JPS6221539A - Manufacture of laminated board - Google Patents

Manufacture of laminated board

Info

Publication number
JPS6221539A
JPS6221539A JP60160654A JP16065485A JPS6221539A JP S6221539 A JPS6221539 A JP S6221539A JP 60160654 A JP60160654 A JP 60160654A JP 16065485 A JP16065485 A JP 16065485A JP S6221539 A JPS6221539 A JP S6221539A
Authority
JP
Japan
Prior art keywords
cured
laminate
semi
resin
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60160654A
Other languages
Japanese (ja)
Other versions
JPH0343061B2 (en
Inventor
高田 俊治
泰郎 東林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60160654A priority Critical patent/JPS6221539A/en
Publication of JPS6221539A publication Critical patent/JPS6221539A/en
Publication of JPH0343061B2 publication Critical patent/JPH0343061B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、積層板の製法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for manufacturing a laminate.

〔背景技術〕[Background technology]

積層板は、通常の成形品(バッチ式成形品)と連続成形
品では残留歪の1分布が異なり、残留歪の分布の均一性
において連続成形品のほうが有利であるのは容易に推定
できる。残留歪の分布は、通常の成形品では積層板の中
央からその端部に向かって放射状になる。他方、第1図
にみるように、連続成形品1では、移動させた方向く矢
印A方向)に垂直な断面(図に一点鎖線で示す)がすべ
て同−歪を有している。たとえば、実線Bの部分などで
切断してもそれはほぼ同じである。加熱などによって歪
を除去しても、これら各成形品の傾向は基本的に変わら
ず、後々、エツチングを行うときなどに大きな差を生じ
させる。
Regarding laminates, the distribution of residual strain is different between normal molded products (batch type molded products) and continuous molded products, and it can be easily assumed that continuous molded products are more advantageous in terms of uniformity of the distribution of residual strain. In a typical molded product, the distribution of residual strain is radial from the center of the laminate toward its edges. On the other hand, as shown in FIG. 1, in the continuous molded product 1, all cross sections perpendicular to the direction of movement (direction of arrow A) (indicated by a dashed line in the figure) have the same strain. For example, even if it is cut along the solid line B, the results are almost the same. Even if the strain is removed by heating or the like, the tendencies of each of these molded products basically remain unchanged, and this causes a large difference when etching is performed later.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のことに鑑みて、高寸法安定性を持つ
積層板の製法を提供することを目的とする。
In view of the above, an object of the present invention is to provide a method for manufacturing a laminate having high dimensional stability.

〔発明の開示〕[Disclosure of the invention]

発明者らは、完全硬化した積層板を歪取りしてもその効
果は小さいのに対し、半硬化状態で、かつ、無応力、無
加圧の状態で歪取りを行うのが最良であるという知見を
得、この発明を完成させたしたがって、この発明は、少
なくとも樹脂含浸基材からなるシート状長尺物を所定枚
重ね、5〜50 kg / crAの加圧下において連
続的に成形した硬化度15〜60%の半硬化の板を切断
したのち、その半硬化樹脂のガラス転移温度よりも50
〜120℃高い温度で無応力の状態で後硬化させる積層
板の製法を要旨としている。
The inventors believe that even if a fully cured laminate is strained, the effect is small, but that it is best to remove strain in a semi-cured state, with no stress or pressure applied. Obtained knowledge and completed this invention. Therefore, this invention is based on a cured product obtained by stacking a predetermined number of elongated sheets made of at least a resin-impregnated base material and continuously molding them under a pressure of 5 to 50 kg/crA. After cutting a 15-60% semi-cured board, the temperature is 50% higher than the glass transition temperature of the semi-cured resin.
The gist is a method for manufacturing a laminate that is post-cured in a stress-free state at a temperature higher than ~120°C.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明にかかる積層板の製法において、連続成形を用
いるのは、成形後の残留歪の分布の均一性において有利
なため、すなわち、積層板の寸法安定性に有利なためで
ある。連続成形はダブルベルトプレス(Wベルトプレス
)、ロールによるプレスなど種々の手段で行われ、特に
限定はない。
In the method for manufacturing a laminate according to the present invention, continuous molding is used because it is advantageous in terms of uniformity of distribution of residual strain after molding, that is, it is advantageous in terms of dimensional stability of the laminate. Continuous molding can be carried out by various means such as double belt press (W belt press) and roll press, and there are no particular limitations.

成形時に加える圧力は5〜50kg/antであり、こ
の範囲をはずれると、得られる積層板の寸法安定性など
の物性に悪影響を与える。すなわち、圧力5 kg/c
m2未満ではボイドが発生したりし、圧力50 kg/
cm2を超えると、樹脂のフローが大きくなり、樹脂不
足を生じたりする。
The pressure applied during molding is 5 to 50 kg/ant, and if it deviates from this range, the physical properties such as the dimensional stability of the resulting laminate will be adversely affected. That is, the pressure is 5 kg/c
If the pressure is less than 50 kg/m2, voids may occur.
If it exceeds cm2, the flow of the resin will increase, resulting in a resin shortage.

樹脂含浸基材からなるシート状長尺物および必要に応じ
てその片面または両面に金属箔からなるシート状長尺物
をそれぞれ所定枚重ね、上記条件下で連続的に成形して
硬化度15〜60%の半硬化の板とする。その半硬化樹
脂の硬化度がこの範囲をはずれると、得られる積層板の
物性に悪影響を与える。すなわち、硬化度15%未満で
は、硬化の程度が低すぎて後の処理に支障をきたしたり
し、硬化度60%を超えると後硬化での歪取りが十分に
行えないなどの問題がある。基材に含浸されている樹脂
としては、エポキシ樹脂、フェノール樹脂、ポリイミド
樹脂、ポリエステル樹脂などの熱硬化性を有する樹脂ま
たは樹脂組成物があげられ、寸法安定性の良いものが好
ましいが、これらに限定されない。基材としては、ガラ
ス布、紙などがあげられ、寸法安定性の良いものが好ま
しいが、これらに限定されない。金属箔としては、銅箔
、アルミニウム箔などがあげられるが、これらに限定さ
れない。上記のようにして成形した半硬化の板は、用途
などに応じて所定の寸法に切断したのち、半硬化樹脂の
ガラス転移温度よりも50〜120℃高い温度で後硬化
させる。この温度範囲を下まわると、歪取りが不十分に
なり、この範囲を上まわると、樹脂などに悪影響がでる
A predetermined number of sheet-like elongated objects made of a resin-impregnated base material and, if necessary, a sheet-like elongated object made of metal foil on one or both sides thereof, are stacked one on top of the other, and continuously molded under the above conditions to obtain a hardening degree of 15-15. The board is 60% semi-cured. If the degree of curing of the semi-cured resin is out of this range, it will adversely affect the physical properties of the resulting laminate. That is, if the degree of hardening is less than 15%, the degree of hardening is too low and may cause problems in subsequent processing, and if the degree of hardening exceeds 60%, there are problems such as insufficient strain relief in post-curing. Examples of the resin impregnated into the base material include thermosetting resins or resin compositions such as epoxy resins, phenol resins, polyimide resins, and polyester resins, and those with good dimensional stability are preferable. Not limited. Examples of the base material include glass cloth and paper, and those with good dimensional stability are preferred, but are not limited to these. Examples of the metal foil include, but are not limited to, copper foil and aluminum foil. The semi-cured plate formed as described above is cut into predetermined dimensions depending on the intended use, and then post-cured at a temperature 50 to 120° C. higher than the glass transition temperature of the semi-cured resin. If the temperature is below this range, strain relief will be insufficient, and if it is above this range, the resin etc. will be adversely affected.

後硬化は半硬化の板の歪取りを兼ねている。歪取りを行
う温度は、半硬化樹脂のガラス転移温度(ガラス転移点
ともいう。以下、rTgJと記す)に比べ、高ければ高
いほど良い。しかし、硬化状態にある樹脂、あるいは、
硬化状態に近い硬化度(具体的には硬化度60%よりも
大)になると、半硬化樹脂のTgより50〜120°C
高い温度では、樹脂、銅箔など金属箔の変色、焼け、分
解などが発生して、実用上、歪取りは行えない。なお、
後硬化は、半硬化の板に引張力や圧縮力を加えたり加圧
したすせずに、無応力の状態で行わなければならない。
Post-curing also serves to remove distortion from semi-cured plates. The temperature at which the strain is removed is preferably higher than the glass transition temperature (also referred to as glass transition point, hereinafter referred to as rTgJ) of the semi-cured resin. However, the resin in the cured state or
When the degree of curing is close to the cured state (specifically, the degree of curing is higher than 60%), the temperature is 50 to 120°C higher than the Tg of the semi-cured resin.
At high temperatures, discoloration, burning, and decomposition of resin, copper foil, and other metal foils occur, making it practically impossible to remove distortion. In addition,
Post-curing must be carried out in a stress-free manner, without applying tension, compression, or pressure to the semi-cured plate.

