPBDなどの正孔
ブロック性物質を湿式法により成膜して正孔ブロック層
50を形成した後に、該正孔ブロック層50上に、上記
図2と同様に電子輸送層60と陰極層70とを順次形成
する製造工程を経て得られる。
FIG. 3 shows a second embodiment of the organic electroluminescent device of the present invention. The light emitting layer 40 is formed before the formation of the electron transport layer 60 during the manufacturing process of the device structure shown in FIG. A hole blocking substance such as PBD shown in [Chemical Formula 2] is formed on the hole blocking layer 50 by a wet method to form an electron on the hole blocking layer 50 in the same manner as in FIG. It is obtained through a manufacturing process in which the transport layer 60 and the cathode layer 70 are sequentially formed.

【0104】また、図4は、本発明の有機エレクトロル
ミネッセンス素子の第3の実施形態であり、上記図2で
示される素子構造の製造工程中、陰極層70の形成前
に、電子輸送層60上に、フッ化リチウムなどの電子注
入性物質を蒸着法により成膜して電子注入層61を形成
した後に、該電子注入層61上に、上記図2と同様に陰
極層70を形成する製造工程を経て得られる。
FIG. 4 shows a third embodiment of the organic electroluminescent device of the present invention. During the process of manufacturing the device structure shown in FIG. 2, the electron transport layer 60 is formed before the formation of the cathode layer 70. An electron injecting substance such as lithium fluoride is deposited thereon by an evaporation method to form an electron injecting layer 61, and then a cathode layer 70 is formed on the electron injecting layer 61 in the same manner as in FIG. Obtained through steps.

【0105】[0105]

【実施例】[実施例1]酸素プラズマ処理を行なったI
TO基板上(市販ITO、旭硝子社製:20Ω/□以
下)に真空蒸着装置により真空度10-3Paで、正孔輸
送層として[化33]に示すNPDを蒸着速度1nm/s
ecで60nmの膜厚で成膜し、発光層として[化5]に
示すOXD−1(イオン化ポテンシャル6.1eV、電
子親和力2.4eV)と[化24]に示すCBP(イオン
化ポテンシャル6.15eV、電子親和力2.33e
V)と[化42]に示すIr(ppy)3(イオン化ポテ
ンシャル5.3eV、電子親和力3.04eV)とを、
それぞれの重量比が1:1:0.03になるように蒸着
速度1nm/secで共蒸着し、20nmの膜厚で成膜
し、電子輸送層として[化56]に示すAlq3を蒸着速
度1nm/secで50nmの膜厚で成膜し、最後に、
アルミニウムとリチウムとを、リチウムが1%となるよ
うに蒸着速度1nm/secで共蒸着して陰極を形成し
て、図2に示す素子構造を作成した。
[Example] [Example 1] I subjected to oxygen plasma treatment
On a TO substrate (commercial ITO, manufactured by Asahi Glass Co., Ltd .: 20Ω / □ or less), NPD shown in [Chemical Formula 33] was deposited as a hole transport layer at a vacuum degree of 10 −3 Pa by a vacuum deposition apparatus at a deposition rate of 1 nm / s.
OXD-1 (ionization potential of 6.1 eV, electron affinity 2.4 eV) shown in [Chemical formula 5] and CBP (ionization potential of 6.15 eV) shown in [Chemical formula 5] as a light emitting layer. , Electron affinity 2.33e
V) and Ir (ppy) 3 (ionization potential 5.3 eV, electron affinity 3.04 eV) shown in [Chemical Formula 42],
Co-evaporate at a vapor deposition rate of 1 nm / sec so that the weight ratio of each is 1: 1: 0.03, form a film with a thickness of 20 nm, and deposit Alq3 shown in [Chemical Formula 56] as an electron transport layer at a vapor deposition rate of 1 nm. / Sec to form a film with a thickness of 50 nm, and finally,
Aluminum and lithium were co-evaporated at a vapor deposition rate of 1 nm / sec so that the lithium content was 1% to form a cathode, thereby forming the device structure shown in FIG.

【0106】この時、5V(駆動電圧、以下同じ)、1
mA/cm2(電流密度、以下おなじ)で500cd/
2(輝度、以下同じ)、 6.5V、10mA/cm2
で4500cd/m2の緑色の発光を得た。 [比較例1]発光層ホスト剤をCBPのみとした以外は
[実施例1]と同様に図2に示す素子構造を作成した。
この時、5V、1mA/cm2で400cd/m2、及
び、6.5V、10mA/cm2で3200cd/m2
緑色の発光が得られた。 [比較例2]発光層ホスト剤をOXD−1のみとした以
外は[実施例1]と同様に図2に示す素子構造を作成し
た。この時、5V、1mA/cm2で500cd/m2
及び、6.5V、10mA/cm2で4100cd/m2
の緑色の発光が得られた。 [実施例2]〜[実施例5]OXD−1の替わりに下記[表
1]に示す化合物を使用した以外は、[実施例1]と同様
に図2に示す素子構造を作成したところ、[表1]に示す
発光効率の発光が得られた。
At this time, 5V (driving voltage, the same applies hereinafter), 1
mA / cm 2 (current density, the same below) 500 cd /
m 2 (brightness, the same below), 6.5 V, 10 mA / cm 2
At 4,500 cd / m 2 of green light emission was obtained. [Comparative Example 1] An element structure shown in Fig. 2 was prepared in the same manner as in [Example 1] except that only CBP was used as the light emitting layer host material.
In this, 5V, 400cd / m 2 at 1 mA / cm 2, and, 6.5V, the emission of green 3200cd / m 2 at 10 mA / cm 2 was obtained. [Comparative Example 2] A device structure shown in Fig. 2 was prepared in the same manner as in [Example 1] except that only OXD-1 was used as the light emitting layer host material. In this case, 5V, 500cd / m 2 at 1mA / cm 2,
And, 4100cd / m 2 6.5V, at 10 mA / cm 2
A green emission of was obtained. [Example 2] to [Example 5] A device structure shown in Fig. 2 was prepared in the same manner as in [Example 1] except that the compounds shown in [Table 1] below were used instead of OXD-1. Luminescence having the luminous efficiency shown in [Table 1] was obtained.

