JP6635228B2 - 液晶化合物及びその組成物 - Google Patents

液晶化合物及びその組成物 Download PDF

Info

Publication number
JP6635228B2
JP6635228B2 JP2019523444A JP2019523444A JP6635228B2 JP 6635228 B2 JP6635228 B2 JP 6635228B2 JP 2019523444 A JP2019523444 A JP 2019523444A JP 2019523444 A JP2019523444 A JP 2019523444A JP 6635228 B2 JP6635228 B2 JP 6635228B2
Authority
JP
Japan
Prior art keywords
general formula
group
formula
represent
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019523444A
Other languages
English (en)
Other versions
JPWO2018225522A1 (ja
Inventor
宗矩 櫻井
宗矩 櫻井
健太 東條
健太 東條
豊 門本
豊 門本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2018225522A1 publication Critical patent/JPWO2018225522A1/ja
Application granted granted Critical
Publication of JP6635228B2 publication Critical patent/JP6635228B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal Substances (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は有機電子材料や医農薬、特に液晶表示素子用材料として有用な縮合環を有する化合物及びこれらを用いた液晶組成物に関する。
液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられている。液晶表示方式としては、その代表的なものにTN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いた垂直配向型やIPS(イン・プレーン・スイッチング)型等の駆動方式がある。これらの液晶表示素子に用いられる液晶組成物は水分、空気、熱、光などの外的要因に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相(ネマチック相、スメクチック相及びブルー相等)を示し、低粘性であり、かつ駆動電圧が低いことが求められる。更に液晶組成物は個々の表示素子にあわせて誘電率異方性(Δε)及び屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物を選択し、構成されている。
液晶組成物を表示素子等として使用する際には、広い温度範囲において安定なネマチック相を示すことが求められる。広い温度範囲にてネマチック相を維持するためには、液晶組成物を構成する個々の成分が他の成分との高い混和性を持つこと、及び高い透明点(Tni)を持つ事が求められる。 また、液晶組成物を表示素子等として使用する際には、可能な限り回転粘性係数(γ)が低いことが求められる。γの低い液晶組成物を得るためには様々な方法があるが、その一つとして大きな|Δε|(外挿値)を有する化合物を用いる事が知られている。この理由について以下に説明する。液晶組成物のγを低下させるためには、|Δε|(外挿値)がほぼ0であり低いγ(外挿値)を示す非極性化合物の使用量を可能な限り増やすことが有効である。一般的に必要とされる組成物のΔεは液晶パネルごとに決まっており、Δεを付与するためにγ(外挿値)の大きな極性化合物を添加している。したがって、大きな|Δε|(外挿値)を示す化合物に置き換える事で、非極性化合物の使用量を増やすことが出来るため、結果として液晶組成物のγ低下を達成することが出来る。
このように、高いTniを示し、また、大きな|Δε|(外挿値)を示す化合物の開発が求められている。これまで、ジベンゾフラン構造を有する下記のような化合物が報告されているが、Tniが十分に大きくないという課題があった(特許文献1及び特許文献2)。
Figure 0006635228
(式中、R及びRは各々独立して炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルキニル基を表し、m及びnは各々独立して0又は1を表す。)
独国特許出願公開第102015002298号明細書 独国特許出願公開第102015003411号明細書
本発明が解決しようとする課題は、高いTniを示し、また、大きなΔεを有する化合物を提供し、併せて当該化合物を構成部材とする液晶組成物及び液晶表示素子を提供することである。
前記課題を解決するため、本願発明者らは種々の化合物の検討を行った結果、下記縮合環を有する化合物が効果的に課題を解決できることを見出し、本願発明の完成に至った。
本願発明は、一般式(i)
Figure 0006635228
(式中、Xi1及びXi2はそれぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、トリフルオロメトキシ基を表し、
i1及びYi2はそれぞれ独立して−O−、−S−、−SO−、−SOO−、−CF−、−CO−、−CXi3i4−を表し、ただし、Yi1及びYi2のいずれか一つ以上は−O−、−S−、−SO−、−SOO−を表し、
i3、Xi4はそれぞれ独立してXi1と同じ意味を表し、
i1
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)を表し、
i2は単結合又は−CLi9i10−を表し、
i1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9及びLi10はそれぞれ独立して水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基又は
Figure 0006635228
(式中、Ri1は水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基又は炭素原子数2から15のアルケニルオキシ基を表し、
i1
(a)1,4−シクロへキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−又は−S−に置き換えられても良い。)
(b)1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良く、この基中に存在する1つの水素原子はフッ素原子に置換されても良い。)
(c)1,4−シクロヘキセニレン基、ナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、デカヒドロナフタレン−2,6−ジイル基(これらの基中に存在する水素原子はフッ素原子に置換されても良く、また、ナフタレン−2,6−ジイル基又は1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられても良い。)
からなる群より選ばれる基を表し、
i1は、−CHO−、−OCH−、−CFO−、−OCF−、−COO−、−OCO−、−CHCH−、−CFCF−、−CH=CH−、−CF=CF−、−C≡C−又は単結合を表し、
i1は1又は2を表すが、ni1が2を表しAi1及びZi1が複数存在する場合、それらは同一であっても異なっていてもよい。)
で表される基を表し、Li1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9及びLi10中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−C≡C−、−O−、−S−、−COO−、−OCO−又は−CO−により置き換えられても良く、また、アルキル基又はアルケニル基中に存在する水素原子はフッ素原子に置換されても良い。)
で表される基を表す。)
で表される化合物を提供し、併せて当該化合物を含有する液晶組成物及び当該液晶組成物を用いた液晶表示素子、並びに当該化合物の製造方法及びその中間体を提供する。
本発明により提供される、一般式(i)で表される化合物は、高い透明点(Tni)を有する。従って、一般式(i)で表される化合物を液晶組成物の成分として用いる事により、広い温度範囲において安定なネマチック相を示すことができる。また、本発明により提供される、一般式(i)で表される化合物は、大きな|Δε|を示しさらに化学的に高い安定性を併せ持つ。従って、一般式(i)で表される化合物を液晶組成物の成分として用いる事により、低いγを示す液晶組成物を得ることができる。このため、高速応答が求められる液晶表示素子用の液晶組成物の構成成分として非常に有用である。
i1及びXi2はそれぞれ独立して、フッ素原子を表すことが好ましく、より負に大きなΔεを示すにはXi1及びXi2が共にフッ素原子を表すことがより好ましい。
i1及びYi2はそれぞれ独立して、酸素原子または硫黄原子を表すことが好ましく、より負に大きなΔεを示すにはYi1及びYi2が共に酸素原子または硫黄原子を表すことがより好ましい。負に大きなΔεを示しつつ液晶表示素子とした際の長期信頼性を向上させるには共に酸素原子であることが好ましい。γを重視する場合にはYi1及びYi2のいずれかが−CH−であることが好ましく、Yi2が−CH−であることがより好ましい。より大きなΔnを示すには共に硫黄原子であることが好ましい。
i1
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)
であることが好ましく、Tni及びγを重視する場合には
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)
であることがより好ましく、他の液晶成分との混和性を上昇させるためには
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)
であることがより好ましく、大きなΔnを示すには
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)
であることがより好ましい。
i2は単結合又は−CHCH−を表すことが好ましい。
i1及びLi2はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、γを低下させる為には、炭素原子数1〜8のアルキル基又は炭素原子数2〜8のアルケニル基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。|Δε|を大きくさせるためには、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基であることが好ましく、炭素原子数1〜5のアルコキシ基又は炭素原子数2〜5のアルケニルオキシ基であることが特に好ましい。他の液晶成分との混和性を上昇させるためには、Li1及びLi2が異なることが好ましく、アルコキシ基又はアルケニルオキシ基はLi1及びLi2のいずれか一方であることが好ましく、アルコキシ基はLi1であることが特に好ましい。Li1及びLi2中に存在する水素原子はフッ素原子に置換されていても良いが、フッ素原子に置換されていないことが好ましい。
また、Li1及びLi2
Figure 0006635228
を表すことが好ましい。
i1はγを低下させる為には、炭素原子数1〜8のアルキル基又は炭素原子数2〜8のアルケニル基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。|Δε|を大きくさせるためには、炭素原子数1〜8のアルコキシ基又は炭素原子数2〜8のアルケニルオキシ基であることが好ましく、炭素原子数1〜5のアルコキシ基又は炭素原子数2〜5のアルケニルオキシ基であることが特に好ましい。Ri1が複数存在する場合、他の液晶成分との混和性を上昇させるためには、Ri1が互いに異なることが好ましく、アルコキシ基又はアルケニルオキシ基は複数存在するRi1のうちいずれか一つであることが好ましく、アルコキシ基又はアルケニルオキシ基はLi1中のRi1であることが特に好ましい。Ri1中に存在する水素原子はフッ素原子に置換されていても良いが、フッ素原子に置換されていないことが好ましい。
i1
Figure 0006635228
から選ばれる基を表すことが好ましい。具体的には、Aはγを低下させる為にはトランス−1,4−シクロヘキシレン基、無置換の1,4−フェニレン基、2−フルオロ−1,4−フェニレン基又は3−フルオロ−1,4−フェニレン基であることが好ましく、トランス−1,4−シクロヘキシレン基であることが特に好ましい。他の液晶成分との混和性を向上させる為には、トランス−1,4−シクロヘキシレン基、2−フルオロ−1,4−フェニレン基又は3−フルオロ−1,4−フェニレン基であることが好ましい。Tniを上昇させる為には、無置換の1,4−フェニレン基、無置換の1,4−シクロヘキシレン基、1,4−シクロヘキセニレン基又は無置換のナフタレン−2,6−ジイル基であることが好ましい。負に大きなΔεを示すためには、2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基又は2,3−ジフルオロー1,4−フェニレン基であることが好ましい。負に大きなΔεを示しながら、他の液晶成分との混和性を両立させるためには、Ai1中に存在するフッ素原子の数の合計は、1〜4であることが好ましく、1〜3であることが特に好ましい。