以上にみるように、この発明にかかる積層板の製法は、
効果の大きい後硬化温度、効果の大きい硬化程度、効果
の大きい成形方法を選ぶことにより、高寸法安定性をも
つ積層板、たとえば、銅張積層板(CCL)が容易に得
られるのである。すなわち、得られた積層板は、縦方向
および横方向の寸法変化率絶対値が小さく、縦方向と横
方向の寸法変化率の差が少なく、積層板ごとの寸法変化
率のばらつきが小さくなるのである。また、この効果は
、積層板の厚みが薄いほど(特に、厚み0゜05〜0.
80mのとき)、通常品に比べ大きい。
As seen above, the method for manufacturing a laminate according to the present invention is as follows:
By selecting a highly effective post-curing temperature, a highly effective degree of curing, and a highly effective molding method, a laminate with high dimensional stability, such as a copper clad laminate (CCL), can be easily obtained. In other words, the obtained laminate has a small absolute value of the dimensional change rate in the longitudinal and lateral directions, a small difference in the dimensional change rate in the longitudinal and lateral directions, and a small variation in the dimensional change rate from laminate to laminate. be. Moreover, this effect becomes more effective as the thickness of the laminate becomes thinner (particularly when the thickness is 0°05 to 0.05°).
80m), larger than regular products.

以下に、実施例および比較例を示すが、この発明はこの
実施例に限られない。
Examples and comparative examples are shown below, but the invention is not limited to these examples.

(実施例1) エポキシ樹脂100重量部および硬化剤としてジシアン
ジアミドを4重量部、イミダゾール0.2重量部からな
るエポキシ樹脂組成物を、216タイプのガラス基材に
樹脂付着量が50%となるように含浸させた樹脂含浸基
材(成形基材)からなるシート状長尺物を2枚重ね、そ
の上下両面に1枚ずつ2枚の銅箔(厚み18μm)から
なるシート状長尺物を重ね、ダブルベルトプレス法によ
り、圧力15 kg/ caで連続的に積層成形し、硬
化度35%の半硬化の板を得た。この板の半硬化樹脂の
Tgは80℃であった。この板を所定寸法に切断したの
ち170℃の温度で無応力の状態で後硬化させ積層板を
得た。
(Example 1) An epoxy resin composition consisting of 100 parts by weight of epoxy resin, 4 parts by weight of dicyandiamide as a hardening agent, and 0.2 parts by weight of imidazole was applied to a 216 type glass substrate so that the amount of resin adhesion was 50%. Two long sheets made of a resin-impregnated base material (molded base material) impregnated with a resin are stacked, and two long sheets made of copper foil (thickness 18 μm) are stacked on each of the top and bottom surfaces. A semi-cured plate with a degree of hardening of 35% was obtained by continuous lamination molding using a double belt press method at a pressure of 15 kg/ca. The Tg of the semi-cured resin of this plate was 80°C. This plate was cut to a predetermined size and then post-cured at a temperature of 170° C. in a stress-free state to obtain a laminate.

(実施例2) 実施例1と同じ成形基材からなるシート状長尺物を2枚
重ね、その上下両面に実施例1と同じ銅箔からなるシー
ト状長尺物を1枚ずつ2枚重ね、実施例1と同様にして
圧力15kg/a+!で連続的に積層成形し、硬化度2
0%の半硬化の板を得た。
(Example 2) Two long sheets made of the same molded base material as in Example 1 were stacked, and two long sheets made of the same copper foil as in Example 1 were stacked on each of the upper and lower surfaces. , Pressure 15 kg/a+! in the same manner as in Example 1! Continuously laminated and molded with a hardening degree of 2.
A 0% semi-cured board was obtained.

この板の半硬化樹脂のTgは70℃であった。この板を
所定寸法に切断したのち170℃の温度で無応力の状態
で後硬化させ積層板を得た。
The Tg of the semi-cured resin of this plate was 70°C. This plate was cut to a predetermined size and then post-cured at a temperature of 170° C. in a stress-free state to obtain a laminate.