【0107】[0107]

【表1】 [Table 1]

【0108】[実施例3]でホスト剤として用いた[化3]
で示すBNDは、電子親和力がドープ剤たるIr(pp
y)3(3.04eV)とほぼ同等の為、ホスト剤から
ドープ剤へのエネルギー移動が効率良く行われない。こ
のため、BNDと同じくオキサジアゾール基を持つ、
[実施例1](OXD−1使用)、[実施例2](PBD使
用)、[実施例4](BBD使用)、[実施例5](OXD
−7使用)に比べ輝度が低い値になっている。効率の良
い素子を作る為には、ドープ剤より小さい電子親和力を
示すホスト剤が必要となる。また、同様に、イオン化ポ
テンシャルに付いても、ドープ剤より大きいイオン化ポ
テンシャルを示すホスト剤を選ぶと効率の良い素子が得
られる。これは、上記のような電子輸送性のホスト剤だ
けでなく、正孔輸送性のホスト剤に付いても同様であ
る。 [実施例6]〜[実施例11]OXD−1の替わりに下記
[表2]に示す化合物を使用した以外は、[実施例1]と同
様に図2に示す素子構造を作成したところ、[表2]に
示す発光効率の発光が得られた。
[Chemical Formula 3] used as a host agent in [Example 3]
BND indicated by Ir is a dopant having an electron affinity of Ir (pp
y) Since it is almost equal to 3 (3.04 eV), energy transfer from the host agent to the doping agent cannot be performed efficiently. Therefore, it has an oxadiazole group like BND,
[Example 1] (Using OXD-1), [Example 2] (Using PBD), [Example 4] (Using BBD), [Example 5] (OXD
The luminance is lower than that of (-7 use). In order to make an efficient device, a host agent having an electron affinity smaller than that of the dopant is required. Similarly, regarding the ionization potential, an efficient device can be obtained by selecting a host agent having an ionization potential higher than that of the doping agent. This applies not only to the electron-transporting host agent as described above, but also to the hole-transporting host agent. [Example 6] to [Example 11] Instead of OXD-1,
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 1] except that the compounds shown in [Table 2] were used, light emission with the luminous efficiency shown in [Table 2] was obtained.

【0109】[0109]

【表2】 [Table 2]

【0110】[実施例12]〜[実施例15] [実施例1]
のCBPの替わりに下記[表3]に示す化合物を使用した
以外は、[実施例1]と同様に図2に示す素子構造を作成
したところ、[表3]に示す発光効率の発光が得られた。
[Example 12] to [Example 15] [Example 1]
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 1] except that the compound shown in [Table 3] below was used instead of CBP, the emission efficiency shown in [Table 3] was obtained. Was given.

【0111】[0111]

【表3】 [Table 3]

【0112】[実施例16]〜[実施例27][実施例1]
で発光層ドープ剤のIr(ppy)3に替え下記[表4]
に化合物として示すドープ剤を使用した以外は[実施例
1]と同様に図2に示す素子構造を作成したところ、[表
4]に示す発光効率の発光が得られた。
[Example 16] to [Example 27] [Example 1]
Replace Ir (ppy) 3 in the light emitting layer with the following [Table 4]
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 1] except that the doping agent shown in Table 1 was used, the light emission with the emission efficiency shown in [Table 4] was obtained.

【0113】[0113]

【表4】 [Table 4]

【0114】[実施例28]電子輸送層をAlq3に替
えOXD−1により形成した以外は[実施例1]と同様
に図2に示す素子構造を作成した。この時、5.5V、
1mA/cm2で500cd/m2及び、7V、10mA
/cm2で4700cd/m2の緑色の発光が得られた。 [実施例29]発光層と電子輸送層との間に正孔ブロック
層として、真空度10-3Pa、蒸着速度0.1nm/s
ecで真空蒸着により、[化55]に示すBCPを6nm
の膜厚で成膜した以外は[実施例1]と同様に図3に示
す素子構造を作成した。この時、5.2V、1mA/c
2で500cd/m2及び、6.7V、10mA/cm
2で4500cd/m2の緑色の発光が得られた。 [実施例30][実施例1]で電子輸送層と陰極層との
間に電子注入層として、真空度10-3Pa、蒸着速度
0.1nm/sec条件の真空蒸着により、フッ化リチ
ウムを5nmの膜厚で成膜したことと、陰極をアルミニ
ウムに替えたこと以外は[実施例1]と同様に図4に示
す素子構造を作成した。この時、5V、1mA/cm2
で500cd/m2、及び6.5V、10mA/cm2
4500cd/m2の緑色の発光が得られた。 [実施例31]ゲルパーエイションクロマトグラフィー
により測定したポリスチレン換算重量平均量(以下分子
量と言う。)1,100,000の[化25]で示すPV
K6mgを1mlの1,2ジクロロエタンで溶解して、
溶液1を作成した。酸素プラズマ処理を行なったITO
基板上(市販ITO、旭硝子社製:20Ω/□以下)に
溶液1を1000rpmで1秒間スピンコートする事に
より50nmの膜厚の正孔輸送層を得た。正孔輸送層上
に真空蒸着装置により、真空度10-3Pa、蒸着速度1
nm/secでOXD−1とCBPとIr(ppy)3
とを、それぞれの重量比が1:1:0.03になるよう
に共蒸着し20nmの膜厚の発光層を成膜し、蒸着速度
1nm/secでAlq3を蒸着し50nmの膜厚の電
子輸送層を成膜し、最後に、アルミニウムとリチウムと
を、リチウムが1%となるように蒸着速度1nm/se
cで共蒸着して陰極を形成して図2に示す素子構造を作
成した。この時、7V、1mA/cm2で500cd/
2、及び8.3V、10mA/cm2で4500cd/
2の緑色の発光を得た。 [実施例32]正孔輸送層の材料をPVKから[化31]
で示す重合体(分子量60,000)に変えた以外は
[実施例31]と同様に図2に示す素子構造を作成し
た。この時、6V、1mA/cm2で500cd/m2
び7.3V、10mA/cm 2で4500cd/m2の緑
色の発光が得られた。 [実施例33]分子量1,100,000のPVKとして
6mgを1mlの1,2ジクロロエタンで溶解して、溶
液1を作成した。OXD−1として1.25mgとCB
Pとして1.25mgとIr(ppy)3として0.1
7mgとバインダ高分子として分子量115,000の
ポリビニルビフェニル2.5mgとをキシレン1mlに
溶解して、溶液2を作成した。酸素プラズマ処理を行な
ったITO基板上(市販ITO、旭硝子社製:20Ω/
□以下)に溶液1を1000rpmで1秒間スピンコー
トする事により50nmの正孔輸送層を得た。さらに、
正孔輸送層上に溶液2を1000rpmで1秒間スピン
コートする事により20nmの発光層を得た。真空蒸着
装置により真空度10-3PaでAlq3を蒸着速度1n
m/secで50nmの膜厚で電子輸送層を成膜し、最
後に、アルミニウムとリチウムとを、リチウムが1%と
なるように蒸着速度1nm/secで共蒸着して陰極を
形成して図2に示す素子構造を作成した。この時、9
V、1mA/cm2で480cd/m2、及び10.5
V、10mA/cm2で4500cd/m2の緑色の発光
が得られた。 [実施例34]〜[実施例37]OXD−1の替わりに下
記[表5]に示す化合物を使用した以外は、[実施例33]
と同様に図2に示す素子構造を作成したところ、[表5]
に示す発光効率の発光が得られた。
Example 28 The electron transport layer was replaced with Alq3.
The same as [Example 1] except that it is formed by OXD-1.
The device structure shown in FIG. At this time, 5.5V,
1 mA / cm2At 500 cd / m2And 7V, 10mA
/ Cm2At 4700 cd / m2A green emission of was obtained. Example 29 Hole blocking between light emitting layer and electron transporting layer
Vacuum level of 10-3Pa, vapor deposition rate 0.1 nm / s
The BCP shown in [Chemical Formula 55] is 6 nm by vacuum deposition with ec.
3 is the same as in [Example 1] except that the film is formed with the thickness of
A device structure was created. At this time, 5.2V, 1mA / c
m2At 500 cd / m2And 6.7V, 10mA / cm
2At 4500 cd / m2A green emission of was obtained. [Example 30] In [Example 1], the electron transport layer and the cathode layer were separated.
A vacuum degree of 10 is used as an electron injection layer in between.-3Pa, vapor deposition rate
Lithium fluoride by vacuum deposition under 0.1 nm / sec conditions
And the cathode is made of aluminum.
As shown in FIG. 4, the same as in [Example 1] except that the um was replaced.
A device structure was created. At this time, 5V, 1mA / cm2
At 500 cd / m2, And 6.5 V, 10 mA / cm2so
4,500 cd / m2A green emission of was obtained. [Example 31] Gel permeation chromatography
Polystyrene-equivalent weight average amount measured by
Say quantity. ) 1,100,000 PV shown in [Chemical Formula 25]
Dissolve 6 mg of K in 1 ml of 1,2 dichloroethane,
Solution 1 was prepared. ITO treated with oxygen plasma
On the substrate (commercial ITO, manufactured by Asahi Glass Co., Ltd .: 20Ω / □ or less)
Spin coating Solution 1 at 1000 rpm for 1 second
A hole transport layer having a thickness of 50 nm was obtained. On hole transport layer
The vacuum degree of 10-3Pa, vapor deposition rate 1
OXD-1, CBP and Ir (ppy) at nm / sec3
And so that the weight ratio of each becomes 1: 1: 0.03
Co-evaporated to form a light-emitting layer with a thickness of 20 nm, and the deposition rate
Alq3 is vapor-deposited at 1 nm / sec and a 50 nm film thickness is applied.
A child transport layer is formed, and finally aluminum and lithium
At a deposition rate of 1 nm / se so that the lithium content is 1%.
Co-evaporate with c to form the cathode and form the device structure shown in FIG.
I made it. At this time, 7V, 1mA / cm2At 500 cd /
m2, And 8.3V, 10mA / cm2At 4500 cd /
m2Green light emission was obtained. Example 32 The material of the hole transport layer was changed from PVK to [Chemical formula 31]
Except that the polymer (molecular weight 60,000) shown in was changed to
The device structure shown in FIG. 2 was prepared in the same manner as in [Example 31].
It was At this time, 6V, 1mA / cm2At 500 cd / m2Over
7.3V, 10mA / cm 2At 4500 cd / m2Green
A color emission was obtained. [Example 33] As PVK having a molecular weight of 1,100,000
Dissolve 6 mg with 1 ml of 1,2 dichloroethane and dissolve
Liquid 1 was prepared. 1.25 mg as OXD-1 and CB
1.25 mg as P and Ir (ppy)3As 0.1
7 mg and a binder polymer having a molecular weight of 115,000
Polyvinyl biphenyl 2.5mg and xylene 1ml
It melt | dissolved and created the solution 2. Perform oxygen plasma treatment
On the ITO substrate (commercial ITO, manufactured by Asahi Glass Co., Ltd .: 20Ω /
□ or less) and spin coat solution 1 at 1000 rpm for 1 second.
To obtain a hole transport layer having a thickness of 50 nm. further,
Spin Solution 2 on the hole transport layer at 1000 rpm for 1 second
A 20-nm light emitting layer was obtained by coating. Vacuum deposition
Degree of vacuum 10-3Deposition rate of Alq3 is 1n with Pa
The electron transport layer is formed with a thickness of 50 nm at m / sec.
Later, aluminum and lithium were replaced with 1% lithium.
Co-deposition at a vapor deposition rate of 1 nm / sec so that the cathode
Then, the device structure shown in FIG. 2 was formed. At this time, 9
V, 1 mA / cm2At 480 cd / m2, And 10.5
V, 10 mA / cm2At 4500 cd / m2Green emission
was gotten. [Example 34] to [Example 37] Instead of OXD-1,
[Example 33] except that the compounds shown in Table 5 were used.
When the device structure shown in FIG. 2 was created in the same manner as in [Table 5]
Luminescence having the luminous efficiency shown in was obtained.

【0115】[0115]

【表5】 [Table 5]

【0116】[実施例38]〜[実施例43]OXD−1
の替わりに下記[表6]に示す化合物を使用した以外は、
[実施例33]と同様に図2に示す素子構造を作成したと
ころ、[表6]に示す発光効率の発光が得られた。
[Example 38] to [Example 43] OXD-1
Except that the compounds shown in [Table 6] below were used instead of
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 33], light emission having the light emission efficiency shown in [Table 6] was obtained.

【0117】[0117]

【表6】 [Table 6]

【0118】[実施例44]〜[実施例47]CBPの
替わりに下記[表7]に示す化合物を使用した以外は、
[実施例33]と同様に図2に示す素子構造を作成したと
ころ、[表7]に示す発光効率の発光が得られた。
[Example 44] to [Example 47] Except that compounds shown in the following [Table 7] were used in place of CBP,
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 33], light emission having the light emission efficiency shown in [Table 7] was obtained.

【0119】[0119]

【表7】 [Table 7]

【0120】[実施例48]〜[実施例59]溶液2のI
r(ppy)3の替りに下記[表8]に示す化合物を使用
した以外は[実施例33]と同様に図2に示す素子構造を
作成したところ、[表8]に示す発光効率の発光が得られ
た。
[Example 48] to [Example 59] I of solution 2
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 33] except that the compound shown in [Table 8] below was used instead of r (ppy) 3 , the emission with the emission efficiency shown in [Table 8] was obtained. was gotten.

【0121】[0121]

【表8】 [Table 8]

【0122】[実施例60]溶液2を、[化7]で示され
る重合体(分子量60,000)として2.5mgとC
BP2.5mgとIr(ppy)3として0.17mg
とをキシレン1mlに溶解して作成した以外は[実施例
33]と同様に図2に示す素子構造を作成した。この
時、8V、1mA/cm2で480cd/m2 9V、1
0mA/cm2で4500cd/m2の緑色の発光が得ら
れた。 [実施例61]溶液2を、[化7]で示される重合体の替
りに、[化8](分子量60,000)で示される重合体
を用いて作成した以外は[実施例60]と同様に図2に
示す素子構造を作成した。この時、8V、1mA/cm
2で480cd/m2及び、9V、10mA/cm2で4
500cd/m2の緑色の発光が得られた。 [実施例62]〜[実施例64]溶液2を、[化7]で示
される重合体の替りに、下記[表9]に示す[化38]乃至
[化40](各分子量60,000)で示される重合体を
用いて作成した以外は[実施例60]と同様に図2に示
す素子構造を作成したところ、[表9]に示す発光効率の
発光が得られた。
Example 60 Solution 2 was added with 2.5 mg of a polymer represented by [Chemical Formula 7] (molecular weight 60,000) and C
BP2.5mg and Ir (ppy) 3 0.17mg
An element structure shown in FIG. 2 was prepared in the same manner as in [Example 33] except that and were dissolved in 1 ml of xylene. At this time, 480 cd / m 2 9 V at 8 V and 1 mA / cm 2
Green emission of 4500 cd / m 2 was obtained at 0 mA / cm 2 . [Example 61] [Example 60] except that the solution 2 was prepared by using the polymer represented by [Chemical formula 8] (molecular weight 60,000) instead of the polymer represented by [Chemical formula 7]. Similarly, the device structure shown in FIG. 2 was prepared. At this time, 8V, 1mA / cm
2 at 480 cd / m 2 and 9 V, 10 mA / cm 2 at 4
A green light emission of 500 cd / m 2 was obtained. [Example 62] to [Example 64] Solution 2 was replaced with the polymer represented by [Chemical formula 7], and [Chemical formula 38] to [Chemical formula 38] shown in [Table 9] below.
When the device structure shown in FIG. 2 was prepared in the same manner as in [Example 60] except that the polymer represented by [Chemical Formula 40] (each molecular weight 60,000) was used, the luminous efficiency shown in [Table 9] was obtained. Luminescence was obtained.