i1は、γを低下させる為には単結合、−CHCH−、−CHO−又は−OCH−であることが好ましく、単結合又は−CHCH−であることが更に好ましい。Tniを上昇させるためには、単結合、−COO−,−OCO−、−CH=CH−又は−C≡C−であることが好ましく、単結合、−CH=CH−又は−C≡C−であることが更に好ましい。他の液晶成分との混和性を向上させる為には、単結合、−CHCH−、−CHO−又は−OCH−であることが好ましい。液晶表示素子とした際の長期信頼性を向上させるには単結合であることが好ましい。
i1が2を表す場合、複数存在するZi1のいずれか一つ以上が単結合を表すことが好ましい。ni1はγを重視する場合には1であることが好ましい。Tniを重視する場合には2であることが好ましい。
i3は水素原子、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表すことが好ましく、γを低下させる為には、炭素原子数1〜8のアルキル基又は炭素原子数2〜8のアルケニル基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。
また、Li1が水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表す場合、Li3
Figure 0006635228
を表すことが好ましい。
i4及びLi5はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、水素原子を表すことがより好ましい。
i6及びLi7はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、γを低下させる為には、炭素原子数1〜8のアルキル基又は炭素原子数2〜8のアルケニル基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。
i8は水素原子、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表すことが好ましく、γを低下させる為には、炭素原子数1〜8のアルキル基又は炭素原子数2〜8のアルケニル基であることが好ましく、炭素原子数1〜5のアルキル基又は炭素原子数2〜5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。
また、Li2が水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表す場合、Li8が、
Figure 0006635228
を表すことが好ましい。
i9及びLi10はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、水素原子を表すことがより好ましい。
一般式(i)で表される化合物において
Figure 0006635228
で表される基が存在する場合、他の液晶成分との混和性を高くする為に、当該基の数は2つ以下であることが好ましい。一般式(i)中に当該基の数が2つ存在する場合、Li1及びLi2、Li1及びLi8、Li3及びLi2、又はLi3及びLi8の位置に存在することが好ましい。一般式(i)中に当該基の数が2つ存在する場合、Li1及びLi2の位置に存在することが好ましい。 なお、一般式(i)で表される化合物において、ヘテロ原子同士が直接結合する構造となることはない。
一般式(i)の中では以下の一般式(i−1)〜一般式(i−946)で表される各化合物が好ましい。その中で特に好ましい化合物は、(i−1)、(i−2)、(i−3)、(i−4)、(i−5)、(i−6)、(i−7)、(i−8)、(i−9)、(i−10)、(i−11)、(i−12)である。
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。)
Figure 0006635228
本発明において、一般式(i)で表される化合物は、例えば、一般式(i−r1)
Figure 0006635228
(式中Xi2、Yi2、Wi1、Li2及びLi5は一般式(i)におけるXi2、Yi2、Wi1、Li2及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり−CH−CH−、−CH−CH−CH−、又は−CH−C(CH−CH−を表し、
破線は結合が存在しなくても良く、存在しても良いことを表す。)
で表される化合物と、一般式(i−r2)
Figure 0006635228
(式中Xi1、Yi1、Li1、Li3、Li4及びWi2は一般式(i)におけるXi1、Yi1、Li1、Li3、Li4及びWi2とそれぞれ同じ意味を表し、
i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p−トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表す。)
で表される化合物を遷移金属触媒及び塩基存在下反応させることにより、一般式(i−r3)
Figure 0006635228
(式中Xi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
破線は結合が存在しなくても良く、存在しても良いことを表す。)
で表される化合物を得た後、該一般式(i−r3)中の−Yi1−Hを塩基により脱プロトン化しアニオンを生成することで分子内反応させることによって得られる。
また一般式(i)で表される化合物は、例えば、一般式(i−r4)
Figure 0006635228
(式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
i11はLi1と同じ意味を表す。)
で表される化合物を有機金属試薬により脱プロトン化した後、臭素又はよう素と反応させることにより、一般式(i−r5)
Figure 0006635228
(式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
i11はLi1と同じ意味を表し、
i3は臭素原子又はよう素原子を表す。)
で表される化合物を得、一般式(i−r6)
Figure 0006635228
(式中Li2は一般式(i)におけるLi2と同じ意味を表す。)
で表される化合物と遷移金属触媒、銅触媒及び塩基存在下反応させることにより、一般式(i−r7)
Figure 0006635228
(式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
i11はLi1と同じ意味を表す。)
で表される化合物を得た後、該一般式(i−r7)中の−Yi2−Li11を水存在下酸による脱保護反応と分子内反応を同時に進行させることによってWi1
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)
で表されるものとして得られる。またその化合物の二重結合に付加反応させることによってWi1
Figure 0006635228
(但し、式中の黒点はLi2又はYi2への結合点を表す。)
で表されるものが得られる。より具体的には、以下のようにして製造することができる。勿論本発明の趣旨及び適用範囲は、これら製造例により制限されるものではない。
(製造方法1)
Figure 0006635228
(式中、Li1、Li2、Xi1及びXi2は、一般式(i)におけるLi1、Li2、Xi1及びXi2と同じ意味を表し、
i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり−CH−CH−、−CH−CH−CH−、又は−CH−C(CH−CH−を表し、
i11はLi1と同じ意味を表し、
i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p−トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表し、
i4は塩素原子、臭素原子又はよう素原子を表し、
i5は臭素原子又はよう素原子を表し、
i3は−O−又は−S−を表す。)
一般式(S−1)で表される化合物を(S−2)で表される化合物と遷移金属触媒及び塩基存在下反応させることにより一般式(S−3)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。
使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、炭酸カリウム、炭酸セシウム、りん酸三カリウムが更に好ましい。
反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
一般式(S−3)で表される化合物を分子内反応させることによって一般式(S−4)で表される化合物を得ることができる。この分子内反応は一般式(S−3)の−Yi3−Hを塩基により脱プロトン化しアニオンを生成することで行うことができる。
この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属りん酸塩、アルカリ金属りん酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属りん酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属りん酸塩としてはりん酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt−ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2−ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N−ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。
反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。
一般式(S−4)で表される化合物を酸化することにより一般式(S−5)で表される化合物を得ることができる。この酸化は、有機金属試薬により脱プロトン化した後、ほう酸トリアルキルと反応させてほう素化合物とし、その後酸化剤を作用させることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt−ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。有機金属試薬としてはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4−テトラメルピペリジド等を挙げることができ、入手および取り扱いの容易さからn−ブチルリチウム、sec−ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec−ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム−t−ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
ほう酸トリアルキルとしては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピルおよびほう酸トリイソプロピルを用いるのが好ましいが、入手および取り扱いの容易さからほう酸トリメチルおよびほう酸トリイソプロピルがより好ましい。ほう酸トリアルキルと有機金属試薬の組み合わせとしては、上記で挙げたいずれの組み合わせも可能であるが、sec−ブチルリチウムとほう酸トリメチルの組み合わせ、およびリチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせが好ましく、リチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせがより好ましい。ほう素化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。得られたほう素化合物は一度単離してもよく、単離せずそのまま酸化剤と反応させてもよい。また、得られたほう素化合物を加水分解してほう酸化合物へと変換した後に酸化剤と反応させても構わない。
酸化剤としては、過酸化水素水、過酢酸または過ギ酸を用いるのが好ましい。反応温度は−78℃から70℃が好ましく、0℃から50℃がより好ましい。また、酸化剤との反応時には、溶媒に水が含まれていても構わない。
一般式(S−5)の水酸基を塩基によりフェノラートとして一般式(S−6)と反応させることによって一般式(S−7)で表される化合物を得ることができる。
この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属リン酸塩、アルカリ金属リン酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属リン酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属リン酸塩としてはリン酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt−ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2−ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N−ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。
反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。なお、生成したフェノラートを一度単離してから一般式(S−5)で表される化合物と反応させてもよく、単離せずに反応させてもよいが、作業の容易さから単離せずに反応させたほうがよい。
