JP6630753B2 - 走行態様認識装置 - Google Patents

走行態様認識装置 Download PDF

Info

Publication number
JP6630753B2
JP6630753B2 JP2018021469A JP2018021469A JP6630753B2 JP 6630753 B2 JP6630753 B2 JP 6630753B2 JP 2018021469 A JP2018021469 A JP 2018021469A JP 2018021469 A JP2018021469 A JP 2018021469A JP 6630753 B2 JP6630753 B2 JP 6630753B2
Authority
JP
Japan
Prior art keywords
vehicle
traveling
mode
speed
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021469A
Other languages
English (en)
Other versions
JP2019137194A (ja
Inventor
俊幸 水野
俊幸 水野
亮 木藤
亮 木藤
慶明 小西
慶明 小西
隆行 岸
隆行 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018021469A priority Critical patent/JP6630753B2/ja
Priority to CN201910092235.0A priority patent/CN110126838A/zh
Priority to US16/264,377 priority patent/US11009885B2/en
Publication of JP2019137194A publication Critical patent/JP2019137194A/ja
Application granted granted Critical
Publication of JP6630753B2 publication Critical patent/JP6630753B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4046Behavior, e.g. aggressive or erratic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0055Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements
    • G05D1/0061Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements for transition from automatic pilot to manual pilot and vice versa
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10044Radar image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery

Description

本発明は、前方車両の走行態様を認識する走行態様認識装置に関する。
従来より、将来の加速要求に備えて要求駆動力に余裕駆動力を加算し、加算後の駆動力に基づいて車両走行を制御するようにした装置が知られている(例えば特許文献1参照)。
特許文献1:特開2009−78809号公報
ところで、一般に、前方車両が自動運転で走行しているときは、手動運転で走行しているときよりも、定速走行時の車速のばらつきが小さい。したがって、前方車両が自動運転で走行しているか否かを認識できれば、前方車両を対象とした自車両の効率的な走行が可能である。しかしながら、上記特許文献1は、このような前方車両の走行態様を認識する点について何ら提案するものではない。
本発明の一態様は、自動運転機能を有する自車両の前方を走行する前方車両の走行態様を認識する走行態様認識装置であって、前方車両の走行状態を検出する走行状態検出部と、走行状態検出部により検出された走行状態に基づき、前方車両の車速または加速度のばらつきの程度を算出するばらつき算出部と、自車両の周囲の道路の傾斜情報を含む道路情報を取得する道路情報取得部と、道路情報取得部により取得された傾斜情報に基づいて、前記前方車両の走行モードの判定を行うか否かを決定するとともに、前記前方車両の走行モードの判定を行うと決定すると、ばらつき算出部により算出されたばらつきの程度に基づいて、前方車両が自動運転モードと手動運転モードのいずれで走行しているかを判定する走行モード判定部と、を備える。
本発明によれば、前方車両が自動運転モードおよび手動運転モードのいずれで走行しているかを認識することができる。
本発明の実施形態に係る車両走行制御装置が適用される自動運転車両の走行系の概略構成を示す図。 本発明の実施形態に係る車両走行制御装置の全体構成を概略的に示すブロック図。 図2の行動計画生成部で生成された行動計画の一例を示す図。 図2の記憶部に記憶されたシフトマップの一例を示す図。 本発明の実施形態に係る車両走行制御装置の要部構成を示すブロック図。 目標車間距離に対する実車間距離の時間経過に伴う変化の一例を示す図。 実車間距離と目標車間距離との偏差の頻度を正規分布で示す図。 (a),(b)はそれぞれ前方車両の加速度の大きさの頻度分布を示すヒストグラム。 前方車両がクルーズ走行状態と判定されたときの車速と目標変速段との関係を示す図。 図5のコントローラで実行される処理の一例を示すフローチャート。 本発明の実施形態に係る車両走行制御装置による動作の一例を示すタイムチャート。 本発明の実施形態に係る走行態様認識装置の要部構成を示すブロック図。 前方車両が自動運転モードで走行しているときの時間経過に伴う前方車両の車速のばらつきの変化の一例を示すタイムチャート。 前方車両の車速のばらつきを正規分布で示す図。 図12のコントローラで実行される処理の一例を示すフローチャート。
以下、図1〜図15を参照して本発明の実施形態について説明する。本発明の実施形態に係る車両走行制御装置は、自動運転機能を有する車両(自動運転車両)に適用される。図1は、本実施形態に係る車両走行制御装置が適用される自動運転車両(他車両と区別して自車両と呼ぶこともある)の走行系の概略構成を示す図である。自車両は、ドライバによる運転操作が不要な自動運転モードでの走行だけでなく、ドライバの運転操作による手動運転モードでの走行も可能である。
図1に示すように、自車両は、エンジン1と、トルクコンバータ2と、変速機3とを有する。エンジン1は、スロットルバルブ11を介して供給される吸入空気とインジェクタ12から噴射される燃料とを適宜な割合で混合し、点火プラグ等により点火して燃焼させ、これにより回転動力を発生する内燃機関(例えばガソリンエンジン)である。なお、ガソリンエンジンに代えてディーゼルエンジン等、各種エンジンを用いることもできる。吸入空気量はスロットルバルブ11により調節され、スロットルバルブ11の開度は、電気信号により作動するスロットル用アクチュエータ13の駆動によって変更される。スロットルバルブ11の開度およびインジェクタ12からの燃料の噴射量(噴射時期、噴射時間)はコントローラ40(図2)により制御される。
トルクコンバータ2は、流体(作動油)を介してトルクを伝達する流体伝動装置であり、エンジン1の出力軸に連結されたポンプインペラと、変速機3の入力軸に連結されたタービンランナと、ロックアップクラッチ21とを有する。ロックアップクラッチ21が解放された状態(ロックアップオフ)のときは、エンジン1と変速機3との間で流体を介してトルクが伝達される。例えば走行始動時などにはロックアップオフとされる。
ロックアップクラッチ21が滑りなく完全に締結された状態(ロックアップオン)のときは、ポンプインペラとタービンランナとが機械的に直結され、エンジン1と変速機3との間で流体を介さずにトルクが伝達される。例えば所定車速以上の走行では、ロックアップオンとされる。ロックアップクラッチ21は、スリップしながらエンジン1と変速機3との間でトルクを伝達することもできる。ロックアップクラッチ21のスリップ量を調整することにより、エンジン回転数と変速機3の入力軸の回転数との比を調整できる。
ロックアップクラッチ21は、油圧制御装置22がロックアップクラッチ21に作用する圧油の流れを制御することにより、解放(オフ)および締結(オン)されるとともに、スリップ量が調整される。油圧制御装置22は、電気信号により作動するソレノイドバルブなどのロックアップクラッチ用のバルブ機構(便宜上、ロックアップ用アクチュエータ23と呼ぶ)を有し、ロックアップ用アクチュエータ23の作動に応じてロックアップクラッチ21への圧油の流れを調整することで、ロックアップクラッチ21をオン状態、オフ状態およびスリップ状態に作動可能である。
変速機3は、例えば複数の変速段(例えば8段)に応じて変速比を段階的に変更可能な有段変速機である。なお、変速比を無段階に変更可能な無段変速機を、変速機3として用いることもできる。変速機3は、トルクコンバータ2と駆動輪4との間の動力伝達径路に設けられ、トルクコンバータ2から入力された回転を変速し、かつトルクコンバータ2から入力されたトルクを変換して出力する。変速機3で変速された回転は駆動輪4に伝達され、これにより車両が走行する。なお、エンジン1に加えて、駆動源としての走行用モータを設け、ハイブリッド自動車として自車両を構成することもできる。
変速機3は、例えばドグクラッチや摩擦クラッチなどの係合要素3aを備え、油圧制御装置22が係合要素3aへの油の流れを制御することにより、変速機3の変速段を変更することができる。油圧制御装置22は、電気信号により作動するソレノイドバルブなどの変速機用のバルブ機構(便宜上、変速用アクチュエータ24と呼ぶ)を有し、変速用アクチュエータ24の作動に応じて係合要素3aへの圧油の流れを変更することで、適宜な変速段を設定できる。
図2は、本発明の実施形態に係る車両走行制御装置100の全体構成を概略的に示すブロック図である。図2に示すように、車両走行制御装置100はコントローラ40を中心として構成され、コントローラ40と、コントローラ40にそれぞれ電気的に接続された外部センサ群31と、内部センサ群32と、入出力装置33と、GPS受信機34と、地図データベース35と、ナビゲーション装置36と、通信ユニット37と、アクチュエータACとを主に有する。
外部センサ群31は、自車両の周辺情報である外部状況を検出する複数のセンサの総称である。外部センサ群31には、自車両の全方位の照射光に対する散乱光を測定して自車両から周辺の障害物までの距離を測定するライダ311、電磁波を照射し反射波を検出することで自車両の周辺の他車両や障害物等を検出するレーダ312、自車両に搭載され、CCDやCMOS等の撮像素子を有して自車両の周辺(前方、後方および側方)を撮像するカメラ313などが含まれる。
内部センサ群32は、自車両の走行状態を検出する複数のセンサの総称である。内部センサ群32には、自車両の車速を検出する車速センサ321、自車両の前後方向の加速度および左右方向の加速度(横加速度)をそれぞれ検出する加速度センサ322の他、エンジン1の回転数を検出するエンジン回転数センサ、自車両の重心の鉛直軸回りの回転角速度を検出するヨーレートセンサ、スロットルバルブ11の開度(スロットル開度)を検出するスロットル開度センサなどが含まれる。手動運転モードでのドライバの運転操作、例えばアクセルペダルの操作、ブレーキペダルの操作、ステアリングの操作等を検出するセンサも内部センサ群32に含まれる。
入出力装置33は、ドライバから指令が入力されたり、ドライバに対し情報が出力されたりする装置の総称である。入出力装置33には、操作部材の操作によりドライバが各種指令を入力する各種スイッチ(例えば手動自動切換スイッチ331、走行モード選択スイッチ332)の他、ドライバに表示画像を介して情報を提供する表示部、ドライバが音声で指令を入力するマイク、ドライバに音声で情報を提供するスピーカなどが含まれる。
手動自動切換スイッチ331は、その操作に応じて、自動運転機能を有効化した自動運転モードまたは自動運転機能を無効化した手動運転モードへの切換指令を出力する。なお、手動自動切換スイッチ331の操作によらず、所定の走行条件が成立したときに、手動運転モードから自動運転モードへの切換、あるいは自動運転モードから手動運転モードへの切換が指令されるようにしてもよい。すなわち、モード切換が手動ではなく自動で行われるようにしてもよい。
走行モード選択スイッチ332は、その操作に応じて、複数の走行モードの中から1つの走行モードの選択を指令する。複数の走行モードには、例えば燃費性能と動力性能とを両立したノーマルモード、燃費性能よりも動力性能を優先したスポーツモードが含まれる。なお、動力性能よりも燃費性能を優先したエコモードが含まれてもよい。これら複数の走行モードの中から走行モード選択スイッチ332の操作に応じた走行モードが指令される。
GPS受信機34は、複数のGPS衛星からの測位信号を受信し、これにより自車両の絶対位置(緯度、経度など)を測定する。
地図データベース35は、ナビゲーション装置36に用いられる一般的な地図情報を記憶する装置であり、例えばハードディスクにより構成される。地図情報には、道路の位置情報、道路形状(曲率など)の情報、交差点や分岐点の位置情報が含まれる。なお、地図データベース35に記憶される地図情報は、コントローラ40の記憶部42に記憶される高精度な地図情報とは異なる。
ナビゲーション装置36は、ドライバにより入力された目的地までの道路上の目標経路を探索するとともに、目標経路に沿った案内を行う装置である。目的地の入力および目標経路に沿った案内は、入出力装置33を介して行われる。目標経路は、GPS受信機34により測定された自車両の現在位置と、地図データベース35に記憶された地図情報とに基づいて演算される。
通信ユニット37は、インターネット回線などの無線通信網を含むネットワークを介して図示しない各種サーバと通信し、地図情報および交通情報などを定期的に、あるいは任意のタイミングでサーバから取得する。取得した地図情報は、地図データベース35や記憶部42に出力され、地図情報が更新される。取得した交通情報には、渋滞情報や、信号が赤から青に変わるまでの残り時間等の信号情報が含まれる。
アクチュエータACは、車両の走行を制御するために設けられる。アクチュエータACには、エンジン1のスロットルバルブ11の開度(スロットル開度)を調整するスロットル用アクチュエータ13、ロックアップクラッチ21の作動状態を変更するロックアップ用アクチュエータ23、変速機3の変速段を変更する変速用アクチュエータ24、制動装置を作動するブレーキ用アクチュエータ、ステアリング装置を駆動する操舵用アクチュエータなどが含まれる。
コントローラ40は、電子制御ユニット(ECU)により構成される。なお、エンジン制御用ECU、変速機制御用ECU等、機能の異なる複数のECUを別々に設けることができるが、図2では、便宜上、これらECUの集合としてコントローラ40が示される。コントローラ40は、CPU等の演算部41と、ROM,RAM,ハードディスク等の記憶部42と、図示しないその他の周辺回路とを有するコンピュータを含んで構成される。
記憶部42には、車線の中央位置の情報や車線位置の境界の情報等を含む高精度の詳細な地図情報が記憶される。より具体的には、地図情報として、道路情報、交通規制情報、住所情報、施設情報、電話番号情報等が記憶される。道路情報には、高速道路、有料道路、国道などの道路の種別を表す情報、道路の車線数、各車線の幅員、道路の勾配、道路の3次元座標位置、車線のカーブの曲率、車線の合流ポイントおよび分岐ポイントの位置、道路標識等の情報が含まれる。交通規制情報には、工事等により車線の走行が制限または通行止めとされている情報などが含まれる。記憶部42には、変速動作の基準となるシフトマップ(変速線図)、各種制御のプログラム、プログラムで用いられる閾値等の情報も記憶される。
演算部41は、機能的構成として、自車位置認識部43と、外界認識部44と、行動計画生成部45と、走行制御部46とを有する。
自車位置認識部43は、GPS受信機34で受信した自車両の位置情報および地図データベース35の地図情報に基づいて、地図上の自車両の位置(自車位置)を認識する。記憶部42に記憶された地図情報(建物の形状などの情報)と、外部センサ群31が検出した車両の周辺情報とを用いて自車位置を認識してもよく、これにより自車位置を高精度に認識することができる。なお、道路上や道路脇の外部に設置されたセンサで自車位置を測定可能であるとき、そのセンサと通信ユニット37を介して通信することにより、自車位置を高精度に認識することもできる。
外界認識部44は、ライダ311、レーダ312、カメラ313等の外部センサ群31からの信号に基づいて自車両の周囲の外部状況を認識する。例えば自車両の周辺を走行する周辺車両(前方車両や後方車両)の位置や速度や加速度、自車両の周囲に停車または駐車している周辺車両の位置、および他の物体の位置や状態などを認識する。他の物体には、標識、信号機、道路の境界線や停止線、建物、ガードレール、電柱、看板、歩行者、自転車等が含まれる。他の物体の状態には、信号機の色(赤、青、黄)、歩行者や自転車の移動速度や向きなどが含まれる。
行動計画生成部45は、例えばナビゲーション装置36で演算された目標経路と、自車位置認識部43で認識された自車位置と、外界認識部44で認識された外部状況とに基づいて、現時点から所定時間先までの自車両の走行軌道(目標軌道)を生成する。目標経路上に目標軌道の候補となる複数の軌道が存在するときには、行動計画生成部45は、その中から法令を順守し、かつ効率よく安全に走行する等の基準を満たす最適な軌道を選択し、選択した軌道を目標軌道とする。そして、行動計画生成部45は、生成した目標軌道に応じた行動計画を生成する。
行動計画には、現時点から所定時間T(例えば5秒)先までの間に単位時間Δt(例えば0.1秒)毎に設定される走行計画データ、すなわち単位時間Δt毎の時刻に対応付けて設定される走行計画データが含まれる。走行計画データは、単位時間Δt毎の自車両の位置データと車両状態のデータとを含む。位置データは、例えば道路上の2次元座標位置を示すデータであり、車両状態のデータは、車速を表す車速データと自車両の向きを表す方向データなどである。したがって、所定時間T内に目標車速まで加速する場合、目標車速のデータが行動計画に含まれる。車両状態のデータは、単位時間Δt毎の位置データの変化から求めることができる。走行計画は単位時間Δt毎に更新される。
図3は、行動計画生成部45で生成された行動計画の一例を示す図である。図3では、自車両101が車線変更して前方車両102を追い越すシーンの走行計画が示される。図3の各点Pは、現時点から所定時間T先までの単位時間Δt毎の位置データに対応し、これら各点Pを時刻順に接続することにより、目標軌道103が得られる。なお、行動計画生成部45では、追い越し走行以外に、走行車線を変更する車線変更走行、走行車線を逸脱しないように車線を維持するレーンキープ走行、減速走行または加速走行等に対応した種々の行動計画が生成される。
行動計画生成部45は、目標軌道を生成する際に、まず走行態様を決定し、走行態様に基づいて目標軌道を生成する。例えばレーンキープ走行に対応した行動計画を作成する際には、まず定速走行、追従走行、減速走行、カーブ走行等の走行態様を決定する。具体的には、行動計画生成部45は、自車両の前方に他車両(前方車両)が存在しない場合に、走行態様を定速走行に決定し、前方車両が存在する場合に、追従走行に決定する。追従走行においては、例えば前方車両との間の車間距離を車速に応じた目標車間距離に制御するように、行動計画生成部45が走行計画データを生成する。なお、車速に応じた目標車間距離は、予め記憶部42に記憶される。
走行制御部46は、自動運転モードにおいて、行動計画生成部45で生成された目標軌道103に沿って自車両が走行するように各アクチュエータACを制御する。例えば、単位時間Δt毎に図3の各点Pを自車両101が通過するように、スロットル用アクチュエータ13、ロックアップ用アクチュエータ23、変速用アクチュエータ24、ブレーキ用アクチュエータ、および操舵用アクチュエータなどをそれぞれ制御する。
より具体的には、走行制御部46は、自動運転モードにおいて、行動計画生成部45で生成された行動計画のうち、目標軌道103(図3)上の単位時間Δt毎の各点Pの車速に基づいて、単位時間Δt毎の加速度(目標加速度)を算出する。さらに、道路勾配などにより定まる走行抵抗を考慮してその目標加速度を得るための要求駆動力を算出する。そして、例えば内部センサ群32により検出された実加速度が目標加速度となるようにアクチュエータACをフィードバック制御する。なお、手動運転モードでは、走行制御部46は、内部センサ群32により取得されたドライバからの走行指令(アクセル開度等)に応じて各アクチュエータACを制御する。
走行制御部46による変速機3の制御について具体的に説明する。走行制御部46は、予め記憶部42に記憶されたシフトマップを用いて、変速用アクチュエータ24に制御信号を出力し、これにより変速機3の変速動作を制御する。
図4は、記憶部42に記憶されたシフトマップの一例、特に自動運転モードでのノーマルモードに対応したシフトマップの一例を示す図である。図中、横軸は車速V、縦軸は要求駆動力Fである。なお、要求駆動力Fはアクセル開度(自動運転モードでは擬似的アクセル開度)またはスロットル開度に一対一で対応し、アクセル開度またはスロットル開度が大きくなるに従い要求駆動力Fは大きくなる。したがって、縦軸をアクセル開度またはスロットル開度に読み替えることもできる。
図4の特性f1は、例えば6速段から5速段へのダウンシフトに対応するダウンシフト線の一例であり、特性f2は、5速段から6速段へのアップシフトに対応するアップシフト線の一例である。他の変速段のダウンシフトおよびアップシフトに関しては図示を省略するが、変速段が大きいほど(ハイ側であるほど)、ダウンシフト線およびアップシフト線は、それぞれ高車速側にずらして設定される。なお、スポーツモードのダウンシフト線およびアップシフト線は、ノーマルモード時のダウンシフト線(特性f1)およびアップシフト線(特性f2)をそれぞれ高車速側にずらして設定される。したがって、スポーツモード時にはノーマルモード時よりもアップシフトのタイミングが遅く、かつ、ダウンシフトのタイミングが早い。
図4に示すように、例えば作動点Q1からのダウンシフトに関し、車速Vが一定のまま要求駆動力Fが増加して、作動点Q1がダウンシフト線(特性f1)を超えると(矢印A)、変速機3が6速段から5速段へとダウンシフトする。一方、例えば作動点Q2からのアップシフトに関し、要求駆動力Fが一定のまま車速Vが増加し、作動点Q2の要求駆動力Fに所定の余裕駆動力Faを加算した作動点Q3がアップシフト線(特性f2)を越えると(矢印B)、変速機3は5速段から6速段へとアップシフトする。
すなわち、アップシフトに関しては、見かけ上の要求駆動力Fを余裕駆動力Faの分だけ高めて、余裕駆動力Faが0の場合(作動点Q2)よりもアップシフトするタイミングを遅らせ、変速機3をアップシフトしにくい状態にする。これによりダウンシフトとアップシフトとが頻繁に起こるシフトビジーの状態、すなわちシフトハンチングを防止することができる。なお、余裕駆動力Faは、一定値でもよく、車速や要求駆動力をパラメータとした可変値でもよい。
このように構成された車両走行制御装置100において、追従走行を行う場合、走行制御部46は、前方車両との間の車間距離が目標車間距離となるように要求駆動力Fを算出し、内部センサ群32により検出された実加速度が目標加速度となるようにアクチュエータACをフィードバック制御する。このとき、要求駆動力Fに余裕駆動力Faを加算してアップシフトを制限することで、加速応答性が高い状態で、前方車両の加減速等に応じて前方車両に良好に追従走行することができる。
ところで、前方車両が車速一定ないしほぼ一定のクルーズ走行状態であるとき、追従走行(クルーズ追従走行)する自車両の車速Vも一定ないしほぼ一定となる。このとき、クルーズ追従走行するのに必要な要求駆動力Fは小さく、その最大値は、例えば所定値Fbである。車速V1でのクルーズ追従走行時における作動点がQ4であるとき、作動点Q4では変速機3が5速段であり、この状態から車速VがV2以上に上昇すると、変速段は6速段にアップシフトする。
クルーズ追従走行時には、走行抵抗分の最小限の要求駆動力(例えば所定値Fb以下の要求駆動力)しか必要とされず、余裕駆動力も不要である。このため、図4に示す通常のシフトマップに従って変速するときよりも、さらにハイ側にアップシフトできる余地があり、これにより燃費性能および静粛性を向上させることが可能である。そこで、クルーズ追従走行時に変速機3を最大限の変速段までアップシフトさせるため、本実施形態では、以下のように車両走行制御装置100を構成する。
図5は、本発明の実施形態に係る車両走行制御装置100の要部構成、特に図2とは異なる観点でのコントローラ40の機能的構成を示すブロック図である。図5に示すように、コントローラ40は、車間距離検出部51と、クルーズ走行判定部52と、クルーズ阻害判定部53と、目標変速段算出部54と、目標スリップ率算出部55と、アクチュエータ制御部56とを有する。なお、車間距離検出部51とクルーズ走行判定部52とは、例えば図2の外界認識部44により構成され、クルーズ阻害判定部53は例えば自車位置認識部43により構成され、目標変速段算出部54と目標スリップ率算出部55とアクチュエータ制御部56とは例えば走行制御部46により構成される。
車間距離検出部51は、レーダ312やカメラ313からの信号に基づいて自車両と前方車両との間の実車間距離Lを検出する。
クルーズ走行判定部52は、加速度センサ322により検出された自車両の加速度と、車間距離検出部51により検出された実車間距離Lとに基づき、前方車両の加速度の大きさ(絶対値)が所定値以下であるか否か、すなわち、前方車両がクルーズ走行状態であるか否かを判定する。より具体的には、クルーズ走行判定部52は、まず、加速度センサ322により検出された自車両の加速度が所定値(例えば図4の要求駆動力Fbに対応する所定加速度)以下であるか否か、すなわち自車両がクルーズ走行状態であるか否かを判定する。そして、自車両の加速度が所定値以下と判定すると、記憶部42に記憶された車速Vと目標車間距離Laとの関係から、車速センサ321により検出された車速Vに応じた目標車間距離Laを算出する。次いで、車間距離検出部51で検出された実車間距離Lと、目標車間距離Laとの偏差、すなわち距離偏差ΔL(=L−La)を算出する。
図6は、目標車間距離Laに対する実車間距離Lの時間経過に伴う変化の一例を示す図である。図6では、実車間距離Lの目標車間距離Laに対するプラス(L>La)またはマイナス(L<La)の偏差ΔLが生じている。クルーズ走行判定部52は、自車両の加速度が所定値以下であるとき、偏差ΔLの絶対値が所定値ΔLa(例えば目標車間距離Laの5%)以内である状態が所定時間Δta以上継続したか否かを判定し、所定時間Δta以上継続したと判定すると(図6の時点ta)、前方車両がクルーズ走行状態であると判定する。なお、実車間距離Lと目標車間距離Laとの比L/Laを追従率と定義し、自車両の加速度が所定値以下で、かつ、追従率が所定範囲(例えば95%〜105%)内の状態が所定時間Δta以上継続したときに、クルーズ走行状態と判定してもよい。
クルーズ走行判定部52は、実車間距離Lと目標車間距離Laとの偏差ΔLの頻度が正規分布で表されるとき、正規分布の平均値と分散の値とに応じて、前方車両がクルーズ走行状態であるか否かを判定してもよい。図7は、距離偏差ΔLの頻度が正規分布で表される例を示す図である。特性g1は、距離偏差ΔLの平均値が0の例であり、特性g2は、距離偏差ΔLの平均値が+ΔL1の例である。特性g3(点線)は、距離偏差ΔLの平均値が0で、かつ、特性g1よりも分散の値が大きい特性である。
クルーズ走行判定部52は、自車両の加速度が所定値以下で、かつ、距離偏差ΔLの平均値の大きさ(絶対値)が所定値以下(例えば特性g1に示すように0)で、かつ、分散の値が小さければ(例えば標準偏差σが所定値以下)、前方車両がクルーズ走行状態と判定する。一方、前方車両に対する加速遅れの頻度が高いと、特性g2に示すように距離偏差ΔLの平均値がプラス側(車間距離Lが離れる側)にシフトするが、この場合、クルーズ走行判定部52はクルーズ走行状態でないと判定する。また、前方車両に対する加速遅れと減速遅れの頻度が高いと、特性g3に示すように分散が大きくなるが、この場合も、クルーズ走行判定部52はクルーズ走行状態でないと判定する。
クルーズ走行判定部52は、前方車両の加速度の大きさ(絶対値)の平均値を算出し、この平均値に応じて、前方車両がクルーズ走行状態であるか否かを判定することもできる。前方車両の加速度は、例えば車間距離検出部51で検出された実車間距離Lを時間で2階微分して自車両に対する相対加速度を算出し、この相対加速度に加速度センサ322で検出された自車両の加速度を加算することにより求めることができる。
図8(a),(b)は、それぞれ前方車両の加速度の大きさ(絶対値)の頻度(度数)分布を示すヒストグラムである。クルーズ走行判定部52は、これらのヒストグラムからそれぞれ加速度の大きさの平均値を算出し、平均値が所定値以下であるときにクルーズ走行状態と判定する。例えば図8(a)のヒストグラムは、平均値が所定値以下の例であり、クルーズ走行判定部52はクルーズ走行状態と判定する。一方、図8(b)のヒストグラムは、平均値が所定値より大きい例であり、クルーズ走行判定部52はクルーズ走行状態でないと判定する。
クルーズ阻害判定部53は、クルーズ走行判定部52により前方車両がクルーズ走行状態と判定されると、現時点から所定時間T(例えば5秒)先までの走行経路に、クルーズ走行を阻害する道路情報が含まれるか否かを判定する。この判定にあたり、クルーズ阻害判定部53は、まず、自車両の周囲の道路情報を取得する。具体的には、GPS受信機34で受信した自車両の位置情報、地図データベース35の地図情報、およびナビゲーション装置36に設定された目標経路に基づいて、地図上の自車両の位置と、将来走行する道路情報(登坂路やカーブ路等の道路の種別)とを認識する。
次いで、クルーズ阻害判定部53は、認識された道路状況に基づいて、現時点から所定時間先までの走行経路に登坂路やカーブ路等のクルーズ走行を阻害する道路情報が含まれるか否かを判定する。すなわち、所定傾斜角以上の登坂路や所定曲率以上のカーブ路等においては、前方車両に追従走行するための要求駆動力が増大し、前方車両は、要求駆動力が所定値Fb(図4)以下のクルーズ走行状態を継続できない。この場合、クルーズ阻害判定部53は、クルーズ走行を阻害する道路情報が含まれると判定する。
目標変速段算出部54は、クルーズ走行判定部52によりクルーズ走行状態であると判定され、かつ、クルーズ阻害判定部53によりクルーズ走行を阻害する道路情報が含まれないと判定されると、予め記憶部42に記憶された図9の特性に基づき目標変速段Naを算出する。図9は、クルーズ追従走行時における車速Vと目標変速段Naとの関係、すなわちクルーズ用変速特性の一例を示す図である。図9に示すように、クルーズ用変速特性によれば、目標変速段Naは車速Vの増加に伴い段階的に上昇する。目標変速段Naは、通常のシフトマップ(図4)により定義される変速段(通常モード時の変速段)よりもハイ側に設定される。例えば通常のシフトマップによれば、車速V1のクルーズ走行状態のときの変速段は5速段であるのに対し、図9の特性によれば7速段となる。
図9の特性による目標変速段Naは、エンジン回転数Neが予め定められたエンジン1の失火回転数Neaより低くなる変速段のうち、最小の変速段である。例えばクルーズ追従走行時に、N段とN+1段との間の変速比でエンジン回転数Neが失火回転数Neaとなるとき、目標変速段NaはN+1段となる。より具体的には、車速V1のときに、7速段以上でエンジン回転数Neが失火回転数Neaになるとき、目標変速段Naは7速段となる。
目標スリップ率算出部55は、クルーズ追従走行時のロックアップクラッチ21の目標スリップ率を算出する。この場合、まず、目標変速段算出部54で算出された目標変速段Naでクルーズ追従走行するために必要な変速機3の入力軸の目標回転数Nia(トルクコンバータ2のタービンランナの目標回転数)を算出する。目標回転数Niaは、例えばエンジン1の失火回転数Neaよりも低い。次いで、エンジン1を失火回転数Neaよりも所定回転数だけ高い最小目標回転数(エンジン目標回転数Neb)で回転させるときのロックアップクラッチ21のスリップ率、すなわち、エンジン1がエンジン目標回転数Nebで回転したときに変速機3の入力軸の回転数Niが目標回転数Niaとなるためのスリップ率を、目標スリップ率として算出する。スリップ率は、エンジン回転数Ne(ポンプインペラの回転数)と変速機3の入力軸の回転数Ni(タービンランナの回転数)との比である。
アクチュエータ制御部56は、変速機3の変速段が目標変速段算出部54で算出された目標変速段Naとなるように変速用アクチュエータ24に制御信号を出力する。また、エンジン回転数が目標スリップ率算出部55で算出されたエンジン目標回転数Nebとなるようにスロットル用アクチュエータ13とインジェクタ12とに制御信号を出力する。さらに、ロックアップクラッチ21のスリップ率が目標スリップ率算出部55で算出された目標スリップ率となるようにロックアップ用アクチュエータ23に制御信号を出力する。
図10は、予め記憶部42(図2)に記憶されたプログラムに従いコントローラ40で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えば手動自動切換スイッチ331の切換により、自動運転モードでの運転が指令されると開始され、所定周期で繰り返される。
まず、ステップS1で、車間距離検出部51により検出された実車間距離Lと目標車間距離Laとの距離偏差ΔLを算出する。次いで、ステップS2で、加速度センサ323により検出された自車両の加速度と、ステップS1で算出された距離偏差ΔLとに基づき、クルーズ走行判定部52が、前方車両がクルーズ走行状態であるか否かを判定する。より具体的には、自車両の加速度が所定値以下で、かつ、距離偏差ΔLが所定値ΔLa以下の状態が所定時間Δta継続するか否かを判定する。
なお、距離偏差ΔLが所定値ΔLa以下の状態が所定時間Δta継続するか否かの判定に代えて、距離偏差ΔLの平均値の大きさ(絶対値)が所定値以下(例えば特性g1に示すように0)で、かつ、分散が所定値以下(例えば標準偏差σが所定値以下)か否かを判定するようにしてもよい。前方車両の加速度の大きさ(絶対値)の平均値に応じて前方車両がクルーズ走行状態であるか否かを判定するようにしてもよい。この場合、車間距離検出部51で検出された実車間距離Lを時間で2階微分して自車両に対する相対加速度を算出するとともに、相対加速度に加速度センサ322で検出された自車両の加速度を加算して前方車両の加速度を算出すればよい。
ステップS2で肯定されるとステップS3に進み、否定されるとステップS7に進む。ステップS3では、GPS受信機34、地図データベース35、ナビゲーション装置36からの信号に基づき、クルーズ阻害判定部53が、現時点から所定時間T先までの走行経路にクルーズ走行を阻害する道路情報が含まれるか否かを判定する。すなわち、所定傾斜角以上の登坂路や所定曲率以上のカーブ路等が存在するか否かを判定する。ステップS3で肯定されるとステップS7に進み、否定されるとステップS4に進む。このように、ステップS2で前方車両がクルーズ走行状態と判定され、かつ、ステップS3でクルーズ走行を阻害する道路情報が含まれないと判定されると、クルーズ走行モードに移行するため、ステップS4に進む。