【0123】[0123]

【表9】 [Table 9]

【0124】[実施例65]溶液2を、[化31]に示
すN-フェニルポリカルバゾール(分子量60,00
0)として2.5mgとOXD−1として2.5mgと
Ir(ppy)3として0.17mgとをキシレン1m
lに溶解して作成した以外は[実施例33]と同様に図
2に示す素子構造を作成した。この時、7V、1mA/
cm2で480cd/m2 8V、10mA/cm2で4
500cd/m2の緑色の発光が得られた。 [実施例66]分子量1,100,000のPVK6m
gを1mlの1,2ジクロロエタンで溶解して、溶液1
を作成した。OXD−1として1.25mgとCBPと
して1.25mgとIr(ppy)3として0.17m
gとバインダ高分子として分子量100,000のポリ
ビニルビフェニル2.5mgとをキシレン1mlに溶解
して、溶液2を作成した。PBDとして2.5mgとバ
インダ高分子として分子量50,000のポリスチレン
2.5mlとをシクロヘキサン1mlに溶解して、溶液
3を作成した。
[Example 65] Solution 2 was prepared by converting N-phenylpolycarbazole (molecular weight 60,00) shown in [Chemical Formula 31] into
0) 2.5 mg, OXD-1 2.5 mg and Ir (ppy) 3 0.17 mg xylene 1 m
A device structure shown in FIG. 2 was prepared in the same manner as in [Example 33] except that the device structure was dissolved in 1 to prepare the device structure. At this time, 7V, 1mA /
cm 2 480 cd / m 2 8V, 10 mA / cm 2 4
A green light emission of 500 cd / m 2 was obtained. [Example 66] PVK6m having a molecular weight of 1,100,000
g with 1 ml of 1,2-dichloroethane to give solution 1
It was created. 1.25 mg as OXD-1 and 1.25 mg as CBP and 0.17 m as Ir (ppy) 3 .
g and 2.5 mg of polyvinyl biphenyl having a molecular weight of 100,000 as a binder polymer were dissolved in 1 ml of xylene to prepare a solution 2. Solution 3 was prepared by dissolving 2.5 mg of PBD and 2.5 ml of polystyrene having a molecular weight of 50,000 as a binder polymer in 1 ml of cyclohexane.

【0125】酸素プラズマ処理を行なったITO基板上
(市販ITO、旭硝子社製:20Ω/□以下)に溶液1
を、1000rpmで1秒スピンコートする事により5
0nmの正孔輸送層を得た。正孔輸送層上に溶液2を、
1000rpmで1秒スピンコートする事により20n
mの発光層を得た。さらに、発光層上に溶液3を、10
00rpmで1秒スピンコートする事により50nmの
電子輸送層を得た。
Solution 1 was placed on an ITO substrate that had been subjected to oxygen plasma treatment (commercial ITO, manufactured by Asahi Glass Co., Ltd .: 20 Ω / □ or less).
5 by spin coating at 1000 rpm for 1 second
A hole transport layer of 0 nm was obtained. Solution 2 on the hole transport layer,
20n by spin coating at 1000 rpm for 1 second
A light emitting layer of m was obtained. Further, the solution 3 is applied on the light emitting layer for 10 times.
An electron transport layer of 50 nm was obtained by spin coating at 00 rpm for 1 second.

【0126】最後に、真空蒸着装置によりアルミニウム
とリチウムとを、リチウムが1%となるように蒸着速度
1nm/secで共蒸着して陰極を形成した。この時、
9.5V、1mA/cm2で480cd/m2 及び1
0.5V、10mA/cm2で4500 cd/m2の緑
色の発光が得られた。 [実施例67]溶液2を、[化7]で示される重合体(分
子量60,000)2.5mgとCBPとIr(pp
y)3として0.17mgとをキシレン1mlに溶解し
て作成した以外は[実施例66]と同様に図2に示す素
子構造を作成した。この時、8.5V、1mA/cm2
で480cd/m2及び、9V、10mA/cm2で45
00cd/m2の緑色の発光が得られた。 [実施例68]溶液1を、PVKの替わりに[化31]で
示す重合体(分子量60,000)を用いて作成した以
外は[実施例67]と同様に図2に示す素子構造を作成
した。この時、8V、1mA/cm2で480cd/m2
及び9.0V、10mA/cm 2で4500cd/m2
緑色の発光が得られた。 [実施例69]溶液3を、[化7]で示されるオキサジア
ゾール系高分子化合物(分子量60,000)として5
mgをシクロヘキサン1mlに溶解して作成した以外は
[実施例68]と同様に図2に示す素子構造を作成し
た。この時、7V、1mA/cm2で460cd/m2
び7.5V、10mA/cm 2で4300cd/m2の緑
色の発光であった。
[0126] Finally, using a vacuum deposition apparatus, aluminum
And lithium are vapor-deposited so that the lithium content is 1%.
A cathode was formed by co-evaporation at 1 nm / sec. At this time,
9.5V, 1mA / cm2At 480 cd / m2  And 1
0.5V, 10mA / cm2At 4500 cd / m2Green
A color emission was obtained. [Example 67] The solution 2 was prepared by mixing the polymer (formula 7)
2.5 mg of offspring and CBP and Ir (pp
y)30.17 mg and dissolved in 1 ml of xylene
2 except that the elements shown in FIG.
Created a child structure. At this time, 8.5V, 1mA / cm2
At 480 cd / m2And 9V, 10mA / cm2At 45
00 cd / m2A green emission of was obtained. [Example 68] The solution 1 was replaced with PVK by [Chemical formula 31]
It was prepared using the polymer (molecular weight 60,000) shown below.
Otherwise, the device structure shown in FIG. 2 was prepared in the same manner as in [Example 67].
did. At this time, 8V, 1mA / cm2At 480 cd / m2
And 9.0V, 10mA / cm 2At 4500 cd / m2of
Green light emission was obtained. [Example 69] The solution 3 was replaced with the oxadia compound represented by the [formula 7].
5 as a sol polymer compound (molecular weight 60,000)
except that it was prepared by dissolving mg in 1 ml of cyclohexane.
The device structure shown in FIG. 2 was prepared in the same manner as in [Example 68].
It was At this time, 7V, 1mA / cm2At 460 cd / m2Over
7.5V, 10mA / cm 2At 4300 cd / m2Green
It was a color emission.

【0127】[0127]

【発明の効果】以上の説明から明らかなように、本発明
に用いる発光層のホスト剤は、バイポーラ性、即ち、即
ち、ラジカルカチオン化及びラジカルアニオン化し易い
複極性を有するので、発光層中で偏在せずにドープ剤を
励起して燐光の放射が可能になる。このように形成され
た発光層を有する有機エレクトロルミネッセンス素子で
は、発光層中の発光領域が特定部分に集中せずに高輝度
の発光が得られる。
As is clear from the above description, the host agent of the light emitting layer used in the present invention has a bipolar property, that is, a double polarity which is easily converted into radical cation and radical anion. It becomes possible to excite the dopant without uneven distribution and to emit phosphorescence. In the organic electroluminescence device having the light emitting layer formed in this way, high-luminance light emission can be obtained without the light emitting region in the light emitting layer being concentrated in a specific portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機エレクトロルミネッセンス素子の素子構造FIG. 1 is a device structure of an organic electroluminescence device.

【図2】本発明の素子構造の第1の実施形態FIG. 2 is a first embodiment of the device structure of the present invention.

【図3】本発明の素子構造の第2の実施形態FIG. 3 is a second embodiment of the device structure of the present invention.

【図4】本発明の素子構造の第3の実施形態FIG. 4 is a third embodiment of the device structure of the present invention.

【符号の説明】[Explanation of symbols]

10 陽極層 40 発光層 41 ドープ剤 42 ホスト剤 70 陰極層 10 Anode layer 40 light emitting layer 41 Dope 42 Host agent 70 cathode layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】陽極層及び陰極層の両電極層間に形成さ
れ、ホスト剤と燐光を放射するドープ剤とを有する発光
層を具備する有機エレクトロルミネッセンス素子におい
て、前記ホスト剤がバイポーラ性を有することを特徴と
する有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device comprising a light emitting layer formed between both electrode layers of an anode layer and a cathode layer, the host agent and a phosphorescent emitting dopant, wherein the host agent has a bipolar property. An organic electroluminescence device characterized by:
【請求項2】前記バイポーラ性を有するホスト剤が、正
孔輸送性物質と電子輸送性物質とから成ることを特徴と
する請求項1に記載の有機エレクトロルミネッセンス素
子。
2. The organic electroluminescence device according to claim 1, wherein the host material having a bipolar property comprises a hole transporting substance and an electron transporting substance.
【請求項3】前記ホスト剤に用いる電子輸送性物質は、 【化1】 構造式[化1]で表されるオキサジアゾール基を有する
化合物から成ることを特徴とする請求項2に記載の有機
エレクトロルミネッセンス素子。
3. The electron-transporting substance used as the host agent is represented by the following formula: The organic electroluminescent device according to claim 2, comprising a compound having an oxadiazole group represented by the structural formula [Chemical Formula 1].
【請求項4】前記オキサジアゾール基を有する化合物
は、 【化2】 【化3】 【化4】 【化5】 【化6】 【化7】 【化8】 構造式[化2]乃至[化8]で表される化合物のうち一
種類以上から成ることを特徴とする請求項3に記載の有
機エレクトロルミネッセンス素子。
4. The compound having an oxadiazole group is represented by: [Chemical 3] [Chemical 4] [Chemical 5] [Chemical 6] [Chemical 7] [Chemical 8] The organic electroluminescent device according to claim 3, comprising one or more compounds represented by structural formulas [Chemical Formula 2] to [Chemical Formula 8].
【請求項5】前記ホスト剤に用いる電子輸送性物質は、 【化9】 構造式[化9]で表されるトリアゾール基を有する化合
物から成ることを特徴とする請求項2に記載の有機エレ
クトロルミネッセンス素子。
5. The electron-transporting substance used as the host agent is represented by: The organic electroluminescent device according to claim 2, comprising a compound having a triazole group represented by the structural formula [Chemical formula 9].
【請求項6】前記トリアゾール基を有する化合物は、 【化10】 【化11】 【化12】 【化13】 【化14】 【化15】 【化16】 (一般式[化16]中、X5は、水素、脂肪族炭化水素
基、芳香族炭化水素基、エーテル基、複素環基のいずれ
かから、X6は、脂肪族炭化水素基、芳香族炭化水素
基、エーテル基、複素環基のいずれかから、それぞれ独
立に選ばれる。) 【化17】 (一般式[化17]中、X7は、脂肪族炭化水素基、芳
香族炭化水素基、エーテル基、複素環基のいずれかか
ら、X8及びX9は、水素、脂肪族炭化水素基、芳香族炭
化水素基、エーテル基、複素環基のいずれかから、それ
ぞれ独立に選ばれる。) 【化18】 (一般式[化18]中、X10及びX11は、それぞれ独立
に水素、脂肪族炭化水素基、芳香族炭化水素基、エーテ
ル基、複素環基のいずれかから選ばれる。) 構造式[化10]乃至[化15]、または、一般式[化
16]乃至[化18]で表される化合物のうち一種類以
上から成ることを特徴とする請求項5に記載の有機エレ
クトロルミネッセンス素子。
6. The compound having a triazole group is represented by: [Chemical 11] [Chemical 12] [Chemical 13] [Chemical 14] [Chemical 15] [Chemical 16] (In the general formula [Chemical Formula 16], X 5 is any of hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group and a heterocyclic group, and X 6 is an aliphatic hydrocarbon group, an aromatic group. Each of them is independently selected from a hydrocarbon group, an ether group and a heterocyclic group.) (In the general formula [Chemical Formula 17], X 7 is any of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group and a heterocyclic group, and X 8 and X 9 are hydrogen and an aliphatic hydrocarbon group. , An aromatic hydrocarbon group, an ether group, or a heterocyclic group, each of which is independently selected. (In the general formula [Chemical Formula 18], X 10 and X 11 are each independently selected from hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group, and a heterocyclic group.) Structural formula [ The organic electroluminescence device according to claim 5, which is composed of one or more kinds of compounds represented by Chemical formulas 10 to 15 or general formulas 16 to 18.
【請求項7】前記ホスト剤に用いる正孔輸送性物質は、 【化19】 構造式[化19]で表されるカルバゾリル基を有する化
合物から成ることを特徴とする請求項2乃至6のいずれ
か1項に記載の有機エレクトロルミネッセンス素子。
7. The hole-transporting substance used as the host agent is represented by: 7. The organic electroluminescence device according to claim 2, comprising a compound having a carbazolyl group represented by the structural formula [Chemical Formula 19].
【請求項8】前記カルバゾリル基を有する化合物は、 【化20】 【化21】 【化22】 【化23】 【化24】 【化25】 【化26】 (一般式[化26]中のRは、それぞれ独立に、水素、
脂肪族炭化水素基、芳香族炭化水素基、エーテル基、複
素環基のいずれかを示す。) 構造式[化20]乃至[化25]、または、一般式[化
26]で表される化合物のうち一種類以上から成ること
を特徴とする請求項7に記載の有機エレクトロルミネッ
センス素子。
8. The compound having a carbazolyl group is represented by: [Chemical 21] [Chemical formula 22] [Chemical formula 23] [Chemical formula 24] [Chemical 25] [Chemical formula 26] (R in the general formula [Chemical Formula 26] is independently hydrogen,
It represents any of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group and a heterocyclic group. 8. The organic electroluminescence device according to claim 7, which is composed of one or more kinds of compounds represented by the structural formulas [Chemical Formula 20] to [Chemical Formula 25] or the general formula [Chemical Formula 26].
【請求項9】前記ドープ剤は、 【化27】 (一般式[化27]中、Arはアリール基、X12及びX
13はそれぞれ独立に脂肪族炭化水素基、芳香族炭化水素
基、エーテル基、複素環基のいずれかを示し、ArとX
12とにおいて芳香環が縮合しても良く、nは1以上3以
下の整数である。) 一般式[化27]で表される化合物から成ることを特徴
とする請求項1乃至8のいずれか1項に記載の有機エレ
クトロルミネッセンス素子。
9. The doping agent is represented by: (In the general formula [Chemical Formula 27], Ar represents an aryl group, X 12 and X.
13 are each independently an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group or a heterocyclic group, and Ar and X
An aromatic ring may be condensed with 12 and n is an integer of 1 or more and 3 or less. The organic electroluminescence device according to claim 1, comprising a compound represented by the general formula [Chemical Formula 27].
【請求項10】前記ドープ剤の分子構造は、 【化28】 (一般式[化28]中、R1〜R8は、それぞれ独立
に、水素、脂肪族炭化水素基、芳香族炭化水素基、エー
テル基、複素環基のいずれかを示し、あるいは/および
隣接するRn(nは1以上8以下のいずれかから成る整
数)において芳香環が縮合しても良い。) 一般式[化28]で表される化合物から成ることを特徴
とする請求項1乃至8のいずれか1項に記載の有機エレ
クトロルミネッセンス素子。
10. The molecular structure of the dopant is: (In the general formula [Chemical Formula 28], R1 to R8 each independently represent hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group, or a heterocyclic group, and / or Rn adjacent thereto. (In the formula, n is an integer of 1 or more and 8 or less), the aromatic ring may be condensed.) The compound of the formula [Chemical Formula 28]. The organic electroluminescence device according to item 1.
JP2001184995A 2001-06-19 2001-06-19 Organic electroluminescence element Pending JP2003007467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184995A JP2003007467A (en) 2001-06-19 2001-06-19 Organic electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184995A JP2003007467A (en) 2001-06-19 2001-06-19 Organic electroluminescence element

Publications (1)

Publication Number Publication Date
JP2003007467A true JP2003007467A (en) 2003-01-10

Family

ID=19024655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184995A Pending JP2003007467A (en) 2001-06-19 2001-06-19 Organic electroluminescence element

Country Status (1)

Country Link
JP (1) JP2003007467A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208988A (en) * 2001-11-09 2003-07-25 Konica Corp Organic electroluminescent device and display equipment
JP2004022544A (en) * 2002-06-20 2004-01-22 Samsung Sdi Co Ltd Polymeric organic electroluminescent element using mixture of phosphate rock material as luminescent material
WO2004062324A1 (en) * 2002-12-27 2004-07-22 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP2004265623A (en) * 2003-02-12 2004-09-24 Denso Corp Organic electroluminescent element
JP2004296185A (en) * 2003-03-26 2004-10-21 Toyama Univ Organic electroluminescent element
JP2004363103A (en) * 2003-06-03 2004-12-24 Canon Inc Bipolar asymmetric carbazole-group host material for electrophosphorescent guest-host organic light emitting device system
WO2005026289A1 (en) * 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited Luminescent material and luminescent element comprising the same
JP2005158520A (en) * 2003-11-26 2005-06-16 Kyocera Corp Organic electroluminescent element
JP2005519429A (en) * 2002-03-04 2005-06-30 シーディーティー オックスフォード リミテッド Phosphor composition and organic light emitting device comprising the same
JP2005255986A (en) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp Material for forming emitter layer and organic electroluminescence element
JP2005285708A (en) * 2004-03-31 2005-10-13 Hitachi Ltd Organic light emitting element, picture display device, and its manufacturing method
JP2006013482A (en) * 2004-06-25 2006-01-12 Samsung Sdi Co Ltd Organic electroluminescent element
JP2006032883A (en) * 2004-06-15 2006-02-02 Canon Inc Light emitting element
JP2006135295A (en) * 2004-11-05 2006-05-25 Samsung Sdi Co Ltd Organic electroluminescence element
JP2006156941A (en) * 2004-11-27 2006-06-15 Samsung Sdi Co Ltd Organic electroluminescent device
JP2006245565A (en) * 2005-03-05 2006-09-14 Samsung Sdi Co Ltd Organic light emitting device
JP2006270053A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Organic electroluminescence element
JP2006279014A (en) * 2004-09-15 2006-10-12 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2006351523A (en) * 2005-05-20 2006-12-28 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and manufacturing method of light-emitting element
KR100704655B1 (en) 2004-06-19 2007-04-10 부산대학교 산학협력단 Light emitting polymer or derivatives thereof and light emitting device using same
WO2007052444A1 (en) * 2005-10-31 2007-05-10 Nippon Steel Chemical Co., Ltd. Organic electroluminescent device
JP2007515788A (en) * 2003-12-05 2007-06-14 イーストマン コダック カンパニー Organic electroluminescent device containing additives
WO2007074893A1 (en) * 2005-12-28 2007-07-05 Semiconductor Energy Laboratory Co., Ltd. Oxadiazole derivative, and light emitting element, light emitting device, and electronic device using the oxadiazole derivative
US7332739B2 (en) 2002-06-20 2008-02-19 Samsung Sdi Co., Ltd. Organic electroluminescent device using mixture of phosphorescent material as light-emitting substance
JP2008112875A (en) * 2006-10-31 2008-05-15 Dainippon Printing Co Ltd Organic electroluminescent element, and its manufacturing method
CN100406516C (en) * 2003-03-26 2008-07-30 住友化学株式会社 Complex composition, polymer complex compound, and polymeric luminescent element
JP2008291236A (en) * 2007-04-25 2008-12-04 Hitachi Ltd Organic light-emitting display device
JP2010083876A (en) * 2008-09-05 2010-04-15 Semiconductor Energy Lab Co Ltd Organic semiconductor material, and light-emitting element, light-emitting device, lighting system and electronic device, each using the same
JP2010141008A (en) * 2008-12-10 2010-06-24 Konica Minolta Holdings Inc Organic electroluminescent element, organic electroluminescent element material, display device, and lighting device
US7776457B2 (en) 2004-11-12 2010-08-17 Samsung Mobile Display Co., Ltd. Organic electroluminescent device
US8049407B2 (en) 2004-09-15 2011-11-01 Fujifilm Corporation Organic electroluminescent element including blue phosphorescent luminescent material
WO2012039213A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Organic light emitting device and light source device provided with same
US8178217B2 (en) 2007-05-17 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative
US8247575B2 (en) 2009-03-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative with heteroaromatic ring, and light-emitting element, light-emitting device, and electronic device using carbazole derivative with heteroaromatic ring
JP2013258402A (en) * 2012-05-18 2013-12-26 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, display, electronic apparatus, and lighting device
US20140048787A1 (en) * 2005-08-31 2014-02-20 National University Corporation Shinshu University Compound having triazole ring structure substituted with pyridyl group and organic electroluminescent device
US8771843B2 (en) 2010-08-27 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, organic compound, and light-emitting element, light-emitting device, and electronic device using the compound
US8835019B2 (en) 2007-05-31 2014-09-16 Samsung Display Co., Ltd. Organic light emitting device having an electron transport-emission layer and method of preparing the same
US8906518B2 (en) 2007-12-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, light-emitting element, light-emitting device, and electronic device
US8993125B2 (en) 2010-05-21 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
JP2015065152A (en) * 2013-06-28 2015-04-09 株式会社半導体エネルギー研究所 Method of producing light-emitting element, and light-emitting element
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US9157023B2 (en) * 2003-11-18 2015-10-13 Koninklijke Philips N.V. Light-emitting device with an iridium complex
EP3182478A1 (en) 2015-12-18 2017-06-21 Novaled GmbH Electron injection layer for an organic light-emitting diode (oled)
EP3252837A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252841A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
JP2018022864A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
JP2018022862A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
WO2018100907A1 (en) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 Organic electroluminescent element
US10797256B2 (en) 2016-07-20 2020-10-06 Joled Inc. Organic electroluminescence device, organic electroluminescence unit, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020081A2 (en) * 1997-10-09 1999-04-22 The Trustees Of Princeton University Highly transparent non-metallic cathodes
JP2000252079A (en) * 1999-03-03 2000-09-14 Honda Motor Co Ltd Organic electroluminescence element and its manufacture
WO2000057676A1 (en) * 1999-03-23 2000-09-28 The University Of Southern California Cyclometallated metal complexes as phosphorescent dopants in organic leds
WO2001041512A1 (en) * 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020081A2 (en) * 1997-10-09 1999-04-22 The Trustees Of Princeton University Highly transparent non-metallic cathodes
JP2001520450A (en) * 1997-10-09 2001-10-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ Highly transparent non-metallic cathode
JP2000252079A (en) * 1999-03-03 2000-09-14 Honda Motor Co Ltd Organic electroluminescence element and its manufacture
WO2000057676A1 (en) * 1999-03-23 2000-09-28 The University Of Southern California Cyclometallated metal complexes as phosphorescent dopants in organic leds
JP2002540572A (en) * 1999-03-23 2002-11-26 ザ ユニバーシティー オブ サザン カリフォルニア Cyclometallated metal complexes as phosphorescent dopants in organic LEDs
WO2001041512A1 (en) * 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
JP2003515897A (en) * 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ Complexes of Formula L2MX as phosphorescent dopants for organic LEDs