一般式(S−7)で表される化合物をハロゲン化することにより一般式(S−8)で表される化合物を得ることができる。このハロゲン化は、有機金属試薬により脱プロトン化した後、臭素又はよう素と反応させてハロゲン化合物とすることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt−ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
有機金属試薬としてはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4−テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn−ブチルリチウム、sec−ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec−ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム−t−ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
一般式(S−8)で表される化合物を(S−9)で表される化合物と遷移金属触媒、銅触媒及び塩基存在下反応させることにより一般式(S−10)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
使用する銅触媒としては、反応を好適に進行させるものであればいずれでも構わないが、塩化銅(I)、臭化銅(I)、よう化銅(I)、酢酸銅(I)等の1価の銅触媒が好ましく、よう化銅(I)であることが更に好ましい。
使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシド及びスルホラン等の極性溶媒が好ましく、テトラヒドロフラン、エタノール、トルエン、N,N−ジメチルホルムアミドが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。
使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、トリエチルアミン、ジエチルアミン、エチルアミン、トリメチルアミン、ジメチルアミン、メチルアミン、ジイソプロピルエチルアミン、ジイソプロピルアミン、イソプロピルアミン、N,N−テトラメチルエチレンジアミン、エチレンジアミン、トリエタノールアミン、ジエタノールアミン、エタノールアミン等のアミン、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、トリエチルアミン、ジエチルアミン、ジイソプロピルエチルアミン、ジイソプロピルアミンが更に好ましい。
反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
一般式(S−10)で表される化合物を水存在下酸による脱保護と分子内反応を同時に行うことにより一般式(S−11)で表される化合物を得ることができる。
使用する酸としては反応を好適に進行させるものであればいずれでも構わないが、塩酸、硫酸等の無機酸、p−トルエンスルホン酸等のスルホン酸類等が好ましく、塩酸が更に好ましい。
使用する溶媒としては反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、エタノール、メタノール、イソプロピルアルコール等の水溶性溶媒が好ましい。
反応温度としては、反応を好適に進行させる温度であればいずれでも構わないが、室温から溶媒の沸点までの温度が好ましい。
一般式(S−11)で表される化合物を有機溶媒中、金属触媒存在下、水素ガスと反応させることにより一般式(S−12)で表される化合物を得ることができる。
使用する有機溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、ジイソプロピルエーテル、ジエチルエーテル、1,4−ジオキサン又はテトラヒドロフラン等のエーテル系溶媒、ヘキサン、ヘプタン、トルエン又はキシレン等の炭化水素系溶媒、メタノール、エタノール、プロパノール、イソプロピルアルコール又はブタノール等のアルコール系溶媒、酢酸エチル又は酢酸ブチル等のエステル系溶媒が好ましく、テトラヒドロフラン、ヘキサン、ヘプタン、トルエン、エタノール又は酢酸エチルが好ましい。また、必要に応じて塩酸、酢酸又は硫酸等の酸を添加する事も好ましい。
反応温度としては、反応を好適に進行させる温度であればいずれでも構わないが、0℃から80℃が好ましく、室温から60℃が更に好ましい。
使用する金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、パラジウム炭素、ルテニウム炭素、白金黒又は酸化白金が好ましく、パラジウム炭素が更に好ましい。
反応する際の水素圧は、反応を好適に進行させるものであればいずれでも構わないが、大気圧から0.5MPaであることが好ましく、0.2MPaから0.5MPaであることが更に好ましい。
(製造方法2)
Figure 0006635228
(式中、Li1、Li2、Xi1、Xi2、Yi2及びWi1は、一般式(i)におけるLi1、Li2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり−CH−CH−、−CH−CH−CH−、又は−CH−C(CH−CH−を表し、
i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p−トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表し、
i4は臭素原子又はよう素原子を表し、
i3は−O−又は−S−を表す。)
一般式(S−13)で表される化合物をほう素化することにより一般式(S−14)で表される化合物を得ることができる。このほう素化は、有機金属試薬により脱プロトン化した後、ほう酸トリアルキルと反応させてほう素化合物とすることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt−ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
有機金属試薬としてはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4−テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn−ブチルリチウム、sec−ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec−ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム−t−ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
ほう酸トリアルキルとしては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピルおよびほう酸トリイソプロピルを用いるのが好ましいが、入手および取り扱いの容易さからほう酸トリメチルおよびほう酸トリイソプロピルがより好ましい。ほう酸トリアルキルと有機金属試薬の組み合わせとしては、上記で挙げたいずれの組み合わせも可能であるが、sec−ブチルリチウムとほう酸トリメチルの組み合わせ、およびリチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせが好ましく、リチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせがより好ましい。ほう素化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
一般式(S−14)で表される化合物を(S−15)で表される化合物と遷移金属触媒及び塩基存在下反応させることにより一般式(S−16)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。
使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、炭酸カリウム、炭酸セシウム、りん酸三カリウムが更に好ましい。
反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
一般式(S−16)で表される化合物を分子内反応させることによって一般式(S−17)で表される化合物を得ることができる。この分子内反応は一般式(S−16)の−Yi3−Hを塩基により脱プロトン化しアニオンを生成することで行うことができる。
この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属りん酸塩、アルカリ金属りん酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属りん酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属りん酸塩としてはりん酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt−ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2−ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N−ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。
反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。
一般式(S−17)で表される化合物をハロゲン化することにより一般式(S−18)で表される化合物を得ることができる。このハロゲン化は、有機金属試薬により脱プロトン化した後、臭素又はよう素と反応させてハロゲン化合物とすることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt−ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
有機金属試薬としてはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4−テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn−ブチルリチウム、sec−ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec−ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム−t−ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
一般式(S−18)で表される化合物を(S−19)で表される化合物と遷移金属触媒及び塩基存在下反応させることにより一般式(S−20)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。
使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、炭酸カリウム、炭酸セシウム、りん酸三カリウムが更に好ましい。
反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
(製造方法3)
Figure 0006635228
(式中、Li2、Xi1、Xi2、Yi2及びWi1は、一般式(i)におけるLi2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i5は塩素、臭素、よう素、ベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基又はトリフルオロメタンスルホニルオキシ基を表し、
i3は−O−又は−S−を表し、
i2は炭素原子数1から15のアルキル基又は炭素原子数2から15のアルケニル基を表す。)
一般式(S−17)で表される化合物を酸化することにより一般式(S−21)で表される化合物を得ることができる。この酸化は、有機金属試薬により脱プロトン化した後、ほう酸トリアルキルと反応させてほう素化合物とし、その後酸化剤を作用させることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt−ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。有機金属試薬としてはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4−テトラメルピペリジド等を挙げることができ、入手および取り扱いの容易さからn−ブチルリチウム、sec−ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec−ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム−t−ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
ほう酸トリアルキルとしては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピルおよびほう酸トリイソプロピルを用いるのが好ましいが、入手および取り扱いの容易さからほう酸トリメチルおよびほう酸トリイソプロピルがより好ましい。ほう酸トリアルキルと有機金属試薬の組み合わせとしては、上記で挙げたいずれの組み合わせも可能であるが、sec−ブチルリチウムとほう酸トリメチルの組み合わせ、およびリチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせが好ましく、リチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせがより好ましい。ほう素化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。得られたほう素化合物は一度単離してもよく、単離せずそのまま酸化剤と反応させてもよい。また、得られたほう素化合物を加水分解してほう酸化合物へと変換した後に酸化剤と反応させても構わない。
酸化剤としては、過酸化水素水、過酢酸または過ギ酸を用いるのが好ましい。反応温度は−78℃から70℃が好ましく、0℃から50℃がより好ましい。また、酸化剤との反応時には、溶媒に水が含まれていても構わない。
一般式(S−21)で表される化合物に一般式(S−22)で表される化合物を反応させることによって一般式(S−23)で表される化合物を得ることができる。この反応は一般式(S−21)の水酸基を塩基によりフェノラートとして一般式(S−22)と反応させることで行うことができる
この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属リン酸塩、アルカリ金属リン酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属リン酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属リン酸塩としてはリン酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt−ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2−ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N−ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。
反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。なお、生成したフェノラートを一度単離してから一般式(S−22)で表される化合物と反応させてもよく、単離せずに反応させてもよいが、作業の容易さから単離せずに反応させたほうがよい。
(製造方法4)
Figure 0006635228
(式中、Li1、Li2、Xi1、Xi2、Yi2及びWi11は、一般式(i)におけるLi1、Li2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i3は−O−又は−S−を表す。)
一般式(S−17)で表される化合物を一般式(S−24)で表される化合物と反応させることにより一般式(S−25)で表される化合物を得ることができる。この反応は、有機金属試薬により脱プロトン化した後、一般式(S−24)と反応させることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4−ジオキサン、1,3−ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt−ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
有機金属試薬としてはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4−テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn−ブチルリチウム、sec−ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec−ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム−t−ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は−100℃から−20℃が好ましく、−78℃から−40℃がより好ましい。
一般式(S−25)で表される化合物を脱水することにより一般式(S−26)で表される化合物を得ることができる。脱水の方法としては、酸の存在下で加熱する方法が挙げられる。酸としては、例えば塩酸、硫酸、重硫酸カリウムなどの無機酸や、酢酸、トリフルオロ酢酸、p−トルエンスルホン酸などの有機酸、トリフッ化ホウ素などのルイス酸が挙げられる。あるいは、脱水の方法として、水酸基をp−トルエンスルホン酸クロリド、トリフルオロメタンスルホン酸クロリド、トリホスゲンなどと反応させて脱離基に変換した後、脱離反応を行うことで脱水することもできる。
一般式(S−26)で表される化合物を有機溶媒中、金属触媒存在下、水素ガスと反応させる事で一般式(S−27)で表される化合物を得ることが出来る。
使用する有機溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、ジイソプロピルエーテル、ジエチルエーテル、1,4−ジオキサン又はテトラヒドロフラン等のエーテル系溶媒、ヘキサン、ヘプタン、トルエン又はキシレン等の炭化水素系溶媒、メタノール、エタノール、プロパノール、イソプロピルアルコール又はブタノール等のアルコール系溶媒、酢酸エチル又は酢酸ブチル等のエステル系溶媒が好ましく、テトラヒドロフラン、ヘキサン、ヘプタン、トルエン、エタノール又は酢酸エチルが好ましい。また、必要に応じて塩酸、酢酸又は硫酸等の酸を添加する事も好ましい。
反応温度としては、反応を好適に進行させる温度であればいずれでも構わないが、0℃から80℃が好ましく、室温から60℃が更に好ましい。
使用する金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、パラジウム炭素、ルテニウム炭素、白金黒又は酸化白金が好ましく、パラジウム炭素が更に好ましい。
反応する際の水素圧は、反応を好適に進行させるものであればいずれでも構わないが、大気圧から0.5MPaであることが好ましく、0.2MPaから0.5MPaであることが更に好ましい。
(製造方法5)
Figure 0006635228
(式中、Li2、Xi1、Xi2、Yi2及びWi1は、一般式(i)におけるLi2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i3は炭素原子数1から15のアルキル基又は炭素原子数2から15のアルケニル基を表し、アルキル基又はアルケニル基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−C≡C−、−O−、−S−、−COO−、−OCO−又は−CO−により置き換えられても良く、アルキル基又はアルケニル基中に存在する水素原子はフッ素原子に置換されても良く、
i4は臭素原子又はよう素原子を表し、
i5は塩素原子又は臭素原子を表し、
i3は−O−又は−S−を表す。)
一般式(S−18)で表される化合物を(S−28)で表される化合物と遷移金属触媒存在下反応させることにより一般式(S−29)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、二塩化ビス(トリフェニルホスフィン)ニッケル(II)、二塩化[1,2−ビス(ジフェニルホスフィノ)エタン]ニッケル(II)、二塩化[1,2−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)、トリス(ジベンジリデンアセトン)パラジウム(0)又は二塩化ビス[ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。
反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
このように、一般式(i)で表される化合物と混合して使用することのできる化合物の好ましい代表例としては、本発明の提供する組成物においては、その第一成分として一般式(i)で表される化合物を少なくとも1種含有するが、その他の成分として特に以下の第二から第四成分から少なくとも1種含有することが好ましい。
即ち、第二成分は誘電率異方性が負のいわゆるn型液晶化合物であって、以下の一般式(LC3)〜一般式(LC5)で示される化合物を挙げることができる。
Figure 0006635228
(式中、RLC31、RLC32、RLC41、RLC42、RLC51及びRLC52はそれぞれ独立して炭素原子数1〜15のアルキル基を表し、該アルキル基中の1つ又は2つ以上の−CH−は、酸素原子が直接隣接しないように、−O−、−CH=CH−、−CO−、−OCO−、−COO−又は−C≡C−で置換されてよく、該アルキル基中の1つ又は2つ以上の水素原子は任意にハロゲン原子によって置換されていてもよく、ALC31、ALC32、ALC41、ALC42、ALC51及びALC52はそれぞれ独立して下記の何れかの構造
Figure 0006635228
(該構造中シクロヘキシレン基中の1つ又は2つ以上の−CH−は酸素原子で置換されていてもよく、1,4−フェニレン基中の1つ又は2つ以上の−CH−は窒素原子で置換されていてもよく、また、該構造中の1つ又は2つ以上の水素原子はフッ素原子、塩素原子、−CF又は−OCFで置換されていてもよい。)のいずれかを表し、ZLC31、ZLC32、ZLC41、ZLC42、ZLC51及びZLC51はそれぞれ独立して単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−を表し、Zは−CH−又は酸素原子を表し、XLC41は水素原子又はフッ素原子を表し、mLC31、mLC32、mLC41、mLC42、mLC51及びmLC52はそれぞれ独立して0〜3を表し、mLC31+mLC32、mLC41+mLC42及びmLC51+mLC52は1、2又は3であり、ALC31〜ALC52、ZLC31〜ZLC52が複数存在する場合は、それらは同一であっても異なっていても良い。)
LC31〜RLC52は、それぞれ独立して、炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、アルケニル基としては下記構造を表すことが最も好ましく、
Figure 0006635228
(式中、環構造へは右端で結合するものとする。)
LC31〜ALC52はそれぞれ独立して下記の構造が好ましく、
Figure 0006635228
LC31〜ZLC51はそれぞれ独立して単結合、−CHO−、−COO−、−OCO−、−CHCH−、−CFO−、−OCF−又は−OCH−が好ましい。
一般式(LC3)は、下記一般式(LC3−a)及び一般式(LC3−b)
Figure 0006635228
(式中、RLC31、RLC32、ALC31及びZLC31はそれぞれ独立して前記一般式(LC3)におけるRLC31、RLC32、ALC31及びZLC31と同じ意味を表し、XLC3b1〜XLC3b6は水素原子又はフッ素原子を表すが、XLC3b1及びXLC3b2又はXLC3b3及びXLC3b4のうちの少なくとも一方の組み合わせは共にフッ素原子を表し、mLC3a1は1、2又は3であり、mLC3b1は0又は1を表し、ALC31及びZLC31が複数存在する場合は、それらは同一であっても異なっていても良い。ただし、一般式(LC3−a)において一般式(LC3−b)で表される群より選ばれる化合物を除く。)で表される化合物群から選ばれる1種又は2種以上の化合物であることが好ましい。
LC31及びRLC32はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基又は炭素原子数2〜7のアルケニルオキシ基を表すことが好ましい。
LC31は、1,4−フェニレン基、トランス−1,4−シクロヘキシレン基、テトラヒドロピラン−2,5−ジイル基、1,3−ジオキサン−2,5−ジイル基を表すことが好ましく、1,4−フェニレン基、トランス−1,4−シクロヘキシレン基を表すことがより好ましい。
LC31は単結合、−CHO−、−COO−、−OCO−、−CHCH−を表すことが好ましく、単結合を表すことがより好ましい。
一般式(LC3−a)としては、下記一般式(LC3−a1)〜一般式(LC3−a4)を表すことが好ましい。
Figure 0006635228
(式中、RLC31及びRLC32はそれぞれ独立して前記一般式(LC3)におけるRLC31及びRLC32と同じ意味を表す。)
LC31及びRLC32はそれぞれ独立して、炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、RLC31が炭素原子数1〜7のアルキル基を表し、RLC32が炭素原子数1〜7のアルコキシ基を表すことがより好ましい。
一般式(LC3−b)としては、下記一般式(LC3−b1)〜一般式(LC3−b12)を表すことが好ましく、一般式(LC3−b1)、一般式(LC3−b6)、一般式(LC3−b8)、一般式(LC3−b11)を表すことがより好ましく、一般式(LC3−b1)及び一般式(LC3−b6)を表すことがさらに好ましく、一般式(LC3−b1)を表すことが最も好ましい。
Figure 0006635228
(式中、RLC31及びRLC32はそれぞれ独立して前記一般式(LC3)におけるRLC31及びRLC32と同じ意味を表す。)
LC31及びRLC32はそれぞれ独立して、炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、RLC31が炭素原子数2又は3のアルキル基を表し、RLC32が炭素原子数2のアルキル基を表すことがより好ましい。
一般式(LC4)は下記一般式(LC4−a)から一般式(LC4−c)、一般式(LC5)は下記一般式(LC5−a)から一般式(LC5−c)
