JP2018001764A - Metal-clad laminate and method for manufacturing the same, method for manufacturing printed wiring board, and method for manufacturing multilayer printed circuit board - Google Patents

Metal-clad laminate and method for manufacturing the same, method for manufacturing printed wiring board, and method for manufacturing multilayer printed circuit board Download PDF

Info

Publication number
JP2018001764A
JP2018001764A JP2017187041A JP2017187041A JP2018001764A JP 2018001764 A JP2018001764 A JP 2018001764A JP 2017187041 A JP2017187041 A JP 2017187041A JP 2017187041 A JP2017187041 A JP 2017187041A JP 2018001764 A JP2018001764 A JP 2018001764A
Authority
JP
Japan
Prior art keywords
metal
clad laminate
laminate
resin composition
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017187041A
Other languages
Japanese (ja)
Other versions
JP6624573B2 (en
Inventor
雅也 小山
Masaya Koyama
雅也 小山
稔 宇野
Minoru Uno
稔 宇野
岸野 光寿
Mitsutoshi Kishino
光寿 岸野
武士 北村
Takeshi Kitamura
武士 北村
博晴 井上
Hiroharu Inoue
博晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2018001764A publication Critical patent/JP2018001764A/en
Application granted granted Critical
Publication of JP6624573B2 publication Critical patent/JP6624573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal-clad laminate which reduces warpage and is less likely to cause a defect in a mounting step.SOLUTION: A metal-clad laminate 5 is obtained by heating and pressing a metallic foil 4 while overlapping a prepreg 3 obtained by impregnating a resin composition 2 containing a thermosetting resin with an opened glass cloth base material and semi-curing the resin composition, and curing the resin composition 2. A dimension of a laminate 6 after subjected to an etching treatment of removing the metallic foil 4 of the metal-clad laminate 5 increases compared to a dimension of the metal-clad laminate 5 before subjected to the etching treatment. The dimension of the laminate 6 after subjected to an aging treatment of heating at 150°C for 30 minutes after subjected to the etching treatment increases compared to the dimension of the metal-clad laminate 5 before subjected to the etching treatment.SELECTED DRAWING: Figure 1

Description

本発明は、プリント配線板等の製造に用いられる金属張積層板及びその製造方法、金属張積層板を用いて製造されるプリント配線板の製造方法並びに多層プリント配線板の製造方法に関するものである。   The present invention relates to a metal-clad laminate used for the production of printed wiring boards and the like, a method for producing the same, a method for producing a printed wiring board produced using the metal-clad laminate, and a method for producing a multilayer printed wiring board. .

従来、金属張積層板として、接着フィルムに金属箔を貼り合わせることにより得られるフレキシブル金属張積層板が知られている(例えば、特許文献1参照)。特に特許文献1に記載の接着フィルムは、ポリイミドフィルムに熱可塑性ポリイミドを含有する接着層を設けたものであって、上記のポリイミドフィルムが、前駆体であるポリアミド酸を部分的にイミド化したフィルムを加熱延伸処理して得られたものである。そして、このようにして寸法変化の発生を抑制できるというものである。   Conventionally, as a metal-clad laminate, a flexible metal-clad laminate obtained by bonding a metal foil to an adhesive film is known (for example, see Patent Document 1). In particular, the adhesive film described in Patent Document 1 is a film in which a polyimide film is provided with an adhesive layer containing a thermoplastic polyimide, and the polyimide film is a film obtained by partially imidizing a precursor polyamic acid. Is obtained by heating and stretching. Thus, the occurrence of dimensional change can be suppressed.

特開2004−338160号公報JP 2004-338160 A

上記のフレキシブル金属張積層板は、内部に基材を含まないものであるが、近年では、内部に基材を含むリジッド金属張積層板についても、小型化や薄型化に対応するため、フレキシブル金属張積層板と同様に寸法変化の発生を抑制することが求められている。なお、以下では内部に基材を含むリジッド金属張積層板を単に金属張積層板という。   The above-mentioned flexible metal-clad laminate does not include a base material inside, but recently, a rigid metal-clad laminate including a base material inside is also flexible metal in order to cope with downsizing and thinning. Similar to the tension laminate, it is required to suppress the occurrence of dimensional changes. Hereinafter, a rigid metal-clad laminate including a base material inside is simply referred to as a metal-clad laminate.

図6(b)は、一般的な金属張積層板のエッチング処理後及びエージング処理後の寸法変化率(+は伸び、−は縮み)を示すものである。エッチング処理は、導体パターンの形成工程に相当し、エージング処理は、導体パターン保護のためのレジスト形成時の加熱工程に相当する。図6(b)に示すように、成形後の寸法を基準とした場合、エッチング処理後の寸法は若干縮み、さらにエージング処理後の寸法は大幅に縮む。このように、一般的に導体パターンを形成してから大幅に縮むと反りが大きくなる傾向があり、反りが大きくなると部品実装工程で不具合が発生する可能性が高くなる。昨今、基板の小型化や薄型化が進み、実装が難しくなる中、基板に対する寸法変化の抑制が要望されるようになってきた。   FIG. 6B shows a dimensional change rate (+ is elongation and − is shrinkage) after etching and aging of a general metal-clad laminate. The etching process corresponds to a conductor pattern forming process, and the aging process corresponds to a heating process when forming a resist for protecting the conductor pattern. As shown in FIG. 6B, when the dimension after molding is used as a reference, the dimension after the etching process slightly shrinks, and the dimension after the aging process shrinks significantly. As described above, generally, when a conductor pattern is formed and then greatly contracted, the warpage tends to increase, and when the warpage increases, the possibility of occurrence of a defect in the component mounting process increases. In recent years, with the progress of miniaturization and thinning of substrates and difficulty in mounting, suppression of dimensional changes with respect to the substrate has been demanded.

本発明は上記の点に鑑みてなされたものであり、反りを小さくして実装工程での不具合を発生しにくくすることができる金属張積層板及びその製造方法、プリント配線板の製造方法並びに多層プリント配線板の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above points, a metal-clad laminate capable of reducing warpage and making it difficult to cause defects in the mounting process, a method for manufacturing the same, a method for manufacturing a printed wiring board, and a multilayer It aims at providing the manufacturing method of a printed wiring board.

本発明に係る金属張積層板は、熱硬化性樹脂を含有する樹脂組成物が開繊ガラスクロス基材に含浸されて半硬化したプリプレグに、金属箔が重ねられて加熱加圧されることにより前記樹脂組成物が硬化した金属張積層板であって、前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加する。   The metal-clad laminate according to the present invention is obtained by laminating a metal foil on a prepreg that is semi-cured by impregnating a spread glass cloth substrate with a resin composition containing a thermosetting resin, and is heated and pressurized. A metal-clad laminate in which the resin composition is cured, and the dimension of the laminate after performing the etching treatment to remove the metal foil of the metal-clad laminate is the metal-clad laminate before the etching treatment is performed. The dimension of the laminated sheet after the etching process is performed, and after the etching process is performed, the dimension of the laminated sheet after performing the aging process of heating at 150 ° C. for 30 minutes is the dimension of the metal-clad laminate before the etching process. Increased compared to

本発明に係る金属張積層板は、熱硬化性樹脂を含有する樹脂組成物が開繊ガラスクロス基材に含浸されて半硬化したプリプレグに、金属箔が重ねられて加熱加圧されることにより前記樹脂組成物が硬化した金属張積層板であって、前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する。   The metal-clad laminate according to the present invention is obtained by laminating a metal foil on a prepreg that is semi-cured by impregnating a spread glass cloth substrate with a resin composition containing a thermosetting resin, and is heated and pressurized. A metal-clad laminate in which the resin composition is cured, and the dimension of the laminate after performing the etching treatment to remove the metal foil of the metal-clad laminate is the metal-clad laminate before the etching treatment is performed. The size of the laminated board after the etching process is further increased to the dimension of the laminated board after performing the aging process of heating at 150 ° C. for 30 minutes after the etching process. Compared to decrease.

本発明に係る金属張積層板の製造方法は、熱硬化性樹脂を含有する樹脂組成物を開繊ガラスクロス基材に含浸させる工程と、前記樹脂組成物を半硬化させてプリプレグを形成する工程と、前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる工程と、を含む金属張積層板の製造方法であって、前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加する。   The method for producing a metal-clad laminate according to the present invention includes a step of impregnating a spread glass cloth substrate with a resin composition containing a thermosetting resin, and a step of semi-curing the resin composition to form a prepreg. And a step of curing the resin composition by heating and pressurizing the metal foil on the prepreg, and removing the metal foil of the metal-clad laminate An aging treatment in which the dimension of the laminate after the etching process is increased as compared with the dimension of the metal-clad laminate before the etching process is performed, followed by heating at 150 ° C. for 30 minutes after the etching process is performed. The dimension of the laminated board after performing increases compared with the dimension of the metal-clad laminated board before performing the said etching process.

本発明に係る金属張積層板の製造方法は、熱硬化性樹脂を含有する樹脂組成物を開繊ガラスクロス基材に含浸させる工程と、前記樹脂組成物を半硬化させてプリプレグを形成する工程と、前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる工程と、を含む金属張積層板の製造方法であって、前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する。   The method for producing a metal-clad laminate according to the present invention includes a step of impregnating a spread glass cloth substrate with a resin composition containing a thermosetting resin, and a step of semi-curing the resin composition to form a prepreg. And a step of curing the resin composition by heating and pressurizing the metal foil on the prepreg, and removing the metal foil of the metal-clad laminate An aging treatment in which the dimension of the laminate after the etching process is increased as compared with the dimension of the metal-clad laminate before the etching process is performed, followed by heating at 150 ° C. for 30 minutes after the etching process is performed. The dimension of the laminated board after performing decreases compared with the dimension of the laminated board after performing the said etching process.

本発明に係るプリント配線板の製造方法は、ガラスクロス基材に樹脂組成物を含浸し硬化された絶縁層の両面又は片面に導体パターンが形成されたプリント配線板の製造方法であって、前記金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む。   A method for producing a printed wiring board according to the present invention is a method for producing a printed wiring board in which a conductive pattern is formed on both sides or one side of an insulating layer impregnated with a resin composition in a glass cloth substrate and cured. A step of forming the conductor pattern by removing unnecessary portions of the metal foil of the metal-clad laminate.

本発明に係る多層プリント配線板の製造方法は、導体パターンの層を3層以上有する多層プリント配線板の製造方法であって、前記金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む。   A method for producing a multilayer printed wiring board according to the present invention is a method for producing a multilayer printed wiring board having three or more layers of conductor patterns, by removing unnecessary portions of the metal foil of the metal-clad laminate. And a step of forming the conductor pattern.

本発明によれば、反りを小さくして実装工程での不具合を発生しにくくすることができるものである。   According to the present invention, it is possible to reduce the warpage and make it difficult to cause defects in the mounting process.

本発明に係る金属張積層板の一例を示すものであり、(a)は両面金属張積層板の断面図、(b)は片面金属張積層板の断面図、(c)は金属箔を全面除去した積層板の断面図、(d)は内層回路入りの金属張積層板の断面図、(e)は金属箔を全面除去した内層回路入りの積層板である。1 shows an example of a metal-clad laminate according to the present invention, where (a) is a cross-sectional view of a double-sided metal-clad laminate, (b) is a cross-sectional view of a single-sided metal-clad laminate, and (c) is an entire surface of a metal foil. Sectional view of the removed laminated board, (d) is a sectional view of the metal-clad laminated board with the inner layer circuit, and (e) is a laminated board with the inner layer circuit from which the metal foil has been completely removed. 両面金属張積層板の製造工程の一例を示すものであり、(a)(b)は断面図である。An example of the manufacturing process of a double-sided metal clad laminated board is shown, (a) (b) is sectional drawing. 片面金属張積層板の製造工程の一例を示すものであり、(a)(b)は断面図である。An example of the manufacturing process of a single-sided metal-clad laminated board is shown, (a) (b) is sectional drawing. 内層回路入りの金属張積層板の製造工程の一例を示すものであり、(a)〜(c)は断面図である。An example of the manufacturing process of the metal-clad laminated board containing an inner layer circuit is shown, (a)-(c) is sectional drawing. 寸法変化率測定用試料の一例を示す平面図である。It is a top view which shows an example of the sample for a dimensional change rate measurement. (a)は本発明に係る金属張積層板のエッチング処理後及びエージング処理後の寸法変化率の一例を示すグラフであり、(b)は一般的な金属張積層板のエッチング処理後及びエージング処理後の寸法変化率の一例を示すグラフである。(A) is a graph which shows an example of the dimensional change rate after the etching process of the metal-clad laminated board which concerns on this invention, and after an aging process, (b) is after the etching process of an ordinary metal-clad laminated board, and an aging process. It is a graph which shows an example of the subsequent dimensional change rate.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明に係る金属張積層板5は、図2〜図4に示すように、金属箔4をプリプレグ3の両面又は片面に重ねて加熱加圧して形成され、プリント配線板用材料として用いられる。金属張積層板5において、プリプレグ3は硬化して、電気的な絶縁性を有する絶縁層30を形成している。図1(a)は両面金属張積層板を示す。図1(b)は片面金属張積層板を示す。図1(c)は金属張積層板5の金属箔4を全面除去した後の積層板6を示す。図1(d)は絶縁層30の内部に内層回路7を有する内層回路7入りの金属張積層板5を示す。図1(e)は内層回路7入りの金属張積層板5の金属箔4を全面除去した後の内層回路7入りの積層板6を示す。   As shown in FIGS. 2 to 4, the metal-clad laminate 5 according to the present invention is formed by heating and pressing the metal foil 4 on both sides or one side of the prepreg 3 and used as a printed wiring board material. In the metal-clad laminate 5, the prepreg 3 is cured to form an insulating layer 30 having electrical insulation. FIG. 1 (a) shows a double-sided metal-clad laminate. FIG. 1B shows a single-sided metal-clad laminate. FIG. 1C shows the laminate 6 after the metal foil 4 of the metal-clad laminate 5 has been completely removed. FIG. 1 (d) shows the metal-clad laminate 5 with the inner layer circuit 7 having the inner layer circuit 7 inside the insulating layer 30. FIG. 1 (e) shows the laminated board 6 with the inner layer circuit 7 after the metal foil 4 of the metal-clad laminated board 5 with the inner layer circuit 7 is completely removed.

ここで、金属箔4としては、例えば、銅箔、アルミニウム箔、ステンレス箔等を用いることができる。金属箔4の厚さは例えば2〜70μmであるが、これに限定されるものではない。   Here, as the metal foil 4, for example, a copper foil, an aluminum foil, a stainless steel foil or the like can be used. Although the thickness of the metal foil 4 is 2-70 micrometers, for example, it is not limited to this.

またプリプレグ3は、樹脂組成物2を基材1に含浸させると共に、これを半硬化状態(Bステージ状態)となるまで加熱乾燥することによって形成されている。   The prepreg 3 is formed by impregnating the base material 1 with the resin composition 2 and heating and drying it until it is in a semi-cured state (B stage state).

上記の樹脂組成物2は、熱硬化性樹脂及びフィラーを含有することが好ましい。   It is preferable that said resin composition 2 contains a thermosetting resin and a filler.

ここで、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、シアネート樹脂、メラミン樹脂、イミド樹脂等を用いることができる。特にエポキシ樹脂としては、例えば、多官能エポキシ樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等を用いることができる。   Here, as a thermosetting resin, an epoxy resin, a phenol resin, cyanate resin, a melamine resin, an imide resin etc. can be used, for example. In particular, as the epoxy resin, for example, a polyfunctional epoxy resin, a bisphenol type epoxy resin, a novolac type epoxy resin, a biphenyl type epoxy resin, or the like can be used.

またフィラーとしては、例えば、シリカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルク、アルミナ等を用いることができる。   Examples of the filler that can be used include silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, and alumina.