ステップS4〜ステップS6は、自車両をクルーズ走行モードで走行させる場合の処理である。ステップS4では、目標変速段算出部54が、予め記憶部42に記憶されたクルーズ用変速特性(図9)を用いて、車速Vに応じた目標変速段Naを算出する。さらに、ステップS4では、変速機3の変速段がこの目標変速段Naとなるように、アクチュエータ制御部56が変速用アクチュエータ24に制御信号を出力する。目標変速段Naは通常よりもハイ側に設定された変速段であり、ステップS4では、変速機3がアップシフトされる。
次いで、ステップS5で、アクチュエータ制御部56がスロットル用アクチュエータ13とインジェクタ12とに制御信号を出力し、エンジン回転数Neを増加させる。すなわち、エンジン回転数Neを失火回転数Neaよりも高い目標回転数Nebまで増加させる。
次いで、ステップS6で、目標スリップ率算出部55が、ステップS4で算出された目標変速段Naに対応する変速機3の入力軸の目標回転数Niaを算出するとともに、エンジン回転数Neの増加に伴う車速の増加を回避するような目標スリップ率、すなわち、変速機3の入力軸の回転数Niが目標回転数Niaとなるような目標スリップ率を算出する。さらに、ステップS6では、ロックアップクラッチ21のスリップ率が目標スリップ率となるように、アクチュエータ制御部56がロックアップ用アクチュエータ23に制御信号を出力する。これにより、ロックアップクラッチ21(LC)がクラッチオフ側に制御され、スリップ率(スリップ量)が増加する。
一方、ステップS7では、クルーズ走行モードに代えて通常モードで走行動作を制御する。この場合、アクチュエータ制御部56は変速用アクチュエータ24に制御信号を出力し、通常のシフトマップ(図4)に従って変速段をクルーズ追従走行時よりもロー側に制御する。また、走行制御部46で求められた要求駆動力が得られるようにアクチュエータ制御部56はスロットル用アクチュエータ13に制御信号を出力する。さらに、アクチュエータ制御部56はロックアップ用アクチュエータ23に制御信号を出力し、クルーズ追従走行時よりもロックアップクラッチ21のスリップ率を小さくする(例えばロックアップオン状態とする)。
本実施形態に係る車両走行制御装置100の動作をより具体的に説明する。図11は、時間経過に伴う走行状態の変化の一例を示すタイムチャートである。図11に示すように、時点t1に到る前の初期状態は、前方車両がクルーズ走行状態でない。このため、自動運転モードで走行する自車両の走行動作は、通常モードで制御される(ステップS7)。このとき、変速段は例えば6速段となり、ロックアップクラッチ21は例えばクラッチオン状態となる。したがって、エンジン回転数Neと変速機3の入力軸の回転数Niとは等しい(Ne=Ni)
現時点から所定時間T先までの走行経路にクルーズ走行を阻害する道路情報が含まれないことを条件として、時点t1で、前方車両がクルーズ走行状態であると判定されると、予め定められた変速特性(図9)に従い変速機3が7速段および8速段へと順次アップシフトする(ステップS4)。このとき、アップシフトに伴いエンジン回転数Neは低下するが、スロットル用アクチュエータ13とインジェクタ12とを適宜制御することで、その低下量が抑えられ、時点t2で、エンジン回転数Neは失火回転数Neaよりも高い最小回転数Nebとなる(ステップS5)。エンジン回転数Neの増加制御に伴い、ロックアップクラッチ21は、スリップ側に制御され、変速機3の入力軸の回転数Niは、失火回転数Neaよりも低い目標回転数Niaとなる(ステップS6)。
なお、仮にステップS5の処理がなければ、ステップS6の処理も不要である。このとき、アップシフトに伴いエンジン回転数Neは失火回転数Neaを下回り、エンジン1が失火するおそれがある。したがって、エンジン1の失火を防ぐため、アップシフトはロー側に制限(例えば7速段に制限)される。
このようにクルーズ走行モードにおいては、変速段を通常モードでは使用しない変速段までアップシフトする。具体的には、変速機3の入力軸の回転数Niがエンジン1の失火回転数Neaよりも低い目標回転数Niaとなるまで変速機3がアップシフトする。このときの余裕駆動力は例えば0であり、加速が不能である。このため、燃費を最大限に向上することができる。また、エンジン回転数Neを失火回転数Neaよりも高くして失火を抑えた上で、ロックアップクラッチ21をスリップさせて所定車速でクルーズ走行する。このようにロックアップクラッチ21をスリップさせることで、エンジントルク振動によるこもり音や車両振動を抑制することができ、車両の静粛性を向上することができる。
その後、時点t3で前方車両がクルーズ走行状態でないと判定されると、通常モードに切り換わり、変速機3が7速段および6速段へと順次ダウンシフトする。これによりエンジン回転数Neが増大する。このとき、ロックアップクラッチ21を締結側に制御し(例えばクラッチオン状態とし)、スリップ量を低減する。
本実施形態に係る車両走行制御装置100によれば以下のような作用効果を奏することができる。
(1)本実施形態に係る車両走行制御装置100は、自動運転機能を有する自車両が前方車両に追従走行するように自車両の走行動作に寄与するエンジン1、変速機3、ロックアップクラッチ21等を制御する。この車両走行制御装置100は、前方車両の走行状態(例えば車間距離L)を検出する車間距離検出部51と、車間距離検出部51により検出された走行状態に基づいて前方車両がクルーズ走行しているか否かを判定するクルーズ走行判定部52と、クルーズ走行判定部52によりクルーズ走行していると判定されると、クルーズ走行していないと判定されるときよりも、燃費性能または静粛性能を重視するクルーズ走行モードで前方車両に追従走行するようにエンジン1、変速機3、ロックアップクラッチ21を制御するアクチュエータ制御部56とを有する(図5)。このように前方車両がクルーズ走行していると判定されると、通常モードとは異なるクルーズ走行モードによりエンジン1、変速機3、ロックアップクラッチ21を制御するので、燃費性能や静粛性能を最大限に高めることができる。
(2)アクチュエータ制御部56は、クルーズ走行判定部52によりクルーズ走行していると判定されると、クルーズ走行していないと判定されるときよりも、変速機3がハイ側の変速段にアップシフトされるように変速機3を制御する。これによりエンジン回転数が低下するとともに余裕駆動力が例えば0となり、燃費性能と静粛性能とを高めることができる。
(3)アクチュエータ制御部56は、クルーズ走行判定部52によりクルーズ走行していると判定されると、クルーズ走行していないと判定されるときよりも、ロックアップクラッチ21のスリップ率が大きくなるようにロックアップクラッチ21を制御する。これによりエンジントルク振動によるこもり音や車両振動を抑制することができ、燃費性能と静粛性能とを同時に向上することができる。
(4)アクチュエータ制御部56は、クルーズ走行判定部52によりクルーズ走行していると判定されると、変速機3がアップシフトし、かつ、エンジン1の回転数が増加し、かつ、ロックアップクラッチ21のスリップ率が大きくなるように、変速機3とエンジン1とロックアップクラッチ21とを制御する。これにより変速機3を通常モード時よりもハイ側の変速段にアップシフトしても、エンジン回転数Neが失火回転数Nea以下とならないため、変速機3を最大限にアップシフトすることができる。また、エンジン回転数Neが増加した分、ロックアップクラッチ21のスリップ率が増大するので、車両静粛性をより高めることができる。
(5)車両走行制御装置100は、自車両の周囲の道路情報を取得するGPS受信機34、地図データベース35、ナビゲーション装置36と、取得された道路情報に基づき、現時点から所定時間T先までの走行経路にクルーズ走行を阻害するカーブ路や登坂路等の道路情報が含まれるか否かを判定するクルーズ阻害判定部53と、をさらに備える(図2,5)。アクチュエータ制御部56は、クルーズ阻害判定部53によりクルーズ走行を阻害する道路情報が含まれないと判定されることを条件として、クルーズ走行モードに移行する。これにより、前方車両のクルーズ走行状態が継続することが予想されるときに、自車両がクルーズ走行モードに移行するため、クルーズ走行モードと通常モードとの間で頻繁にモードが切り換わることを防止することができる。その結果、アップシフトやダウンシフトの頻度が減少し、乗員の乗車快適性が向上する。
ところで、追従走行の対象となる前方車両が例えば自動運転車両であるとき、前方車両の車速は自動的に目標車速に制御される。このような自動運転車両は、ドライバの操作に応じて走行する手動運転車両と比べて車速のばらつきの程度が小さい。このため、前方車両が自動運転車両であるか否か、換言すれば、前方車両が自動運転モードで走行しているか否かを認識できれば、前方車両を対象とした自車両の効率的な走行が可能である。この点を考慮して、本実施形態では、以下のように前方車両の走行態様を認識する走行態様認識装置を構成する。
図12は、本発明の実施形態に係る走行態様認識装置200の要部構成を示すブロック図である。この走行態様認識装置200は、本実施形態に係る車両走行制御装置100(図2)の一部を構成するものであり、図5のコントローラ40の変形例として示される。なお、図12において、図5と同一の箇所には同一の符号を付し、以下では図5との相違点を主に説明する。
図12に示すように、コントローラ40は、車間距離検出部51と、クルーズ走行判定部52と、クルーズ阻害判定部53と、目標変速段算出部54と、目標スリップ率算出部55と、ばらつき算出部61と、走行モード判定部62と、アクチュエータ制御部56とを有する。なお、ばらつき算出部61と走行モード判定部62とは、例えば図2の走行制御部46により構成される。
ばらつき算出部61は、車間距離検出部51により検出された車間距離Lの変化に基づき、前方車両の車速または加速度のばらつきの程度を算出する。図13は、前方車両が自動運転モードで走行しているときの時間経過に伴う前方車両の車速Vのばらつきの変化の一例を示すタイムチャートである。前方車両の車速Vは、車間距離検出部51により検出された車間距離Lを時間微分して相対車速を算出し、この相対車速を、車速センサ321により検出された自車両の車速に加算することにより求めることができる。
自動運転モードで走行中は、前方車両の車速Vが精度よく目標車速Vaに制御される。このため、図13に示すように、前方車両の車速Vは、目標車速Vaを中心とした所定の下限車速Va1と所定の上限車速Va2との間の所定車速範囲ΔV内に収まる。ばらつき算出部61は、車速Vのばらつきの程度を数値で表すことができる。例えば車速Vが所定車速範囲ΔV内に収まるとき、ばらつきの程度を最小(例えば0)とし、所定車速範囲ΔVを超えると、その程度が大きくなるにつれてばらつきの程度を大きくする。
ばらつき算出部61は、前方車両の車速Vのばらつきが正規分布で表されるとき、正規分布の分散の値に応じて、ばらつきの程度を算出してもよい。図14は、前方車両の車速Vのばらつきが正規分布で表される例を示す図である。図14には2つの異なる特性g4(実線),特性g5(点線)が示される。特性g4は、特性g5よりも正規分布の分散の値(σ)が小さく、したがって、ばらつきが小さい。このように前方車両の車速Vのばらつきの程度は、正規分布の分散の値によって求めることもできる。
なお、ばらつき算出部61は、自車両の加速度が所定値以下の状態で、実車間距離Lと目標車間距離Laとの偏差ΔLの頻度が正規分布(例えば図7)で表されるとき、正規分布の平均値と分散とに基づいて、ばらつきの程度を算出してもよい。すなわち、図7の特性g1に示すように、平均値が0で分散の値が小さいとき、ばらつきの程度を小さく、特性g2に示すように、平均値が0から離れているとき、あるいは特性g3に示すように、分散の値が大きいとき、ばらつきの程度を大きくしてもよい。
走行モード判定部62は、ばらつき算出部61により算出された前方車両の車速Vのばらつきの程度が所定値以下(例えば図13に示すようにばらつきの程度が0)であるとき、前方車両が自動運転モードで走行していると判定する。一方、ばらつき算出部61により算出されたばらつきの程度が所定値より大きいとき、前方車両が手動運転モードで走行していると判定する。
走行モード判定部62は、ばらつき算出部61により算出されたばらつきの程度と、GPS受信機34、地図データベース35およびナビゲーション装置36により取得された自車両の周囲の道路情報とに基づいて、前方車両が自動運転モードと手動運転モードのいずれで走行しているかを判定することもできる。
例えばドライバが認識できないほどの緩やかな登り勾配を手動運転モードで走行するとき、前方車両の車速Vは下限車速V1(図13)を下回るおそれがある。また、傾斜角が大きい急な登坂路を走行するときもアクセルペダルの踏み込み操作が遅れ、前方車両の車速は下限車速V1を下回るおそれがある。これに対し、前方車両が自動運転モードで走行するとき、前方車両に備えられた走行制御装置が勾配の変化による車速Vの変化を即座に検知するため、車速Vが下限車速V1未満となることを防ぐことができる。また、傾斜角が大きい登坂路を走行するときは、勾配に応じて走行駆動力を増加させるため、この場合も車速Vが下限車速V1未満となることを防ぐことができる。
このように道路状況によっては、手動運転と自動運転の差が顕著に表れる。したがって、走行モード判定部62は、道路情報を考慮してばらつきの程度を把握するようにしてもよい。例えば、走行路が緩やかな傾斜や急な傾斜であるときに、前方車両が手動運転か自動運転かを判定するようにしてもよい。これにより、前方車両が自動運転モードと手動運転モードのいずれで走行しているかを、精度よく判定することができる。
アクチュエータ制御部56は、クルーズ走行判定部52により前方車両がクルーズ走行していると判定され、かつ、走行モード判定部62により前方車両が自動運転モードで走行と判定されると、走行モードをクルーズ走行モードとして上述したのと同様にエンジン1、変速機3、ロックアップクラッチ21を制御する。これに対し、クルーズ走行判定部52により前方車両がクルーズ走行していると判定されるときであっても、走行モード判定部62により前方車両が手動運転モードで走行と判定されるときは、走行モードを通常モードとして上述したのと同様にエンジン1、変速機3、ロックアップクラッチ21を制御する。
したがって、前方車両が自動運転モードで走行しているときは手動運転モードで走行しているときよりも、変速機3の変速段がハイ側に、かつロックアップクラッチ21がスリップ側に制御される。なお、ロックアップクラッチの状態を変えずに、変速段をハイ側に制御するだけでもよい。前方車両が自動運転モードで走行していると判定されるときは、手動運転モードで走行していると判定されるときよりも、クルーズ走行の判定のための所定時間Δta(図6)を短く設定してもよい。前方車両が自動運転モードで走行していると判定されるとき、前方車両は道路状況に拘らず精度よくクルーズ走行することが可能であるため、クルーズ阻害判定部53の判定結果を無視して、自車両をクルーズ走行モードで走行させるようにしてもよい。
図15は、図12のコントローラ40で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えば手動自動切換スイッチ331の切換により、自動運転モードでの運転が指令されると開始され、所定周期で繰り返される。
まず、ステップS11で、ばらつき算出部61が車間距離検出部51により検出された車間距離Lの変化に基づき、前方車両の車速または加速度のばらつきの程度を算出する。次いで、ステップS12で、走行モード判定部62がばらつき算出部61により算出された前方車両の車速または加速度のばらつきの程度に基づいて前方車両が自動運転モードと手動運転モードのいずれで走行しているかを判定する。ステップS12で、自動運転モードで走行していると判定されると、ステップS13に進み、図10のステップS4〜ステップS6と同様、クルーズ走行モードで自車両の走行動作を制御する。一方、ステップS12で、手動運転モードで走行していると判定されると、ステップS14に進み、図10のステップS7と同様、通常モードで自車両の走行動作を制御する。
本実施形態に係る走行態様認識装置200によれば以下のような作用効果を奏することができる。
(1)本実施形態に係る走行態様認識装置200は、自動運転機能を有する自車両の前方を走行する前方車両の走行態様を認識するものであり、前方車両の走行状態(例えば車間距離L)を検出する車間距離検出部51と、車間距離検出部51により検出された走行状態に基づき、前方車両の車速または加速度のばらつきの程度を算出するばらつき算出部61と、ばらつき算出部61により算出されたばらつきの程度に基づいて、前方車両が自動運転モードと手動運転モードのいずれで走行しているかを判定する走行モード判定部62とを備える(図12)。これにより前方車両の走行モードが自動運転モードか手動運転モードかを認識することができ、前方車両を対象とした自車両の効率的な走行が可能である。
(2)走行態様認識装置200は、自車両が前方車両に追従走行するように自車両のエンジン、変速機、ロックアップクラッチを制御するアクチュエータ制御部56をさらに備える(図12)。アクチュエータ制御部56は、走行モード判定部62により前方車両が自動運転モードで走行していると判定されると、手動運転で走行していると判定されるときよりも、例えば変速機3がハイ側の変速段にアップシフトされるように変速機3を制御する。すなわち、前方車両が自動運転モードで走行中は、前方車両は精度よくクルーズ走行することが可能であるため、自車両はクルーズ状態で追従走行することができる。したがって、走行駆動力を抑えることができ、変速機3をアップシフトすることで、燃費性能や静粛性能を高めることができる。
(3)走行態様認識装置200は、自車両の周囲の道路情報を取得するGPS受信機34、地図データベース35、ナビゲーション装置36をさらに備える(図2)。アクチュエータ制御部56は、ばらつき算出部61により算出されたばらつきの程度と、取得された自車両の周囲の道路情報とに基づいて、前方車両が自動運転モードと手動運転モードのいずれで走行しているかを判定することもでき、これにより前方車両の走行モードを精度よく判定することができる。すなわち、例えば緩やかな勾配や急な勾配の登坂路を走行するとき、自動運転モードでは目標車速を維持できるが、手動運転モードでは目標車速を維持するのが難しい。そこで、このような道路状況において前方車両の走行モードを判定することで、走行モードの判定精度が向上する。
上記実施形態は種々の形態に変更することができる。以下、変形例について説明する。上記実施形態(図5,12)では、前方車両の走行状態として車間距離検出部51で車間距離Lを検出するようにしたが、走行状態検出部の構成はこれに限らない。上記実施形態(図5,12)では、クルーズ走行判定部52により、前方車両との車間距離Lに応じて前方車両がクルーズ走行状態であるか否かを判定するようにしたが、検出された走行状態に基づいて前方車両がクルーズ走行しているか否かを判定するのであれば、クルーズ走行判定部の構成も上述したものに限らない。
上記実施形態(図5,12)では、GPS受信機34と地図データベース35とナビゲーション装置36とからの情報により、自車両の周囲の道路情報を取得するようにしたが、道路情報取得部の構成はこれに限らない。取得された道路情報に基づき、現時点から所定時間先までの走行経路にクルーズ走行を阻害する道路情報が含まれるか否かを判定するのであれば、クルーズ阻害判定部の構成はいかなるものでもよい。上記実施形態(図5,12)では、クルーズ走行モード時に、エンジン1と変速機3との間のトルク伝達経路に設けられたロックアップクラッチ21をスリップさせて、エンジン1から変速機3への動力伝達を調整するようにしたが、ロックアップクラッチに代えて他のクラッチ機構を設けてもよい。したがって、トルクコンバータ2を省略することもできる。
上記実施形態(図5,12)では、クルーズ走行モード時に通常モード時よりも燃費性能および静粛性能が高まるように、アクチュエータ制御部56がエンジン1と変速機3とロックアップクラッチ21とを制御するようにしたが、クルーズ走行モード時に通常モード時よりも燃費性能または静粛性能が高まるように、自車両の追従走行の動作に寄与する機器を制御するのであれば、機器制御部の構成は上述したものに限らない。例えばロックアップクラッチ21のスリップ制御を行わずに、変速機3のアップシフトのみを行うようにしてもよい。エンジン1、変速機3、ロックアップクラッチ21に代えて、あるいはこれらとともに走行モータ等、他の機器を制御してもよい。
上記実施形態(図12)では、走行モード判定部62が、前方車両の走行モードが手動運転モードと自動運転モードのいずれであるかを判定し、その判定結果に応じて前方車両の追従走行のモードを変更するようにした。ここで、前方車両の走行モードの情報は、前方車両を対象とした他の走行(例えば追い越し走行)にとっても有用である。したがって、走行モード判定部による判定結果を、他の走行を行う際に利用するようにしてもよい。
上記実施形態では、有段変速機を変速機3として用いたが、無段変速機であってもよい。この場合、アクチュエータ制御部56としての機器制御部は、クルーズ走行判定部によりクルーズ走行していると判定されると、クルーズ走行していないと判定されるときよりも、変速機の変速比がハイ側に変更されるように変速機を制御すればよい。あるいは、走行モード判定部により前方車両が自動運転モードで走行していると判定されると、手動運転で走行していると判定されるときよりも、変速機の変速比をハイ側に制御すればよい。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
1 エンジン、2 トルクコンバータ、3 変速機、21 ロックアップクラッチ、34 GPS受信機、35 地図データベース、36 ナビゲーション装置、51 車間距離検出部、61 ばらつき算出部、62 走行モード判定部、56 アクチュエータ制御部、200 走行態様認識装置

Claims (2)

  1. 自動運転機能を有する自車両の前方を走行する前方車両の走行態様を認識する走行態様認識装置であって、
    前記前方車両の走行状態を検出する走行状態検出部と、
    前記走行状態検出部により検出された走行状態に基づき、前記前方車両の車速または加速度のばらつきの程度を算出するばらつき算出部と、
    前記自車両の周囲の道路の傾斜情報を含む道路情報を取得する道路情報取得部と、
    前記道路情報取得部により取得された傾斜情報に基づいて、前記前方車両の走行モードの判定を行うか否かを決定するとともに、前記前方車両の走行モードの判定を行うと決定すると、前記ばらつき算出部により算出されたばらつきの程度に基づいて、前記前方車両が自動運転モードと手動運転モードのいずれで走行しているかを判定する走行モード判定部と、を備えることを特徴とする走行態様認識装置。
  2. 請求項1に記載の走行態様認識装置において、
    前記自車両が前記前方車両に追従走行するように前記自車両の走行動作に寄与する機器を制御する機器制御部をさらに備え、
    前記機器は、エンジンと、前記エンジンの回転を変速して出力する変速機と、を有し、
    前記機器制御部は、前記走行モード判定部により前記前方車両が自動運転モードで走行していると判定されると、前記手動運転で走行していると判定されるときよりも、前記変速機の変速比をハイ側に制御することを特徴とする走行態様認識装置。
JP2018021469A 2018-02-09 2018-02-09 走行態様認識装置 Active JP6630753B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018021469A JP6630753B2 (ja) 2018-02-09 2018-02-09 走行態様認識装置
CN201910092235.0A CN110126838A (zh) 2018-02-09 2019-01-30 车辆行驶控制装置
US16/264,377 US11009885B2 (en) 2018-02-09 2019-01-31 Vehicle travel control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021469A JP6630753B2 (ja) 2018-02-09 2018-02-09 走行態様認識装置

Publications (2)

Publication Number Publication Date
JP2019137194A JP2019137194A (ja) 2019-08-22
JP6630753B2 true JP6630753B2 (ja) 2020-01-15

Family

ID=67541628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021469A Active JP6630753B2 (ja) 2018-02-09 2018-02-09 走行態様認識装置

Country Status (3)

Country Link
US (1) US11009885B2 (ja)
JP (1) JP6630753B2 (ja)
CN (1) CN110126838A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011235A (ja) * 2019-07-09 2021-02-04 トヨタ自動車株式会社 車両制御システム、車両制御装置、車両制御方法、及び車両制御プログラム
US11334089B1 (en) 2019-07-26 2022-05-17 Jeffrey W. Bryce Infrastructure markers for autonomous vehicles
JP7338525B2 (ja) * 2020-03-18 2023-09-05 日産自動車株式会社 自動変速機の制御方法および制御装置
JP7412254B2 (ja) * 2020-04-02 2024-01-12 三菱電機株式会社 物体認識装置および物体認識方法
CN112078593B (zh) * 2020-07-24 2021-12-21 西安电子科技大学 基于多种网络协同模型的自动驾驶系统及方法
CN115503707A (zh) * 2022-10-26 2022-12-23 东风商用车有限公司 一种基于加速度管理的巡航控制方法、系统和存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805103A (en) * 1995-09-27 1998-09-08 Mazda Motor Corporation Method of and system for monitoring preceding vehicles
JP3885500B2 (ja) * 2001-01-30 2007-02-21 日産自動車株式会社 先行車追従走行制御装置
JP2009078809A (ja) 2008-11-21 2009-04-16 Denso Corp 車両の走行状態制御装置
JP2012153296A (ja) * 2011-01-27 2012-08-16 Toyota Motor Corp 走行制御装置
WO2013005293A1 (ja) * 2011-07-04 2013-01-10 トヨタ自動車株式会社 車両用運転支援装置
CN104334931B (zh) * 2012-06-07 2016-05-04 本田技研工业株式会社 自动变速器的变速控制装置
US10550785B2 (en) * 2014-09-19 2020-02-04 Hitachi Automotive Systems, Ltd. Vehicle control device and vehicle control method
JP6222137B2 (ja) * 2015-03-02 2017-11-01 トヨタ自動車株式会社 車両制御装置
JP6358197B2 (ja) * 2015-08-31 2018-07-18 マツダ株式会社 運転支援制御装置
JP6358213B2 (ja) * 2015-09-18 2018-07-18 株式会社ニコン 撮像装置
CN106828491A (zh) * 2015-12-03 2017-06-13 成都九十度工业产品设计有限公司 一种汽车智能巡航控制系统及其控制方法
JP6468204B2 (ja) * 2016-01-15 2019-02-13 スズキ株式会社 小型車両の進路変更時における予防安全装置

Also Published As

Publication number Publication date
JP2019137194A (ja) 2019-08-22
US11009885B2 (en) 2021-05-18
US20190250629A1 (en) 2019-08-15
CN110126838A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
JP6633663B2 (ja) 車両走行制御装置
JP6630753B2 (ja) 走行態様認識装置
JP6664424B2 (ja) 車両走行制御装置
JP6649940B2 (ja) 自動運転車両の走行制御装置
JP6633606B2 (ja) 自動運転車両の走行制御装置
US10753462B2 (en) Vehicle transmission control apparatus
US10501078B2 (en) Vehicle control apparatus
JP6628819B2 (ja) 車両走行制御装置
JP6580115B2 (ja) 自動運転車両の走行制御装置
JP6637084B2 (ja) 車両制御装置
US10990098B2 (en) Vehicle control apparatus
US10824157B2 (en) Vehicle control apparatus
CN110040142B (zh) 车辆行驶控制装置
JP6796576B2 (ja) 自動運転車両の走行制御装置
CN210126518U (zh) 车辆控制装置
CN210554769U (zh) 车辆控制装置
JP2020008095A (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6630753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150