(実施例3) 実施例1と同じ成形基材からなるシート状長尺物を2枚
重ね、その上下両面に実施例1と同じ銅箔からなるシー
ト状長尺物を1枚ずつ2枚重ね、実施例1と同様にして
圧力15kg/cnで連続的に積層成形し、硬化度55
%の半硬化の板を得た。
(Example 3) Two long sheets made of the same molded base material as in Example 1 were stacked, and two long sheets made of the same copper foil as in Example 1 were stacked on each of the upper and lower surfaces. , was laminated continuously at a pressure of 15 kg/cn in the same manner as in Example 1, and the degree of hardening was 55.
% semi-cured board was obtained.

この板の半硬化樹脂のTgは100℃であった。The Tg of the semi-cured resin of this plate was 100°C.

この板を所定寸法に切断したのち170℃の温度で無応
力の状態で後硬化させ積層板を得た。
This plate was cut to a predetermined size and then post-cured at a temperature of 170° C. in a stress-free state to obtain a laminate.

(実施例4) 実施例1と同じ成形基材からなるシート状長尺物を2枚
重ね、その上下両面に実施例1と同じ銅箔からなるシー
ト状長尺物を1枚ずつ2枚重ね、実施例1と同様にして
圧力8 kg / caで連続的に積層成形し、硬化度
35%の半硬化の板を得た。この板の半硬化樹脂のTg
は80℃であった。この板を所定寸法に切断したのち1
95℃の温度で無応力の状態で後硬化させ積層板を得た
(Example 4) Two long sheets made of the same molded base material as in Example 1 were stacked, and two long sheets made of the same copper foil as in Example 1 were stacked on each of the upper and lower surfaces. , Continuous lamination molding was carried out in the same manner as in Example 1 at a pressure of 8 kg/ca to obtain a semi-cured plate with a degree of hardening of 35%. Tg of the semi-cured resin of this board
was 80°C. After cutting this board to the specified size,
A laminate was obtained by post-curing at a temperature of 95° C. in a stress-free state.

(実施例5) 実施例1と同じ成形基材からなるシート状長尺物を2枚
重ね、その上下両面に実施例1と同じ銅箔からなるシー
ト状長尺物を1枚ずつ2枚重ね、実施例1と同様にして
圧力45 kg / clで連続的に積層成形し、硬化
度35%の半硬化の板を得た。
(Example 5) Two long sheets made of the same molded base material as in Example 1 were stacked, and two long sheets made of the same copper foil as in Example 1 were stacked on each of the upper and lower surfaces. , Continuous lamination molding was carried out in the same manner as in Example 1 at a pressure of 45 kg/cl to obtain a semi-cured plate with a degree of hardening of 35%.

この板の半硬化樹脂のTgは80℃であった。この板を
所定寸法に切断したのち135℃の温度で無応力の状態
で後硬化させ積層板を得た。
The Tg of the semi-cured resin of this plate was 80°C. This plate was cut to a predetermined size and then post-cured at a temperature of 135° C. in a stress-free state to obtain a laminate.

(比較例1) 実施例1と同じ成形基材を所定寸法に切断して2枚重ね
、その上下両面に実施例1と同じ銅箔を所定寸法に切断
して1枚ずつ2枚重ね、通常の成形(バッチ式成形)に
より、圧力15kg/cJで積層成形し、硬化度35%
の半硬化の板を得た。この板の半硬化樹脂のTgは80
 ”cであった。この板を170℃の温度で後硬化させ
積層板を得た。
(Comparative Example 1) The same molding base material as in Example 1 was cut to a predetermined size and two sheets were stacked, and on both the top and bottom sides, two sheets of the same copper foil as in Example 1 were cut to a predetermined size and stacked one by one. Laminated molding was performed at a pressure of 15 kg/cJ by molding (batch molding), and the degree of hardening was 35%.
A semi-cured board was obtained. The Tg of the semi-cured resin of this board is 80
This board was post-cured at a temperature of 170°C to obtain a laminate.

(比較例2) 実施例1と同じ成形基材を所定寸法に切断して2枚重ね
、その上下両面に実施例1と同じ銅箔を所定寸法に切断
して1枚ずつ2枚重ね、通常の成形により、圧力15k
g/cJで積層成形し、硬化度95%の板を得た。この
板の硬化樹脂のTgは140℃であった。この板を17
0 ’cの温度で後硬化させ積層板を得た。
(Comparative Example 2) The same molded base material as in Example 1 was cut to a predetermined size and two sheets were stacked, and on the top and bottom sides of the same molded base material as in Example 1 was cut to a predetermined size and two sheets were stacked one by one. By molding, the pressure is 15k.
Laminate molding was performed at g/cJ to obtain a plate with a degree of hardening of 95%. The Tg of the cured resin of this plate was 140°C. This board is 17
A laminate was obtained by post-curing at a temperature of 0'c.