Figure 0006635228
(式中、RLC41、RLC42及びXLC41はそれぞれ独立して前記一般式(LC4)におけるRLC41、RLC42及びXLC41と同じ意味を表し、RLC51及びRLC52はそれぞれ独立して前記一般式(LC5)におけるRLC51及びRLC52と同じ意味を表し、ZLC4a1、ZLC4b1、ZLC4c1、ZLC5a1、ZLC5b1及びZLC5c1はそれぞれ独立して単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのがより好ましい。
LC41、RLC42、RLC51及びRLC52はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基又は炭素原子数2〜7のアルケニルオキシ基を表すことが好ましい。
LC4a1〜ZLC5c1はそれぞれ独立して単結合、−CHO−、−COO−、−OCO−、−CHCH−を表すことが好ましく、単結合を表すことがより好ましい。
第三成分は誘電率異方性が0程度である、いわゆる非極性液晶化合物であり、以下の一般式(LC6)で示される化合物を挙げることができる。
Figure 0006635228
(式中、RLC61及びRLC62はそれぞれ独立して炭素原子数1〜15のアルキル基を表し、該アルキル基中の1つ又は2つ以上の−CH−は、酸素原子が直接隣接しないように、−O−、−CH=CH−、−CO−、−OCO−、−COO−又は−C≡C−で置換されてよく、該アルキル基中の1つ又は2つ以上の水素原子は任意にハロゲン置換されていてもよく、ALC61〜ALC63はそれぞれ独立して下記
Figure 0006635228
(該構造中シクロヘキシレン基中の1つ又は2つ以上の−CHCH−は−CH=CH−、−CFO−、−OCF−で置換されていてもよく、1,4−フェニレン基中1つ又は2つ以上のCH基は窒素原子で置換されていてもよい。)のいずれかを表し、ZLC61及びZLC62はそれぞれ独立して単結合、−CH=CH−、−C≡C−、−CHCH−、−(CH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−を表し、mLc6は0〜3を表す。ただし、一般式(LC1)〜一般式(LC5)で表される化合物、及び一般式(i)を除く。)
LC61及びRLC62は、それぞれ独立して、炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、アルケニル基としては下記構造を表すことが最も好ましく、
Figure 0006635228
(式中、環構造へは右端で結合するものとする。)
LC61〜ALC63はそれぞれ独立して下記の構造が好ましく、
Figure 0006635228
LC61及びZLC62はそれぞれ独立して単結合、−CHCH−、−COO−、−OCH−、−CHO−、−OCF−又は−CFO−が好ましい。
一般式(LC6)は、一般式(LC6−a)から一般式(LC6−m)
Figure 0006635228
(式中、RLC61及びRLC62はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基又は炭素原子数2〜7のアルケニルオキシ基を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのがより好ましい。
第四成分は誘電率異方性が正のいわゆるp型液晶化合物であって、以下の一般式(LC1)及び一般式(LC2)で示される化合物を挙げることができる。
Figure 0006635228
(式中、RLC11及びRLC21はそれぞれ独立して炭素原子数1〜15のアルキル基を表し、該アルキル基中の1つ又は2つ以上の−CH−は、酸素原子が直接隣接しないように、−O−、−CH=CH−、−CO−、−OCO−、−COO−又は−C≡C−で置換されてよく、該アルキル基中の1つ又は2つ以上の水素原子は任意にハロゲン原子によって置換されていてもよく、ALC11、及びALC21はそれぞれ独立して下記の何れかの構造
Figure 0006635228
(該構造中、シクロヘキシレン基中の1つ又は2つ以上の−CH−は酸素原子で置換されていてもよく、1,4−フェニレン基中の1つ又は2つ以上の−CH−は窒素原子で置換されていてもよく、また、該構造中の1つ又は2つ以上の水素原子はフッ素原子、塩素原子、−CF又は−OCFで置換されていてもよい。)を表し、XLC11、XLC12、XLC21〜XLC23はそれぞれ独立して水素原子、フッ素原子、塩素原子、−CF又は−OCFを表し、YLC11及びYLC21はそれぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基、−CF、−OCHF、−OCHF又は−OCFを表し、ZLC11及びZLC21はそれぞれ独立して単結合、−CH=CH−、−CF=CF−、−C≡C−、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−又は−OCO−を表し、mLC11及びmLC21はそれぞれ独立して1〜4の整数を表し、ALC11、ALC21、ZLC11及びZLC21が複数存在する場合は、それらは同一であっても異なっていても良い。)
LC11及びRLC21はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基がより好ましく、直鎖状であることが更に好ましく、アルケニル基としては下記構造を表すことが最も好ましい。
Figure 0006635228
(式中、環構造へは右端で結合するものとする。)
LC11及びALC21はそれぞれ独立して下記の構造が好ましい。
Figure 0006635228
LC11及びYLC21はそれぞれ独立してフッ素原子、シアノ基、−CF又は−OCFが好ましく、フッ素原子又は−OCFが好ましく、フッ素原子が特に好ましい。
LC11及びZLC21は単結合、−CHCH−、−COO−、−OCO−、−OCH−、−CHO−、−OCF−又は−CFO−が好ましく、単結合、−CHCH−、−OCH−、−OCF−又は−CFO−が好ましく、単結合、−OCH−又は−CFO−がより好ましい。
LC11及びmLC21は1、2又は3が好ましく、低温での保存安定性、応答速度を重視する場合には1又は2が好ましく、ネマチック相上限温度の上限値を改善するには2又は3が好ましい。
一般式(LC1)は、下記一般式(LC1−a)から一般式(LC1−c)
Figure 0006635228
(式中、RLC11、YLC11、XLC11及びXLC12はそれぞれ独立して前記一般式(LC1)におけるRLC11、YLC11、XLC11及びXLC12と同じ意味を表し、ALC1a1、ALC1a2及びALC1b1は、トランス−1,4−シクロヘキシレン基、テトラヒドロピラン−2,5−ジイル基、1,3−ジオキサン−2,5−ジイル基を表し、XLC1b1、XLC1b2、XLC1c1〜XLC1c4はそれぞれ独立して水素原子、フッ素原子、塩素原子、−CF又は−OCFを表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であることが好ましい。
LC11はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基がより好ましい。
LC11〜XLC1c4はそれぞれ独立して水素原子又はフッ素原子が好ましい。
LC11はそれぞれ独立してフッ素原子、−CF又は−OCFが好ましい。
また、一般式(LC1)は、下記一般式(LC1−d)から一般式(LC1−m)
Figure 0006635228
(式中、RLC11、YLC11、XLC11及びXLC12はそれぞれ独立して前記一般式(LC1)におけるRLC11、YLC11、XLC11及びXLC12と同じ意味を表し、ALC1d1、ALC1f1、ALC1g1、ALC1j1、ALC1k1、ALC1k2、ALC1m1〜ALC1m3は、1,4−フェニレン基、トランス−1,4−シクロヘキシレン基、テトラヒドロピラン−2,5−ジイル基、1,3−ジオキサン−2,5−ジイル基を表し、XLC1d1、XLC1d2、XLC1f1、XLC1f2、XLC1g1、XLC1g2、XLC1h1、XLC1h2、XLC1i1、XLC1i2、XLC1j1〜XLC1j4、XLC1k1、XLC1k2、XLC1m1及びXLC1m2はそれぞれ独立して水素原子、フッ素原子、塩素原子、−CF又は−OCFを表し、ZLC1d1、ZLC1e1、ZLC1j1、ZLC1k1、ZLC1m1はそれぞれ独立して単結合、−CH=CH−、−CF=CF−、−C≡C−、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−又は−OCO−を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのが好ましい。
LC11はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基がより好ましい。
LC11〜XLC1m2はそれぞれ独立して水素原子又はフッ素原子が好ましい。
LC11はそれぞれ独立してフッ素原子、−CF又は−OCFが好ましい。
LC1d1〜ZLC1m1はそれぞれ独立して−CFO−、−OCH−が好ましい。
一般式(LC2)は、下記一般式(LC2−a)から一般式(LC2−g)
Figure 0006635228
(式中、RLC21、YLC21、XLC21〜XLC23はそれぞれ独立して前記一般式(LC2)におけるRLC21、YLC21、XLC21〜XLC23と同じ意味を表し、XLC2d1〜XLC2d4、XLC2e1〜XLC2e4、XLC2f1〜XLC2f4及びXLC2g1〜XLC2g4はそれぞれ独立して水素原子、フッ素原子、塩素原子、−CF又は−OCFを表し、ZLC2a1、ZLC2b1、ZLC2c1、ZLC2d1、ZLC2e1、ZLC2f1及びZLC2g1はそれぞれ独立して単結合、−CH=CH−、−CF=CF−、−C≡C−、−CHCH−、−(CH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−又は−OCO−を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのが好ましい。
LC21はそれぞれ独立して炭素原子数1〜7のアルキル基、炭素原子数1〜7のアルコキシ基、炭素原子数2〜7のアルケニル基が好ましく、炭素原子数1〜5のアルキル基、炭素原子数1〜5のアルコキシ基、炭素原子数2〜5のアルケニル基がより好ましい。
LC21〜XLC2g4はそれぞれ独立して水素原子又はフッ素原子が好ましく、
LC21はそれぞれ独立してフッ素原子、−CF又は−OCFが好ましい。
LC2a1〜ZLC2g4はそれぞれ独立して−CFO−、−OCH−が好ましい。 本発明の組成物は、分子内に過酸(−CO−OO−)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。
組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5%以下とすることが好ましく、3%以下とすることがより好ましく、1%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。
UV照射による安定性を重視する場合、塩素原子が置換している化合物の含有量を前記組成物の総質量に対して15%以下とすることが好ましく、10%以下とすることが好ましく、8%以下とすることが好ましく、5%以下とすることがより好ましく、3%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10%以下とすることが好ましく、8%以下とすることが好ましく、5%以下とすることがより好ましく、3%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
粘度の改善及びTNIの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2−メチルベンゼン−1,4−ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2−メチルベンゼン−1,4−ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10%以下とすることが好ましく、8%以下とすることが好ましく、5%以下とすることがより好ましく、3%以下とすることが好ましく、実質的に含有しないことが更に好ましい。
本願において実質的に含有しないとは、意図せずに含有する物を除いて含有しないという意味である。
本発明の第一実施形態の組成物に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2〜5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4〜5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。
