JP6624573B2 - Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board - Google Patents

Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board Download PDF

Info

Publication number
JP6624573B2
JP6624573B2 JP2017187041A JP2017187041A JP6624573B2 JP 6624573 B2 JP6624573 B2 JP 6624573B2 JP 2017187041 A JP2017187041 A JP 2017187041A JP 2017187041 A JP2017187041 A JP 2017187041A JP 6624573 B2 JP6624573 B2 JP 6624573B2
Authority
JP
Japan
Prior art keywords
metal
clad laminate
manufacturing
producing
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017187041A
Other languages
Japanese (ja)
Other versions
JP2018001764A (en
Inventor
雅也 小山
雅也 小山
稔 宇野
稔 宇野
岸野 光寿
光寿 岸野
武士 北村
武士 北村
博晴 井上
博晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2018001764A publication Critical patent/JP2018001764A/en
Application granted granted Critical
Publication of JP6624573B2 publication Critical patent/JP6624573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、プリント配線板等の製造に用いられる金属張積層板の製造方法、金属張積層板を用いて製造されるプリント配線板の製造方法、及び多層プリント配線板の製造方法に関するものである。 The present invention relates to a method for manufacturing a metal-clad laminate used for manufacturing a printed wiring board and the like, a method for manufacturing a printed wiring board manufactured using the metal-clad laminate , and a method for manufacturing a multilayer printed wiring board. .

従来、金属張積層板として、接着フィルムに金属箔を貼り合わせることにより得られるフレキシブル金属張積層板が知られている(例えば、特許文献1参照)。特に特許文献1に記載の接着フィルムは、ポリイミドフィルムに熱可塑性ポリイミドを含有する接着層を設けたものであって、上記のポリイミドフィルムが、前駆体であるポリアミド酸を部分的にイミド化したフィルムを加熱延伸処理して得られたものである。そして、このようにして寸法変化の発生を抑制できるというものである。   Conventionally, as a metal-clad laminate, a flexible metal-clad laminate obtained by bonding a metal foil to an adhesive film is known (for example, see Patent Document 1). In particular, the adhesive film described in Patent Document 1 is a polyimide film provided with an adhesive layer containing a thermoplastic polyimide, wherein the polyimide film is a film obtained by partially imidizing a precursor polyamic acid. Is obtained by heating and stretching. Then, the occurrence of the dimensional change can be suppressed in this manner.

特開2004−338160号公報JP-A-2004-338160

上記のフレキシブル金属張積層板は、内部に基材を含まないものであるが、近年では、内部に基材を含むリジッド金属張積層板についても、小型化や薄型化に対応するため、フレキシブル金属張積層板と同様に寸法変化の発生を抑制することが求められている。なお、以下では内部に基材を含むリジッド金属張積層板を単に金属張積層板という。   Although the above-mentioned flexible metal-clad laminate does not contain a base material inside, in recent years, a rigid metal-clad laminate containing a base material inside has also It is required to suppress the occurrence of dimensional change as in the case of the laminated laminate. Hereinafter, a rigid metal-clad laminate including a base material therein is simply referred to as a metal-clad laminate.

図6(b)は、一般的な金属張積層板のエッチング処理後及びエージング処理後の寸法変化率(+は伸び、−は縮み)を示すものである。エッチング処理は、導体パターンの形成工程に相当し、エージング処理は、導体パターン保護のためのレジスト形成時の加熱工程に相当する。図6(b)に示すように、成形後の寸法を基準とした場合、エッチング処理後の寸法は若干縮み、さらにエージング処理後の寸法は大幅に縮む。このように、一般的に導体パターンを形成してから大幅に縮むと反りが大きくなる傾向があり、反りが大きくなると部品実装工程で不具合が発生する可能性が高くなる。昨今、基板の小型化や薄型化が進み、実装が難しくなる中、基板に対する寸法変化の抑制が要望されるようになってきた。   FIG. 6B shows a dimensional change rate (+ indicates elongation and − indicates shrinkage) of a general metal-clad laminate after etching and aging. The etching process corresponds to a conductor pattern forming process, and the aging process corresponds to a heating process at the time of forming a resist for protecting the conductor pattern. As shown in FIG. 6B, when the dimension after molding is used as a reference, the dimension after etching is slightly reduced, and the dimension after aging is significantly reduced. As described above, in general, when the conductor pattern is formed and then significantly shrunk, the warp tends to increase, and when the warp increases, the possibility of occurrence of a defect in the component mounting process increases. In recent years, as the size and thickness of substrates have been reduced and mounting has become difficult, suppression of dimensional change with respect to the substrates has been demanded.

本発明は上記の点に鑑みてなされたものであり、反りを小さくして実装工程での不具合を発生しにくくすることができる金属張積層板の製造方法、プリント配線板の製造方法、及び多層プリント配線板の製造方法を提供することを目的とするものである。 The present invention has been made in view of the above points, and has a method of manufacturing a metal-clad laminate, a method of manufacturing a printed wiring board , and a method of manufacturing a metal-clad laminate, which can reduce warpage and hardly cause problems in a mounting process. It is an object of the present invention to provide a method for manufacturing a printed wiring board.

本発明に係る金属張積層板の製造方法は、熱硬化性樹脂を含有する樹脂組成物を開繊ガラスクロス基材に含浸させる工程と、前記樹脂組成物を半硬化させてプリプレグを形成する工程と、前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる積層成形工程と、を含む金属張積層板の製造方法であって、前記積層成形工程において、加熱加圧時の昇温速度が200〜350℃/分であり、前記積層成形工程において、ピーク温度が140〜350℃であり、前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、前記エージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する。 The method for producing a metal-clad laminate according to the present invention includes a step of impregnating a resin composition containing a thermosetting resin into an opened glass cloth base material and a step of semi-curing the resin composition to form a prepreg. And a laminating step of curing the resin composition by laminating a metal foil on the prepreg and heating and pressurizing, wherein the laminating step includes heating and pressurizing. heating rate is the 200 to 350 ° C. / min, in the laminate forming step, the peak temperature is one hundred and forty to three hundred and fifty ° C., layered after etching process for removing the metal foil of the metal-clad laminate The dimensions of the plate increased compared to the dimensions of the metal-clad laminate before performing the etching process, and after performing the etching process, an aging process of heating at 150 ° C. for 30 minutes was further performed. The dimensions of the laminate are increased compared to the dimensions of the metal-clad laminate before the etching treatment, and the dimensions of the laminate after the aging treatment are increased after the etching treatment is performed. Is reduced as compared to the dimensions of

本発明に係るプリント配線板の製造方法は、ガラスクロス基材に樹脂組成物を含浸し硬化された絶縁層の両面又は片面に導体パターンが形成されたプリント配線板の製造方法であって、前記金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む。   The method for manufacturing a printed wiring board according to the present invention is a method for manufacturing a printed wiring board in which a conductive pattern is formed on both surfaces or one surface of an insulating layer cured by impregnating a resin composition into a glass cloth base material, Forming a conductive pattern by removing unnecessary portions of the metal foil of the metal-clad laminate.

本発明に係る多層プリント配線板の製造方法は、導体パターンの層を3層以上有する多層プリント配線板の製造方法であって、前記金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む。   The method for manufacturing a multilayer printed wiring board according to the present invention is a method for manufacturing a multilayer printed wiring board having three or more conductive pattern layers, by removing unnecessary portions of the metal foil of the metal-clad laminate. Forming the conductive pattern.

本発明によれば、反りを小さくして実装工程での不具合を発生しにくくすることができるものである。   According to the present invention, it is possible to reduce the warpage and to make it difficult to cause a problem in the mounting process.

本発明に係る金属張積層板の一例を示すものであり、(a)は両面金属張積層板の断面図、(b)は片面金属張積層板の断面図、(c)は金属箔を全面除去した積層板の断面図、(d)は内層回路入りの金属張積層板の断面図、(e)は金属箔を全面除去した内層回路入りの積層板である。1 shows an example of a metal-clad laminate according to the present invention, in which (a) is a cross-sectional view of a double-sided metal-clad laminate, (b) is a cross-sectional view of a single-sided metal-clad laminate, and (c) is an entire metal foil. FIG. 4D is a cross-sectional view of the metal-clad laminate with the inner layer circuit removed, and FIG. 4E is a cross-sectional view of the metal-clad laminate with the inner layer circuit removed. 両面金属張積層板の製造工程の一例を示すものであり、(a)(b)は断面図である。It shows an example of the manufacturing process of the double-sided metal-clad laminate, and (a) and (b) are cross-sectional views. 片面金属張積層板の製造工程の一例を示すものであり、(a)(b)は断面図である。It is an example of a manufacturing process of a single-sided metal-clad laminate, and (a) and (b) are cross-sectional views. 内層回路入りの金属張積層板の製造工程の一例を示すものであり、(a)〜(c)は断面図である。It is an example of a manufacturing process of a metal-clad laminate containing an inner layer circuit, and (a) to (c) are cross-sectional views. 寸法変化率測定用試料の一例を示す平面図である。It is a top view which shows an example of a sample for dimensional change rate measurement. (a)は本発明に係る金属張積層板のエッチング処理後及びエージング処理後の寸法変化率の一例を示すグラフであり、(b)は一般的な金属張積層板のエッチング処理後及びエージング処理後の寸法変化率の一例を示すグラフである。(A) is a graph showing an example of a dimensional change rate of the metal-clad laminate according to the present invention after the etching process and after the aging process, and (b) is a graph after the etching process and the aging process of a general metal-clad laminate. It is a graph which shows an example of the dimensional change rate after.

以下、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described.

本発明に係る金属張積層板5は、図2〜図4に示すように、金属箔4をプリプレグ3の両面又は片面に重ねて加熱加圧して形成され、プリント配線板用材料として用いられる。金属張積層板5において、プリプレグ3は硬化して、電気的な絶縁性を有する絶縁層30を形成している。図1(a)は両面金属張積層板を示す。図1(b)は片面金属張積層板を示す。図1(c)は金属張積層板5の金属箔4を全面除去した後の積層板6を示す。図1(d)は絶縁層30の内部に内層回路7を有する内層回路7入りの金属張積層板5を示す。図1(e)は内層回路7入りの金属張積層板5の金属箔4を全面除去した後の内層回路7入りの積層板6を示す。   As shown in FIGS. 2 to 4, the metal-clad laminate 5 according to the present invention is formed by laminating a metal foil 4 on both sides or one side of the prepreg 3 and applying heat and pressure, and is used as a material for a printed wiring board. In the metal-clad laminate 5, the prepreg 3 is cured to form an insulating layer 30 having electrical insulation. FIG. 1A shows a double-sided metal-clad laminate. FIG. 1B shows a single-sided metal-clad laminate. FIG. 1C shows the laminate 6 after the entire surface of the metal foil 4 of the metal-clad laminate 5 has been removed. FIG. 1D shows the metal-clad laminate 5 including the inner layer circuit 7 having the inner layer circuit 7 inside the insulating layer 30. FIG. 1E shows the laminated board 6 containing the inner circuit 7 after the metal foil 4 of the metal-clad laminated board 5 containing the inner circuit 7 has been entirely removed.

ここで、金属箔4としては、例えば、銅箔、アルミニウム箔、ステンレス箔等を用いることができる。金属箔4の厚さは例えば2〜70μmであるが、これに限定されるものではない。   Here, as the metal foil 4, for example, a copper foil, an aluminum foil, a stainless steel foil or the like can be used. The thickness of the metal foil 4 is, for example, 2 to 70 μm, but is not limited thereto.

またプリプレグ3は、樹脂組成物2を基材1に含浸させると共に、これを半硬化状態(Bステージ状態)となるまで加熱乾燥することによって形成されている。   The prepreg 3 is formed by impregnating the base material 1 with the resin composition 2 and heating and drying the base material 1 until it becomes a semi-cured state (B-stage state).

上記の樹脂組成物2は、熱硬化性樹脂及びフィラーを含有することが好ましい。   It is preferable that the resin composition 2 contains a thermosetting resin and a filler.

ここで、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シアネート樹脂、メラミン樹脂、イミド樹脂等を用いることができる。特にエポキシ樹脂としては、例えば、多官能エポキシ樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等を用いることができる。   Here, as the thermosetting resin, for example, an epoxy resin, a phenol resin, a cyanate resin, a melamine resin, an imide resin, or the like can be used. In particular, as the epoxy resin, for example, a polyfunctional epoxy resin, a bisphenol-type epoxy resin, a novolak-type epoxy resin, a biphenyl-type epoxy resin, or the like can be used.

またフィラーとしては、例えば、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルク、アルミナ等を用いることができる。   As the filler, for example, silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, alumina and the like can be used.

またフィラーは、樹脂組成物2全量に対して50〜80質量%含有されていることが好ましい。このように、フィラーの含有量が50質量%以上であることによって、金属張積層板5の成形後からエッチング処理後までの寸法変化と、エッチング処理後からエージング処理後までの寸法変化とをより小さくすることができるものである。またフィラーの含有量が80質量%以下であれば、粘度の上昇を抑制しながらフィラーを樹脂組成物2に含有させることができるものである。   Further, the filler is preferably contained in an amount of 50 to 80% by mass based on the total amount of the resin composition 2. As described above, when the content of the filler is 50% by mass or more, the dimensional change from after forming the metal-clad laminate 5 to after the etching process and the dimensional change from after the etching process to after the aging process are more improved. It can be made smaller. When the content of the filler is 80% by mass or less, the filler can be contained in the resin composition 2 while suppressing an increase in viscosity.

また樹脂組成物2は、硬化剤及び硬化促進剤を含有してもよい。   The resin composition 2 may contain a curing agent and a curing accelerator.

ここで、硬化剤としては、例えば、フェノール系硬化剤、ジシアンジアミド硬化剤等を用いることができる。   Here, as the curing agent, for example, a phenolic curing agent, a dicyandiamide curing agent, or the like can be used.

また硬化促進剤としては、例えば、イミダゾール類、フェノール化合物、アミン類、有機ホスフィン類等を用いることができる。   As the curing accelerator, for example, imidazoles, phenol compounds, amines, organic phosphines and the like can be used.

そして、上記の熱硬化性樹脂のほか、必要に応じてフィラー、硬化剤、硬化促進剤を配合することによって樹脂組成物2を調製することができ、さらにこれを溶剤で希釈することによって樹脂組成物2のワニスを調製することができる。溶剤としては、例えば、メチルエチルケトン、トルエン、スチレン、メトキシプロパノール等を用いることができる。   Then, in addition to the above-mentioned thermosetting resin, if necessary, a filler, a curing agent, and a curing accelerator can be blended to prepare the resin composition 2. The resin composition 2 can be further diluted with a solvent to obtain a resin composition. A varnish of Article 2 can be prepared. As the solvent, for example, methyl ethyl ketone, toluene, styrene, methoxypropanol and the like can be used.

基材1としては、例えば、ガラスクロス、ガラスペーパー、ガラスマット等のように無機繊維からなるものや、アラミドクロス等のように有機繊維からなるものを用いることができる。基材1の厚さは例えば20〜200μmであるが、これに限定されるものではない。   As the substrate 1, for example, a material made of inorganic fibers such as glass cloth, glass paper, and glass mat, and a material made of organic fibers such as aramid cloth can be used. The thickness of the substrate 1 is, for example, 20 to 200 μm, but is not limited thereto.

プリプレグ3を製造するにあたっては、まず基材1に樹脂組成物2を含浸させる。次にこれを半硬化状態となるまで加熱乾燥することによってプリプレグ3を得ることができる。このときの加熱温度は例えば100〜200℃、加熱時間は例えば1〜10分間であるが、これに限定されるものではない。またプリプレグ3全量に対して樹脂組成物2の含有量(レジンコンテント)は40〜75質量%であることが好ましい。   In producing the prepreg 3, first, the base material 1 is impregnated with the resin composition 2. Next, the prepreg 3 can be obtained by heating and drying this until it becomes a semi-cured state. The heating temperature at this time is, for example, 100 to 200 ° C., and the heating time is, for example, 1 to 10 minutes, but is not limited thereto. Further, the content (resin content) of the resin composition 2 is preferably 40 to 75% by mass based on the total amount of the prepreg 3.

そして、本発明に係る金属張積層板5は、次のようにして形成されている。   The metal-clad laminate 5 according to the present invention is formed as follows.

すなわち、両面金属張積層板である金属張積層板5は、図2(a)(b)に示すように、上記のプリプレグ3の両面に金属箔4を積層して形成されている。この場合、1枚のプリプレグ3の両面に金属箔4を積層して成形してもよいし、複数枚のプリプレグ3を重ね、この両面に金属箔4を積層して成形してもよいが、金属張積層板5の厚さは0.2mm以下(下限は0.015mm)であることが好ましい。これによりプリント配線板の小型化及び薄型化を図ることができるものである。   That is, the metal-clad laminate 5 which is a double-sided metal-clad laminate is formed by laminating the metal foil 4 on both sides of the prepreg 3 as shown in FIGS. 2 (a) and 2 (b). In this case, the metal foil 4 may be laminated and molded on both surfaces of one prepreg 3 or a plurality of prepregs 3 may be laminated and the metal foil 4 may be laminated and molded on both surfaces. The thickness of the metal-clad laminate 5 is preferably 0.2 mm or less (the lower limit is 0.015 mm). This makes it possible to reduce the size and thickness of the printed wiring board.

また、片面金属張積層板である金属張積層板5は、図3(a)(b)に示すように、上記のプリプレグ3の片面に金属箔4を積層して形成されている。この場合、1枚のプリプレグ3の片面に金属箔4を積層して成形してもよいし、複数枚のプリプレグ3を重ね、この片面に金属箔4を積層して成形してもよいが、金属張積層板5の厚さは0.2mm以下(下限は0.015mm)であることが好ましい。これによりプリント配線板の小型化及び薄型化を図ることができるものである。なお、両面金属張積層板の片面の金属箔4が全面除去されて片面金属張積層板が形成されていてもよい。   The metal-clad laminate 5 which is a single-sided metal-clad laminate is formed by laminating a metal foil 4 on one side of the prepreg 3 as shown in FIGS. In this case, the metal foil 4 may be laminated and molded on one surface of one prepreg 3 or a plurality of prepregs 3 may be laminated and the metal foil 4 may be laminated and molded on one surface thereof, The thickness of the metal-clad laminate 5 is preferably 0.2 mm or less (the lower limit is 0.015 mm). This makes it possible to reduce the size and thickness of the printed wiring board. The metal foil 4 on one side of the double-sided metal-clad laminate may be entirely removed to form a single-sided metal-clad laminate.

また、内層回路7入りの金属張積層板5は、まず図4(a)に示すコア材8を製造し、次に図4(b)(c)に示すように、上記のプリプレグ3の一方の面にコア材8、他方の面に金属箔4を積層して形成されている。コア材8は、例えば、両面金属張積層板の片面にサブトラクティブ法により導体パターンを設けて製造したり、あるいは片面金属張積層板の金属箔4の無い面にアディティブ法により導体パターンを設けて製造したりすることができる。このようにして設けられた導体パターンが絶縁層30内に埋め込まれて内層回路7となる。また上記の場合、コア材8と金属箔4の間に挟まれるプリプレグ3は1枚でもよいし、複数枚でもよいが、内層回路7入りの金属張積層板5の厚さは0.2mm以下(下限は0.015mm)であることが好ましい。これによりプリント配線板の小型化及び薄型化を図ることができるものである。   Further, as for the metal-clad laminate 5 containing the inner layer circuit 7, first, a core material 8 shown in FIG. 4A is manufactured, and then, as shown in FIGS. 4B and 4C, one of the prepregs 3 is formed. And the metal foil 4 is laminated on the other surface. The core material 8 is manufactured, for example, by providing a conductor pattern on one surface of a double-sided metal-clad laminate by a subtractive method, or by providing a conductor pattern by an additive method on a surface of the single-sided metal-clad laminate without the metal foil 4. And can be manufactured. The conductor pattern thus provided is embedded in the insulating layer 30 to form the inner circuit 7. In the above case, the number of prepregs 3 sandwiched between the core material 8 and the metal foil 4 may be one or more, but the thickness of the metal-clad laminate 5 containing the inner layer circuit 7 is 0.2 mm or less. (The lower limit is preferably 0.015 mm). This makes it possible to reduce the size and thickness of the printed wiring board.

また上記の各積層成形は、例えば、多段真空プレス、ダブルベルトプレス、線圧ロール、真空ラミネーター等を用いて加熱加圧して行うことができる。この場合の加熱加圧時の昇温速度は200℃/分以上であることが好ましい。これにより、後述の図6(a)のような特有の寸法変化の挙動を示す金属張積層板5を容易に得ることができるものである。昇温速度の上限は350℃/分であるが、これに限定されるものではない。また積層成形時のピーク温度は140〜350℃、成形圧力は0.5〜6.0MPa、成形時間は1〜240分間であることが好ましい。   Each of the above-mentioned lamination moldings can be performed by heating and pressing using, for example, a multi-stage vacuum press, a double belt press, a linear pressure roll, a vacuum laminator, or the like. In this case, the rate of temperature rise during heating and pressurization is preferably 200 ° C./min or more. Thereby, the metal-clad laminate 5 exhibiting a characteristic dimensional change behavior as shown in FIG. 6A described later can be easily obtained. The upper limit of the heating rate is 350 ° C./min, but is not limited to this. Further, it is preferable that the peak temperature during lamination molding is 140 to 350 ° C., the molding pressure is 0.5 to 6.0 MPa, and the molding time is 1 to 240 minutes.

上記のようにして製造された金属張積層板5については、寸法変化の挙動が次のようになる。図6(a)は、本発明に係る金属張積層板5のエッチング処理後及びエージング処理後の寸法変化率(+は伸び、−は縮み)を示すものである。   The behavior of the dimensional change of the metal-clad laminate 5 manufactured as described above is as follows. FIG. 6A shows the dimensional change rate (+ indicates elongation and − indicates shrinkage) of the metal-clad laminate 5 according to the present invention after the etching process and the aging process.

図6(a)に示すように、成形後の金属張積層板5の寸法、すなわちエッチング処理を行う前の金属張積層板5の寸法を基準とした場合、エッチング処理を行った後の積層板6の寸法は増加しやすい。これにより積層板6の内部のひずみを除去することができるものである。上記のエッチング処理は、導体パターンの形成工程に相当するので、導体パターンを形成する際に積層板6の内部のひずみも除去可能であることを意味する。このときの寸法変化率は、例えばJIS C 6481に準じて算出することができる。まずエッチング処理前の金属張積層板5の表面の任意の2点間の間隔を測定してこれをLとする。次に塩化第二銅等を主成分とするエッチング液を用いて金属張積層板5の金属箔4を全面除去することによってエッチング処理を行った後、上記の2点間の間隔を再度測定してこれをLとする。そして、次式(1)によってエッチング処理後の寸法変化率Sを算出することができる。 As shown in FIG. 6A, when the dimensions of the metal-clad laminate 5 after molding, that is, the dimensions of the metal-clad laminate 5 before performing the etching process, are used as a reference, the laminate after the etching process is performed. The size of 6 is likely to increase. Thereby, the strain inside the laminated plate 6 can be removed. Since the above-described etching process corresponds to a conductor pattern forming step, it means that the strain inside the laminate 6 can be removed when the conductor pattern is formed. The dimensional change rate at this time can be calculated according to, for example, JIS C6481. First, the distance between any two points on the surface of the metal-clad laminate 5 before the etching process is measured, and this is defined as L0 . Next, after performing an etching treatment by removing the entire metal foil 4 of the metal-clad laminate 5 using an etching solution containing cupric chloride or the like as a main component, the distance between the two points is measured again. This is referred to as L 1 Te. Then, it is possible by the following equation (1) to calculate the dimensional change rate S 1 after the etching treatment.

=(L−L)×100/L(%)…(1)
上記の式(1)によって、エッチング処理後の積層板6の寸法変化率を具体的に算出すると、本発明に係る金属張積層板5については、上記の寸法変化率は0%を超えて0.1%以下となりやすい。このように、最小限の寸法変化で積層板6の内部のひずみを除去することができるものである。
S 1 = (L 1 −L 0 ) × 100 / L 0 (%) (1)
When the dimensional change rate of the laminated plate 6 after the etching treatment is specifically calculated by the above equation (1), the dimensional change rate of the metal-clad laminate 5 according to the present invention exceeds 0% to 0%. .1% or less. Thus, the strain inside the laminate 6 can be removed with a minimum dimensional change.

また図6(a)に示すように、エッチング処理後の積層板6の寸法を基準とした場合、エッチング処理後にさらにエージング処理を行った後の積層板6の寸法はほとんど変化しない。このときの寸法変化率も、例えばJIS C 6481に準じて算出することができる。エッチング処理後の積層板6を150℃で30分間加熱することによってエージング処理を行った後、上記の2点間の間隔を再度測定してこれをLとする。そして、次式(2)によってエージング処理後の寸法変化率Sを算出することができる。 Further, as shown in FIG. 6A, when the dimensions of the laminated plate 6 after the etching process are used as a reference, the dimensions of the laminated plate 6 after further performing the aging process after the etching process hardly change. The dimensional change rate at this time can also be calculated according to, for example, JIS C6481. After the aging treatment by heating for 30 minutes the laminate 6 after the etching treatment at 0.99 ° C., which is referred to as L 2 by measuring the distance between two points in the re. Then, it is possible to calculate the dimensional change rate S 2 after aging treatment by the following equation (2).

=(L−L)×100/L(%)…(2)
上記の式(2)によって、エージング処理後の積層板6の寸法変化率を具体的に算出すると、本発明に係る金属張積層板5については、上記の寸法変化率は±0.03%の範囲内となる。このように、本発明に係る金属張積層板5は、エッチング処理後にエージング処理を行っても寸法がほとんど変化しない。このエージング処理は、導体パターン保護のためのレジスト形成時の加熱工程に相当するが、このような加熱工程終了後において反りを小さくすることができ、その後の部品の実装工程での不具合を発生しにくくすることができるものである。
S 2 = (L 2 −L 1 ) × 100 / L 1 (%) (2)
When the dimensional change rate of the laminated board 6 after the aging treatment is specifically calculated by the above equation (2), the dimensional change rate of the metal-clad laminate 5 according to the present invention is ± 0.03%. Within the range. As described above, the dimensions of the metal-clad laminate 5 according to the present invention hardly change even when the aging treatment is performed after the etching treatment. This aging treatment is equivalent to a heating step at the time of forming a resist for protecting the conductor pattern. However, after such a heating step, the warpage can be reduced, and a problem occurs in a subsequent component mounting step. It can be difficult.

そして、本発明に係るプリント配線板は、上記の金属張積層板5の両面又は片面に導体パターンを設けて形成されている。導体パターンの形成は、例えば、サブトラクティブ法、アディティブ法等により行うことができる。   The printed wiring board according to the present invention is formed by providing a conductor pattern on both surfaces or one surface of the metal-clad laminate 5 described above. The formation of the conductor pattern can be performed by, for example, a subtractive method, an additive method, or the like.

また本発明に係る多層プリント配線板は、上記のプリント配線板を用いて、導体パターンの層を少なくとも3層以上設けて形成されている。プリント配線板は、通常、導体パターンの層が2層以下であるが、次のようにして導体パターンの層が3層以上ある多層プリント配線板を製造することができる。   Further, a multilayer printed wiring board according to the present invention is formed by providing at least three or more conductive pattern layers using the above printed wiring board. The printed wiring board usually has two or less conductive pattern layers, but a multilayer printed wiring board having three or more conductive pattern layers can be manufactured as follows.

すなわち、図示省略しているが、本発明に係る多層プリント配線板は、上記のプリント配線板の両面又は片面に上記のプリプレグ3を介して金属箔4を積層し、この金属箔4の不要部分を除去して導体パターンの層を設けて形成することができる。この場合、上記のプリプレグ3を用いることが好ましいが、その他のプリプレグ3を用いてもよい。また、金属箔4としては、上記と同様のものを用いることができる。積層成形及び成形条件は、上記の金属張積層板5を製造する場合と同様である。導体パターンの形成は、プリント配線板を製造する場合と同様に行うことができる。すなわち、金属箔4のある場合はサブトラクティブ法により導体パターンの層を形成することができ、金属箔4のない場合はアディティブ法により導体パターンの層を形成することができる。また、図1(d)に示す内層回路7入りの金属張積層板5の両面にサブトラクティブ法により導体パターンの層を形成して、多層プリント配線板を製造してもよい。なお、多層プリント配線板において、導体パターンの層数は特に限定されない。   That is, although not shown, the multilayer printed wiring board according to the present invention has a metal foil 4 laminated on both sides or one side of the printed wiring board via the prepreg 3, and unnecessary portions of the metal foil 4 are unnecessary. And a layer of a conductor pattern is provided. In this case, it is preferable to use the prepreg 3 described above, but other prepregs 3 may be used. Further, as the metal foil 4, the same one as described above can be used. The lamination molding and molding conditions are the same as in the case of manufacturing the metal-clad laminate 5 described above. The formation of the conductor pattern can be performed in the same manner as when manufacturing a printed wiring board. That is, when there is a metal foil 4, a conductor pattern layer can be formed by a subtractive method, and when there is no metal foil 4, a conductor pattern layer can be formed by an additive method. Further, a multilayer printed wiring board may be manufactured by forming a conductive pattern layer on both sides of the metal-clad laminate 5 containing the inner layer circuit 7 shown in FIG. 1D by a subtractive method. In the multilayer printed wiring board, the number of layers of the conductor pattern is not particularly limited.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be described specifically with reference to Examples.

(実施例1)
熱硬化性樹脂として、DIC株式会社製「HP9500」及び「N540」を用いた。
(Example 1)
“HP9500” and “N540” manufactured by DIC Corporation were used as thermosetting resins.

またフィラーとして、シリカである株式会社アドマテックス製「YC100C−MLE」及び「S0−25R」を用いた。   As the filler, silica “YC100C-MLE” and “S0-25R” manufactured by Admatechs Co., Ltd. were used.

また硬化剤として、フェノール性硬化剤であるDIC株式会社製「TD2090」を用いた。   As a curing agent, “TD2090” manufactured by DIC Corporation, which is a phenolic curing agent, was used.

また硬化促進剤として、イミダゾールである四国化成工業株式会社製「2E4MZ」を用いた。   As a curing accelerator, imidazole "2E4MZ" manufactured by Shikoku Chemicals Co., Ltd. was used.

また基材1として、ガラスクロスである日東紡績株式会社製「1037クロス」(厚さ29μm)を用いた。   As the substrate 1, a glass cloth “1037 cloth” (29 μm thickness) manufactured by Nitto Boseki Co., Ltd. was used.

そして、上記の熱硬化性樹脂(「HP9500」:46.51質量部、「N540」:19.94質量部)、フィラー(「YC100C−MLE」:50質量部、「S0−25R」:250質量部)、硬化剤(「TD2090」:33.55質量部)、硬化促進剤(「2E4MZ」:0.05質量部)を配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物2のワニスを調製した。   And the above-mentioned thermosetting resin ("HP9500": 46.51 mass parts, "N540": 19.94 mass parts), filler ("YC100C-MLE": 50 mass parts, "S0-25R": 250 mass parts) Parts), a curing agent ("TD2090": 33.55 parts by mass), and a curing accelerator ("2E4MZ": 0.05 parts by mass), and further diluted with a solvent (methyl ethyl ketone) to prepare the resin composition 2. A varnish was prepared.

次に、上記のワニスを基材1に含浸させると共に、これを半硬化状態となるまで150℃で3分間、乾燥炉内において加熱乾燥することによってプリプレグ3を製造した。このプリプレグ3全量に対して樹脂組成物2の含有量(レジンコンテント)は59質量%である。   Next, the varnish was impregnated into the base material 1 and heated and dried in a drying furnace at 150 ° C. for 3 minutes until it became a semi-cured state, thereby producing a prepreg 3. The content (resin content) of the resin composition 2 was 59% by mass based on the total amount of the prepreg 3.

次に、上記のプリプレグ3を2枚重ね、この両面に金属箔4として銅箔(三井金属鉱業株式会社製「3EC−VLP」、500mm×500mm×厚さ18μm)を積層して成形することによって、金属張積層板5として図1(a)に示すような両面金属張積層板(厚さ0.096mm)を製造した。上記の積層成形は、多段真空プレスを用いて加熱加圧して行った。加熱加圧時の昇温速度は250℃/分、ピーク温度は250℃、成形圧力は3.9MPa(40kgf/cm)、成形時間は5分間である。 Next, two sheets of the prepreg 3 are stacked, and a copper foil (“3EC-VLP”, manufactured by Mitsui Mining & Smelting Co., Ltd., 500 mm × 500 mm × 18 μm in thickness) is formed as a metal foil 4 on both surfaces by molding. As a metal-clad laminate 5, a double-sided metal-clad laminate (0.096 mm in thickness) as shown in FIG. The above-mentioned lamination molding was performed by heating and pressing using a multi-stage vacuum press. The heating rate during heating and pressurization was 250 ° C./min, the peak temperature was 250 ° C., the molding pressure was 3.9 MPa (40 kgf / cm 2 ), and the molding time was 5 minutes.

次に、上記の金属張積層板5を50mm四方に切り出し、これを寸法変化率測定用試料として用い、この試料の表面上の直交する2方向(X方向及びY方向)における任意の2点間の間隔を測定してこれらをそれぞれL(X)及びL(Y)とした(図5参照)。 Next, the above-mentioned metal-clad laminate 5 was cut out into a square of 50 mm, and this was used as a sample for measuring the dimensional change, and any two points in two orthogonal directions (X direction and Y direction) on the surface of this sample were measured. Were measured, and these were defined as L 0 (X) and L 0 (Y), respectively (see FIG. 5).

次に、塩化第二銅等を主成分とするエッチング液を用いて金属張積層板5の金属箔4を全面除去することによってエッチング処理を行った後、上記の2方向における2点間の間隔を再度測定してこれらをそれぞれL(X)及びL(Y)とした。そして、上記の式(1)によってエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, after performing an etching process by removing the entire metal foil 4 of the metal-clad laminate 5 using an etching solution containing cupric chloride or the like as a main component, the interval between the two points in the above two directions is performed. Was measured again, and these were defined as L 1 (X) and L 1 (Y), respectively. Then, the dimensional change rates S 1 (X) and S 1 (Y) after the etching process were calculated by the above equation (1). The results are shown below.

(X)=+0.03%
(Y)=+0.03%
次に、エッチング処理後の積層板6を150℃で30分間加熱することによってエージング処理を行った後、上記の2方向における2点間の間隔を再度測定してこれらをそれぞれL(X)及びL(Y)とした。そして、上記の式(2)によってエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.03%
S 1 (Y) = + 0.03%
Next, after performing the aging treatment by heating the laminated plate 6 after the etching treatment at 150 ° C. for 30 minutes, the interval between the two points in the above two directions is measured again, and these are measured as L 2 (X). And L 2 (Y). Then, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated by the above equation (2). The results are shown below.

(X)=+0.01%
(Y)=+0.01%
そして、上記の積層板6を定盤上に凸面を上向きにして無荷重の状態に置き、JIS C 6481に準じて静置法により積層板6の最大反り量を測定した。その結果、最大反り量は1.1mmであった。
S 2 (X) = + 0.01%
S 2 (Y) = + 0.01%
Then, the laminated plate 6 was placed on a surface plate with a convex surface facing upward without any load, and the maximum amount of warpage of the laminated plate 6 was measured by a static method according to JIS C6481. As a result, the maximum warpage was 1.1 mm.

(実施例2)
熱硬化性樹脂として、日本化薬株式会社製「EPPN502H」を用いた。
(Example 2)
"EPPN502H" manufactured by Nippon Kayaku Co., Ltd. was used as the thermosetting resin.

またフィラーとして、シリカである株式会社アドマテックス製「YC100C−MLE」、「S0−25R」及び「S0−C6」を用いた。   As a filler, silica, "YC100C-MLE", "S0-25R" and "S0-C6" manufactured by Admatechs Co., Ltd. was used.

また硬化剤として、フェノール性硬化剤である明和化成株式会社製「MEH7600」を用いた。   As the curing agent, a phenolic curing agent “MEH7600” manufactured by Meiwa Kasei Co., Ltd. was used.

また硬化促進剤として、イミダゾールである四国化成工業株式会社製「2E4MZ」を用いた。   As a curing accelerator, imidazole "2E4MZ" manufactured by Shikoku Chemicals Co., Ltd. was used.

また基材1として、ガラスクロスである日東紡績株式会社製「1037クロス」(厚さ29μm)を用いた。   As the substrate 1, a glass cloth “1037 cloth” (29 μm thickness) manufactured by Nitto Boseki Co., Ltd. was used.

そして、上記の熱硬化性樹脂(「EPPN502H」:62.83質量部)、フィラー(「YC100C−MLE」:50質量部、「S0−25R」:100質量部、「S0−C6」:50質量部)、硬化剤(「MEH7600」:37.17質量部)、硬化促進剤(「2E4MZ」:0.05質量部)を配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物2のワニスを調製した。   And the above-mentioned thermosetting resin ("EPPN502H": 62.83 mass parts), filler ("YC100C-MLE": 50 mass parts, "S0-25R": 100 mass parts, "S0-C6": 50 mass parts) Parts), a curing agent ("MEH7600": 37.17 parts by mass), and a curing accelerator ("2E4MZ": 0.05 parts by mass), and further diluted with a solvent (methyl ethyl ketone) to prepare the resin composition 2. A varnish was prepared.

次に、上記のワニスを用いるようにした以外は、実施例1と同様にしてプリプレグ3(レジンコンテント:59質量%)を製造し、このプリプレグ3を用いて金属張積層板5を製造した。   Next, a prepreg 3 (resin content: 59% by mass) was produced in the same manner as in Example 1 except that the above-described varnish was used, and a metal-clad laminate 5 was produced using the prepreg 3.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.02%
(Y)=+0.02%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.02%
S 1 (Y) = + 0.02%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.03%
(Y)=+0.03%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は1.3mmであった。
S 2 (X) = + 0.03%
S 2 (Y) = + 0.03%
Then, the maximum amount of warpage of the laminate 6 was measured in the same manner as in Example 1. As a result, the maximum amount of warpage was 1.3 mm.

(実施例3)
基材1として、ガラスクロスである日東紡績株式会社製「1036クロス」(厚さ28μm)を用いた。
(Example 3)
As the base material 1, a glass cloth “1036 cloth” (28 μm thickness) manufactured by Nitto Boseki Co., Ltd. was used.

実施例1と同様にして樹脂組成物2のワニスを調製した。   A varnish of Resin Composition 2 was prepared in the same manner as in Example 1.

次に、上記のワニス及び基材1を用いるようにした以外は、実施例1と同様にしてプリプレグ3(レジンコンテント:51質量%)を製造し、このプリプレグ3を用いて金属張積層板5を製造した。   Next, a prepreg 3 (resin content: 51% by mass) was produced in the same manner as in Example 1 except that the varnish and the substrate 1 were used, and a metal-clad laminate 5 was prepared using the prepreg 3. Was manufactured.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.03%
(Y)=+0.03%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.03%
S 1 (Y) = + 0.03%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.02%
(Y)=+0.01%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は0.9mmであった。
S 2 (X) = + 0.02%
S 2 (Y) = + 0.01%
Then, the maximum amount of warpage of the laminate 6 was measured in the same manner as in Example 1. As a result, the maximum amount of warpage was 0.9 mm.

(実施例4)
実施例1と同様のプリプレグ3の1枚の両面に金属箔4として銅箔(三井金属鉱業株式会社製「3EC−VLP」、500mm×500mm×厚さ18μm)を積層して成形することによって、金属張積層板5として両面金属張積層板(厚さ0.066mm)を製造した。上記の積層成形は、多段真空プレスを用いて加熱加圧して行った。加熱加圧時の昇温速度は250℃/分、ピーク温度は250℃、成形圧力は3.9MPa(40kgf/cm)、成形時間は5分間である。
(Example 4)
A copper foil (“3EC-VLP”, manufactured by Mitsui Mining & Smelting Co., Ltd., 500 mm × 500 mm × 18 μm in thickness) was formed as a metal foil 4 on both surfaces of one prepreg 3 similar to that of Example 1 by molding. As the metal-clad laminate 5, a double-sided metal-clad laminate (0.066 mm in thickness) was manufactured. The above-described lamination molding was performed by heating and pressing using a multi-stage vacuum press. The heating rate during heating and pressurization was 250 ° C./min, the peak temperature was 250 ° C., the molding pressure was 3.9 MPa (40 kgf / cm 2 ), and the molding time was 5 minutes.

次に、上記の両面金属張積層板の片面にサブトラクティブ法により導体パターンを設けてコア材8を製造した。   Next, a core material 8 was manufactured by providing a conductor pattern on one surface of the double-sided metal-clad laminate by a subtractive method.

次に、上記と同様のプリプレグ3の1枚の一方の面にコア材8、他方の面に金属箔4を積層して成形することによって、内層回路7入りの金属張積層板5(厚さ0.120mm)を製造した。上記の積層成形は、両面金属張積層板の製造と同様に行った。   Next, a core material 8 is laminated on one surface of one of the prepregs 3 and a metal foil 4 is laminated on the other surface of the prepreg 3 to form a metal-clad laminate 5 containing an inner layer circuit 7 (thickness: 0.120 mm). The lamination molding was performed in the same manner as in the production of the double-sided metal-clad laminate.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.02%
(Y)=+0.02%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.02%
S 1 (Y) = + 0.02%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.03%
(Y)=+0.03%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は3.1mmであった。
S 2 (X) = + 0.03%
S 2 (Y) = + 0.03%
Then, the maximum amount of warpage of the laminate 6 was measured in the same manner as in Example 1. As a result, the maximum amount of warpage was 3.1 mm.

(比較例1)
実施例1と同様のプリプレグ3を2枚重ね、この両面に金属箔4として銅箔(三井金属鉱業株式会社製「3EC−VLP」、500mm×500mm×厚さ18μm)を積層して成形することによって、金属張積層板5として両面金属張積層板(厚さ0.096mm)を製造した。上記の積層成形は、多段真空プレスを用いて加熱加圧して行った。加熱加圧時の昇温速度は3℃/分、ピーク温度は220℃、成形圧力は3.9MPa(40kgf/cm)、成形時間は80分間である。
(Comparative Example 1)
Two prepregs 3 similar to those in Example 1 are stacked, and a copper foil (“3EC-VLP”, manufactured by Mitsui Mining & Smelting Co., Ltd., 500 mm × 500 mm × 18 μm in thickness) is laminated and molded on both surfaces of the prepreg 3. Thus, a double-sided metal-clad laminate (thickness: 0.096 mm) was manufactured as the metal-clad laminate 5. The above-described lamination molding was performed by heating and pressing using a multi-stage vacuum press. The heating rate during heating and pressing was 3 ° C./min, the peak temperature was 220 ° C., the molding pressure was 3.9 MPa (40 kgf / cm 2 ), and the molding time was 80 minutes.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.01%
(Y)=+0.01%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.01%
S 1 (Y) = + 0.01%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=−0.05%
(Y)=−0.05%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は2.5mmであった。
S 2 (X) = − 0.05%
S 2 (Y) = - 0.05 %
Then, the maximum amount of warpage of the laminate 6 was measured in the same manner as in Example 1. As a result, the maximum amount of warpage was 2.5 mm.

(比較例2)
熱硬化性樹脂として、DIC株式会社製「HP9500」及び「N540」を用いた。
(Comparative Example 2)
“HP9500” and “N540” manufactured by DIC Corporation were used as thermosetting resins.

またフィラーとして、シリカである株式会社アドマテックス製「S0−25R」を用いた。   As the filler, silica “S0-25R” manufactured by Admatechs Co., Ltd. was used.

また硬化剤として、フェノール性硬化剤であるDIC株式会社製「TD2090」を用いた。   As a curing agent, “TD2090” manufactured by DIC Corporation, which is a phenolic curing agent, was used.

また硬化促進剤として、イミダゾールである四国化成工業株式会社製「2E4MZ」を用いた。   As a curing accelerator, imidazole "2E4MZ" manufactured by Shikoku Chemicals Co., Ltd. was used.

また基材1として、ガラスクロスである日東紡績株式会社製「1036クロス」(厚さ28μm)を用いた。   As the substrate 1, a glass cloth “1036 cloth” (28 μm thick) manufactured by Nitto Boseki Co., Ltd. was used.

そして、上記の熱硬化性樹脂(「HP9500」:46.51質量部、「N540」:19.94質量部)、フィラー(「S0−25R」:300質量部)、硬化剤(「TD2090」:33.55質量部)、硬化促進剤(「2E4MZ」:0.05質量部)を配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物2のワニスを調製した。   Then, the above thermosetting resin (“HP9500”: 46.51 parts by mass, “N540”: 19.94 parts by mass), a filler (“S0-25R”: 300 parts by mass), and a curing agent (“TD2090”: 33.55 parts by mass) and a curing accelerator (“2E4MZ”: 0.05 parts by mass) were blended, and further diluted with a solvent (methyl ethyl ketone) to prepare a varnish of Resin Composition 2.

次に、上記のワニス及び基材1を用いるようにした以外は、比較例1と同様にしてプリプレグ3(レジンコンテント:72質量%)を製造し、このプリプレグ3を用いて金属張積層板5を製造した。   Next, a prepreg 3 (resin content: 72% by mass) was produced in the same manner as in Comparative Example 1 except that the varnish and the base material 1 were used, and the prepreg 3 was used to prepare a metal-clad laminate 5. Was manufactured.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=−0.02%
(Y)=−0.02%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = − 0.02%
S 1 (Y) = − 0.02%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=−0.06%
(Y)=−0.06%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は3.7mmであった。
S 2 (X) = - 0.06 %
S 2 (Y) = - 0.06 %
Then, the maximum amount of warpage of the laminate 6 was measured in the same manner as in Example 1. As a result, the maximum amount of warpage was 3.7 mm.

1 基材
2 樹脂組成物
3 プリプレグ
4 金属箔
5 金属張積層板
6 積層板
REFERENCE SIGNS LIST 1 base material 2 resin composition 3 prepreg 4 metal foil 5 metal-clad laminate 6 laminate

Claims (13)

熱硬化性樹脂を含有する樹脂組成物を開繊ガラスクロス基材に含浸させる工程と、
前記樹脂組成物を半硬化させてプリプレグを形成する工程と、
前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる積層成形工程と、を含む金属張積層板の製造方法であって、
前記積層成形工程において、加熱加圧時の昇温速度が200〜350℃/分であり、
前記積層成形工程において、ピーク温度が140〜350℃であり、
前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、
前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、
前記エージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する、
金属張積層板の製造方法。
A step of impregnating a resin composition containing a thermosetting resin into an opened fiber cloth substrate,
A step of semi-curing the resin composition to form a prepreg,
A lamination molding step of curing the resin composition by heating and pressing a metal foil on the prepreg, and a method of manufacturing a metal-clad laminate,
In the laminate forming step, heating rate during heating and pressurization is 200 to 350 ° C. / min,
In the lamination molding step, the peak temperature is 140 to 350 ° C.,
The dimensions of the laminate after performing the etching process for removing the metal foil of the metal-clad laminate are increased compared to the dimensions of the metal-clad laminate before performing the etching process,
The dimensions of the laminate after performing the aging treatment of heating at 150 ° C. for 30 minutes after performing the etching treatment are increased as compared with the dimensions of the metal-clad laminate before performing the etching treatment,
The dimensions of the laminate after performing the aging process are reduced as compared to the dimensions of the laminate after performing the etching process,
A method for manufacturing a metal-clad laminate.
前記エッチング処理を行った後の積層板の寸法を基準とした場合、前記エージング処理を行った後の積層板の寸法変化率が−0.03%以上0%未満の範囲内である、
請求項1に記載の金属張積層板の製造方法。
Based on the dimensions of the laminate after the etching, the dimensional change of the laminate after the aging is in the range of −0.03% or more and less than 0%.
A method for producing a metal-clad laminate according to claim 1 .
前記樹脂組成物にフィラーを含有させる、
請求項1又は2に記載の金属張積層板の製造方法。
Including a filler in the resin composition,
Method for producing a metal-clad laminate according to claim 1 or 2.
前記樹脂組成物に前記フィラーを50〜80質量%含有させる、
請求項に記載の金属張積層板の製造方法。
The resin composition contains the filler in an amount of 50 to 80% by mass,
The method for producing a metal-clad laminate according to claim 3 .
前記積層成形工程において、成形圧力が0.5〜6.0MPaである、  In the lamination molding step, the molding pressure is 0.5 to 6.0 MPa.
請求項1〜4のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 4.
前記積層成形工程において、成形時間が1〜240分間である、  In the lamination molding step, the molding time is 1 to 240 minutes,
請求項1〜5のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 5.
前記プリプレグを形成する工程において、加熱温度が100〜200℃である、  In the step of forming the prepreg, the heating temperature is 100 to 200 ° C.
請求項1〜6のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 6.
前記プリプレグを形成する工程において、加熱時間が1〜10分間である、  In the step of forming the prepreg, the heating time is 1 to 10 minutes,
請求項1〜7のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 7.
前記プリプレグ全量に対する樹脂組成物の含有量(レジンコンテント)が40〜75質量%である、  The content (resin content) of the resin composition with respect to the total amount of the prepreg is 40 to 75% by mass,
請求項1〜8のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 8.
前記樹脂組成物が硬化剤としてフェノール系硬化剤を含有する、  The resin composition contains a phenolic curing agent as a curing agent,
請求項1〜9のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 9.
前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂、シアネート樹脂、メラミン樹脂及びイミド樹脂からなる群より選ばれた1種以上の樹脂である、  The thermosetting resin is one or more resins selected from the group consisting of an epoxy resin, a phenol resin, a cyanate resin, a melamine resin, and an imide resin,
請求項1〜10のいずれか1項に記載の金属張積層板の製造方法。  A method for producing a metal-clad laminate according to any one of claims 1 to 10.
ガラスクロス基材に樹脂組成物を含浸し硬化された絶縁層の両面又は片面に導体パターンが形成されたプリント配線板の製造方法であって、
請求項1〜11のいずれか1項に記載の製造方法で得られた金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む、
プリント配線板の製造方法。
A method for manufacturing a printed wiring board in which a conductive pattern is formed on both surfaces or one surface of an insulating layer cured and impregnated with a resin composition in a glass cloth base material,
A step of forming the conductor pattern by removing an unnecessary portion of the metal foil of the metal-clad laminate obtained by the manufacturing method according to any one of claims 1 to 11 ,
Manufacturing method of printed wiring board.
導体パターンの層を3層以上有する多層プリント配線板の製造方法であって、
請求項1〜11のいずれか1項に記載の製造方法で得られた金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む、
多層プリント配線板の製造方法。
A method for producing a multilayer printed wiring board having three or more conductive pattern layers,
A step of forming the conductor pattern by removing an unnecessary portion of the metal foil of the metal-clad laminate obtained by the manufacturing method according to any one of claims 1 to 11 ,
A method for manufacturing a multilayer printed wiring board.
JP2017187041A 2012-11-12 2017-09-27 Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board Active JP6624573B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012248686 2012-11-12
JP2012248686 2012-11-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013217851A Division JP6226232B2 (en) 2012-11-12 2013-10-18 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2018001764A JP2018001764A (en) 2018-01-11
JP6624573B2 true JP6624573B2 (en) 2019-12-25

Family

ID=50709655

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013217851A Active JP6226232B2 (en) 2012-11-12 2013-10-18 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board
JP2017187041A Active JP6624573B2 (en) 2012-11-12 2017-09-27 Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013217851A Active JP6226232B2 (en) 2012-11-12 2013-10-18 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board

Country Status (4)

Country Link
JP (2) JP6226232B2 (en)
KR (1) KR101794874B1 (en)
CN (1) CN103813612B (en)
TW (1) TWI544842B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954675B2 (en) * 2014-09-26 2016-07-20 パナソニックIpマネジメント株式会社 Method for producing double-sided metal-clad laminate, method for producing printed wiring board, method for producing multilayer laminate, and method for producing multilayer printed wiring board
JP5991500B1 (en) * 2016-03-18 2016-09-14 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
JP6796791B2 (en) * 2016-08-01 2020-12-09 パナソニックIpマネジメント株式会社 Manufacturing method of metal-clad laminate, printed wiring board, metal-clad laminate and manufacturing method of printed wiring board
EP3541152B1 (en) * 2016-11-09 2022-01-05 Showa Denko Materials Co., Ltd. Printed wiring board and semiconductor package
CN106856646A (en) * 2016-11-13 2017-06-16 惠州市大亚湾科翔科技电路板有限公司 A kind of flexibility covers metal lamination
JP6960595B2 (en) * 2017-01-13 2021-11-05 パナソニックIpマネジメント株式会社 Printed wiring board with built-in thick conductor and its manufacturing method
TWI775905B (en) * 2017-07-25 2022-09-01 日商松下知識產權經營股份有限公司 Manufacturing method of multi-layered printed wiring board
CN115316048A (en) * 2020-04-03 2022-11-08 松下知识产权经营株式会社 Thermosetting resin sheet and printed wiring board

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884182A (en) * 1972-02-14 1973-11-08
JPS6144632A (en) * 1984-08-10 1986-03-04 松下電工株式会社 Adhesive prepreg for multilayer printed wiring board
JPS6221539A (en) * 1985-07-20 1987-01-29 松下電工株式会社 Manufacture of laminated board
JPS62259825A (en) * 1986-05-07 1987-11-12 Matsushita Electric Works Ltd Manufacture of metal foil clad laminated sheet
JPH0655449B2 (en) * 1986-12-15 1994-07-27 松下電工株式会社 Glass-based epoxy resin laminate processing method
JPH0752788B2 (en) * 1988-12-28 1995-06-05 松下電器産業株式会社 Method of forming printed wiring board
JP2954335B2 (en) * 1990-11-30 1999-09-27 住友ベークライト株式会社 Manufacturing method of laminated board
JPH05327150A (en) * 1992-05-18 1993-12-10 Sumitomo Bakelite Co Ltd Laminated plate for printed circuit
JP2612129B2 (en) * 1992-05-19 1997-05-21 住友ベークライト株式会社 Laminated board
JP2996026B2 (en) * 1992-09-30 1999-12-27 日立化成工業株式会社 Manufacturing method of copper clad laminate
JPH06171052A (en) * 1992-12-03 1994-06-21 Hitachi Chem Co Ltd Manufacture of laminated sheet
JPH0760903A (en) * 1993-08-24 1995-03-07 Matsushita Electric Works Ltd Laminated sheet
JPH10235780A (en) * 1997-02-27 1998-09-08 Matsushita Electric Works Ltd Substrate for tape carrier package
JPH10272733A (en) * 1997-03-31 1998-10-13 Hitachi Chem Co Ltd Manufacture of metal-clad laminate
JP3963662B2 (en) * 2001-05-24 2007-08-22 住友ベークライト株式会社 Laminate production method
JP3879512B2 (en) * 2002-01-08 2007-02-14 日東紡績株式会社 Glass fiber woven fabric, prepreg, and printed wiring board
JP2005158974A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Method for manufacturing multi-layer printed wiring board and sheet material for manufacturing the same
JP5263134B2 (en) * 2009-12-07 2013-08-14 住友ベークライト株式会社 Circuit board resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP5620093B2 (en) * 2009-12-18 2014-11-05 株式会社カネカ Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP5234195B2 (en) * 2011-01-24 2013-07-10 住友ベークライト株式会社 Prepreg, laminated board, printed wiring board, and semiconductor device
KR20140023980A (en) * 2011-04-14 2014-02-27 스미토모 베이클리트 컴퍼니 리미티드 Laminate sheet, circuit board, and semiconductor package

Also Published As

Publication number Publication date
TW201440585A (en) 2014-10-16
JP2014111361A (en) 2014-06-19
KR20140061246A (en) 2014-05-21
TWI544842B (en) 2016-08-01
CN103813612A (en) 2014-05-21
CN103813612B (en) 2018-03-09
JP6226232B2 (en) 2017-11-08
JP2018001764A (en) 2018-01-11
KR101794874B1 (en) 2017-11-07

Similar Documents

Publication Publication Date Title
JP6624573B2 (en) Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
KR101001529B1 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
TWI653141B (en) Laminated body, laminated board, multilayer laminated board, printed wiring board, and manufacturing method of laminated board (1)
KR20180135900A (en) Prepreg, metal clad laminate and printed wiring board
JP7281745B2 (en) Method for manufacturing multilayer printed wiring board
WO2013042752A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
WO2020121734A1 (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and printed wiring board
TW201334643A (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
KR101671120B1 (en) Method for manufacturing double-faced metal laminate, method for manufacturing printed circuit board, method for manufacturing multiple layered laminate, and method for manufacturing multiple layered printed circuit board
US10371612B2 (en) Prepreg, metal-clad laminated plate, wiring board, and method for measuring thermal stress of wiring board material
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP5887561B2 (en) Method for producing metal-clad laminate
JP6631902B2 (en) Circuit board manufacturing method
JP6816566B2 (en) Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
WO2019208402A1 (en) Layered plate, printed circuit board, multilayer printed circuit board, layered body, and layered plate production method
JP4784082B2 (en) Printed wiring board and manufacturing method thereof
KR102650250B1 (en) Support body, adhesive sheet, laminated structure, semiconductor device, and method for manufacturing printed wiring board
JP2021150609A (en) Method for manufacturing laminate, and method for manufacturing printed wiring board
KR20110071979A (en) Polyamic acid composition, method for preparing the same and polyimide metal clad laminate the same
JP2010187035A (en) Printed wiring board, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R151 Written notification of patent or utility model registration

Ref document number: 6624573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151