(比較例3) 実施例1と同じ成形基材からなるシート状長尺物を2枚
重ね、その上下両面に実施例1と同じ銅箔からなるシー
ト状長尺物を1枚ずつ2枚重ね、ダブルベルトプレス法
により、圧力15kg/cJで連続的に積層成形し、硬
化度80%の板を得た。
(Comparative Example 3) Two long sheets made of the same molded base material as in Example 1 were stacked, and two long sheets made of the same copper foil as in Example 1 were stacked on each of the upper and lower surfaces. A plate with a degree of hardening of 80% was obtained by continuous lamination molding using a double belt press method at a pressure of 15 kg/cJ.

この板の硬化樹脂のTgは130℃であった。この板を
所定寸法に切断して170℃の温度で後硬化させ積層板
を得た。
The Tg of the cured resin of this plate was 130°C. This plate was cut into predetermined dimensions and post-cured at a temperature of 170°C to obtain a laminate.

実施例1〜5および比較例1〜3で得た各積層板を25
0miX250mm角に切断し、それぞれ、エツチング
後および加熱後の各縦横の寸法を測定し、各々の寸法変
化率および加熱後の各積層板ごとの寸法変化率のばらつ
きを算出し、第1表に示した。
Each laminate obtained in Examples 1 to 5 and Comparative Examples 1 to 3 was
It was cut into 0 x 250 mm squares, the vertical and horizontal dimensions were measured after etching and after heating, and the dimensional change rate and the variation in the dimensional change rate for each laminate after heating were calculated, and the results are shown in Table 1. Ta.

なお、実施例1〜5および比較例1〜3で硬化度は、赤
外吸光スペクトル分析によるエポキシ基の比率により求
めた。
In addition, in Examples 1 to 5 and Comparative Examples 1 to 3, the degree of curing was determined by the ratio of epoxy groups by infrared absorption spectrum analysis.

第1表にみるように、実施例1〜5で得られた積層板は
、比較例1〜3の積層板に比べて、縦方向の寸法変化率
絶対値が小さくなっており、横方向の寸法変化率絶対値
がほぼ同等になっている。
As shown in Table 1, the laminates obtained in Examples 1 to 5 have a smaller absolute value of the dimensional change rate in the longitudinal direction than the laminates in Comparative Examples 1 to 3. The absolute values of the dimensional change rates are almost the same.

しかも、実施例1〜5で得られた積層板は縦方向と横方
向の寸法変化率の差があまりないのに対し、比較例1〜
3の積層板は縦方向と横方向の寸法変化率の差が非常に
大きい。加熱後の各積層板ごとの寸法変化率のばらつき
も、実施例1〜5の積層板のほうが比較例1〜3の積層
板よりもはるかに小さい。
Moreover, the laminates obtained in Examples 1 to 5 did not have much difference in the dimensional change rates in the longitudinal and lateral directions, whereas Comparative Examples 1 to 5
The laminate plate No. 3 has a very large difference in dimensional change rate in the vertical and horizontal directions. The variation in the dimensional change rate of each laminate after heating is also much smaller in the laminates of Examples 1 to 5 than in the laminates of Comparative Examples 1 to 3.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる積層板の製法は、以上にみてきたよう
に、5〜50kg/c111の加圧下において連続的に
成形した硬化度15〜60%の半硬化の板を切断したの
ち、その半硬化樹脂のガラス転移温度よりも50〜12
0℃高い温度で無応力の状態で後硬化させるようにして
いるので、縦方向および横方向の寸法変化率絶対値が小
さく、縦方向と横方向の寸法変化率の差が少なく、寸法
変化率のばらつきが小さい高寸法安定性をもつ積層板が
容易に得られる。
As described above, the method for producing a laminate according to the present invention is to cut a semi-cured plate with a degree of hardening of 15 to 60% that has been continuously molded under a pressure of 5 to 50 kg/c111, and then cut the semi-cured plate. 50~12 higher than the glass transition temperature of the resin
Since post-curing is carried out in a stress-free state at a temperature 0°C higher, the absolute value of the dimensional change rate in the longitudinal and lateral directions is small, and the difference between the dimensional change rates in the longitudinal and lateral directions is small. A laminate with high dimensional stability and small variations in dimensional stability can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも樹脂含浸基材からなるシート状長尺物
を所定枚重ね、5〜50kg/cm^2の加圧下におい
て連続的に成形した硬化度15〜60%の半硬化の板を
切断したのち、その半硬化樹脂のガラス転移温度よりも
50〜120℃高い温度で無応力の状態で後硬化させる
積層板の製法。
(1) A predetermined number of elongated sheets made of at least a resin-impregnated base material were piled up, and semi-cured plates with a degree of hardening of 15 to 60% were cut by continuously molding them under pressure of 5 to 50 kg/cm^2. A method for manufacturing a laminate in which the semi-cured resin is then post-cured in a stress-free state at a temperature 50 to 120° C. higher than the glass transition temperature of the semi-cured resin.
(2)積層板の厚みが0.05〜0.80mmである特
許請求の範囲第1項記載の積層板の製法。
(2) The method for manufacturing a laminate according to claim 1, wherein the laminate has a thickness of 0.05 to 0.80 mm.
JP60160654A 1985-07-20 1985-07-20 Manufacture of laminated board Granted JPS6221539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60160654A JPS6221539A (en) 1985-07-20 1985-07-20 Manufacture of laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160654A JPS6221539A (en) 1985-07-20 1985-07-20 Manufacture of laminated board