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208988A (en) * 2001-11-09 2003-07-25 Konica Corp Organic electroluminescent device and display equipment
JP2005519429A (en) * 2002-03-04 2005-06-30 シーディーティー オックスフォード リミテッド Phosphor composition and organic light emitting device comprising the same
JP2004022544A (en) * 2002-06-20 2004-01-22 Samsung Sdi Co Ltd Polymeric organic electroluminescent element using mixture of phosphate rock material as luminescent material
US7332739B2 (en) 2002-06-20 2008-02-19 Samsung Sdi Co., Ltd. Organic electroluminescent device using mixture of phosphorescent material as light-emitting substance
US7358662B2 (en) 2002-06-20 2008-04-15 Samsung Sdi Co., Ltd. Organic electroluminescent device using mixture of phosphorescent material as light-emitting substance
US7740956B2 (en) 2002-12-27 2010-06-22 Fujifilm Corporation Organic electroluminescent device
WO2004062324A1 (en) * 2002-12-27 2004-07-22 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP2004265623A (en) * 2003-02-12 2004-09-24 Denso Corp Organic electroluminescent element
JP2004296185A (en) * 2003-03-26 2004-10-21 Toyama Univ Organic electroluminescent element
CN100406516C (en) * 2003-03-26 2008-07-30 住友化学株式会社 Complex composition, polymer complex compound, and polymeric luminescent element
JP2004363103A (en) * 2003-06-03 2004-12-24 Canon Inc Bipolar asymmetric carbazole-group host material for electrophosphorescent guest-host organic light emitting device system
GB2422613B (en) * 2003-09-12 2007-12-19 Sumitomo Chemical Co Light-emitting material and light-emitting device using the same
WO2005026289A1 (en) * 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited Luminescent material and luminescent element comprising the same
GB2422613A (en) * 2003-09-12 2006-08-02 Sumitomo Chemical Co Luminescent material and luminescent element comprising the same
US9157023B2 (en) * 2003-11-18 2015-10-13 Koninklijke Philips N.V. Light-emitting device with an iridium complex
JP2005158520A (en) * 2003-11-26 2005-06-16 Kyocera Corp Organic electroluminescent element
JP2007515788A (en) * 2003-12-05 2007-06-14 イーストマン コダック カンパニー Organic electroluminescent device containing additives
JP2005255986A (en) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp Material for forming emitter layer and organic electroluminescence element
JP2005285708A (en) * 2004-03-31 2005-10-13 Hitachi Ltd Organic light emitting element, picture display device, and its manufacturing method
JP2006032883A (en) * 2004-06-15 2006-02-02 Canon Inc Light emitting element
JP4546203B2 (en) * 2004-06-15 2010-09-15 キヤノン株式会社 Light emitting element
US7687154B2 (en) 2004-06-15 2010-03-30 Canon Kabushiki Kaisha Light-emitting device
KR100704655B1 (en) 2004-06-19 2007-04-10 부산대학교 산학협력단 Light emitting polymer or derivatives thereof and light emitting device using same
JP2006013482A (en) * 2004-06-25 2006-01-12 Samsung Sdi Co Ltd Organic electroluminescent element
US8049407B2 (en) 2004-09-15 2011-11-01 Fujifilm Corporation Organic electroluminescent element including blue phosphorescent luminescent material
JP2006279014A (en) * 2004-09-15 2006-10-12 Fuji Photo Film Co Ltd Organic electroluminescent element
US8911881B2 (en) 2004-11-05 2014-12-16 Samsung Display Co., Ltd. Organic light-emitting device
JP2006135295A (en) * 2004-11-05 2006-05-25 Samsung Sdi Co Ltd Organic electroluminescence element
JP2011160003A (en) * 2004-11-12 2011-08-18 Samsung Mobile Display Co Ltd Organic electroluminescence element
JP2015046612A (en) * 2004-11-12 2015-03-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic electroluminescent device
US7776457B2 (en) 2004-11-12 2010-08-17 Samsung Mobile Display Co., Ltd. Organic electroluminescent device
US7601439B2 (en) 2004-11-27 2009-10-13 Samsung Mobile Display Co., Ltd. Organic electroluminescent device
JP2006156941A (en) * 2004-11-27 2006-06-15 Samsung Sdi Co Ltd Organic electroluminescent device
JP2006270053A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Organic electroluminescence element
JP2006245565A (en) * 2005-03-05 2006-09-14 Samsung Sdi Co Ltd Organic light emitting device
JP2006351523A (en) * 2005-05-20 2006-12-28 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device and manufacturing method of light-emitting element
US20140048787A1 (en) * 2005-08-31 2014-02-20 National University Corporation Shinshu University Compound having triazole ring structure substituted with pyridyl group and organic electroluminescent device
WO2007052444A1 (en) * 2005-10-31 2007-05-10 Nippon Steel Chemical Co., Ltd. Organic electroluminescent device
TWI400988B (en) * 2005-10-31 2013-07-01 Nippon Steel & Sumikin Chem Co Organic electroluminescent elements
US8119257B2 (en) 2005-10-31 2012-02-21 Nippon Steel Chemical Co., Ltd. Organic electroluminescent device
JPWO2007052444A1 (en) * 2005-10-31 2009-04-30 新日鐵化学株式会社 Organic electroluminescence device
JP5031575B2 (en) * 2005-10-31 2012-09-19 新日鐵化学株式会社 Organic electroluminescence device
WO2007074893A1 (en) * 2005-12-28 2007-07-05 Semiconductor Energy Laboratory Co., Ltd. Oxadiazole derivative, and light emitting element, light emitting device, and electronic device using the oxadiazole derivative
US8686159B2 (en) 2005-12-28 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Oxadiazole derivative, and light emitting element, light emitting device, and electronic device using the oxadiazole derivative
US9048436B2 (en) 2005-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Oxadiazole derivative, and light emitting element, light emitting device, and electronic device using the oxadiazole derivative
US8389735B2 (en) 2005-12-28 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Oxadiazole derivative, and light emitting element, light emitting device, and electronic device using the oxadiazole derivative
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2008112875A (en) * 2006-10-31 2008-05-15 Dainippon Printing Co Ltd Organic electroluminescent element, and its manufacturing method
JP2008291236A (en) * 2007-04-25 2008-12-04 Hitachi Ltd Organic light-emitting display device
US9397299B2 (en) 2007-05-17 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative
US8178217B2 (en) 2007-05-17 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative
US8592056B2 (en) 2007-05-17 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative
US10790451B2 (en) 2007-05-17 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, and electronic device with the use of triazole derivative
US8835019B2 (en) 2007-05-31 2014-09-16 Samsung Display Co., Ltd. Organic light emitting device having an electron transport-emission layer and method of preparing the same
US8906518B2 (en) 2007-12-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, light-emitting element, light-emitting device, and electronic device
US10243151B2 (en) 2008-09-05 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor material and light-emitting element, light-emitting device, lighting system, and electronic device using the same
US9620723B2 (en) 2008-09-05 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor material and light-emitting element, light-emitting device, lighting system, and electronic device using the same
JP2010083876A (en) * 2008-09-05 2010-04-15 Semiconductor Energy Lab Co Ltd Organic semiconductor material, and light-emitting element, light-emitting device, lighting system and electronic device, each using the same
JP2010141008A (en) * 2008-12-10 2010-06-24 Konica Minolta Holdings Inc Organic electroluminescent element, organic electroluminescent element material, display device, and lighting device
US8530658B2 (en) 2009-03-20 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative with heteroaromatic ring, and light-emitting element, light-emitting device, and electronic device using carbazole derivative with heteroaromatic ring
US8247575B2 (en) 2009-03-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative with heteroaromatic ring, and light-emitting element, light-emitting device, and electronic device using carbazole derivative with heteroaromatic ring
TWI492944B (en) * 2010-05-21 2015-07-21 Semiconductor Energy Lab Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
US8993125B2 (en) 2010-05-21 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
US9359335B2 (en) 2010-05-21 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
US9806268B2 (en) 2010-05-21 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
US8771843B2 (en) 2010-08-27 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, organic compound, and light-emitting element, light-emitting device, and electronic device using the compound
WO2012039213A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Organic light emitting device and light source device provided with same
JP2018067716A (en) * 2012-05-18 2018-04-26 株式会社半導体エネルギー研究所 Light-emitting element, illuminating device, light-emitting device, display device, and electronic equipment
JP2019091895A (en) * 2012-05-18 2019-06-13 株式会社半導体エネルギー研究所 Light-emitting element, lighting device, light-emitting device, display device, and electronic device
JP2013258402A (en) * 2012-05-18 2013-12-26 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, display, electronic apparatus, and lighting device
US10121969B2 (en) 2013-06-28 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating light-emitting element using chamber with mass spectrometer
JP2015065152A (en) * 2013-06-28 2015-04-09 株式会社半導体エネルギー研究所 Method of producing light-emitting element, and light-emitting element
EP3182478A1 (en) 2015-12-18 2017-06-21 Novaled GmbH Electron injection layer for an organic light-emitting diode (oled)
EP3252837A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252841A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
US10797256B2 (en) 2016-07-20 2020-10-06 Joled Inc. Organic electroluminescence device, organic electroluminescence unit, and electronic apparatus
JP2018022864A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
JP2018022862A (en) * 2016-07-20 2018-02-08 株式会社Joled Organic electroluminescent element, organic electroluminescent device, and electronic apparatus
WO2018100907A1 (en) * 2016-11-29 2018-06-07 コニカミノルタ株式会社 Organic electroluminescent element
CN109983597A (en) * 2016-11-29 2019-07-05 柯尼卡美能达株式会社 Organic electroluminescent device
JPWO2018100907A1 (en) * 2016-11-29 2019-10-17 コニカミノルタ株式会社 Organic electroluminescence device
CN109983597B (en) * 2016-11-29 2021-09-07 默克专利有限公司 Organic electroluminescent element
JP7053487B2 (en) 2016-11-29 2022-04-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Organic electroluminescence element
US11444251B2 (en) 2016-11-29 2022-09-13 Merck Patent Gmbh Organic electroluminescent element