本発明に使用される液晶組成物の平均弾性定数(KAVG)は10から25が好ましいが、その下限値としては、10が好ましく、10.5が好ましく、11が好ましく、11.5が好ましく、12が好ましく、12.3が好ましく、12.5が好ましく、12.8が好ましく、13が好ましく、13.3が好ましく、13.5が好ましく、13.8が好ましく、14が好ましく、14.3が好ましく、14.5が好ましく、14.8が好ましく、15が好ましく、15.3が好ましく、15.5が好ましく、15.8が好ましく、16が好ましく、16.3が好ましく、16.5が好ましく、16.8が好ましく、17が好ましく、17.3が好ましく、17.5が好ましく、17.8が好ましく、18が好ましく、その上限値としては、25が好ましく、24.5が好ましく、24が好ましく、23.5が好ましく、23が好ましく、22.8が好ましく、22.5が好ましく、22.3が好ましく、22が好ましく、21.8が好ましく、21.5が好ましく、21.3が好ましく、21が好ましく、20.8が好ましく、20.5が好ましく、20.3が好ましく、20が好ましく、19.8が好ましく、19.5が好ましく、19.3が好ましく、19が好ましく、18.8が好ましく、18.5が好ましく、18.3が好ましく、18が好ましく、17.8が好ましく、17.5が好ましく、17.3が好ましく、17が好ましい。消費電力削減を重視する場合にはバックライトの光量を抑えることが有効であり、液晶表示素子は光の透過率を向上させることが好ましく、そのためにはKAVGの値を低めに設定することが好ましい。応答速度の改善を重視する場合にはKAVGの値を高めに設定することが好ましい。 本発明の液晶組成物は、20℃における屈折率異方性(Δn)が0.08から0.14であるが、0.09から0.13がより好ましく、0.09から0.12が特に好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.13であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。
本発明の液晶組成物は、20℃における粘度(η)が10から30mPa・sであるが、10から25mPa・sであることがより好ましく、10から22mPa・sであることが特に好ましい。
本発明の液晶組成物は、20℃における回転粘性(γ)が60から200mPa・sであるが、60から120mPa・sであることがより好ましく、60から100mPa・sであることが特に好ましい。
本発明の液晶組成物は、ネマチック相−等方性液体相転移温度(Tni)が60℃から120℃であるが、70℃から100℃がより好ましく、70℃から85℃が特に好ましい。加えて、20℃においてネマチック液晶を示す事が好ましい。
本発明の液晶組成物は、上述の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤、赤外線吸収剤、重合性モノマー又は光安定剤等を含有してもよい。 本発明の化合物を含有する液晶組成物を用いた液晶表示素子は、高速応答と表示不良の抑制を両立させた有用なものであり、特に、アクティブマトリックス駆動用液晶表示素子に有用であり、VAモード、PSVAモード、PSAモード、IPSモード、FFSモード又はECBモード用等の種々のモードの液晶表示素子に適用できる。
以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。相転移温度の測定は温度調節ステージを備えた偏光顕微鏡及び示差走査熱量計(DSC)を併用して行った。
n−iはネマチック相−等方相の転移温度を表す。
化合物記載に下記の略号を使用する。
THF:テトラヒドロフラン
LDA:リチウム ジイソプロピルアミド
Me:メチル基、Et:エチル基、Pr:n−プロピル基、Bu:n−ブチル基、
Pent:n−ペンチル基
(実施例1〜2)化合物1−8−203及び化合物2−8−203の合成
Figure 0006635228
(化合物1−2−20の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、3−フルオロ−2−ヒドロキシクロロベンゼン(50.0g)、ビス(ジターシャリーブチル(4−ジメチルアミノフェニル)ホスフィン)塩化パラジウム(II)錯体(6.0g)、THF(350ml)および2M炭酸セシウム水溶液(340ml)を加え、攪拌しながら60℃に昇温した。反応混合物にあらかじめTHF(200ml)に溶解しておいた化合物1−2(75.8g)を滴下した。60℃で7時間攪拌後、加熱を止め溶液温度を室温に戻した。その後、10%塩酸(500ml)を加えた。有機層を分けとり、さらに水層をトルエン(200ml)で再抽出した。得られた有機層を合わせた後、水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮後、ヘキサン(150ml)、トルエン(150ml)を加えて溶解した溶液を、シリカゲル(30g)を詰めたカラムを通過させた。得られたカラム通過溶液を濃縮した後、トルエン/ヘキサン混合溶媒を用いて再結晶を繰り返すことで、化合物1−2−20(46.0g)を得た。
(化合物1−3−20の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、水素化ナトリウム(60%ミネラルオイル分散)(5.4g)およびDMF(54ml)を加え、攪拌しながら氷冷した。そこにあらかじめDMF(150ml)に溶解しておいた化合物1−2−20(30.0g)を滴下した。その後室温に戻し、1時間かけて溶液温度を50℃に加熱した。その後さらに1.5時間かけて溶液温度を105℃まで加熱した。105℃で4時間攪拌後、溶液温度を10℃以下まで冷却した。反応溶液に水(200ml)を加えた。結晶をろ過し、メタノールで洗浄し、真空乾燥した。得られた結晶にトルエン(300ml)を加えて溶解した溶液を、シリカゲル(20g)を詰めたカラムを通過させ、さらにトルエン(200ml)を通過させた。得られたカラム通過溶液を濃縮し、化合物1−3−20(28.6g)を得た。
Figure 0006635228
(化合物1−4−20の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロートを備えた反応容器に、化合物1−3−20(30.1g)をTHF(300ml)に溶かし、−70℃に冷却した。1.6Mブチルリチウム/ヘキサン溶液(90.0ml)を−70℃にて滴下し、1時間攪拌し、次にホウ酸トリイソプロピル(29.7g)を−70℃にて滴下し、1時間攪拌した。この反応混合物を室温に昇温した後、10%塩酸(150ml)とヘキサン(100ml)を加えて攪拌し、得られた有機層を合わせた後、水と飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、29.5gを得た。得られた固体をTHF(150ml)、炭酸水素ナトリウム(0.42g)を攪拌している中に、30%過酸化水素水(14.9g)を室温にて滴下し、12時間攪拌した。溶液温度を0℃に冷却し、15%チオ硫酸ナトリウム水溶液(150ml)を加えた。有機層を分け取り、さらに水層を酢酸エチル(100ml)で抽出した。得られた有機層を合わせた後、水と飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、化合物1−4−20(26.2g)を得た。
(化合物1−5−20の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、化合物1−4−20(5.3g)、クロロメチルメチルエーテル(2.4g)、水素化ナトリウム(60%ミネラルオイル分散)(1.2g)およびTHF(20ml)を加え、攪拌した。60℃で1.5時間攪拌後、溶液温度を10℃以下まで冷却した。反応溶液に水(20ml)および酢酸エチル(20ml)を加えた。有機層を分けとり、さらに水層を酢酸エチル(30ml)で再抽出した。得られた有機層を合わせた後、水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、化合物1−5−20の粗体(6.9g)を得た。
Figure 0006635228
(化合物1−6−20の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロートを備えた反応容器に、化合物1−5−20(4.7g)をTHF(56ml)に溶かし、−70℃に冷却した。1.6Mブチルリチウム/ヘキサン溶液(10.0ml)を−70℃にて滴下し1時間攪拌し、−20℃まで昇温した。再び−70℃に冷却した後、あらかじめTHF(15ml)に溶解させたヨウ素(4.7g)を−70℃にて滴下し、1時間攪拌した。この反応混合物を室温に昇温した後、20%亜硫酸ナトリウム水溶液(100ml)とヘキサン(100ml)を加えて攪拌し、得られた有機層を合わせた後、水と飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、化合物1−6−20(6.4g)を得た。
(化合物1−7−203の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、化合物1−6−20(6.3g)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(270.0mg)、ヨウ化銅(145mg)をTHF(350ml)および1Nアンモニア水(35mL)に溶解攪拌している中に、室温下、1−ペンチン(1.8ml)を滴下した後、反応温度を45℃にした。45℃で2時間攪拌した後、酢酸エチル(100ml)を加えた。有機層を分けとり、さらに水層を酢酸エチル(50ml)で再抽出した。得られた有機層を合わせた後、水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮後、化合物1−7−203(5.7g)を得た。
Figure 0006635228
(化合物1−8−203の合成)
窒素雰囲気下、撹拌装置、温度計、滴下ロートを備えた反応容器に、化合物1−7−203(6.0g)をTHF(60ml)及びイソプロピルアルコール(20ml)に溶かし、室温下10%塩酸(40ml)を滴下した。反応温度を55℃に昇温し、5時間攪拌した。室温に戻し、酢酸エチル(100ml)を加え、水と飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、粗体(6.6g)を得た。得られた粗体をシリカゲルクロマトグラフィーにて精製した後、エタノール/酢酸エチル混合溶媒を用いて再結晶を繰り返すことで、化合物1−8−203(3.2g)を得た。相転移温度はCr106Iso。
(化合物2−8−203の合成)
窒素雰囲気下、撹拌装置を備えた反応容器に、化合物1−8−203(1.5g)、10%パラジウムカーボン(150mg)をTHF(9.0ml)およびメタノール(6ml)に溶解させ、水素雰囲気とした。窒素雰囲気に戻した後、触媒をろ別。得られた溶液を濃縮後、シリカゲルクロマトグラフィーにて精製した。エタノール/酢酸エチル混合溶媒を用いて再結晶を繰り返すことで、化合物2−8−203(0.9g)を得た。相転移温度はCr74Iso。
(実施例3〜324)化合物1−8−0〜化合物4−8−808の合成
実施例1、実施例2と同様の反応、および必要に応じて公知の方法に準拠した方法を用いて、実施例3(化合物1−8−0)〜実施例324(化合物4−8−808)を合成した。
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
Figure 0006635228
(実施例325)液晶組成物の調製−1
以下の物性値を示すホスト液晶(H)
を調製した。値はいずれも実測値である。
n−i(ネマチック相−等方性液体相転移温度):73.8℃
Δε(25℃における誘電率異方性) :−2.79
Δn(25℃における屈折率異方性) :0.101
γ (25℃における回転粘性係数):118
この母体液晶(H)90%と、実施例1で得られた化合物(1−8−203)10%からなる液晶組成物(M−A)を調製した。この組成物(M−A)のTn−i、Δε、Δn及びγの値を測定し母体液晶からの変化量をもとに、実施例1で得られた化合物(1−8−203)の各物性値の外挿値を求めると、以下のとおりであった。
外挿Tn−i:70.8℃
外挿Δε:−14.6
外挿Δn:0.246
外挿γ:362mPa・s
また、調製した液晶組成物(M−A)は、室温にて一ヶ月間以上均一なネマチック液晶状態を維持した。
さらに、液晶組成物(M−A)を用いて作製した液晶表示装置は、優れた表示特性を示し、長期にわたり安定な表示特性を保ち、高い信頼性を示した。
(実施例326)液晶組成物の調製―2
母体液晶(H)90%と、実施例2で得られた化合物(1−8−203)10%からなる液晶組成物(M−B)を調製した。この組成物(M−B)より、実施例2で得られた化合物(1−8−203)の外挿Tn−i、外挿Δε、外挿Δn、外挿γの値は以下のとおりである。
外挿Tn−i:38.9℃
外挿Δε:−17.9
外挿Δn:0.198
外挿γ:372mPa・s
また、調製した液晶組成物(M−B)は、室温にて一ヶ月間以上均一なネマチック液晶状態を維持した。
さらに、液晶組成物(M−B)を用いて作製した液晶表示装置は、優れた表示特性を示し、長期にわたり安定な表示特性を保ち、高い信頼性を示した。
(比較例1)液晶組成物の調製―3
母体液晶(H)85%と、以下に示す化合物(A)15%からなる液晶組成物(M−C)を調製した。
Figure 0006635228
この組成物(M−C)より、上記化合物(A)の外挿Tn−i、外挿Δε、外挿Δn、外挿γの値は以下のとおりである。
外挿Tn−i:18.3℃
外挿Δε:−15.7
外挿Δn:0.184
外挿γ:241mPa・s
上記結果を実施例325と比較するとΔεは同程度でありながら、Tn−i及びΔnが小さいことがわかり、実施例326と比較するとTn−i、Δn及びΔεが小さいことが分かる。
(比較例2)液晶組成物の調製―4
母体液晶(H)85%と、以下に示す化合物(B)15%からなる液晶組成物(M−D)を調製した。
Figure 0006635228
この組成物(M−D)より、上記化合物(B)の外挿Tn−i、外挿Δε、外挿Δn、外挿γの値は以下のとおりである。
外挿Tn−i:3.2℃
外挿Δε:−9.7
外挿Δn:0.073
外挿γ:94mPa・s
上記結果を実施例325および実施例326と比較すると|Δε|が大幅に小さくなり、Tn−iも大幅に低いことが分かる。

Claims (9)

  1. 一般式(i)
    Figure 0006635228
    (式中、Xi1及びXi2はそれぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、トリフルオロメトキシ基を表し、
    i1及びYi2は−O−を表し、
    i1
    Figure 0006635228
    (但し、式中の黒点はLi2又はYi2への結合点を表す。)を表し、
    i2は単結合を表し、
    i1及びLi2はそれぞれ独立して炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基又は炭素原子数1から15のアルコキシ基を表し、
    i3、Li4、Li5、Li6、Li7及びLi8は水素原子を表す。)
    で表される化合物。
  2. 一般式(i)において、Xi1及びXi2が互いにフッ素原子を表す請求項1に記載の化合物。
  3. 請求項1又は2に記載の化合物を一種又は二種以上含有する組成物。
  4. 請求項3記載の組成物を使用した液晶表示素子。
  5. 一般式(i)においてWi1
    Figure 0006635228
    (但し、式中の黒点はLi2又はYi2への結合点を表す。)
    で表される化合物の二重結合に付加反応させることによる、一般式(i)においてWi1
    Figure 0006635228
    (但し、式中の黒点はLi2又はYi2への結合点を表す。)
    で表される化合物の製造方法。
  6. 一般式(i−r7)
    Figure 0006635228
    (式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
    i11水素原子、炭素原子数1から15のアルキル基又は
    Figure 0006635228
    (式中、R i1 は水素原子を表し、
    i1 は1,4−シクロへキシレン基(この基中に存在する1個の−CH −又は隣接していない2個以上の−CH −は−O−に置き換えられても良い。)
    からなる群より選ばれる基を表し、
    i1 は単結合を表し、
    i1 は1を表す。)
    で表される基を表し、ここでL i11 中に存在する1個の−CH −又は隣接していない2個以上の−CH −は−O−により置き換えられている。)
    で表される化合物中の−Yi2−Li11を水存在下酸による脱保護反応と分子内反応を同時に進行させることによる、一般式(i)においてWi1
    Figure 0006635228
    (但し、式中の黒点はLi2又はYi2への結合点を表す。)
    で表される化合物の製造方法。
  7. 一般式(i−r5)
    Figure 0006635228
    (式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
    i11一般式(i−r7)におけるL i11 と同じ意味を表し、
    i3は臭素原子又はよう素原子を表す。)
    で表される化合物と一般式(i−r6)
    Figure 0006635228
    (式中Li2は一般式(i)におけるLi2と同じ意味を表す。)
    で表される化合物を遷移金属触媒、銅触媒及び塩基存在下反応させることによる、一般式(i−r7)
    Figure 0006635228
    (式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
    i11水素原子、炭素原子数1から15のアルキル基又は
    Figure 0006635228
    (式中、R i1 は水素原子を表し、
    i1 は1,4−シクロへキシレン基(この基中に存在する1個の−CH −又は隣接していない2個以上の−CH −は−O−に置き換えられても良い。)
    からなる群より選ばれる基を表し、
    i1 は単結合を表し、
    i1 は1を表す。)
    で表される基を表し、ここでL i11 中に存在する1個の−CH −又は隣接していない2個以上の−CH −は−O−により置き換えられている。)
    で表される化合物の製造方法。
  8. 一般式(i−r4)
    Figure 0006635228
    (式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
    i11一般式(i−r7)におけるL i11 と同じ意味を表す。)
    で表される化合物を有機金属試薬により脱プロトン化した後、臭素又はよう素と反応させることによる、一般式(i−r5)
    Figure 0006635228
    (式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
    i11一般式(i−r7)におけるL i11 と同じ意味を表し、
    i3は臭素原子又はよう素原子を表す。)
    で表される化合物の製造方法。
  9. 一般式(i−r7)
    Figure 0006635228
    (式中Xi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表し、
    i11水素原子、炭素原子数1から15のアルキル基又は
    Figure 0006635228
    (式中、R i1 は水素原子を表し、
    i1 は1,4−シクロへキシレン基(この基中に存在する1個の−CH −又は隣接していない2個以上の−CH −は−O−に置き換えられても良い。)
    からなる群より選ばれる基を表し、
    i1 は単結合を表し、
    i1 は1を表す。)
    で表される基を表し、ここでL i11 中に存在する1個の−CH −又は隣接していない2個以上の−CH −は−O−により置き換えられている。)
    で表される化合物。
JP2019523444A 2017-06-06 2018-05-24 液晶化合物及びその組成物 Active JP6635228B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017111616 2017-06-06
JP2017111616 2017-06-06
PCT/JP2018/019966 WO2018225522A1 (ja) 2017-06-06 2018-05-24 液晶化合物及びその組成物

Publications (2)

Publication Number Publication Date
JPWO2018225522A1 JPWO2018225522A1 (ja) 2019-11-07
JP6635228B2 true JP6635228B2 (ja) 2020-01-22

Family

ID=64566266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019523444A Active JP6635228B2 (ja) 2017-06-06 2018-05-24 液晶化合物及びその組成物

Country Status (3)

Country Link
JP (1) JP6635228B2 (ja)
CN (1) CN110461852B (ja)
WO (1) WO2018225522A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019014675A (ja) * 2017-07-06 2019-01-31 Dic株式会社 フェニルフェノール誘導体とこれを用いるジベンゾフラン誘導体の製造方法
CN111373017B (zh) * 2017-12-15 2023-09-26 Dic株式会社 液晶组合物和液晶显示元件
CN108865175B (zh) * 2018-05-24 2020-05-15 石家庄晶奥量新材料有限公司 一种含有二苯并二呋喃类的液晶组合物及其应用
CN110527522B (zh) * 2018-05-25 2022-07-29 石家庄诚志永华显示材料有限公司 液晶化合物、液晶组合物及液晶显示元器件
CN109321257A (zh) * 2018-12-04 2019-02-12 西安瑞立电子材料有限公司 含有二苯并呋喃并环戊烷类液晶化合物
JP7243170B2 (ja) * 2018-12-18 2023-03-22 Dic株式会社 液晶組成物及び液晶表示素子
JP2020200429A (ja) * 2019-06-13 2020-12-17 Dic株式会社 重合性化合物含有液晶組成物及び液晶表示素子
JP2020200428A (ja) * 2019-06-13 2020-12-17 Dic株式会社 重合性化合物含有液晶組成物及び液晶表示素子
CN113355105A (zh) * 2020-03-06 2021-09-07 石家庄诚志永华显示材料有限公司 一种含有二苯并噻吩并含氧杂环类液晶化合物及其应用
CN113698942B (zh) * 2020-05-22 2024-02-27 江苏和成显示科技有限公司 负介电各向异性的液晶化合物及其液晶组合物和显示器件
CN115247067B (zh) * 2021-04-27 2024-04-23 江苏和成显示科技有限公司 一种液晶化合物及其液晶组合物和液晶显示器件
CN115746871A (zh) * 2022-11-16 2023-03-07 Tcl华星光电技术有限公司 液晶组合物及液晶显示面板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932301A (en) * 1971-02-23 1976-01-13 Sterling Drug Inc. Stilbene optical brighteners and compositions brightened therewith
US3993645A (en) * 1973-05-29 1976-11-23 Sterling Drug Inc. Stilbene optical brighteners and compositions brightened therewith
DE10101022A1 (de) * 2001-01-11 2002-07-18 Clariant Internat Ltd Muttenz Fluorierte Aromaten und ihre Verwendung in Flüssigkristallmischungen
DE10336016B4 (de) * 2003-08-01 2017-10-19 Merck Patent Gmbh Fluorierte Polycyclen und ihre Verwendung in Flüssigkristallmischungen
DE10336023B4 (de) * 2003-08-01 2017-10-19 Merck Patent Gmbh Fluorierte Heterocyclen und ihre Verwendung in Flüssigkristallmischungen
KR102086547B1 (ko) * 2013-02-13 2020-05-28 삼성디스플레이 주식회사 유기 발광 소자
US9637505B2 (en) * 2013-03-15 2017-05-02 Dow Agrosciences Llc 4-amino-6-(heterocyclic)picolinates and 6-amino-2-(heterocyclic)pyrimidine-4-carboxylates and their use as herbicides
JP2014208632A (ja) * 2013-03-28 2014-11-06 日本合成化学工業株式会社 新規イミダゾール化合物、電子デバイス用材料、発光素子、電子デバイス及びその製造方法
EP3327011B1 (de) * 2014-03-17 2020-03-25 Merck Patent GmbH 4,6-difluor-dibenzofuran-derivate
EP2937342B1 (de) * 2014-04-22 2016-11-30 Merck Patent GmbH 4,6-difluor-dibenzothiophen-derivate
EP3085753B1 (de) * 2015-04-13 2019-04-24 Merck Patent GmbH Fluorierte dibenzofuran- und dibenzothiophenderivate
CN106398716B (zh) * 2016-08-30 2018-05-22 北京燕化集联光电技术有限公司 一种4,5-二氟-7-甲基茚满类液晶化合物及其制备方法与应用

Also Published As

Publication number Publication date
JPWO2018225522A1 (ja) 2019-11-07
CN110461852A (zh) 2019-11-15
WO2018225522A1 (ja) 2018-12-13
CN110461852B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
JP6635228B2 (ja) 液晶化合物及びその組成物
TWI697552B (zh) 液晶組成物及使用其之液晶顯示元件
JP6137419B2 (ja) ネマチック液晶組成物及びこれを用いた液晶表示素子
TW201139354A (en) Liquid-crystalline compounds and liquid-crystalline media
JP2019218303A (ja) 液晶化合物及びその組成物
JP6681035B2 (ja) 液晶化合物及びその組成物
WO2019098040A1 (ja) 重合性化合物、並びにそれを使用した液晶組成物及び液晶表示素子
JP6358398B2 (ja) 液晶組成物及びそれを使用した液晶表示素子
JP5622066B2 (ja) フッ素化ナフタレン構造を持つ化合物及びその液晶組成物
JP7027850B2 (ja) 液晶化合物及びその組成物
JP5614003B2 (ja) ジフルオロベンゼン誘導体、当該化合物を含有する液晶組成物及び液晶表示素子
JP2020083761A (ja) 液晶化合物
JP2020079215A (ja) 液晶化合物
CN114231294B (zh) 负性液晶组合物及其应用
WO2005095311A9 (ja) ベンゼン誘導体、液晶組成物および液晶表示素子
WO2013053193A1 (zh) 包含1,2-二氟乙烯和二氟亚甲基醚结构的化合物及其制备和应用
JP5696874B2 (ja) フルオロベンゼン誘導体及びこの化合物を含有する液晶組成物
CN109181712A (zh) 一种具有二氟甲醚桥键的苯并呋喃液晶化合物及其组合物
JP6801245B2 (ja) 液晶化合物の製造方法及びその化合物
CN114231293B (zh) 负介电液晶组合物及其应用
CN114032106B (zh) 包含取代环己基化合物的正性液晶组合物及其应用
JP2018021153A (ja) 液晶組成物及びそれを使用した液晶表示素子
WO2017090384A1 (ja) 液晶性化合物、液晶組成物および表示素子
JP2020083842A (ja) 液晶化合物
JP6303895B2 (ja) フッ素化ナフタレン化合物及びその液晶組成物

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190520

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R151 Written notification of patent or utility model registration

Ref document number: 6635228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113