またフィラーは、樹脂組成物2全量に対して50〜80質量%含有されていることが好ましい。このように、フィラーの含有量が50質量%以上であることによって、金属張積層板5の成形後からエッチング処理後までの寸法変化と、エッチング処理後からエージング処理後までの寸法変化とをより小さくすることができるものである。またフィラーの含有量が80質量%以下であれば、粘度の上昇を抑制しながらフィラーを樹脂組成物2に含有させることができるものである。   Moreover, it is preferable that 50-80 mass% of fillers are contained with respect to the resin composition 2 whole quantity. Thus, when the content of the filler is 50% by mass or more, the dimensional change from after forming the metal-clad laminate 5 to after the etching treatment and the dimensional change from after the etching treatment to after the aging treatment are further increased. It can be made smaller. Moreover, if content of a filler is 80 mass% or less, a resin composition 2 can be made to contain a filler, suppressing a raise of a viscosity.

また樹脂組成物2は、硬化剤及び硬化促進剤を含有してもよい。   Moreover, the resin composition 2 may contain a hardening | curing agent and a hardening accelerator.

ここで、硬化剤としては、例えば、フェノール系硬化剤、ジシアンジアミド硬化剤等を用いることができる。   Here, as a hardening | curing agent, a phenol type hardening | curing agent, a dicyandiamide hardening | curing agent, etc. can be used, for example.

また硬化促進剤としては、例えば、イミダゾール類、フェノール化合物、アミン類、有機ホスフィン類等を用いることができる。   Moreover, as a hardening accelerator, imidazoles, a phenol compound, amines, organic phosphines, etc. can be used, for example.

そして、上記の熱硬化性樹脂のほか、必要に応じてフィラー、硬化剤、硬化促進剤を配合することによって樹脂組成物2を調製することができ、さらにこれを溶剤で希釈することによって樹脂組成物2のワニスを調製することができる。溶剤としては、例えば、メチルエチルケトン、トルエン、スチレン、メトキシプロパノール等を用いることができる。   In addition to the above thermosetting resin, if necessary, the resin composition 2 can be prepared by blending a filler, a curing agent, and a curing accelerator, and the resin composition is further diluted with a solvent. A varnish of product 2 can be prepared. As the solvent, for example, methyl ethyl ketone, toluene, styrene, methoxypropanol or the like can be used.

基材1としては、例えば、ガラスクロス、ガラスペーパー、ガラスマット等のように無機繊維からなるものや、アラミドクロス等のように有機繊維からなるものを用いることができる。基材1の厚さは例えば20〜200μmであるが、これに限定されるものではない。   As the base material 1, for example, a material made of inorganic fibers such as glass cloth, glass paper, glass mat, or a material made of organic fibers such as aramid cloth can be used. Although the thickness of the base material 1 is 20-200 micrometers, for example, it is not limited to this.

プリプレグ3を製造するにあたっては、まず基材1に樹脂組成物2を含浸させる。次にこれを半硬化状態となるまで加熱乾燥することによってプリプレグ3を得ることができる。このときの加熱温度は例えば100〜200℃、加熱時間は例えば1〜10分間であるが、これに限定されるものではない。またプリプレグ3全量に対して樹脂組成物2の含有量(レジンコンテント)は40〜75質量%であることが好ましい。   In manufacturing the prepreg 3, first, the base material 1 is impregnated with the resin composition 2. Next, the prepreg 3 can be obtained by drying by heating until it is in a semi-cured state. The heating temperature at this time is, for example, 100 to 200 ° C., and the heating time is, for example, 1 to 10 minutes, but is not limited thereto. Moreover, it is preferable that content (resin content) of the resin composition 2 is 40-75 mass% with respect to the prepreg 3 whole quantity.

そして、本発明に係る金属張積層板5は、次のようにして形成されている。   The metal-clad laminate 5 according to the present invention is formed as follows.

すなわち、両面金属張積層板である金属張積層板5は、図2(a)(b)に示すように、上記のプリプレグ3の両面に金属箔4を積層して形成されている。この場合、1枚のプリプレグ3の両面に金属箔4を積層して成形してもよいし、複数枚のプリプレグ3を重ね、この両面に金属箔4を積層して成形してもよいが、金属張積層板5の厚さは0.2mm以下(下限は0.015mm)であることが好ましい。これによりプリント配線板の小型化及び薄型化を図ることができるものである。   That is, the metal-clad laminate 5 which is a double-sided metal-clad laminate is formed by laminating the metal foil 4 on both sides of the prepreg 3 as shown in FIGS. In this case, the metal foil 4 may be laminated and molded on both sides of one prepreg 3, or a plurality of prepregs 3 may be laminated and the metal foil 4 may be laminated on both sides. The thickness of the metal-clad laminate 5 is preferably 0.2 mm or less (the lower limit is 0.015 mm). As a result, the printed wiring board can be reduced in size and thickness.

また、片面金属張積層板である金属張積層板5は、図3(a)(b)に示すように、上記のプリプレグ3の片面に金属箔4を積層して形成されている。この場合、1枚のプリプレグ3の片面に金属箔4を積層して成形してもよいし、複数枚のプリプレグ3を重ね、この片面に金属箔4を積層して成形してもよいが、金属張積層板5の厚さは0.2mm以下(下限は0.015mm)であることが好ましい。これによりプリント配線板の小型化及び薄型化を図ることができるものである。なお、両面金属張積層板の片面の金属箔4が全面除去されて片面金属張積層板が形成されていてもよい。   Moreover, the metal-clad laminate 5 which is a single-sided metal-clad laminate is formed by laminating a metal foil 4 on one side of the prepreg 3 as shown in FIGS. In this case, the metal foil 4 may be laminated and formed on one side of one prepreg 3, or a plurality of prepregs 3 may be laminated and the metal foil 4 may be laminated and formed on one side. The thickness of the metal-clad laminate 5 is preferably 0.2 mm or less (the lower limit is 0.015 mm). As a result, the printed wiring board can be reduced in size and thickness. The single-sided metal-clad laminate may be formed by removing the entire surface of the metal foil 4 on one side of the double-sided metal-clad laminate.

また、内層回路7入りの金属張積層板5は、まず図4(a)に示すコア材8を製造し、次に図4(b)(c)に示すように、上記のプリプレグ3の一方の面にコア材8、他方の面に金属箔4を積層して形成されている。コア材8は、例えば、両面金属張積層板の片面にサブトラクティブ法により導体パターンを設けて製造したり、あるいは片面金属張積層板の金属箔4の無い面にアディティブ法により導体パターンを設けて製造したりすることができる。このようにして設けられた導体パターンが絶縁層30内に埋め込まれて内層回路7となる。また上記の場合、コア材8と金属箔4の間に挟まれるプリプレグ3は1枚でもよいし、複数枚でもよいが、内層回路7入りの金属張積層板5の厚さは0.2mm以下(下限は0.015mm)であることが好ましい。これによりプリント配線板の小型化及び薄型化を図ることができるものである。   Further, the metal-clad laminate 5 with the inner layer circuit 7 is manufactured by first manufacturing the core material 8 shown in FIG. 4A, and then, as shown in FIGS. 4B and 4C, one of the prepregs 3 described above. The core material 8 is formed on this surface, and the metal foil 4 is laminated on the other surface. The core material 8 is manufactured, for example, by providing a conductor pattern on one side of a double-sided metal-clad laminate by a subtractive method, or by providing a conductor pattern on a surface without a metal foil 4 of a single-sided metal-clad laminate. Or can be manufactured. The conductor pattern thus provided is embedded in the insulating layer 30 to form the inner layer circuit 7. In the above case, the prepreg 3 sandwiched between the core material 8 and the metal foil 4 may be one sheet or a plurality of sheets, but the thickness of the metal-clad laminate 5 containing the inner layer circuit 7 is 0.2 mm or less. (The lower limit is preferably 0.015 mm). As a result, the printed wiring board can be reduced in size and thickness.

また上記の各積層成形は、例えば、多段真空プレス、ダブルベルトプレス、線圧ロール、真空ラミネーター等を用いて加熱加圧して行うことができる。この場合の加熱加圧時の昇温速度は200℃/分以上であることが好ましい。これにより、後述の図6(a)のような特有の寸法変化の挙動を示す金属張積層板5を容易に得ることができるものである。昇温速度の上限は350℃/分であるが、これに限定されるものではない。また積層成形時のピーク温度は140〜350℃、成形圧力は0.5〜6.0MPa、成形時間は1〜240分間であることが好ましい。   Moreover, each said lamination molding can be performed by heat-pressing using a multistage vacuum press, a double belt press, a linear pressure roll, a vacuum laminator etc., for example. In this case, the rate of temperature increase during heating and pressing is preferably 200 ° C./min or more. Thereby, the metal-clad laminated board 5 which shows the characteristic dimensional change behavior like FIG. 6 (a) mentioned later can be obtained easily. The upper limit of the heating rate is 350 ° C./min, but is not limited to this. The peak temperature during lamination molding is preferably 140 to 350 ° C., the molding pressure is 0.5 to 6.0 MPa, and the molding time is preferably 1 to 240 minutes.

上記のようにして製造された金属張積層板5については、寸法変化の挙動が次のようになる。図6(a)は、本発明に係る金属張積層板5のエッチング処理後及びエージング処理後の寸法変化率(+は伸び、−は縮み)を示すものである。   About the metal-clad laminated board 5 manufactured as mentioned above, the behavior of a dimensional change is as follows. FIG. 6A shows the dimensional change rate (+ is stretched and − is shrunk) after the etching process and after the aging process of the metal-clad laminate 5 according to the present invention.

図6(a)に示すように、成形後の金属張積層板5の寸法、すなわちエッチング処理を行う前の金属張積層板5の寸法を基準とした場合、エッチング処理を行った後の積層板6の寸法は増加しやすい。これにより積層板6の内部のひずみを除去することができるものである。上記のエッチング処理は、導体パターンの形成工程に相当するので、導体パターンを形成する際に積層板6の内部のひずみも除去可能であることを意味する。このときの寸法変化率は、例えばJIS C 6481に準じて算出することができる。まずエッチング処理前の金属張積層板5の表面の任意の2点間の間隔を測定してこれをLとする。次に塩化第二銅等を主成分とするエッチング液を用いて金属張積層板5の金属箔4を全面除去することによってエッチング処理を行った後、上記の2点間の間隔を再度測定してこれをLとする。そして、次式(1)によってエッチング処理後の寸法変化率Sを算出することができる。 As shown in FIG. 6A, when the dimension of the metal-clad laminate 5 after forming, that is, the dimension of the metal-clad laminate 5 before performing the etching process is used as a reference, the laminate after the etching process is performed. The size of 6 tends to increase. Thereby, the distortion inside the laminated board 6 can be removed. Since the etching process corresponds to a conductor pattern forming process, it means that the strain inside the laminated plate 6 can be removed when the conductor pattern is formed. The dimensional change rate at this time can be calculated according to, for example, JIS C 6481. First, an interval between any two points on the surface of the metal-clad laminate 5 before the etching treatment is measured, and this is defined as L0 . Next, an etching process was performed by removing the entire surface of the metal foil 4 of the metal-clad laminate 5 using an etchant mainly composed of cupric chloride, and the distance between the two points was measured again. This is referred to as L 1 Te. Then, it is possible by the following equation (1) to calculate the dimensional change rate S 1 after the etching treatment.

=(L−L)×100/L(%)…(1)
上記の式(1)によって、エッチング処理後の積層板6の寸法変化率を具体的に算出すると、本発明に係る金属張積層板5については、上記の寸法変化率は0%を超えて0.1%以下となりやすい。このように、最小限の寸法変化で積層板6の内部のひずみを除去することができるものである。
S 1 = (L 1 −L 0 ) × 100 / L 0 (%) (1)
When the dimensional change rate of the laminated plate 6 after the etching process is specifically calculated by the above formula (1), the dimensional change rate of the metal-clad laminate 5 according to the present invention exceeds 0% and is 0. It tends to be less than 1%. Thus, the distortion inside the laminated board 6 can be removed with a minimum dimensional change.

また図6(a)に示すように、エッチング処理後の積層板6の寸法を基準とした場合、エッチング処理後にさらにエージング処理を行った後の積層板6の寸法はほとんど変化しない。このときの寸法変化率も、例えばJIS C 6481に準じて算出することができる。エッチング処理後の積層板6を150℃で30分間加熱することによってエージング処理を行った後、上記の2点間の間隔を再度測定してこれをLとする。そして、次式(2)によってエージング処理後の寸法変化率Sを算出することができる。 Further, as shown in FIG. 6A, when the dimension of the laminated board 6 after the etching process is used as a reference, the dimension of the laminated board 6 after the aging process after the etching process hardly changes. The dimensional change rate at this time can also be calculated in accordance with, for example, JIS C 6481. After the aging treatment by heating for 30 minutes the laminate 6 after the etching treatment at 0.99 ° C., which is referred to as L 2 by measuring the distance between two points in the re. Then, it is possible to calculate the dimensional change rate S 2 after aging treatment by the following equation (2).

=(L−L)×100/L(%)…(2)
上記の式(2)によって、エージング処理後の積層板6の寸法変化率を具体的に算出すると、本発明に係る金属張積層板5については、上記の寸法変化率は±0.03%の範囲内となる。このように、本発明に係る金属張積層板5は、エッチング処理後にエージング処理を行っても寸法がほとんど変化しない。このエージング処理は、導体パターン保護のためのレジスト形成時の加熱工程に相当するが、このような加熱工程終了後において反りを小さくすることができ、その後の部品の実装工程での不具合を発生しにくくすることができるものである。
S 2 = (L 2 −L 1 ) × 100 / L 1 (%) (2)
When the dimensional change rate of the laminate 6 after the aging treatment is specifically calculated by the above formula (2), the dimensional change rate of the metal-clad laminate 5 according to the present invention is ± 0.03%. Within range. Thus, even if the metal-clad laminate 5 according to the present invention is subjected to an aging process after the etching process, the dimensions hardly change. This aging treatment corresponds to a heating process at the time of forming a resist for protecting a conductor pattern, but the warpage can be reduced after the completion of such a heating process, resulting in problems in the subsequent component mounting process. It can be made difficult.

そして、本発明に係るプリント配線板は、上記の金属張積層板5の両面又は片面に導体パターンを設けて形成されている。導体パターンの形成は、例えば、サブトラクティブ法、アディティブ法等により行うことができる。   The printed wiring board according to the present invention is formed by providing a conductor pattern on both sides or one side of the metal-clad laminate 5. The conductor pattern can be formed by, for example, a subtractive method or an additive method.

また本発明に係る多層プリント配線板は、上記のプリント配線板を用いて、導体パターンの層を少なくとも3層以上設けて形成されている。プリント配線板は、通常、導体パターンの層が2層以下であるが、次のようにして導体パターンの層が3層以上ある多層プリント配線板を製造することができる。   The multilayer printed wiring board according to the present invention is formed by providing at least three conductor pattern layers using the above-described printed wiring board. The printed wiring board usually has two or less conductor pattern layers, but a multilayer printed wiring board having three or more conductor pattern layers can be produced as follows.

すなわち、図示省略しているが、本発明に係る多層プリント配線板は、上記のプリント配線板の両面又は片面に上記のプリプレグ3を介して金属箔4を積層し、この金属箔4の不要部分を除去して導体パターンの層を設けて形成することができる。この場合、上記のプリプレグ3を用いることが好ましいが、その他のプリプレグ3を用いてもよい。また、金属箔4としては、上記と同様のものを用いることができる。積層成形及び成形条件は、上記の金属張積層板5を製造する場合と同様である。導体パターンの形成は、プリント配線板を製造する場合と同様に行うことができる。すなわち、金属箔4のある場合はサブトラクティブ法により導体パターンの層を形成することができ、金属箔4のない場合はアディティブ法により導体パターンの層を形成することができる。また、図1(d)に示す内層回路7入りの金属張積層板5の両面にサブトラクティブ法により導体パターンの層を形成して、多層プリント配線板を製造してもよい。なお、多層プリント配線板において、導体パターンの層数は特に限定されない。   That is, although not shown in the drawings, the multilayer printed wiring board according to the present invention has the metal foil 4 laminated on both sides or one side of the printed wiring board via the prepreg 3, and unnecessary portions of the metal foil 4. And a conductor pattern layer can be formed. In this case, the prepreg 3 is preferably used, but other prepregs 3 may be used. Moreover, as the metal foil 4, the thing similar to the above can be used. Lamination molding and molding conditions are the same as in the case of manufacturing the metal-clad laminate 5 described above. The conductor pattern can be formed in the same manner as when a printed wiring board is manufactured. That is, when the metal foil 4 is present, the conductor pattern layer can be formed by a subtractive method, and when the metal foil 4 is not present, the conductor pattern layer can be formed by an additive method. Alternatively, a multilayer printed wiring board may be manufactured by forming a conductor pattern layer on both surfaces of the metal-clad laminate 5 containing the inner layer circuit 7 shown in FIG. 1D by a subtractive method. In the multilayer printed wiring board, the number of layers of the conductor pattern is not particularly limited.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(実施例1)
熱硬化性樹脂として、DIC株式会社製「HP9500」及び「N540」を用いた。
Example 1
“HP9500” and “N540” manufactured by DIC Corporation were used as thermosetting resins.

またフィラーとして、シリカである株式会社アドマテックス製「YC100C−MLE」及び「S0−25R」を用いた。   Further, “YC100C-MLE” and “S0-25R” manufactured by Admatechs Co., Ltd., which are silica, were used as fillers.

また硬化剤として、フェノール性硬化剤であるDIC株式会社製「TD2090」を用いた。   As a curing agent, “TD2090” manufactured by DIC Corporation, which is a phenolic curing agent, was used.

また硬化促進剤として、イミダゾールである四国化成工業株式会社製「2E4MZ」を用いた。   In addition, “2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd., which is imidazole, was used as a curing accelerator.

また基材1として、ガラスクロスである日東紡績株式会社製「1037クロス」(厚さ29μm)を用いた。   Further, as the substrate 1, “1037 cloth” (thickness 29 μm) manufactured by Nitto Boseki Co., Ltd., which is a glass cloth, was used.

そして、上記の熱硬化性樹脂(「HP9500」:46.51質量部、「N540」:19.94質量部)、フィラー(「YC100C−MLE」:50質量部、「S0−25R」:250質量部)、硬化剤(「TD2090」:33.55質量部)、硬化促進剤(「2E4MZ」:0.05質量部)を配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物2のワニスを調製した。   And said thermosetting resin ("HP9500": 46.51 mass parts, "N540": 19.94 mass parts), filler ("YC100C-MLE": 50 mass parts, "S0-25R": 250 mass) Part), a curing agent (“TD2090”: 33.55 parts by mass), a curing accelerator (“2E4MZ”: 0.05 parts by mass), and further diluted with a solvent (methyl ethyl ketone). A varnish was prepared.

次に、上記のワニスを基材1に含浸させると共に、これを半硬化状態となるまで150℃で3分間、乾燥炉内において加熱乾燥することによってプリプレグ3を製造した。このプリプレグ3全量に対して樹脂組成物2の含有量(レジンコンテント)は59質量%である。   Next, the base material 1 was impregnated with the above varnish, and the prepreg 3 was produced by heating and drying in a drying furnace at 150 ° C. for 3 minutes until it became a semi-cured state. The content (resin content) of the resin composition 2 is 59% by mass with respect to the total amount of the prepreg 3.

次に、上記のプリプレグ3を2枚重ね、この両面に金属箔4として銅箔(三井金属鉱業株式会社製「3EC−VLP」、500mm×500mm×厚さ18μm)を積層して成形することによって、金属張積層板5として図1(a)に示すような両面金属張積層板(厚さ0.096mm)を製造した。上記の積層成形は、多段真空プレスを用いて加熱加圧して行った。加熱加圧時の昇温速度は250℃/分、ピーク温度は250℃、成形圧力は3.9MPa(40kgf/cm)、成形時間は5分間である。 Next, two prepregs 3 are stacked, and copper foil ("3EC-VLP" manufactured by Mitsui Metal Mining Co., Ltd., 500 mm x 500 mm x thickness 18 m) is laminated and molded on both sides as metal foil 4 As the metal-clad laminate 5, a double-sided metal-clad laminate (thickness: 0.096 mm) as shown in FIG. The above lamination molding was performed by heating and pressing using a multistage vacuum press. The heating rate during heating and pressing is 250 ° C./min, the peak temperature is 250 ° C., the molding pressure is 3.9 MPa (40 kgf / cm 2 ), and the molding time is 5 minutes.

次に、上記の金属張積層板5を50mm四方に切り出し、これを寸法変化率測定用試料として用い、この試料の表面上の直交する2方向(X方向及びY方向)における任意の2点間の間隔を測定してこれらをそれぞれL(X)及びL(Y)とした(図5参照)。 Next, the metal-clad laminate 5 is cut into a 50 mm square, and this is used as a sample for measuring the dimensional change rate, and between any two points in two orthogonal directions (X direction and Y direction) on the surface of the sample. Were measured as L 0 (X) and L 0 (Y), respectively (see FIG. 5).

次に、塩化第二銅等を主成分とするエッチング液を用いて金属張積層板5の金属箔4を全面除去することによってエッチング処理を行った後、上記の2方向における2点間の間隔を再度測定してこれらをそれぞれL(X)及びL(Y)とした。そして、上記の式(1)によってエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the etching process is performed by removing the entire surface of the metal foil 4 of the metal-clad laminate 5 using an etchant mainly composed of cupric chloride and the like, and then the distance between the two points in the above two directions. Were measured again to be L 1 (X) and L 1 (Y), respectively. Then, to calculate the rate of dimensional change after etching S 1 (X) and S 1 (Y) by the above equation (1). The results are shown below.

(X)=+0.03%
(Y)=+0.03%
次に、エッチング処理後の積層板6を150℃で30分間加熱することによってエージング処理を行った後、上記の2方向における2点間の間隔を再度測定してこれらをそれぞれL(X)及びL(Y)とした。そして、上記の式(2)によってエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.03%
S 1 (Y) = + 0.03%
Next, after performing the aging treatment by heating the laminated plate 6 after the etching treatment at 150 ° C. for 30 minutes, the distance between the two points in the two directions is measured again, and these are respectively expressed as L 2 (X) And L 2 (Y). Then, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated by the above formula (2). The results are shown below.

(X)=+0.01%
(Y)=+0.01%
そして、上記の積層板6を定盤上に凸面を上向きにして無荷重の状態に置き、JIS C 6481に準じて静置法により積層板6の最大反り量を測定した。その結果、最大反り量は1.1mmであった。
S 2 (X) = + 0.01%
S 2 (Y) = + 0.01%
Then, the laminate 6 was placed on a surface plate in a no-load state with the convex surface facing upward, and the maximum warpage amount of the laminate 6 was measured by a stationary method according to JIS C 6481. As a result, the maximum warpage amount was 1.1 mm.

(実施例2)
熱硬化性樹脂として、日本化薬株式会社製「EPPN502H」を用いた。
(Example 2)
“EPPN502H” manufactured by Nippon Kayaku Co., Ltd. was used as the thermosetting resin.

またフィラーとして、シリカである株式会社アドマテックス製「YC100C−MLE」、「S0−25R」及び「S0−C6」を用いた。   Further, “YC100C-MLE”, “S0-25R” and “S0-C6” manufactured by Admatechs Co., Ltd., which are silica, were used as fillers.

また硬化剤として、フェノール性硬化剤である明和化成株式会社製「MEH7600」を用いた。   In addition, “MEH7600” manufactured by Meiwa Kasei Co., Ltd., which is a phenolic curing agent, was used as the curing agent.

また硬化促進剤として、イミダゾールである四国化成工業株式会社製「2E4MZ」を用いた。   In addition, “2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd., which is imidazole, was used as a curing accelerator.

また基材1として、ガラスクロスである日東紡績株式会社製「1037クロス」(厚さ29μm)を用いた。   Further, as the substrate 1, “1037 cloth” (thickness 29 μm) manufactured by Nitto Boseki Co., Ltd., which is a glass cloth, was used.

そして、上記の熱硬化性樹脂(「EPPN502H」:62.83質量部)、フィラー(「YC100C−MLE」:50質量部、「S0−25R」:100質量部、「S0−C6」:50質量部)、硬化剤(「MEH7600」:37.17質量部)、硬化促進剤(「2E4MZ」:0.05質量部)を配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物2のワニスを調製した。   And said thermosetting resin ("EPPN502H": 62.83 mass parts), filler ("YC100C-MLE": 50 mass parts, "S0-25R": 100 mass parts, "S0-C6": 50 masses) Part), a curing agent ("MEH7600": 37.17 parts by mass), a curing accelerator ("2E4MZ": 0.05 parts by mass), and further diluted with a solvent (methyl ethyl ketone) A varnish was prepared.

次に、上記のワニスを用いるようにした以外は、実施例1と同様にしてプリプレグ3(レジンコンテント:59質量%)を製造し、このプリプレグ3を用いて金属張積層板5を製造した。   Next, a prepreg 3 (resin content: 59 mass%) was produced in the same manner as in Example 1 except that the above varnish was used, and a metal-clad laminate 5 was produced using the prepreg 3.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.02%
(Y)=+0.02%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.02%
S 1 (Y) = + 0.02%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.03%
(Y)=+0.03%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は1.3mmであった。
S 2 (X) = + 0.03%
S 2 (Y) = + 0.03%
And the maximum curvature amount of the laminated board 6 was measured like Example 1. FIG. As a result, the maximum warpage amount was 1.3 mm.

(実施例3)
基材1として、ガラスクロスである日東紡績株式会社製「1036クロス」(厚さ28μm)を用いた。
(Example 3)
As the base material 1, “1036 cloth” (28 μm thickness) manufactured by Nitto Boseki Co., Ltd., which is a glass cloth, was used.

実施例1と同様にして樹脂組成物2のワニスを調製した。   A varnish of the resin composition 2 was prepared in the same manner as in Example 1.

次に、上記のワニス及び基材1を用いるようにした以外は、実施例1と同様にしてプリプレグ3(レジンコンテント:51質量%)を製造し、このプリプレグ3を用いて金属張積層板5を製造した。   Next, a prepreg 3 (resin content: 51 mass%) was produced in the same manner as in Example 1 except that the varnish and the substrate 1 were used, and the metal-clad laminate 5 was produced using the prepreg 3. Manufactured.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.03%
(Y)=+0.03%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.03%
S 1 (Y) = + 0.03%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.02%
(Y)=+0.01%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は0.9mmであった。
S 2 (X) = + 0.02%
S 2 (Y) = + 0.01%
And the maximum curvature amount of the laminated board 6 was measured like Example 1. FIG. As a result, the maximum warpage amount was 0.9 mm.

(実施例4)
実施例1と同様のプリプレグ3の1枚の両面に金属箔4として銅箔(三井金属鉱業株式会社製「3EC−VLP」、500mm×500mm×厚さ18μm)を積層して成形することによって、金属張積層板5として両面金属張積層板(厚さ0.066mm)を製造した。上記の積層成形は、多段真空プレスを用いて加熱加圧して行った。加熱加圧時の昇温速度は250℃/分、ピーク温度は250℃、成形圧力は3.9MPa(40kgf/cm)、成形時間は5分間である。
Example 4
By laminating and forming a copper foil ("3EC-VLP" manufactured by Mitsui Metal Mining Co., Ltd., 500 mm x 500 mm x thickness 18 m) as a metal foil 4 on both sides of one prepreg 3 similar to that in Example 1, A double-sided metal-clad laminate (thickness 0.066 mm) was produced as the metal-clad laminate 5. The above lamination molding was performed by heating and pressing using a multistage vacuum press. The heating rate during heating and pressing is 250 ° C./min, the peak temperature is 250 ° C., the molding pressure is 3.9 MPa (40 kgf / cm 2 ), and the molding time is 5 minutes.

次に、上記の両面金属張積層板の片面にサブトラクティブ法により導体パターンを設けてコア材8を製造した。   Next, a conductor pattern was provided on one side of the double-sided metal-clad laminate by a subtractive method to manufacture the core material 8.

次に、上記と同様のプリプレグ3の1枚の一方の面にコア材8、他方の面に金属箔4を積層して成形することによって、内層回路7入りの金属張積層板5(厚さ0.120mm)を製造した。上記の積層成形は、両面金属張積層板の製造と同様に行った。   Next, the core material 8 is laminated on one surface of one prepreg 3 similar to the above, and the metal foil 4 is laminated on the other surface to form the metal-clad laminate 5 with the inner layer circuit 7 (thickness). 0.120 mm) was manufactured. The above lamination molding was performed in the same manner as the production of the double-sided metal-clad laminate.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.02%
(Y)=+0.02%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.02%
S 1 (Y) = + 0.02%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.03%
(Y)=+0.03%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は3.1mmであった。
S 2 (X) = + 0.03%
S 2 (Y) = + 0.03%
And the maximum curvature amount of the laminated board 6 was measured like Example 1. FIG. As a result, the maximum warpage amount was 3.1 mm.

(比較例1)
実施例1と同様のプリプレグ3を2枚重ね、この両面に金属箔4として銅箔(三井金属鉱業株式会社製「3EC−VLP」、500mm×500mm×厚さ18μm)を積層して成形することによって、金属張積層板5として両面金属張積層板(厚さ0.096mm)を製造した。上記の積層成形は、多段真空プレスを用いて加熱加圧して行った。加熱加圧時の昇温速度は3℃/分、ピーク温度は220℃、成形圧力は3.9MPa(40kgf/cm)、成形時間は80分間である。
(Comparative Example 1)
Two prepregs 3 similar to those in Example 1 are stacked, and copper foil (“3EC-VLP” manufactured by Mitsui Mining & Smelting Co., Ltd., 500 mm × 500 mm × thickness 18 μm) is laminated and molded on both sides as metal foil 4. Thus, a double-sided metal-clad laminate (thickness 0.096 mm) was produced as the metal-clad laminate 5. The above lamination molding was performed by heating and pressing using a multistage vacuum press. The heating rate during heating and pressurization is 3 ° C./min, the peak temperature is 220 ° C., the molding pressure is 3.9 MPa (40 kgf / cm 2 ), and the molding time is 80 minutes.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=+0.01%
(Y)=+0.01%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = + 0.01%
S 1 (Y) = + 0.01%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=−0.05%
(Y)=−0.05%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は2.5mmであった。
S 2 (X) = − 0.05%
S 2 (Y) = − 0.05%
And the maximum curvature amount of the laminated board 6 was measured like Example 1. FIG. As a result, the maximum warpage amount was 2.5 mm.

(比較例2)
熱硬化性樹脂として、DIC株式会社製「HP9500」及び「N540」を用いた。
(Comparative Example 2)
“HP9500” and “N540” manufactured by DIC Corporation were used as thermosetting resins.

またフィラーとして、シリカである株式会社アドマテックス製「S0−25R」を用いた。   Further, “S0-25R” manufactured by Admatechs Co., Ltd., which is silica, was used as the filler.

また硬化剤として、フェノール性硬化剤であるDIC株式会社製「TD2090」を用いた。   As a curing agent, “TD2090” manufactured by DIC Corporation, which is a phenolic curing agent, was used.

また硬化促進剤として、イミダゾールである四国化成工業株式会社製「2E4MZ」を用いた。   In addition, “2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd., which is imidazole, was used as a curing accelerator.

また基材1として、ガラスクロスである日東紡績株式会社製「1036クロス」(厚さ28μm)を用いた。   Further, as the substrate 1, “1036 cloth” (28 μm thickness) manufactured by Nitto Boseki Co., Ltd., which is a glass cloth, was used.

そして、上記の熱硬化性樹脂(「HP9500」:46.51質量部、「N540」:19.94質量部)、フィラー(「S0−25R」:300質量部)、硬化剤(「TD2090」:33.55質量部)、硬化促進剤(「2E4MZ」:0.05質量部)を配合し、さらに溶剤(メチルエチルケトン)で希釈することによって樹脂組成物2のワニスを調製した。   And said thermosetting resin ("HP9500": 46.51 mass parts, "N540": 19.94 mass parts), a filler ("S0-25R": 300 mass parts), a hardening | curing agent ("TD2090": 33.55 parts by mass), a curing accelerator (“2E4MZ”: 0.05 part by mass), and further diluted with a solvent (methyl ethyl ketone), a varnish of the resin composition 2 was prepared.

次に、上記のワニス及び基材1を用いるようにした以外は、比較例1と同様にしてプリプレグ3(レジンコンテント:72質量%)を製造し、このプリプレグ3を用いて金属張積層板5を製造した。   Next, a prepreg 3 (resin content: 72 mass%) was produced in the same manner as in Comparative Example 1 except that the varnish and the substrate 1 were used, and the metal-clad laminate 5 was produced using this prepreg 3. Manufactured.

次に、実施例1と同様にしてエッチング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。 Next, the dimensional change rates S 1 (X) and S 1 (Y) after the etching treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=−0.02%
(Y)=−0.02%
次に、実施例1と同様にしてエージング処理後の寸法変化率S(X)及びS(Y)を算出した。その結果を以下に示す。
S 1 (X) = − 0.02%
S 1 (Y) = − 0.02%
Next, the dimensional change rates S 2 (X) and S 2 (Y) after the aging treatment were calculated in the same manner as in Example 1. The results are shown below.

(X)=−0.06%
(Y)=−0.06%
そして、実施例1と同様にして積層板6の最大反り量を測定した。その結果、最大反り量は3.7mmであった。
S 2 (X) = − 0.06%
S 2 (Y) = − 0.06%
And the maximum curvature amount of the laminated board 6 was measured like Example 1. FIG. As a result, the maximum warpage amount was 3.7 mm.

1 基材
2 樹脂組成物
3 プリプレグ
4 金属箔
5 金属張積層板
6 積層板
DESCRIPTION OF SYMBOLS 1 Base material 2 Resin composition 3 Prepreg 4 Metal foil 5 Metal-clad laminated board 6 Laminated board

Claims (15)

熱硬化性樹脂を含有する樹脂組成物が開繊ガラスクロス基材に含浸されて半硬化したプリプレグに、金属箔が重ねられて加熱加圧されることにより前記樹脂組成物が硬化した金属張積層板であって、
前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、
前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加する、
金属張積層板。
A metal-clad laminate in which a resin composition containing a thermosetting resin is impregnated into a spread glass cloth base material and semi-cured, and a metal foil is laminated and heated and pressed to cure the resin composition. A board,
The size of the laminate after performing the etching treatment to remove the metal foil of the metal-clad laminate is increased compared to the size of the metal-clad laminate before the etching treatment,
After performing the etching process, the dimension of the laminate after performing the aging process of heating at 150 ° C. for 30 minutes increases compared to the dimension of the metal-clad laminate before performing the etching process,
Metal-clad laminate.
前記エージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する、
請求項1に記載の金属張積層板。
The size of the laminate after the aging treatment is reduced as compared to the size of the laminate after the etching treatment,
The metal-clad laminate according to claim 1.
熱硬化性樹脂を含有する樹脂組成物が開繊ガラスクロス基材に含浸されて半硬化したプリプレグに、金属箔が重ねられて加熱加圧されることにより前記樹脂組成物が硬化した金属張積層板であって、
前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、
前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する、
金属張積層板。
A metal-clad laminate in which a resin composition containing a thermosetting resin is impregnated into a spread glass cloth base material and semi-cured, and a metal foil is laminated and heated and pressed to cure the resin composition. A board,
The size of the laminate after performing the etching treatment to remove the metal foil of the metal-clad laminate is increased compared to the size of the metal-clad laminate before the etching treatment,
The size of the laminate after performing the aging treatment of heating at 150 ° C. for 30 minutes after the etching treatment is reduced as compared with the size of the laminate after the etching treatment,
Metal-clad laminate.
前記エッチング処理を行った後の積層板の寸法を基準とした場合、前記エージング処理を行った後の積層板の寸法変化率が±0.03%の範囲内である、
請求項1〜3のいずれか1項に記載の金属張積層板。
When the dimension of the laminate after performing the etching treatment is a standard, the dimensional change rate of the laminate after the aging treatment is within a range of ± 0.03%.
The metal-clad laminate according to any one of claims 1 to 3.
前記樹脂組成物にフィラーが含有されている、
請求項1〜4のいずれか1項に記載の金属張積層板。
The resin composition contains a filler,
The metal-clad laminate according to any one of claims 1 to 4.
前記樹脂組成物に前記フィラーが50〜80質量%含有されている、
請求項5に記載の金属張積層板。
The filler contains 50-80% by mass of the filler in the resin composition,
The metal-clad laminate according to claim 5.
熱硬化性樹脂を含有する樹脂組成物を開繊ガラスクロス基材に含浸させる工程と、
前記樹脂組成物を半硬化させてプリプレグを形成する工程と、
前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる工程と、を含む金属張積層板の製造方法であって、
前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、
前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加する、
金属張積層板の製造方法。
A step of impregnating a spread glass cloth base material with a resin composition containing a thermosetting resin;
Semi-curing the resin composition to form a prepreg;
A step of curing the resin composition by superposing a metal foil on the prepreg and applying heat and pressure, and a method for producing a metal-clad laminate,
The size of the laminate after performing the etching treatment to remove the metal foil of the metal-clad laminate is increased compared to the size of the metal-clad laminate before the etching treatment,
After performing the etching process, the dimension of the laminate after performing the aging process of heating at 150 ° C. for 30 minutes increases compared to the dimension of the metal-clad laminate before performing the etching process,
A method for producing a metal-clad laminate.
前記エージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する、
請求項7に記載の金属張積層板の製造方法。
The size of the laminate after the aging treatment is reduced as compared to the size of the laminate after the etching treatment,
The method for producing a metal-clad laminate according to claim 7.
熱硬化性樹脂を含有する樹脂組成物を開繊ガラスクロス基材に含浸させる工程と、
前記樹脂組成物を半硬化させてプリプレグを形成する工程と、
前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる工程と、を含む金属張積層板の製造方法であって、
前記金属張積層板の前記金属箔を除去するエッチング処理を行った後の積層板の寸法が、前記エッチング処理を行う前の金属張積層板の寸法に比べて増加し、
前記エッチング処理を行った後にさらに150℃で30分間加熱するエージング処理を行った後の積層板の寸法が、前記エッチング処理を行った後の積層板の寸法に比べて減少する、
金属張積層板の製造方法。
A step of impregnating a spread glass cloth base material with a resin composition containing a thermosetting resin;
Semi-curing the resin composition to form a prepreg;
A step of curing the resin composition by superposing a metal foil on the prepreg and applying heat and pressure, and a method for producing a metal-clad laminate,
The size of the laminate after performing the etching treatment to remove the metal foil of the metal-clad laminate is increased compared to the size of the metal-clad laminate before the etching treatment,
The size of the laminate after performing the aging treatment of heating at 150 ° C. for 30 minutes after the etching treatment is reduced as compared with the size of the laminate after the etching treatment,
A method for producing a metal-clad laminate.
前記エッチング処理を行った後の積層板の寸法を基準とした場合、前記エージング処理を行った後の積層板の寸法変化率が±0.03%の範囲内である、
請求項7〜9のいずれか1項に記載の金属張積層板の製造方法。
When the dimension of the laminate after performing the etching treatment is a standard, the dimensional change rate of the laminate after the aging treatment is within a range of ± 0.03%.
The manufacturing method of the metal-clad laminated board of any one of Claims 7-9.
前記樹脂組成物にフィラーを含有させる、
請求項7〜10のいずれか1項に記載の金属張積層板の製造方法。
Containing a filler in the resin composition,
The manufacturing method of the metal-clad laminated board of any one of Claims 7-10.
前記樹脂組成物に前記フィラーを50〜80質量%含有させる、
請求項11に記載の金属張積層板の製造方法。
Containing 50-80% by mass of the filler in the resin composition,
The method for producing a metal-clad laminate according to claim 11.
前記プリプレグに金属箔を重ねて加熱加圧することにより前記樹脂組成物を硬化させる工程における前記加熱加圧時の昇温速度が200℃/分以上である、
請求項7〜12のいずれか1項に記載の金属張積層板の製造方法。
The temperature increase rate during the heating and pressing in the step of curing the resin composition by heating and pressing the metal foil on the prepreg is 200 ° C./min or more,
The manufacturing method of the metal-clad laminated board of any one of Claims 7-12.
ガラスクロス基材に樹脂組成物を含浸し硬化された絶縁層の両面又は片面に導体パターンが形成されたプリント配線板の製造方法であって、
請求項1〜6のいずれか1項に記載の金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む、
プリント配線板の製造方法。
A method for producing a printed wiring board in which a conductive pattern is formed on both sides or one side of an insulating layer impregnated with a resin composition on a glass cloth substrate and cured,
Including a step of forming the conductor pattern by removing unnecessary portions of the metal foil of the metal-clad laminate according to any one of claims 1 to 6.
Manufacturing method of printed wiring board.
導体パターンの層を3層以上有する多層プリント配線板の製造方法であって、
請求項1〜6のいずれか1項に記載の金属張積層板の前記金属箔の不要部分を除去することにより、前記導体パターンを形成する工程を含む、
多層プリント配線板の製造方法。
A method for producing a multilayer printed wiring board having three or more layers of conductor patterns,
Including a step of forming the conductor pattern by removing unnecessary portions of the metal foil of the metal-clad laminate according to any one of claims 1 to 6.
A method for producing a multilayer printed wiring board.
JP2017187041A 2012-11-12 2017-09-27 Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board Active JP6624573B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012248686 2012-11-12
JP2012248686 2012-11-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013217851A Division JP6226232B2 (en) 2012-11-12 2013-10-18 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2018001764A true JP2018001764A (en) 2018-01-11
JP6624573B2 JP6624573B2 (en) 2019-12-25

Family

ID=50709655

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013217851A Active JP6226232B2 (en) 2012-11-12 2013-10-18 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board
JP2017187041A Active JP6624573B2 (en) 2012-11-12 2017-09-27 Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013217851A Active JP6226232B2 (en) 2012-11-12 2013-10-18 Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board

Country Status (4)

Country Link
JP (2) JP6226232B2 (en)
KR (1) KR101794874B1 (en)
CN (1) CN103813612B (en)
TW (1) TWI544842B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954675B2 (en) * 2014-09-26 2016-07-20 パナソニックIpマネジメント株式会社 Method for producing double-sided metal-clad laminate, method for producing printed wiring board, method for producing multilayer laminate, and method for producing multilayer printed wiring board
JP5991500B1 (en) * 2016-03-18 2016-09-14 パナソニックIpマネジメント株式会社 Metal-clad laminate, printed wiring board, method for producing metal-clad laminate, and method for producing printed wiring board
JP6796791B2 (en) * 2016-08-01 2020-12-09 パナソニックIpマネジメント株式会社 Manufacturing method of metal-clad laminate, printed wiring board, metal-clad laminate and manufacturing method of printed wiring board
WO2018088493A1 (en) * 2016-11-09 2018-05-17 日立化成株式会社 Printed wiring board and semiconductor package
CN106856646A (en) * 2016-11-13 2017-06-16 惠州市大亚湾科翔科技电路板有限公司 A kind of flexibility covers metal lamination
JP6960595B2 (en) * 2017-01-13 2021-11-05 パナソニックIpマネジメント株式会社 Printed wiring board with built-in thick conductor and its manufacturing method
TWI775905B (en) 2017-07-25 2022-09-01 日商松下知識產權經營股份有限公司 Manufacturing method of multi-layered printed wiring board
AT525720B1 (en) * 2020-04-03 2024-01-15 Panasonic Ip Man Co Ltd Thermosetting resin layer and printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884182A (en) * 1972-02-14 1973-11-08
JPS6221539A (en) * 1985-07-20 1987-01-29 松下電工株式会社 Manufacture of laminated board
JPS62259825A (en) * 1986-05-07 1987-11-12 Matsushita Electric Works Ltd Manufacture of metal foil clad laminated sheet
JP2002347172A (en) * 2001-05-24 2002-12-04 Sumitomo Bakelite Co Ltd Method for producing laminated sheet
JP2005158974A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Method for manufacturing multi-layer printed wiring board and sheet material for manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144632A (en) * 1984-08-10 1986-03-04 松下電工株式会社 Adhesive prepreg for multilayer printed wiring board
JPH0655449B2 (en) * 1986-12-15 1994-07-27 松下電工株式会社 Glass-based epoxy resin laminate processing method
JPH0752788B2 (en) * 1988-12-28 1995-06-05 松下電器産業株式会社 Method of forming printed wiring board
JP2954335B2 (en) * 1990-11-30 1999-09-27 住友ベークライト株式会社 Manufacturing method of laminated board
JPH05327150A (en) * 1992-05-18 1993-12-10 Sumitomo Bakelite Co Ltd Laminated plate for printed circuit
JP2612129B2 (en) * 1992-05-19 1997-05-21 住友ベークライト株式会社 Laminated board
JP2996026B2 (en) * 1992-09-30 1999-12-27 日立化成工業株式会社 Manufacturing method of copper clad laminate
JPH06171052A (en) * 1992-12-03 1994-06-21 Hitachi Chem Co Ltd Manufacture of laminated sheet
JPH0760903A (en) * 1993-08-24 1995-03-07 Matsushita Electric Works Ltd Laminated sheet
JPH10235780A (en) * 1997-02-27 1998-09-08 Matsushita Electric Works Ltd Substrate for tape carrier package
JPH10272733A (en) * 1997-03-31 1998-10-13 Hitachi Chem Co Ltd Manufacture of metal-clad laminate
JP3879512B2 (en) * 2002-01-08 2007-02-14 日東紡績株式会社 Glass fiber woven fabric, prepreg, and printed wiring board
JP5263134B2 (en) * 2009-12-07 2013-08-14 住友ベークライト株式会社 Circuit board resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP5620093B2 (en) * 2009-12-18 2014-11-05 株式会社カネカ Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
KR101355777B1 (en) * 2011-01-24 2014-02-04 스미토모 베이클리트 컴퍼니 리미티드 Prepreg, laminate, printed wiring board, and semiconductor device
TWI583560B (en) * 2011-04-14 2017-05-21 住友電木股份有限公司 Laminated board, circuit board, and semiconductor package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884182A (en) * 1972-02-14 1973-11-08
JPS6221539A (en) * 1985-07-20 1987-01-29 松下電工株式会社 Manufacture of laminated board
JPS62259825A (en) * 1986-05-07 1987-11-12 Matsushita Electric Works Ltd Manufacture of metal foil clad laminated sheet
JP2002347172A (en) * 2001-05-24 2002-12-04 Sumitomo Bakelite Co Ltd Method for producing laminated sheet
JP2005158974A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Method for manufacturing multi-layer printed wiring board and sheet material for manufacturing the same

Also Published As

Publication number Publication date
KR20140061246A (en) 2014-05-21
TW201440585A (en) 2014-10-16
CN103813612A (en) 2014-05-21
CN103813612B (en) 2018-03-09
JP6624573B2 (en) 2019-12-25
KR101794874B1 (en) 2017-11-07
JP6226232B2 (en) 2017-11-08
JP2014111361A (en) 2014-06-19
TWI544842B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
JP6226232B2 (en) Metal-clad laminate, metal-clad laminate production method, printed wiring board, multilayer printed wiring board
KR101677461B1 (en) Epoxy resin composition
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
TWI653141B (en) Laminated body, laminated board, multilayer laminated board, printed wiring board, and manufacturing method of laminated board (1)
WO2013042749A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
JP7281745B2 (en) Method for manufacturing multilayer printed wiring board
WO2013042750A1 (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
TW201343010A (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
KR101671120B1 (en) Method for manufacturing double-faced metal laminate, method for manufacturing printed circuit board, method for manufacturing multiple layered laminate, and method for manufacturing multiple layered printed circuit board
TW201334643A (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
US10371612B2 (en) Prepreg, metal-clad laminated plate, wiring board, and method for measuring thermal stress of wiring board material
JP5887561B2 (en) Method for producing metal-clad laminate
JP6410190B2 (en) Multilayer laminate manufacturing method and multilayer printed wiring board manufacturing method
WO2013076973A1 (en) Metal-clad laminate, and printed wiring board
JP2010056176A (en) Method of manufacturing multilayer printed wiring board
JP2021150609A (en) Method for manufacturing laminate, and method for manufacturing printed wiring board
WO2019208402A1 (en) Layered plate, printed circuit board, multilayer printed circuit board, layered body, and layered plate production method
JPH05327214A (en) Manufacture of multilayer metal-clad laminate
JPH03285391A (en) Manufacture of multilayer wiring board
KR20160029363A (en) Prepreg and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R151 Written notification of patent or utility model registration

Ref document number: 6624573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151