Similar Documents

Publication Publication Date Title
JP2003007467A (en) Organic electroluminescence element
JP2002352957A (en) Organic electoluminescence element
JP5746269B2 (en) Organic light-emitting device having phosphorescent-sensitized fluorescent light-emitting layer
JP2002324679A (en) Organic electroluminescent element
JP4362461B2 (en) Organic electroluminescence device
TWI530484B (en) Solution processable doped triarylamine hole injection materials
US20020180347A1 (en) Double doped-layer, phosphorescent organic light emitting devices
JP2003077673A (en) Organic electroluminescent element
JP2010080979A (en) Material and device for blue phosphorescence-based organic light-emitting diode
JP4035372B2 (en) Light emitting element
JP2003217862A (en) Organic electroluminescent element
JP2006013482A (en) Organic electroluminescent element
WO2012124642A1 (en) Organic electroluminescent element
US20040096570A1 (en) Structure and method of fabricating organic devices
WO2003083009A1 (en) Organic electroluminescence element
JP2003257674A (en) Organic electroluminescence element
JP2001313177A (en) Organic electroluminescent element
JP4783526B2 (en) Organic electroluminescence device
JPWO2006040915A1 (en) Organic electroluminescent device
JP2002299061A (en) Organic electroluminescence element
JP4838951B2 (en) Organic electroluminescence device
CN106784359B (en) Cross-linking balancing charge injection organic semiconductor and its Organic Light Emitting Diode application
KR100699096B1 (en) Phosphorescent red-emitting iridium complex and organic electroluminescent device comprising same
JP2002319488A (en) Organic electroluminescent element
JP2003257677A (en) Organic electroluminescence element and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120105