Publications (2)

Publication Number Publication Date
JPS6221539A true JPS6221539A (en) 1987-01-29
JPH0343061B2 JPH0343061B2 (en) 1991-07-01

Family

ID=15719606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160654A Granted JPS6221539A (en) 1985-07-20 1985-07-20 Manufacture of laminated board

Country Status (1)

Country Link
JP (1) JPS6221539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111361A (en) * 2012-11-12 2014-06-19 Panasonic Corp Metal-clad laminate, printed wiring board, multilayer printed wiring board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767816A1 (en) 2004-06-28 2007-03-28 Yamaha Hatsudoki Kabushiki Kaisha Belt type continuously variable transmission for saddle-riding type vehicle and saddle-riding type vehicle
JP4530926B2 (en) 2005-07-04 2010-08-25 ヤマハ発動機株式会社 Power unit and straddle-type vehicle equipped with the power unit
JP2007071253A (en) 2005-09-05 2007-03-22 Yamaha Motor Co Ltd Riding type vehicle and power unit
JP5037953B2 (en) 2007-01-15 2012-10-03 ヤマハ発動機株式会社 Belt-type continuously variable transmission, control device for belt-type continuously variable transmission, and vehicle
JP5037954B2 (en) 2007-01-15 2012-10-03 ヤマハ発動機株式会社 Belt type continuously variable transmission and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111361A (en) * 2012-11-12 2014-06-19 Panasonic Corp Metal-clad laminate, printed wiring board, multilayer printed wiring board
JP2018001764A (en) * 2012-11-12 2018-01-11 パナソニックIpマネジメント株式会社 Metal-clad laminate and method for manufacturing the same, method for manufacturing printed wiring board, and method for manufacturing multilayer printed circuit board

Also Published As

Publication number Publication date
JPH0343061B2 (en) 1991-07-01

Similar Documents

Publication Publication Date Title
JPS6221539A (en) Manufacture of laminated board
JPS6363369B2 (en)
JPS6221626B2 (en)
JP2950969B2 (en) Manufacturing method of laminated board
JPH0771839B2 (en) Laminated board manufacturing method
JPH0753420B2 (en) Manufacturing method of multilayer printed wiring board
JPH05154960A (en) Production of laminated sheet for printed circuit board
JP3173082B2 (en) Manufacturing method of laminated board
JPS634935A (en) Preparation of multilayer circuit board
JPS6040252A (en) Manufacture of laminated board
JPS63233810A (en) Manufacture of laminated sheet
JPH1029260A (en) Production of laminated sheet
JPS6061261A (en) Manufacture of laminated board
JPS6250305B2 (en)
JP3014480B2 (en) Manufacturing method of laminated board
JPS63283949A (en) Preparation of laminated sheet
JPS62162533A (en) Single-sided metal-lined laminated board
JPH0671773A (en) Manufacture of metal clad laminated sheet
JPH0557752B2 (en)
JPH0747638B2 (en) Manufacturing method of laminated board for printed wiring board
JPH04357028A (en) Manufacture of fluoroplastic laminated sheet
JPH04119836A (en) Metal foil clad laminated sheet and preparation thereof
JPH0334677B2 (en)
JPS6330538A (en) Production of laminated sheet
JPH06914A (en) Manufacture of single-faced copper-clad laminated sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees