JP6627987B2 - ロータリ圧縮機 - Google Patents

ロータリ圧縮機 Download PDF

Info

Publication number
JP6627987B2
JP6627987B2 JP2018550022A JP2018550022A JP6627987B2 JP 6627987 B2 JP6627987 B2 JP 6627987B2 JP 2018550022 A JP2018550022 A JP 2018550022A JP 2018550022 A JP2018550022 A JP 2018550022A JP 6627987 B2 JP6627987 B2 JP 6627987B2
Authority
JP
Japan
Prior art keywords
lever
cylinder
vane
coil spring
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018550022A
Other languages
English (en)
Other versions
JPWO2018087955A1 (ja
Inventor
将吾 諸江
将吾 諸江
聡経 新井
聡経 新井
秀明 北川
秀明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018087955A1 publication Critical patent/JPWO2018087955A1/ja
Application granted granted Critical
Publication of JP6627987B2 publication Critical patent/JP6627987B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、ヒートポンプ機器、冷凍サイクル機器などに使用されるロータリ圧縮機に関する。
一般的なロータリ圧縮機は、シリンダ内をシリンダの中心から偏心して転動するピストンによって圧縮動作を行う。シリンダにはピストンの外周面に当接してシリンダ内の空間を圧縮空間と吸気室とに仕切るベーン(ブレードともいう)が設置される。ベーンはピストンの転動にあわせてシリンダの径方向に移動可能とされ、ベーンの先端が常にピストンの外周に当接するようにベーンの後端に設置されたコイルばねによって付勢される(例えば特許文献1)。
ベーンの後端にコイルばねを設置する構造では、ばねによって圧縮機のサイズが大きくなる問題がある。そこで、特許文献2にはベーンの摺動スロットに平行となる位置にコイルばねを設置し、コイルばねからベーンの後端に向かってのびる腕部でベーンと係合する構造が示されている。特許文献2では、ベーンの後端側にコイルばねを設置するスペースが不要となり、シリンダの外径を小さくできる。
特開昭63−289284号公報 特開平5−223082号公報
特許文献2では、ベーンの摺動スロットと平行に設置されるばねの長さはシリンダの内周面からベーンの後端側までの距離よりも短い。従って、この構造ではシリンダの径方向の厚み(内径と外径との間の距離)が小さくなると、ばねの長さも短くなる。また、特許文献2ではコイルばねとして引っ張りばねを用いるため、ばねの両端に固定用のフックが必要であり、実質的なばね部分の長さはシリンダの径方向の厚みよりも大幅に短い。ばね部分が短いと、ばねが伸縮を繰り返した際に寿命が大幅に短くなる問題がある。
本発明は、このような問題を考慮してなされたもので、シリンダの外径を拡大せずに、ばねの寿命を長くすることにより、小型で、信頼性の高いロータリ圧縮機を実現することを目的とする。
本発明のロータリ圧縮機は、
容器と、
前記容器内に設置されて駆動軸を回転させる駆動機構と、
前記容器内に固定されたシリンダと、
前記駆動軸の回転が伝達されて前記シリンダ内を転動するピストンと、
前記シリンダに設けられたスロットに挿入され、先端が前記ピストンに接して、前記ピストンの転動にともなって前記スロット内を往復運動するベーンと、
前記スロットの延長上からずれた位置に弾性変形した状態で保持されたコイルばねと、
前記シリンダに回転軸が設置され、前記回転軸を中心にしたスイングが可能となるように保持されて、前記コイルばねの弾性変形からの復元力を前記ベーンが前記ピストンに向かう力として前記ベーンに伝達するレバーと、を備え、
前記回転軸の中心を支点、前記レバーにおいて前記ベーンに力を伝達する位置を作用点、前記レバーにおいて前記コイルばねの復元力を受ける位置を力点とすると、前記支点から前記作用点までの距離が前記支点から前記力点までの距離よりも長いロータリ圧縮機、とした。
本発明のロータリ圧縮機は、コイルばねの復元力をレバーによってベーンに伝達し、レバーの回転軸の中心を支点、レバーにおいてベーンに力を伝達する位置を作用点、レバーにおいてコイルばねの復元力を受ける位置を力点とすると、支点から作用点までの距離が支点から力点までの距離よりも長いため、コイルばねの変形量が拡大されてベーンに伝達される。このため、コイルばねの変形量が小さくなり、シリンダの外径を拡大しなくても、ばねの寿命を長くでき、小型で、信頼性が高いロータリ圧縮機を実現できる。
本発明の実施の形態1のロータリ圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態1のロータリ圧縮機の断面図である。 本発明の実施の形態1のロータリ圧縮機の部分斜視図である。 本発明の実施の形態1のロータリ圧縮機のベーンの側面図である。 本発明の実施の形態1のロータリ圧縮機の部分分解斜視図である。 本発明の実施の形態1のロータリ圧縮機の部分側面図である。 本発明の実施の形態1のロータリ圧縮機のシリンダの上面図である。 本発明の実施の形態1のロータリ圧縮機のシリンダの上面図である。 本発明の実施の形態1のロータリ圧縮機のシリンダの上面図である。 本発明の実施の形態1の変形例であるロータリ圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態1の変形例であるロータリ圧縮機の第2圧縮機構の下面図である。 本発明の実施の形態1の変形例であるロータリ圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態2のロータリ圧縮機の部分分解斜視図である。 本発明の実施の形態3のロータリ圧縮機の部分側面図である。 本発明の実施の形態3のロータリ圧縮機のベーンの側面図である。 本発明の実施の形態4のロータリ圧縮機のシリンダの上面図である。 本発明の実施の形態5のロータリ圧縮機のシリンダの上面図である。 本発明の実施の形態5のロータリ圧縮機のベーンの斜視図である。 本発明の実施の形態6のロータリ圧縮機のシリンダの上面図である。 本発明の実施の形態7のロータリ圧縮機のレバーの斜視図である。 本発明の実施の形態7のロータリ圧縮機の部分断面図である。
以下では、本発明の実施の形態に係るロータリ圧縮機について図面を参照して説明する。異なる実施の形態において同一または相当の要素は同一符号で説明し、顕著な違いがない場合は説明をくり返さないものとする。また、図面において各要素の大きさの関係は実際と異なる場合がある。各実施の形態において、発明の主旨と反しない範囲で各部の形状等は変更自由であり、相互に組合せも可能である。本発明の説明において、平面、平行、円筒等とする各要素の形状は、厳密な形状であることに限定されない。そのような形状を有さなくとも、または、おおよそそのような形状、特徴を要素が有して発明の効果が得られる場合は、それらの場合も本発明の範囲に含むものとする。
<実施の形態1>
図1は本発明の実施の形態1のロータリ圧縮機の構造を概略的に示す断面図である。また、図2は本発明の実施の形態1のロータリ圧縮機の断面図であり、図1の線XYで切断した断面を矢視した図である。このロータリ圧縮機100は、例えば空気調和装置、給湯機等に採用されるヒートポンプの構成要素の一つとなる。ロータリ圧縮機100は、ガス状の流体(ガス冷媒)を吸入し、圧縮して高温・高圧の流体として吐出する。
本発明の実施の形態1のロータリ圧縮機100は、容器1と、その容器1の内部に圧縮機構と圧縮機構を動かす駆動機構とを備える。容器1は高圧の流体を保持する密閉容器であり、円筒の両端が球面状の曲面で閉じられた形である。容器1内部にはガス状の流体を保持する内部空間7がある。内部空間7のうち容器1の底部付近の空間は圧縮機構を潤滑する潤滑油を貯蔵する潤滑油貯蔵部7aである。容器1には、圧縮機構に圧縮する流体を外部から導入する吸入管3、圧縮した流体を吐出する吐出管2が接続され、内部の駆動機構に外部から電力を供給する導入端子88が設けられる。潤滑油貯蔵部7aの上の空間に圧縮機構から圧縮した流体が吐出され、この空間から吐出管2を経て容器1の外部に流体が吐出される。
駆動機構は駆動軸5を回転させ、その回転力で圧縮機構を動かすための機構である。駆動機構は電動機8と駆動軸5とを有し、電動機8で回転力を発生し、駆動軸5を介してその回転力を圧縮機構に伝える。本発明の実施の形態1では駆動軸5が上下方向に沿って設置され、圧縮機構は電動機8の下方に配置されている。以下では、駆動機構の各要素について説明する。
電動機8は、固定子8bと回転子8aとを備えた回転電機であり、例えばインバータ制御等によって回転数可変のものである。固定子8bは、略円筒形状であり、外周部が容器1に、例えば焼き嵌め等により、固定されている。固定子8bはコイルを有し、コイルには外部電源から導入端子88を介して電力が供給される。回転子8aは、略円柱形状であり、固定子8bの内周面と小さな距離を隔てて、固定子8bの内部に配置されている。この回転子8aに駆動軸5が固定されている。
駆動軸5は、電動機8の回転子8aと固定された電動部5m、電動部5mと圧縮機構との間にある長軸部5aと、長軸部5aに対して圧縮機構の反対側にある短軸部5bと、これら長軸部5aと短軸部5bとの間に形成された偏心部5cと、で構成されている。偏心部5cは、長軸部5a及び短軸部5bの回転中心軸から所定距離だけ偏心した円柱形状である。偏心部5cは後述するシリンダ室12内に配置される。
駆動軸5の長軸部5aは第1支持部材60の軸受部60aで回転自在に支持され、短軸部5bは第2支持部材70の軸受部70aで回転自在に支持される。電動機8の駆動によって、偏心部5cはシリンダ室12内で偏心回転運動する。つまり、電動機8が回転することにより、圧縮機構には、駆動軸5を介して回転動力が伝達される。軸受部60a、70aはすべり軸受けなどで構成され、潤滑油貯蔵部7aから図示しない油ポンプなどで潤滑油が供給される。
圧縮機構はロータリ型であり、本発明の実施の形態1では電動機8の下方に設けられる。圧縮機構はシリンダ11と、シリンダ11内を転動するピストン13と、シリンダ11内部の空間をピストン13とともに仕切るベーン14と、コイルばね16と、コイルばね16の力をベーン14に伝達するレバー30とを備える。以下では、圧縮機構の各要素について説明する。
第1支持部材60がシリンダ11の電動機8側に、第2支持部材70がシリンダ11の電動機8と反対側にある。シリンダ11は第1支持部材60と第2支持部材70とによって挟まれている。シリンダ11は1組の平行な平面である上面と下面とを有し、上面から下面まで貫通する円筒状の貫通孔が形成された平板部材である。この貫通孔は駆動軸5と略同心であり、シリンダ室12を構成する。シリンダ11の上面が電動機8側に面し、下面はその反対側にある。第1支持部材60は軸受部60aとフランジ部60bとを有している。軸受部60aは駆動軸5を回転自在に支持する部分である。フランジ部60bは軸受部60aの軸方向の一方の端にあり、駆動軸5が挿通する穴から円盤状に拡がった部分である。また、第2支持部材70も同様に、軸受部70aの片側に円盤状に拡がったフランジ部70bを有している。シリンダ11の貫通孔の一方の端部、つまり上面側の開口部、は第1支持部材60のフランジ部60bにより閉塞され、他方の端部、つまり下面側の開口部、は第2支持部材70のフランジ部70bにより閉塞されている。このように両端が閉塞された円筒状の貫通孔がシリンダ室12であり、内部で流体を圧縮する空間となる。なお、第1支持部材60の軸受部60aとフランジ部60bとを複数の部材を組み合わせて形成してもよい。第2支持部材70の軸受部70aとフランジ部70bとを複数の部材を組み合わせて形成してもよい。
シリンダ11は容器1に固定される。たとえば、図2のように、シリンダ11の外周がシリンダ室12と略同軸の円筒面を有し、シリンダ11の外周面が容器1の内周面と接して固定される構造とするとよい。この構造によれば、シリンダ11によって容器の強度を高めることができる。なお、シリンダ11の外周面の全体が容器1の内周面と接する必要はなく、例えば、内部空間7内の上部の潤滑油が下部の潤滑油貯蔵部7aに通過できるようにするなど、部分的に隙間を有していてもよい。また、容器1に固定された別部材を介してシリンダ11が固定されてもよく、シリンダ11の外周と容器1との間に隙間を有していてもよい。
シリンダ11内のシリンダ室12に、シリンダ室12の内径よりも小さい外径の円筒状のピストン13を備える。ピストン13は円筒面を有したリング状であり、リング状の孔の内部に駆動軸5の偏心部5cが挿入される。ピストン13の内周面と偏心部5cの外周面とは摺動自在とされる。これにより、ピストン13の中心はシリンダ室12の中心から偏心して、ピストン13の外周面の一部がシリンダ室12の内壁であるシリンダ11の内周面と接するようにされる。ピストン13は駆動機構からの力を受けて、シリンダ11の一部が内周面に接しながら一定方向に転動する。
シリンダ室12には、その内部に流体を流入させるための吸気ポート17とシリンダ室12で圧縮した流体を外に吐出させるための吐出ポート18とが設けられる。シリンダ室12の中心軸に沿って見た場合、吸気ポート17と吐出ポート18とはシリンダ室12の中心Oの周りの回転角度で異なる角度位置にある。ただし、吸気ポート17と吐出ポート18との角度位置は比較的接近しており、吸気ポート17の中心、シリンダ室12の中心O、吐出ポート18の中心を順に結んでできる角は鋭角である。吸気ポート17は、たとえば、シリンダ11の外周面から内周面までおおよそシリンダ11の径方向に貫通する孔として設けられる。吸気ポート17は容器1に接続された吸入管3と連通して、容器1の外部からガス状の流体を吸入可能とされる。吐出ポート18は、たとえば、シリンダ11の内周面の一部にシリンダ11の上面につながる窪みとして設けられる。この吐出ポート18は後述するようにフランジ部60bに設けた貫通孔に連通して、圧縮された流体を内部空間7に吐出可能とされる。吐出ポート18の窪みのサイズは吸気ポート17の径に比べて小さい。吐出ポート18はシリンダ11の上面においてシリンダ室12の内周面からわずかな距離の範囲内に収まる。
吸気ポート17と吐出ポート18とが接近する回転角度範囲の間にシリンダ11の径方向にのびる細いスロット19が設けられている。スロット19はシリンダ11の上面から下面まで貫通する溝であり、径方向の一方がシリンダ室12に連通し、他方がシリンダ11の外周に向かってのびる。スロット19は平板状のベーン14を摺動可能なように間隔をあけて対向する平行な2平面を有している。スロット19の内部に、それらの対向する2平面から等距離にある仮想的な中間平面を考えた場合、シリンダ室12の中心軸は中間平面上にある。つまり、スロット19はシリンダ室12の中心から半径方向にのびた形状である。このスロット19にベーン14が挿入されている。
ベーン14はシリンダ1の内周面とピストン13の外周面との間の空間を吸入空間と圧縮空間とに分割する板状部材である。ベーン14はスロット19の対向する2面に摺動可能な平行な2平面を有する平板状の部分を有している。ベーン14はシリンダ室12の軸方向にシリンダ室12と同じ高さを有している。また、ベーン14のシリンダ室12の中心側の端はピストン13の外周面に常に接するようにされる。なお、以下では、ベーン14の中心側の端をベーン14の先端とし、その反対側のシリンダ11の外周側の端をベーン14の後端として説明する。
ピストン13はシリンダ室12の内部を転動し、ピストン13の外周面の位置はシリンダ室12の中心に対して変位する。ピストン13の動きに合わせてベーン14の先端も移動する。ピストン13がシリンダ室12を1回転転動するごとに、ベーン14はスロット19内を径方向に1往復するように往復運動する。
シリンダ1の内周面、ピストン13の外周面、フランジ部60b、フランジ部70b、ベーン14で囲まれた空間を中心Oの周りに見た場合、ピストン13の外周面がシリンダ1の内周面と接する箇所と、ベーン14がピストン13の外周面と当接する箇所とで2つの空間に区切られている。この2つの空間のうち、吸気ポート17と連通する空間が吸入空間、吐出ポート18と連通する空間が圧縮空間である。ピストン13の転動によって、ピストン13とシリンダ1との接触部分が吸気ポート17を閉じると吸入空間は圧縮空間となり、体積が変化することで圧縮動作が行われる。
また、シリンダ11には、スロット19の後方、つまりベーン14の後方に、ベーン背室15が形成されている。このベーン背室15はシリンダ11の上面と下面との間を貫通する。また、ベーン背室15の上部開口部は容器1の内部空間7に一部開放されて、潤滑油貯蔵部7aに貯留されている潤滑油がベーン背室15に流入できる。
ベーン背室15に流入した潤滑油は、スロット19とベーン14との間に流れ込み、両者の間の摺動抵抗を低減させる。前述のように、本発明の実施の形態1に係るロータリ圧縮機100は、圧縮機構で圧縮された冷媒が容器1の内部空間7に吐出される構成となっている。このため、ベーン背室15は、容器1の内部空間7と同じ高圧雰囲気となる。ベーン14の前端があるシリンダ室12内は吸気された低圧から吐出される高圧までの圧であり、ベーン14の後端に高圧がかかることで、ベーン14にはシリンダ11の中心に向かう力が作用する。
スロット19は径方向にのびる溝であり、コイルばね16はスロット19の溝を径方向に延長した位置からずれた位置にある。つまり、コイルばね16はシリンダ11のスロット19の延長上からずれた位置に設置される。コイルばね16はベーン14にシリンダ11の中心に向かう力を作用させる。ベーン14には後端からのガス冷媒または潤滑油によって圧力をうけるものの、ベーン14が径方向の外周側に向かう際には、ベーン14の先端がピストン13から離れやすい。これは、ベーン14の先端に圧縮空間からの高圧を受け、また、ベーン14には外周側に飛び出そうとする慣性が働くからである。そこで、弾性変形した状態で保持されたコイルばね16を設置して、その復元力をベーン14がシリンダ11の中心に向かう力としてベーン14に伝達して、ベーン14の先端が通常時は常にピストン13に当接するようにする。
コイルばね16の一方の端はシリンダ11の外周面と内周面との間に設けられたばね収納孔11bに挿入される。ばね収納孔11bはスロット19から離れた位置にある。ばね収納孔11bはスロット19の位置に対して、吸気ポート17と反対側となる位置にあって、吐出ポート18よりも駆動軸5の反回転方向にある。スロット19の中心の回転角度位置を0度、駆動軸5の回転方向を正の角度とすると、たとえば吸気ポート17は+15〜+25度、吐出ポート18は−10〜−15度などの位置にあり、その場合、コイルばね16は−30〜−90度の範囲に設置するとよい。
本発明の実施の形態1のコイルばね16は圧縮バネであり、おおよそ、シリンダ11の径方向に伸縮する形で設置される。従って、収納孔11bは、シリンダ11の径方向に軸を有するように設けられる。収納孔11bのシリンダ室12側にコイルばね16の一端が保持され、収納孔11bのシリンダ11の外周側が開口されて、コイルばね16の他端が露出する。収納孔11bの内径はコイルばね16の外形よりも大きく、コイルばね16の伸縮時に収納孔11bの内径に接触しないようにされる。このため、コイルばね16の伸縮時に収納孔11bと摩擦は生じない。収納孔11bのシリンダ11側にはコイルばね16の一端が入る窪みが設けられてばね保持箇所Dとされる。コイルばね16はばね保持箇所Dと他端との間で圧縮された状態で保持される。
レバー30は、コイルばね16の他端側からコイルばね16の復元力をベーン14の後端側に伝える。レバー30はシリンダ11の軸方向から見て外周面と内周面との間に設けられた回転軸を中心にしたスイングが可能とされている。この回転軸はシリンダ室12の中心軸と平行であり、レバー30はシリンダ11の軸に垂直な面と平行な回転軌道を有してスイングする。以下では、レバー30の回転軸を支点A、レバー30においてコイルばね16の他端側から復元力を受ける箇所(位置)を力点B、レバー30においてベーン14の後端側に力を伝達する箇所(位置)を作用点Cとして説明する。なお、レバー30は回転軸に沿った方向に厚みのある部材であり、支点A、力点B、作用点Cのいずれも回転軸に沿った方向にある程度の長さを有している。また、レバー30の回転運動、ベーン14の往復運動、コイルばね16の伸縮、は動く方向が異なるため、それらの動きによって力点B、作用点Cは一定の範囲内で位置が変化する。
図3は本発明の実施の形態1のロータリ圧縮機の部分斜視図である。図は圧縮機からレバー30、ベーン14、コイルばね16とその摺動板31のみを示した斜視図である。レバー30は支点Aと力点B、また支点Aと作用点Cを繋ぐ腕部30aと、支点Aで腕部30aどうしを接続する連結部30c、連結部30cから軸方向にのびた円柱状の軸部30bを含む。腕部30aはベーン14の後端側の一部にコイルばね16力を伝達するものである。腕部30aの軸方向の高さは、シリンダ11の軸方向の高さに比べて小さい。腕部30aのうち、力点B側でコイルばね16から力を受ける接触面30eと作用点C側でベーン14に力を伝える接触面30dとは滑らかな曲面形状である。レバー30は少なくともベーン14と同程度の機械的強度を有することが望ましく、同等の材料であるならレバー30の厚みはベーン14の厚みと同等以上であることが望ましい。
レバー30の支点Aには回転軸方向にのびた円柱形状の軸部30bが形成されている。シリンダ11には、レバー30が揺動可能となるよう揺動スペース11cと、軸部30bが挿入される軸受32と、が形成される。レバー30の軸部が軸受32に挿入されて、レバー30は回転軸の周りで揺動可能とされる。レバー30は揺動した際にシリンダ11の外周面の外側にある容器1の内面と接触しないように配置される。なお、本発明の実施の形態1ではレバー30に軸部30bを設けたが、軸部30bを別体としてシリンダ11に形成、または固定して、レバー30側に軸受を設けるようにしてもよい。
レバー30は支点Aと力点Bとをつなぐ腕部と、支点Aと作用点Cとをつなぐ腕部と、が支点Aで鈍角に折れ曲がって繋がり、シリンダ11の中心Oは直線ABと直線ACとがなす鈍角の範囲内にある。レバー30を全体としてみると、2つの腕部が容器1の内面の曲面にあわせて曲がった形状となっている。レバー30の支点Aは、力点Bと作用点Cとを結んだ線に対して径方向の外側に位置する。つまり、支点Aと作用点Cとを結ぶ直線よりも力点Bがシリンダ11の中心側に位置するようにレバー30は曲がった形状である。このような形状により、レバー30は揺動した際に円筒状の容器1の内面と接触せず、かつ、力点Bよりもシリンダ室12側に十分な長さのコイルばね16を設置することができる。
レバー30の支点Aから作用点Cまでの腕部と支点Aから力点Bまでの腕部とは、支点Aを挟んで周方向に反対側にある。このため、シリンダ11の中心側から見た場合に、レバー30の支点Aから作用点Cまでの間の腕部とコイルばね16が設置された箇所とが重ならない。
本発明の実施の形態1において、レバー30の力点B、支点A、作用点Cは、この順に並ぶ。レバー30の支点Aと力点Bとをつなぐ腕部はコイルばね16の伸縮方向に対しておおよそ直交する方向にのびている。また、レバー30の支点Aと作用点Cとをつなぐ腕部はベーン14の往復方向に対して、おおよそ直交する方向にのびている。このため、それぞれの腕部に効率よく回転モーメントを発生することができ、レバー30によってベーン14とコイルばね16との間で効率よく力を伝達できる。
このように、レバー30からベーン14の後端に力を良好に伝達するために、腕部30aがベーン14の後端に対しておおよそ垂直に当接する。腕部30aは支点Aから直線に近い形状で伸びる形状としたので、支点Aはベーン14の後端が往復する移動する範囲のおおよそ中間点から、往復方向に対して垂直な方向に設置される。また、レバー30が揺動しても、腕部30aがシリンダ11の最大径からはみ出さないように、支点Aはシリンダ11の外周面と内周面とに挟まれた位置であって、外周面寄りの位置に設けられる。
レバー30はコイルばね16の伸縮の長さを拡大してベーン14の後端の動きに伝達するように、支点Aと作用点Cとの距離L2は、支点Aと力点Bとの距離L1よりも長くされる。たとえば距離L2を距離L1の1.5〜3倍程度とするとよい。このため、レバー30は、コイルばね16で発生した小さい変形量(伸縮に伴う長さの変化量)、高い押付力を、大きい変位量(先端の移動する距離)、低い押付力に変換してベーン14へ伝達する。駆動軸5の一回転中のベーン14の往復移動距離をδ2、コイルばね16の変形量δ1とした時にδ1<δ2の関係となる。
コイルばね16にはレバー30の力点Bと接触する部位として摺動板31が設置される。摺動板31はコイルばね16のコイル径と同程度の円盤状の部材であり、そのコイル側の一部をコイルばね16内に挿入することでコイルばね16の他方の端に設置される。レバー30の回転運動とコイルばね16の伸縮方向とが異なるため、それらの変動に合わせて力点Bの位置も少し変動する。従って、レバー30の力点Bと摺動板31とは滑りながら常に接触する。力点Bと摺動板31との間にはベーン背室15などから潤滑油が供給されるが、より摩擦抵抗を低減するため、少なくとも1方が凸の曲面を有するようにして、接触面積を小さくするとよい。本発明の実施の形態1では力点Bをばね側に凸の円筒面を有するようにしたので、接触面積が小さく、摩擦抵抗を低減できる。
また、力点Bと同様に作用点Cにおいても、レバー30の回転運動とベーン14の往復方向とが異なるため、それらの変動に合わせて作用点Cの位置が少し変動する。レバー30の作用点Cとベーン14の後端とは滑りながら常に接触する。作用点Cとベーン14との間にはベーン背室15などから潤滑油が供給されるが、より摩擦抵抗を低減するため、少なくとも1方が凸の曲面を有するようにして、接触面積を小さくするとよい。本発明の実施の形態1では作用点Cをベーン側に凸の円筒面を有するようにしたので、接触面積が小さく、摩擦抵抗を低減できる。なお、ベーン14の後端側を凸の曲面としてもよいし、ベーン14の後端側にコイルばね16と同様に摺動板を設置してもよい。
レバー30は、鉄系材料などを用いることができ、その一部、または全体が金属粉末の焼結材で構成されてもよい。鉄系の焼結材は鉄を主成分とする金属からなり、たとえば、鉄以外に銅、スズ、炭素などの少量の元素含む合金からなる。焼結材は、焼結粒子を焼き固めた多孔質体であり、隙間に潤滑油を含むことができる。ベーン14、摺動板31などレバー30と接触する部材が重量組成で鉄が50%以上含む鉄系の材料である場合、レバー30がそれらと接触する部分も鉄系粉末の焼結材とするとよい。焼結粒子間の隙間に潤滑油を含むことで摺動部の摩擦が低減でき、性能向上と耐摩耗性の向上の効果が得られる。また、当接する部材と類似の成分の焼結体を使用することで、摩耗を少なくすることができる。レバー30の全体を焼結材とする必要はなく、コイルばね16またはベーン14に力を伝達する部分であるレバー30の接触面が焼結材で構成されているとよい。
レバー30は駆動軸5の回転に伴って支点Aを中心に回転動作する。この回転軌道の上で、レバー30が通常揺動する範囲よりもシリンダ11の中心から遠い側にストッパ11aが配される。ストッパ11aはレバー30が異常な回転によって容器1の内面に衝突することを防ぐためのものである。従って、ストッパ11aは通常のベーン14の往復運動時にはレバー30に接触せず、レバー30が通常よりも多く回転した場合にレバー30と接触する位置に設けられる。また、ストッパ11aはベーン14の往復運動の方向から外れた位置であって、支点Aと作用点Cとをつなぐ腕部の外周側の面と接触できるように、シリンダ11の外周面付近に設けられる。本発明の実施の形態1では、シリンダ11に揺動スペース11cを設けた際に、揺動スペース11cよりさらに外周側にシリンダ11の部材の一部を残してストッパ11aとした。このため、別途部材が不要であり低コスト化できる。なお、ストッパ11aをシリンダ11と別部材で形成してシリンダ11に固定するなどとしてもよい。ストッパ11aは弾性部材であってもよい。
図4は本発明の実施の形態1のロータリ圧縮機のベーン14の側面図である。図において上下方向がシリンダ11の軸方向で、左右方向がシリンダ11の径方向である。ベーン14のシリンダ室12側である先端14aは軸方向の全長でピストン13と接触する。先端14aはシリンダ室12の中心側に凸の曲面であり、その曲面は、たとえば、シリンダ11の軸と平行な軸を有する円筒面の一部とされる。ベーン14のシリンダ11外周側となる後端は、径方向の長さが異なるように段差を有する。レバー30の腕部30aの先端と接触する部分14cは、接触しない部分14bに比べて径方向の長さが短くされた部分である。すなわち、レバー30の腕部30aの先端と接触する部分は、シリンダ11の中心側に窪んだ窪み部14cである。この窪み部14cにレバー30の先端が入りこんで接触し、ベーン14にコイルばね16からのバネ力を伝達する。窪み部14cの径方向の凹み長さはレバー30の先端の径方向の厚みより少し長くするとよい。一方、ベーン14には径方向の長さとして、往復運動する長さδ2に加えて、スロット19内をシールするのにある程度の長さが必要である。従って、窪み部14cの径方向の凹み長さを大きくすると、部分14bが外周側に大きく突出して径方向のサイズが増加する。そこで、窪み部14cの径方向の凹み長さは、先端の厚みの2倍以下程度とすると良い。このように適度なサイズの窪み部14cを形成してレバー30の先端が入りこませることで、ベーン14の後端側のスペースを小さくできる。また、窪み部14c形成されていない後端部分14bは窪み部14cが形成された部分に比べて、スロット19に挿入される長さが長く、ベーン14の往復運動を安定化する。
図5は本発明の実施の形態1のロータリ圧縮機の部分分解斜視図である。図5において下図がシリンダ11に組み込まれた各要素の配置を示し、上図がそのシリンダ11の上面を覆う第1支持部材60のフランジ部60bの配置を示す。図6は本発明の実施の形態1のロータリ圧縮機の部分側面図である。図6は図5のシリンダ11の上面を第1支持部材60で覆った部分を軸に垂直な方向から見た図である。
シリンダ11には、シリンダ室12内で圧縮されたガス状冷媒を吐出する吐出ポート18が形成されている。この吐出ポート18は第1支持部材60のフランジ部60bに形成された貫通孔60cと連通する。貫通孔60cには、シリンダ室12内が所定の圧力以上となった際に開く開閉弁61が設けられている。開閉弁61としてリードバルブ等を使用することができる。また、第1支持部材60には、開閉弁61(つまり貫通孔60c)を覆うように、吐出マフラ63が取り付けられる(図1参照)。吐出マフラ63は開閉弁61から放出されたガスが内部空間7内に出るための孔を有している。吐出マフラ63は第1支持部材60との間に一定の容量の空間を有し、開閉弁61からガスが放出される際の音を低減する。内部空間7内に放出されたガスは吐出管2から容器1の外部に送り出される。内部空間7内は圧縮機構が吐出する高圧となる。
レバー30の腕部30aの軸方向の高さはシリンダ11の軸方向の高さよりも小さい。図6のように、シリンダ11の軸方向の高さを1とすると、レバー30の腕部30aの軸方向の高さは1/4〜1/2程度とするとよい。レバー30の腕部30aの片側に高さが1/2〜3/4程度の軸部30bがある。従ってレバー30の腕部30aはシリンダ11の軸方向の一方に偏る。一方、コイルばね16はシリンダ11の軸方向の高さに対して1/3以上の外径を有しており、シリンダ11の軸の高さに対して比較的大きいため、シリンダ11の軸方向のほぼ中央に設置される。レバー30の腕部30aの高さとコイルばね16の高さが少し異なるため、コイルばね16側のほぼ中心軸から力を伝達できるように、腕部30aのコイルばね16側の端をL字型等に曲げられている。なお図では、腕部30aがシリンダ11の軸方向で第1支持部材60側に偏る場合を示しているが、第2支持部材70側(紙面の下)に偏るようにしてもよい。
図7、図8は本発明の実施の形態1のロータリ圧縮機のシリンダのピストン13の転動動作を説明する上面図である。図7は通常の転動動作において、ピストン13が最もスロット14側に位置する場合を示し、すなわち、ベーン14が最もシリンダ11の径方向外側に位置する場合を示す。このとき、シリンダ室12の中心からベーンの先端14aまでの距離はシリンダ室12の半径とほぼ同じである。図8は通常の転動動作において、ピストン13が最もスロット14から離れて位置する場合を示し、すなわち、ベーン14が最もシリンダ12の中心側に位置する場合を示す。このとき、ベーンの先端14aがシリンダ室12の内部に突出する長さはシリンダ室12の内径とピストン13の外径との差である。また、その長さは駆動軸5の長軸部5aの中心と偏心部5cの中心との偏心距離の約2倍である。
駆動機構により長軸部5aが図の矢印の方向に回転すると、偏心部5cがシリンダ12室内を偏心して回転する。これにより、偏心部5cの外周に摺動自在に取り付けられたピストン13はシリンダ12室内を転動する。図8のように、ベーン14の先端がピストン13に当接することでシリンダ12室内は、吸気ポート17につながった吸入空間P、吐出ポート18につながる圧縮空間Qに分かれる。図8の状態から偏心部5cが少し回転すると、吸入空間Pの体積が増えて吸気ポート17からガスを吸入し、また、圧縮空間Qの体積が減少してガスが圧縮される。さらに回転すると、図2で示した状態になって圧縮空間Qの体積が非常に小さくなり、すなわち、圧縮空間Q内の圧力が高まり、図5で示した開閉弁61が圧力などで開いて吐出ポート18からガスが内部空間7に吐き出される。吐き出されたガスは内部空間7を経て吐出管2から容器1の外部に送り出される。その後、さらに偏心部5cが少し回転して、図7の状態となると、圧縮空間Qからの吐出が完了して、圧縮空間Qがなくなり、吸入空間Pの体積が最大となる。さらに偏心部5cが少し回転すると、ピストン13とシリンダ12室の内壁の接触部分が吸気ポート17を横切り、吸入空間Pであった空間は吸気ポート17と分離されて圧縮空間Qになる。このように、ピストン13の転動によって圧縮動作が行われる。
上記の様に圧縮動作においてベーン14はスロット19内をシリンダ室12の径方向に往復運動する。本発明の実施の形態1では、ベーン14の後端側は径方向の長さがベーン14と同程度の腕部30aによってコイルばね16からの力を受けることができる。従って、図7のようにベーン14が最もシリンダ11の径方向外側に位置する場合でも、ベーン14の後端側に必要な長さが短くでき、小型のロータリ圧縮機を実現できる。また、コイルばね16からの力また、図8のようにベーン14が最もシリンダ11の中心側に位置する場合も、スロット19に十分な長さのベーン14が挿入された状態とすることができる。従って、ベーン14が吸入空間Pと圧縮空間Qの圧力差によってスロット19が径方向に対して斜めに傾くことを防止できる。
図9は本発明の実施の形態1のロータリ圧縮機のシリンダの上面図である。ピストン13が最もスロット19側にある点で図7と類似するが、ベーン14がピストン13から離れてより外周側にある。通常の圧縮運転中では、上記で述べたように、レバー30はシリンダ11内に留まるが、例えば、液状態の冷媒がシリンダ室12に流入した場合、液圧縮により圧縮空間内の圧力が急激に高まると同時にベーンは通常の径方向の最外位置を超えて外側へ移動する。これにあわあせて、レバー30も径方向外側へ移動しようとするが、ストッパ11aによって移動が抑制される。レバー30が容器1の内面に衝突することを防ぐことができるので、信頼性が向上する。
コイルばね16は自由長さ(力をかからない状態の長さ)に対して縮められた状態で保持されて、伸長しようとする復元力をレバー30によってベーン14の後端に伝える。つまりコイルばね16は圧縮バネである。図7のようにベーン14が最もシリンダ11の径方向外側に位置する場合に、最も長さが短くなるように縮んで、ベーン14の後端に伝える力が強くなる。図8のようにベーン14が最もシリンダ11の中心側に位置する場合に最も長さが長くなり、自由長さに近くなって、ベーン14の後端に伝える力は弱くなる。図8の状態では、吸入空間Pと圧縮空間Qの圧力差が比較的小さいため、ベーン14の先端がピストン13に当接し続けるための力は小さくてもよい。また、その力を小さくするほうが摩擦抵抗が低減するのでよい。一方、図1のように圧縮の過程が進み、ベーン14が外周側に移動した状態ではベーン14の先端にある程度強い力を加えることで先端の密閉を高めることが望ましい。本発明の実施の形態1ではレバー30によってコイルばね16の復元力を伝達する際に、このように圧縮過程の途中でベーン14の先端にかかる力を変化させることができる。
以上で述べたとおり、本発明の実施の形態1では、レバー30の支点Aから作用点Cまでの距離L2は、支点Aから力点Bまでの距離L1よりも長いので、ベーン14の先端の往復移動距離をδ2に比べてコイルばね16の変位量δ1を小さくできる。コイルばねの寿命は長さの変化量に依存することが知られており、本発明の実施の形態1では変位量δ1を短く、つまり伸縮長さを短くできるため、シリンダの外径を拡大してばねの全長を長くすることなく、ばねの寿命を大幅に向上することが可能となる。
また、レバー30の支点と作用点とを結ぶ直線よりも力点がシリンダ11の中心側に位置するように曲がった形状としたので、レバー30全体がシリンダ11の中心からの距離を短くすることができ、小型のロータリ圧縮機を実現できる。
また、スロット19はシリンダの吸気ポート17と吐出ポート18との間にあって、コイルばね16とレバー30の回転軸(軸部30b)はスロット19に対して吸気ポート17と反対側、つまり吐出ポート18側に位置する。つまり、レバー30の揺動する腕部30aは、ほぼ全体がベーン14に対して吐出ポート18側にある。吐出ポート18は吸気ポート17に比べて小サイズであるため、大きな揺動スペース11cを確保することができ、十分な強度のレバー30を実現することができる。また、コイルばね16も強度の高い比較的大きなものを設置することが容易となる。
また、レバー30の支点Aから作用点Cまでの間の腕部とコイルばね16が設置された箇所とが径方向に重ならない。支点Aから作用点Cまでの間の腕部は長く大きく揺動するため、シリンダの径方向に揺動スペースを大きく確保する必要であるが、そのスペースからコイルばね16がずれた位置にあり、コイルばね16のサイズを大きくして、強度を高めることができる。また、レバー30の腕部の幅を大きくして、強度を向上させることもできる。
ベーン30は後端にシリンダ11の中心側に窪んだ窪み部14cを有し、窪み部14cでレバー30からコイルばね16の復元力を受けるので、ベーン14の後端側のスペースを小さくできる。
レバー30の回転軌道上で、かつ、シリンダ11の中心から遠い側に、レバー30の回転を規制するストッパ11aを設けたので、レバー30が容器1の内面に衝突することを防ぐことができるので、信頼性が向上する。
コイルばね16は圧縮バネであり、コイルばね16はレバーの力点Bとの間に摺動板31を有しているので、レバー30とコイルばね16との間の摩擦抵抗を低減することができる。
以下では本発明の実施の形態1の変形例について説明する。
上記ではロータリ圧縮機構が1つの場合の構造を述べたが、2つ以上のロータリ圧縮機構を有していてもよい。図10は本発明の実施の形態1の変形例1であるロータリ圧縮機200の構造を概略的に示す断面図である。変形例1では駆動軸5の軸方向に2つのロータリ圧縮機構を有している。圧縮機構のそれぞれは、基本的に上記で述べた圧縮機構と同様である。
2つの圧縮機構のうち、電動機8に近い位置にある圧縮機構を第1圧縮機構、電動機8から遠い位置にある圧縮機構を第2圧縮機構とする。また、第1圧縮機構の各要素は上記で述べた要素と同じであり同じ符号を用いるが名称に第1と付けて、第1シリンダ11、第1シリンダ室12、第1ピストン13、第1ベーン14、第1ベーン背室15、第1コイルばね16、第1吸気ポート17、第1吐出ポート18、第1スロット19、第1レバー30、第1マフラ63、とする。第2圧縮機構にも順に対応する各要素があり、これらを第2シリンダ21、第2シリンダ室22、第2ピストン23、第2ベーン24、第2ベーン背室25、第2コイルばね26、第2吸気ポート27、第1吐出ポート28、第2スロット29、第2レバー40、第2マフラ73、とする。
第1圧縮機構と第2圧縮機構とは軸方向に中間仕切板4を挟んで構成される。電動機8に近い側から遠い側に、第1支持部材60、第1シリンダ11、中間仕切板4、第2シリンダ21、第2支持部材70が順に積層されて構成されている。第1圧縮機構の第1シリンダ11の電動機8側は第1支持部材60のフランジ部60b、その反対側は中間仕切板4で覆われて第1シリンダ室12が形成されている。第2圧縮機構の第2シリンダ21の電動機8側は中間仕切板4で覆われ、その反対側は第2支持部材70のフランジ部70bで覆われて第2シリンダ室22が形成されている。
駆動機構は駆動軸5の一部に第1圧縮機構と第2圧縮機構とそれぞれに対応する偏心部を有する。駆動軸5は第1圧縮機構の第1ピストン13を第1シリンダ室12内で転動させる第1偏心部5cと、第2圧縮機構の第2ピストン23を第2シリンダ室22内で転動させる第2偏心部5dと、を有している。また、第1偏心部5cと第2偏心部5dとの間は中間仕切板4の軸方向の厚み分に対応する中間軸部5eによって接続されている。中間仕切板4には貫通穴が設けられて、その貫通穴内に中間軸部5eが挿通される。第2偏心部5dは第1偏心部5cと同様に、その中心軸が長軸部5a及び短軸部5bの中心軸から所定距離だけ偏心している。第1偏心部5cと偏心部5dとは、偏心方向が軸に対して反対である、このため、第1ピストン13と第2ピストン23とは位相が180度ずれて転動する。また、図10のように、第1ベーン14と第2ベーン24と、第1スロット19と第2スロット29とは、駆動軸5に対して同じ側にある。
図11は変形例1のロータリ圧縮機200の第2圧縮機構の下面図であり、図10のX2−Y2での断面を電動機8と逆側から見た図である。第2圧縮機構も基本的に図8などに示した第1圧縮機構とほぼ同じ構成である。図8とは駆動軸5に対して反対側から見た図のため、左右が反転してみえるが、電動機8から見た場合に第2吸気ポート27は第1吸気ポート17と第1ベーン14または第2ベーン24に対して同じ側にある。従って、第1吸気ポート17と第2吸気ポート27につながる吸入管は駆動軸5の軸方方向に2つ並ぶ。電動機8から見た場合に、第2吸気ポート27、第2吐出ポート28、第2コイルばね26、第2レバー40は、第1吸気ポート17、第1吐出ポート18、第2コイルばね16、第2レバー30から駆動軸5の軸方向に並進した位置にある。
第2吐出ポート28から吐出されるガスは、第1圧縮機構の図5と同様に第2支持部材70に設けられた貫通孔を介して第2マフラ73に放出され、さらに内部空間7に放出される。第2圧縮機構において貫通孔に開閉弁がある構成も同様である。第2マフラ73は電動機8と反対側にあり、容器1の下部の潤滑油貯蔵部7a側にある。第1ピストン13と第2ピストン23とが位相がずれて転動するので、圧縮の動作は半周期ずれる。第1吸気ポート17と第2吸気ポート27とからガスが吐出されるタイミングは駆動軸5の回転に対して半周期ずれる。
変形例1では2つの圧縮機構のそれぞれに、独立して揺動可能なレバー30、40を設けたので、それぞれのコイルばねの寿命を長くすることができる。また、各レバーは対応するシリンダの高さの範囲内で、かつ、シリンダの外周内に収められているため、複数の圧縮機構を積層して組み立てことが容易である。
上記の実施の形態1ではピストン13がシリンダ室12を1回転する間で吸気から圧縮までの工程が1回行われるようにしたが、1つのシリンダ室に吸気ポート、吐出ポート、ベーンの組を複数有して、ピストン13が1回転する間に吸気から圧縮までの工程が複数回行われるようにしてもよい。その場合、各ベーンに対してレバーを設けると良い。
また、レバー30、40はシリンダ11、21の軸方向において、吐出ポート18、28を設けた面側にあるようにしたが、反対側に設けてもよい。図12は本発明の実施の形態1の変形例2であるロータリ圧縮機300の構造を概略的に示す断面図である。変形例2では第2圧縮機構の第2レバー40を中間仕切板4側に設けた以外は変形例1と同じである。変形例2で変形例1に比べて第2レバー40が容器1の底面から離れるため、潤滑油貯蔵部7aの潤滑油の油面よりも高い位置となりやすく、第2レバー40が潤滑油を撹拌することが少ない。圧縮機が複数の圧縮機構を備えた場合に、一部の圧縮機構のみがレバーを設けるようにしてもよい。
<実施の形態2>
図13は本発明の実施の形態2のロータリ圧縮機の部分分解斜視図である。図13は実施の形態1の図5に対応する図である。実施の形態1と比較して、第1支持部材60のフランジ部60aがシリンダ11の外周まで径方向に広がった構成である。また、レバー30の軸部30bが腕部30aの軸方向の上下に設けられている。腕部30aの軸方向の一方の軸部30bはシリンダ11に設けられた軸受に挿入される。腕部30aの軸方向の他方の軸部30bはフランジ部60aに形成された軸受孔60dに挿入される。シリンダ11に設けられた軸受の中心軸とフランジ部60aに形成された軸受孔60dの中心軸とは同一線上にある。
実施の形態2によれば、レバー30が2つの軸受けで保持されるため、回転動作の安定性が増し、信頼性の向上が図れる。また、フランジ部60aがレバー30の上部を覆うので、回転駆動中に潤滑油貯蔵部3aの油面が、レバー30によって掻き乱されることを防止できる。
実施の形態1の変形例1、変形例2のように、中間仕切板4がある構成では、中間仕切板4にレバー30の軸部30bが挿入される軸受孔を設けてもよい。軸部30bは軸受孔を貫通する必要はなく、一部が挿入された形であってもよい。たとえば、中間仕切板4の一方の面から第1圧縮機構の第1軸部30bが中間仕切板4の途中まで挿入され、中間仕切板4の他方の面から第2圧縮機構の第2軸部が中間仕切板4の途中まで挿入されるようにしてもよい。
<実施の形態3>
図14は本発明の実施の形態3のロータリ圧縮機の部分側面図である。図14は実施の形態1の図6に相当する側面図である。図15は本発明の実施の形態3のロータリ圧縮機のベーンの側面図である。実施の形態1と比較して、レバーの軸部30bが腕部30aに対して軸方向の上下に設けられる。シリンダには対応する軸受32が軸方向の上下に設けられる。上下の一方の軸受32を含むシリンダ11の一部を分離可能に作成して、シリンダ11にレバー30をセットした後に、軸受32を含む部分をレバー30の軸部30bに合わせて固定するなどで作製できる。また、軸部30bは腕部30aと別体で形成されていてもよく、たとえば、腕部30aの中間に孔を設けておいて、この孔が軸受となっていてもよい。この場合、シリンダ11側には軸部30bが貫通し、かつ、固定する穴が設けられていればよい。
レバー30はシリンダ11の軸方向のほぼ中央に位置する。揺動スペース11cもレバー30に合わせて軸方向のほぼ中央に形成される。これにあわせて、ベーン30の窪み部14cは軸方向の中央に位置する。実施の形態1と同様に、窪み部14cでレバー30と接触する。
本実施の形態3によれば、レバー30が両持ちで保持されるため、回転動作の安定性が増し、信頼性の向上が図れる。また、レバー30の腕部30aとコイルばね16の中心の位置がシリンダ11の軸方向の高さで一致させることができ、コイルばね16からレバー30への力の伝達が良好となる。
<実施の形態4>
図16は本発明の実施の形態4のロータリ圧縮機のシリンダの上面図である。実施の形態1とレバーの形状、コイルばね16の配置が異なる。コイルばね16は圧縮バネであり、圧縮された状態で保持されて、ばねがのびる復元力をレバーに伝える点は上記の実施の形態と共通する。実施の形態4のロータリ圧縮機では、レバー50が支点A、力点B、作用点Cの順に連なり、コイルばね16がレバー50の外周側に位置する点で上記の実施の形態と異なる。シリンダ11の中心から見てコイルばね16がレバー50と干渉する位置にあるため、コイルばね16の長さを実施の形態1ほど長くすることが難しいが、シリンダ11の外周からコイルばね16を設置できるため、製造が容易となり、またコイルばね16の特性の調整も容易となる。
たとえば、ばね収納孔11bはシリンダ11の外周から中心に向かってあけた穴とする。コイルばね16を固定板33に取り付けてばね収納孔11bに圧縮させながら差し込み、固定板33をシリンダ11に固定する。固定板33の押し込み量でコイルばね16の復元力を調整することができる。
本実施の形態4のレバー50は複雑に曲がった形状であるが、実施の形態1と同様に、支点Aと作用点Cとを結んだ線よりも力点Bがシリンダ11の中心に近い位置にある。このため、コイルばね16とレバー50とを含む力の伝達機構はシリンダ11の中心からの距離を短くできる。レバー50により小型で、信頼性が高いロータリ圧縮機を実現できる。
<実施の形態5>
図17は本発明の実施の形態5のロータリ圧縮機のシリンダの上面図である。上記の実施の形態とレバーの形状、コイルばね16の配置が異なる。コイルばね16は圧縮バネであり、圧縮された状態で保持されて、ばねがのびる復元力をレバーに伝える点は上記の実施の形態と共通する。実施の形態5のロータリ圧縮機では、レバー60が力点B、支点A、作用点Cの順に連なる点は実施の形態1と同様であるが、力点B、支点A、作用点Cを順に結ぶ線が鋭角に曲がっている点、レバー60の支点Aと作用点Cとをつなぐ腕部よりもシリンダ11の中心側にコイルばね16がある点、コイルばね16の伸縮方向がシリンダ室12の略周方向に沿った方向である点、が異なる。
シリンダ11の中心から見てコイルばね16がレバー60と重なる位置にあるが、コイルばね16の伸縮方向がシリンダ室12の略周方向に沿った方向であるため、支点Aと作用点Cとをつなぐ腕部が十分に長い構成であれば、コイルばね16の長さを十分に長くすることができる。また、その場合、支点Aと力点Bとの距離L1に比べて、支点Aと作用点Cとの距離L2は、たとえば4〜6倍など、実施の形態1に比べて大きな比とすることが容易となる。従って、コイルばね16の変形量δ1が実施の形態1より小さくなり、コイルばね16の寿命を高めることができる。
図18は本発明の実施の形態5のロータリ圧縮機のベーンの斜視図である。実施の形態5ではベーン14の後端の窪み部14cにスロットの幅よりもスロット19の幅方向に広い、つまりスロット19内を摺動するベーン14の部位の厚みより厚み方向に幅広の接面部14dを設けた。支点Aと作用点Cとをつなぐ腕部が長いことによって、腕部の先端の位置がベーン14の後端から外れやすくなる。図18のように幅広の接面部14eを設けると、レバー80が揺動した際に先端がベーン14の厚みより幅方向にずれても、接面部14eのどこかの箇所で接するため、レバー60からの力をベーン14がシリンダの中心に向かう力として伝えることが良好にできる。レバー60と接触する接面部14eは平坦でなくてもよく、凸の曲面で接触して接触の抵抗を低減するようにしてもよい。
レバー60は鋭角に折れ曲がった形状であるが、実施の形態1と同様に、支点Aと作用点Cとを結んだ線よりも力点Bがシリンダ11の中心に近い位置にある。このため、コイルばね16とレバー60とを含む力の伝達機構はシリンダ11の中心からの距離を短くできる。このようなレバー60の形状により、小型で、信頼性が高いロータリ圧縮機を実現できる。
<実施の形態6>
図19は本発明の実施の形態6のロータリ圧縮機のシリンダの上面図である。上記の実施の形態と異なり、実施の形態6のコイルばね16は引っ張りばねである。つまり、自然な状態から引っ張られた状態で保持されて、縮もうとする復元力をベーン14に伝達する。レバー90は、力点B、支点A、作用点Cを順に結ぶ線が支点Aでおおよそ90度(80〜100度など)に折れ曲がった形状である。
コイルばね16は引っ張りばねであるため、両端に取り付けのためのフック34を有している。一方のフック34はシリンダの固定部Dに取り付けられ、他方のフック34は。レバー90の力点Bに取り付けられる。レバー90の揺動によって、シリンダ11に対してコイルばね16の角度が少し変化するため、フック34は固定部D、力点Bで摺動可能とされている。
コイルばね16は伸縮方向がシリンダ11の径方向から傾斜するように設けられる。コイルばね16はベーン14の位置を0度とする回転角でおおよそ−90度〜−60度の角度範囲に設置され、シリンダ11の中心から見て、コイルばね16のフック34を除き、レバー80と重ならない位置に設置される。コイルばね16が設置されるばね収納孔11bは、シリンダ11の外周の回転角でおおよそ−90度の位置からおおよそベーン14の後端に向かう孔として設けられる。
本実施の形態6のロータリ圧縮機によれば、支点Aと力点Bとの距離L1に比べて、支点Aと作用点Cとの距離L2は、たとえば2〜3倍、などすることにより、実施の形態1と同様に、コイルばね16の寿命を高めることができる。また、コイルばね16が引っ張りバネの場合はフック34があるため、ばね本体部分が短くなるが、シリンダの径方向に対して傾斜する配置としたので、径方向に配置する場合に比べてばねの長さを長くすることが可能であり、ばね寿命を長くすることができる。
<実施の形態7>
図20は本発明の実施の形態7のレバーの斜視図である。上記の実施の形態では、ベーン14と接触する接触面30dをレバー14の回転軸に対して平行な曲面で構成したが、本実施の形態の接触面30dは、さらにシリンダ11の中心軸の軸方向に対して曲率を有する曲面を含む構成とした。接触面30dの全体が三次元曲面で構成されるようにしてもよいが、回転軸に対して平行な二次元曲面と軸方向に対して曲率を有する三次元曲面とを組み合わせてもよい。図は、軸方向の中央は回転軸に対して平行な二次元曲面として、その二次元曲面の軸方向の両側に、二次元曲面と滑らかに連続するように回転軸に対して徐々に傾斜角度が変化する三次元曲面を設けた構造の例を示す。
図21は本発明の実施の形態7のロータリ圧縮機の動作時の一例を示す部分断面図であり、シリンダ11の中心軸に平行で、かつ、シリンダ11の中心とベーン14の中心と通る断面の一部分である。なお、この図において、この断面から周方向にずれた位置にあるレバー30の軸部30b、腕部30bを周方向にベーン14の延長線上まで移動して、それらの外形を破線で示している。この図において、レバー30の軸部30bはシリンダ11の軸に対して傾斜して、軸部30bの下部よりも上部がシリンダ11の軸に近づいている。本来は、レバー30の軸部30bの軸はシリンダ11の軸と平行に動作することが望ましいが、軸受32との隙間が摩耗などで拡大した場合に、このように傾く場合がある。また、図とは逆に、レバー30の揺動によって軸部30bの下側がシリンダ11の中心軸に近づくような傾斜となる場合もある。さらにレバー30の揺動に合わせて軸部30bの傾斜の方向が変化する場合もある。
軸部30bがほとんど傾かない場合は、接触面30dをシリンダ11の軸と平行な面とすると良い。しかしながら、図のように、軸部30bの傾きが少し大きい場合は、接触面30dの軸方向の一方の端部がベーン14に対して片当たりするため、当たった部分の摩耗が大きくなる。摩耗によって、レバー30からベーン14に伝わる力が変化したり、摩耗で生じた金属粉が潤滑油に混じったりする問題が起こる。本実施の形態6によれば、軸部30bが傾いた際に、軸方向に曲率を有する曲面で接触して力を伝達するため、回転軸に対して傾斜しない面が片当たりする場合に比べて接触する箇所の面積を大きくすることができ、摩耗量を抑制できる。また、摩擦も小さくすることができる。また、軸部30bの組み立て時にシリンダ11の軸との平行がずれた場合にも効果がある。
本発明は、ベーンに力を加えるためのばねの寿命を長くでき、小型で、信頼性が高いロータリ圧縮機を実現できる。
1 容器、2 吐出管、3 吸入管、4 中間仕切板、5 駆動軸、5m 電動部、5a 長軸部、5b 短軸部、5c 偏心部(第1偏心部)、5d 第2偏心部、5e 中間軸部、7 内部空間、7a 潤滑油貯蔵部、8 電動機、8a 回転子、8b 固定子、11 シリンダ(第1シリンダ)、11a ストッパ、11b ばね収納孔、11c 揺動スペース(第1揺動スペース)、12 シリンダ室(第1シリンダ室)、13 ピストン(第1ピストン)、14ベーン(第1ベーン)、14a 先端、14b 後端、14c 窪み部、14e 接面部、15 ベーン背室(第1ベーン背室)、16 コイルばね(第1コイルばね)、17 吸気ポート(第1吸気ポート)、18 吐出ポート(第1吐出ポート)、19 スロット(第1スロット)、21 第2シリンダ、21c 第2揺動スペース、22 第2シリンダ室、23 第2ピストン、24 第2ベーン、25 第2ベーン背室、26 第2コイルばね、27 第2吸気ポート、28 第2吐出ポート、29 第2スロット、30 レバー(第1レバー)、30a 腕部、30b 軸部、30c 連結部、30d 接触面、30e 接触面、31 摺動板、32 40 第2レバー、60 第1支持部材、60a 軸受部、60b フランジ部、60c 貫通孔、61 開閉弁、63 マフラ(第1マフラ)、70 第2支持部材、70a 軸受部、50、60、80、90 レバー、88 導入端子、100,200,300 ロータリ圧縮機。

Claims (13)

  1. 容器と、
    前記容器内に設置されて駆動軸を回転させる駆動機構と、
    前記容器内に固定されたシリンダと、
    前記駆動軸の回転が伝達されて前記シリンダ内を転動するピストンと、
    前記シリンダに設けられたスロットに挿入され、先端が前記ピストンに接して、前記ピストンの転動にともなって前記スロット内を往復運動するベーンと、
    前記スロットの延長上からずれた位置に弾性変形した状態で保持されたコイルばねと、
    前記シリンダに回転軸が設置され、前記回転軸を中心にしたスイングが可能となるように保持されて、前記コイルばねの弾性変形からの復元力を前記ベーンが前記ピストンに向かう力として前記ベーンに伝達するレバーと、を備え、
    前記回転軸の中心を支点、前記レバーにおいて前記ベーンに力を伝達する位置を作用点、前記レバーにおいて前記コイルばねの復元力を受ける位置を力点とすると、前記支点から前記作用点までの距離が前記支点から前記力点までの距離よりも長いロータリ圧縮機。
  2. 前記レバーは前記支点と前記作用点とを結ぶ直線よりも前記力点が前記シリンダの中心側に位置するように曲がった形状である請求項1に記載のロータリ圧縮機。
  3. 前記スロットは前記シリンダの吸気ポートと吐出ポートとの間にあり、
    前記コイルばねと前記レバーの前記回転軸とは前記スロットに対して前記吸気ポートと反対側に位置する請求項1または2に記載のロータリ圧縮機。
  4. 前記コイルばねは前記レバーの前記支点から前記作用点までの間の腕部と径方向に重ならない位置に設置された請求項1から3のいずれか一項に記載のロータリ圧縮機。
  5. 前記ベーンは後端に前記シリンダの中心側に窪んだ窪み部を有し、前記窪み部で前記レバーから前記コイルばねの復元力を受ける請求項1から4のいずれか一項に記載のロータリ圧縮機。
  6. 前記レバーの回転軌道上で、かつ、前記シリンダの中心から遠い側に、前記レバーの回転を規制するストッパを設けた請求項1から5のいずれか一項に記載のロータリ圧縮機。
  7. 前記コイルばねは圧縮バネであり、前記コイルばねは前記レバーの前記力点との間に摺動板を有している請求項1から6のいずれか一項に記載のロータリ圧縮機。
  8. 前記レバーおよび前記ベーンの少なくともいずれかは、互い接触する箇所に接触側に凸となる曲面を有している請求項1から7のいずれか一項に記載のロータリ圧縮機。
  9. 前記ベーンは前記レバーの前記作用点から力を伝達される個所に前記スロットの幅よりも前記スロットの幅方向に広い接面部を有している請求項1から8のいずれか一項に記載のロータリ圧縮機。
  10. 前記駆動軸が挿通する穴から広がって前記シリンダの中心軸の軸方向を覆うフランジ部を有し、
    前記レバーの前記軸方向が前記フランジ部によって覆われている、請求項1から9のいずれか一項に記載のロータリ圧縮機。
  11. 前記フランジ部に、さらに前記レバーの軸受けを有している請求項10に記載のロータリ圧縮機。
  12. 前記ベーンまたは前記コイルばねに力を伝達する前記レバーの接触面が、前記シリンダの中心軸の軸方向に曲率を有する曲面を含むことを特徴とする請求項1から11のいずれか一項に記載のロータリ圧縮機。
  13. 前記ベーンまたは前記コイルばねに力を伝達する前記レバーの接触面が鉄系の焼結材で構成されることを特徴とする請求項1から12のいずれか一項に記載のロータリ圧縮機。
JP2018550022A 2016-11-11 2017-06-29 ロータリ圧縮機 Expired - Fee Related JP6627987B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016220600 2016-11-11
JP2016220600 2016-11-11
PCT/JP2017/024002 WO2018087955A1 (ja) 2016-11-11 2017-06-29 ロータリ圧縮機

Publications (2)

Publication Number Publication Date
JPWO2018087955A1 JPWO2018087955A1 (ja) 2019-03-07
JP6627987B2 true JP6627987B2 (ja) 2020-01-08

Family

ID=62110226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550022A Expired - Fee Related JP6627987B2 (ja) 2016-11-11 2017-06-29 ロータリ圧縮機

Country Status (2)

Country Link
JP (1) JP6627987B2 (ja)
WO (1) WO2018087955A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202544A1 (ja) * 2019-04-05 2020-10-08 日立ジョンソンコントロールズ空調株式会社 密閉型ロータリ圧縮機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316247B1 (ko) * 2007-07-31 2013-10-08 엘지전자 주식회사 로터리 식 2단 압축기

Also Published As

Publication number Publication date
WO2018087955A1 (ja) 2018-05-17
JPWO2018087955A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
CN113279958B (zh) 涡旋式压缩机
JP5637755B2 (ja) ベーン型圧縮機
JP2003532008A (ja) 圧縮機
US8366424B2 (en) Rotary fluid machine with reverse moment generating mechanism
JP4407771B2 (ja) 回転式流体機械
EP2613053A2 (en) Rotary compressor with dual eccentric portion
WO2010073426A1 (ja) 回転式圧縮機
JP6627987B2 (ja) ロータリ圧縮機
KR101581692B1 (ko) 압축기
KR101735978B1 (ko) 회전식 압축기 및 냉동 사이클 장치
JP2013185523A (ja) 圧縮機及び冷凍サイクル装置
JP2008190348A (ja) 回転式圧縮機
JP2005307764A (ja) 回転式圧縮機
JP5173908B2 (ja) ロータリ型膨張機及び流体機械
KR101055279B1 (ko) 도넛 베인 로터리 압축기
WO2018142505A1 (ja) 圧縮機
WO2018150494A1 (ja) 圧縮機
JP2002138979A (ja) 複数シリンダロータリ圧縮機
JP4858207B2 (ja) 多段圧縮機
JP6271246B2 (ja) シリンダ回転型圧縮機
CN111255696B (zh) 回转式压缩机
JPH08144946A (ja) 圧縮機の吸入および吐出機構
JP2006329155A (ja) 回転式圧縮機
JP7470567B2 (ja) 圧縮機及び冷凍サイクル装置
JP4692560B2 (ja) 圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees